14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Abstract

General Description The MAX1157/MAX1159/MAX1175 14-bit, low-power, successive-approximation analog-to-digital converters (ADCs) feature automatic power-down, factory-trimmed internal clock, and 14-bit wide parallel interface. The devices operate from a single +4.75 V to +5.25 V analog supply and feature a separate digital supply input for direct interface with +2.7 V to +5.25 V digital logic. The MAX1157 accepts an analog input voltage range from 0 to +10 V while the MAX1159 accepts a bipolar analog input voltage range of $\pm 10 \mathrm{~V}$. The MAX1175 accepts a bipolar analog input voltage range of $\pm 5 \mathrm{~V}$. All devices consume only 23 mW at a sampling rate of 135 ksps when using an external reference and 29 mW when using the internal +4.096 V reference. AutoShutdown ${ }^{\text {TM }}$ reduces supply current to 0.4 mA at 10ksps. The MAX1157/MAX1159/MAX1175 are ideal for high-performance, battery-powered data-acquisition applications. Excellent AC performance (THD $=-100 \mathrm{~dB}$) and DC accuracy ($\pm 1 \mathrm{LSB}$ INL) make the MAX1157/ MAX1159/MAX1175 ideal for industrial process control, instrumentation, and medical applications. The MAX1157/MAX1159/MAX1175 are available in a 28-pin TSSOP package and are fully specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range and the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range.

Applications

Temperature Sensing and Monitoring Industrial Process Control
I/O Modules
Data-Acquisition Systems
Precision Instrumentation

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

Features

- Analog Input Voltage Range $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, or 0 to 10 V
- 14-Bit Wide Parallel Interface
- Single +4.75V to +5.25V Analog Supply Voltage
- Interfaces with +2.7V to +5.25V Digital Logic
- ± 1 LSB INL (max)
- ± 1 LSB DNL (max)
- Low Supply Current (MAX1159)
5.3mA (External Reference)
6.2mA (Internal Reference)
$5 \mu \mathrm{~A}$ AutoShutdown Mode
- Small Footprint

28-Pin TSSOP Package

Pin Configuration

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	INPUT VOLTAGE RANGE	INL (LSB)
MAX1157ACUI* $^{\text {MAX1157BCUI* }}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	0 to +10V	± 1
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	0 to +10V	± 2	

Ordering Information continued at end of data sheet.

*Future product-contact factory for availability.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ABSOLUTE MAXIMUM RATINGS

AVDD to AGND	-0.3V to +6V
DVDD to DGND.	-0.3V to +6V
AGND to DGND.	-0.3 V to +0.3 V
AIN to AGND	-16.5V to +16.5V
REF, REFADJ to AGND	.-0.3V to ($\left.\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
$\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{C}}, \mathrm{RESET}$ to DGND-0.3V to +6V
D_, $\overline{\text { EOC }}$ to DGND	.-0.3V to ($\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Maximum Continuous Cu	in 50 mA

Continuous Power Dissipation $\left(T_{A}=+70^{\circ} \mathrm{C}\right)$
28 -Pin TSSOP (derate $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1026 mW Operating Temperature Range
MAX11__CUI... $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=D_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution	RES		14			Bits
Differential Nonlinearity	DNL	No missing codes over temperature	-1		+1	LSB
Integral Nonlinearity	INL	MAX11__A	-1		+1	LSB
		MAX11__B	-2		+2	
Transition Noise		RMS noise, external reference		0.32		LSBRMS
		Internal reference		0.34		
Offset Error		MAX1159	-10	0	+10	mV
		MAX1157/MAX1175	-10		+10	
Gain Error				0	± 0.2	\%FSR
Offset Drift				16		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Drift				± 1		ppm $/{ }^{\circ} \mathrm{C}$

AC ACCURACY (fin $=1 \mathrm{kHz}, \mathrm{V}_{\text {AIN }}=$ full range, 135 ksps)

Signal-to-Noise Plus Distortion	SINAD		81	85	dB
Signal-to-Noise Ratio	SNR		82	85	dB
Total Harmonic Distortion	THD		-100	-86	dB
Spurious-Free Dynamic Range	SFDR		87	103	dB

ANALOG INPUT

Input Range	VAIN	MAX1157		0		+10	V
		MAX1159		-10		+10	
		MAX1175		-5		+5	
Input Resistance	Rain	MAX1157/MAX1175	Normal operation	5.3	6.9	9.2	$\mathrm{k} \Omega$
		MAX1175	Shutdown mode	3			
		MAX1159	Normal operation	7.8	10	13.0	
			Shutdown mode	6			

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, C_{R E F}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Current	IAIN	MAX1157, $0 \leq \mathrm{V}_{\text {AIN }} \leq+10 \mathrm{~V}$		-0.1		+2.0	mA
		$\begin{aligned} & \text { MAX1159, } \\ & -10 \mathrm{~V} \leq \text { VAIN } \leq+10 \mathrm{~V} \end{aligned}$	Normal operation	-1.8		+1.2	
			Shutdown mode	-1.8		+1.8	
		$\begin{aligned} & \text { MAX1175, } \\ & -5 V \leq V_{\text {AIN }} \leq+5 V \end{aligned}$	Normal operation	-1.8		+0.4	
			Shutdown mode	-1.8		+1.8	
Input Current Step at Power-Up	IPU	MAX1159, V ${ }_{\text {AIN }}=+10 \mathrm{~V}$, shutdown mode to operating mode			0.5	0.7	mA
		MAX1175, $\mathrm{V}_{\text {AIN }}=+5 \mathrm{~V}$, shutdown mode to operating mode			1	1.4	
Input Capacitance	CIN				10		pF
INTERNAL REFERENCE							
REF Output Voltage	$V_{\text {REF }}$			4.056	4.096	4.136	V
REF Output Tempco					± 35		ppm/ ${ }^{\circ} \mathrm{C}$
REF Short-Circuit Current	IREF-SC				± 10		mA
EXTERNAL REFERENCE							
REF and REFADJ Input Voltage Range				3.8		4.2	V
REFADJ Buffer Disable Threshold				$A V_{D D}$ 0.4		$\begin{gathered} \text { AVDD - } \\ 0.1 \end{gathered}$	V
		Normal mode, fSAMP	= 135 ksps		60	100	

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, C_{\text {REF }}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu F, V_{\text {REFADJ }}=A V_{D D}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLIES							
Analog Supply Voltage	$A V_{\text {DD }}$			4.75		5.25	V
Digital Supply Voltage	DV ${ }_{\text {DD }}$			2.70		5.25	V
Analog Supply Current	IAVDD	External reference,	MAX1157			2.9	mA
		135ksps	MAX1159/MAX1175		4.0	5.3	
		Internal reference, 135ksps	MAX1157			3.8	
			MAX1159/MAX1175		5.2	6.2	
Shutdown Supply Current	ISHDN	Shutdown mode (Note 1), digital input = DVDD or 0			0.5	5	$\mu \mathrm{A}$
		Standby mode			3.7		mA
Digital Supply Current	IDVDD					0.75	mA
Power-Supply Rejection		$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=+4.75 \mathrm{~V}$ to +5.25 V			1		LSB

TIMING CHARACTERISTICS (Figures 1 and 2)
$\left(A V_{D D}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to AV DD , external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{REFADJ}}=\mathrm{AV}$ DD, CLOAD $=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Maximum Sampling Rate	fsample-max				135	ksps
Acquisition Time	tACQ			2		$\mu \mathrm{s}$
Conversion Time	tconv				4.7	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ Pulse Width High	tCSH	(Note 2)		40		ns
$\overline{\mathrm{CS}}$ Pulse Width Low	tCSL	(Note 2)	DV ${ }_{\text {DD }}=+4.75 \mathrm{~V}$ to +5.25 V	40		ns
			DV $\mathrm{DD}=+2.7 \mathrm{~V}$ to +5.25 V	60		
R// to $\overline{\mathrm{CS}}$ Fall Setup Time	tDS			0		ns
R/C to $\overline{\mathrm{CS}}$ Fall Hold Time	tDH	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V		40		ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V		60		
$\overline{\mathrm{CS}}$ to Output Data Valid	too	DV ${ }_{\text {DD }}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		DV $\mathrm{DD}=+2.7 \mathrm{~V}$ to +5.25 V		80		
$\overline{\text { EOC Fall to } \overline{\mathrm{CS}} \text { Fall }}$	tDV			0		ns
$\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{EOC}}$ Rise	teoc	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V			80	
Bus Relinquish Time	$t_{B R}$	DV $\mathrm{DD}=+4.75 \mathrm{~V}$ to +5.25 V			40	ns
		$\mathrm{DV}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +5.25 V			80	

Note 1: Maximum specification is limited by automated test equipment.
Note 2: To ensure best performance, finish reading the data and wait tBR before starting a new acquisition.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Typical Operating Characteristics

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}, C_{L O A D}=20 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\left.T_{A}=+25^{\circ} \mathrm{C}.\right)$ (Typical Application Circuit)

INL vs. CODE

GAIN ERROR vs. TEMPERATURE

DNL vs. CODE

SHUTDOWN CURRENT (AVDD + DVDD) vs. TEMPERATURE

INTERNAL REFERENCE
vs. TEMPERATURE

SUPPLY CURRENT (AVDD + DVDD)
vs. TEMPERATURE

OFFSET ERROR vs. TEMPERATURE

FFT AT 1kHz

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

$\left(A V_{D D}=D V_{D D}=+5 \mathrm{~V}\right.$, external reference $=+4.096 \mathrm{~V}, C_{\text {REF }}=10 \mu F, C_{\text {REFADJ }}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\text {REFADJ }}=A V_{D D}, C_{L O A D}=20 \mathrm{pF}, T_{A}=T_{M I N}$ to
$T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Typical Application Circuit)

Pin Description

PIN	NAME	FUNCTION
1	D6	Three-State Digital Data Output
2	D7	Three-State Digital Data Output
3	D8	Three-State Digital Data Output
4	D9	Three-State Digital Data Output
5	D10	Three-State Digital Data Output
6	D11	Three-State Digital Data Output
7	D12	Three-State Digital Data Output
8	D13	Three-State Digital Data Output (MSB)
9	R/C	Read/Convert Input. Power up and place the MAX1157/MAX1159/MAX1175 in acquisition mode by holding R / \bar{C} low during the first falling edge of $\overline{\mathrm{CS}}$. During the second falling edge of $\overline{\mathrm{CS}}$, the level on R / \bar{C} determines whether the reference and reference buffer power down or remain on after conversion. Set R / \bar{C} high during the second falling edge of $\overline{\mathrm{CS}}$ to power down the reference and buffer, or set R/C low to leave the reference and buffer powered up. Set R/C high during the third falling edge of $\overline{\mathrm{CS}}$ to put valid data on the bus.
10	$\overline{\text { EOC }}$	End of Conversion. $\overline{\text { EOC }}$ drives low when conversion is complete.
11	AV ${ }_{\text {DD }}$	Analog Supply Input. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to AGND.
12	AGND	Analog Ground. Primary analog ground (star ground).
13	AIN	Analog Input
14	AGND	Analog Ground. Connect pin 14 to pin 12.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Pin Description (continued)

PIN	NAME	FUNCTION
15	REFADJ	Reference Buffer Output. Bypass REFADJ with a 0.1 μ F capacitor to AGND for internal reference mode. Connect REFADJ to AVDD to select external reference mode.
16	REF	Reference Input/Output. Bypass REF with a 10رF capacitor to AGND. REF is the external reference input when in external reference mode.
17	RESET	Reset Input. Logic high resets the device.
18	$\overline{\text { CS }}$	Convert Start. The first falling edge of $\overline{\text { CS }}$ powers up the device and enables acquisition when R/C is low. The second falling edge of $\overline{\mathrm{CS}}$ starts conversion. The third falling edge of $\overline{\mathrm{CS}}$ loads the result onto the bus when R/C is high.
19	DGND	Digital Ground
20	DVDD	Digital Supply Voltage. Bypass with a 0.1 1 F capacitor to DGND.
21,22	N.C.	No Connection. Make no connection to these pins.
23	D0	Three-State Digital Data Output (LSB)
24	D1	Three-State Digital Data Output
25	D2	Three-State Digital Data Output
26	D3	Three-State Digital Data Output
27	D4	Three-State Digital Data Output
28	D5	Three-State Digital Data Output

Detailed Description

Converter Operation

The MAX1157/MAX1159/MAX1175 use a successiveapproximation (SAR) conversion technique with an inherent track-and-hold (T/H) stage to convert an analog input into a 14-bit digital output. Parallel outputs provide a high-speed interface to most microprocessors ($\mu \mathrm{Ps}$). The Functional Diagram at the end of the data sheet shows a simplified internal architecture of the MAX1157/ MAX1159/ MAX1175. Figure 3 shows a typical application circuit for the MAX1157/MAX1159/MAX1175.

Analog Input
 Input Scaler

The MAX1157/MAX1159/MAX1175 have an input scaler which allows conversion of true bipolar input voltages and input voltages greater than the power supply, while operating from a single +5 V analog supply. The input scaler attenuates and shifts the analog input to match the input range of the internal DAC. The MAX1157 has a unipolar input voltage range of 0 to +10 V . The

Figure 1. Load Circuits

MAX1175 input voltage range is $\pm 5 \mathrm{~V}$ while the MAX1159 input voltage range is $\pm 10 \mathrm{~V}$. Figure 4 shows the equivalent input circuit of the MAX1157/ MAX1159/MAX1175. This circuit limits the current going into or out of AIN to less than 1.8 mA .

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 2. MAX1157/MAX1159/MAX1175 Timing Diagram

Figure 3. Typical Application Circuit for the MAX1157/MAX1159/ MAX1175

Track and Hold (T/H)
In track mode, the internal hold capacitor acquires the analog signal (see Figure 4). In hold mode, the T/H switches open and the capacitive DAC samples the analog input. During the acquisition, the analog input (AIN) charges capacitor CHOLD. The acquisition ends on the second falling edge of $\overline{\mathrm{CS}}$. At this instant, the T/H switches open. The retained charge on Chold represents a sample of the input. In hold mode, the capacitive DAC adjusts during the remainder of the conversion time to restore node T/H OUT to zero within the limits of 14 -bit resolution. Force $\overline{\mathrm{CS}}$ low to put valid data on the bus after conversion is complete.

Power-Down Modes
Select standby mode or shutdown mode with R/C during the second falling edge of $\overline{\mathrm{CS}}$ (see Selecting Standby or Shutdown Mode section). The MAX1157/MAX1159/ MAX1175 automatically enter either standby mode (reference and buffer on), or shutdown (reference and buffer off) after each conversion depending on the status of $\mathrm{R} / \overline{\mathrm{C}}$ during the second falling edge of $\overline{\mathrm{CS}}$.

Internal Clock

The MAX1157/MAX1159/MAX1175 generate an internal conversion clock to free the microprocessor from the burden of running the SAR conversion clock. Total conversion time after entering hold mode (second falling edge of $\overline{\mathrm{CS}}$) to end-of-conversion ($\overline{\mathrm{EOC}}$) falling is $4.7 \mu \mathrm{~s}$ (max).

Applications Information

Starting a Conversion

$\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{C}}$ control acquisition and conversion in the MAX1157/MAX1159/MAX1175 (see Figure 2). The first falling edge of $\overline{C S}$ powers up the device and puts it in acquire mode if R / \bar{C} is low. The convert start $\overline{C S}$ is ignored if R/ $\overline{\mathrm{C}}$ is high. The MAX1157/MAX1159/ MAX1175 need at least 6ms (Crefadj $=0.1 \mu \mathrm{~F}$, CreF $=$ $10 \mu \mathrm{~F}$) for the internal reference to wake up and settle before starting the conversion if powering up from shutdown. Reset the MAX1157/MAX1159/MAX1175 by toggling RESET with $\overline{\mathrm{CS}}$ high. The next falling edge of $\overline{\mathrm{CS}}$ begins acquisition.

Selecting Standby or Shutdown Mode

 The MAX1157/MAX1159/MAX1175 have a selectable standby or low-power shutdown mode. In standby mode, the ADC's internal reference and reference buffer do not power down between conversions, eliminating the need to wait for the reference to power up before performing the next conversion. Shutdown mode powers down the reference and reference buffer after
14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 4. Equivalent Input Circuit

Figure 5. Selecting Standby Mode
completing a conversion. The reference and reference buffer require a minimum of 12 ms (CREFADJ $=0.1 \mu \mathrm{~F}$, CREF $=10 \mu F$) to power up and settle from shutdown.
The state of $\mathrm{R} / \overline{\mathrm{C}}$ during the second falling edge of $\overline{\mathrm{CS}}$ selects which power-down mode the MAX1157/ MAX1159/MAX1175 enters upon conversion completion. Holding R/C low causes the MAX1157/MAX1159/ MAX1175 to enter standby mode. The reference and buffer are left on after the conversion completes. R/C high causes the MAX1157/MAX1159/MAX1175 to enter shutdown mode and power down the reference and buffer after conversion (see Figures 5 and 6). Set the voltage at REF high during the second falling edge of $\overline{\mathrm{CS}}$ to realize the lowest current operation.

Standby Mode

While in standby mode, the supply current is less than 3.7 mA (typ). The next falling edge of $\overline{\mathrm{CS}}$ with R/C low causes the MAX1157/MAX1159/MAX1175 to exit standby mode and begin acquisition. The reference and reference buffer remain active to allow quick turn-on time.

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 6. Selecting Shutdown Mode

Figure 7. MAX1157/MAX1159/MAX1175 Reference Adjust Circuit

Shutdown Mode

In shutdown mode, the reference and reference buffer shut down between conversions. Shutdown mode reduces supply current to $0.5 \mu \mathrm{~A}$ (typ) immediately after the conversion. The first falling edge of $\overline{\mathrm{CS}}$ with R/C low causes the reference and buffer to wake up and enter acquisition mode. To achieve 14 -bit accuracy, allow $12 \mathrm{~ms}($ CREFADJ $=0.1 \mu \mathrm{~F}, \mathrm{CREF}=10 \mu \mathrm{~F}$) for the internal reference to wake up.

Internal and External Reference
 Internal Reference

The internal reference of the MAX1157/MAX1159/ MAX1175 is internally buffered to provide +4.096 V output at REF. Bypass REF to AGND and REFADJ to AGND with $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$, respectively.
Sink or source current at REFADJ to make fine adjustments to the internal reference. The input impedance of REFADJ is nominally $5 \mathrm{k} \Omega$. Use the circuit of Figure 7 to adjust the internal reference to $\pm 1.5 \%$.

External Reference

An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1157/ MAX1159/MAX1175's internal buffer amplifier. Using the buffered REFADJ input makes buffering the external reference unnecessary. The internal buffer output must be bypassed at REF with a $10 \mu F$ capacitor.
Connect REFADJ to AVDD to disable the internal buffer. Directly drive REF using an external reference. During conversion, the external reference must be able to drive $100 \mu \mathrm{~A}$ of DC load current and have an output impedance of 10Ω or less. The input impedance of REFADJ is typically $5 k \Omega$. The DC input impedance of REF is a minimum 40k Ω.
For optimal performance, buffer the reference through an op amp and bypass REF with a $10 \mu \mathrm{~F}$ capacitor. Consider the MAX1157/MAX1159/MAX1175's equivalent input noise (0.6 LSB) when choosing a reference.

Reading the Conversion Result

$\overline{\mathrm{EOC}}$ flags the microprocessor when a conversion is complete. The falling edge of $\overline{\mathrm{EOC}}$ signals that the data is valid and ready to be output to the bus. D0-D13 are the parallel outputs of the MAX1157/MAX1159/ MAX1175. These three-state outputs allow for direct connection to a microcontroller I/O bus. The outputs remain high-impedance during acquisition and conversion. Data is loaded onto the bus with the third falling edge of $\overline{C S}$ with $\mathrm{R} / \overline{\mathrm{C}}$ high (after tDO). Bringing $\overline{\mathrm{CS}}$ high forces the output bus back to high impedance. The MAX1157/MAX1159/MAX1175 then wait for the next falling edge of $\overline{\mathrm{CS}}$ to start the next conversion cycle (see Figure 2).

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 8. MAX1157 Transfer Function

Figure 10. MAX1175 Transfer Function

Transfer Function

Figures 8, 9, and 10 show the MAX1157/MAX1159/ MAX1175's output transfer functions. The MAX1159 and MAX1175 outputs are coded in offset binary, while the MAX1157 is coded on standard binary.

Input Buffer

Most applications require an input buffer amplifier to achieve 14-bit accuracy and prevent loading the source. Switch the channels immediately after acquisition, rather than near the end of or after a conversion when the input signal is multiplexed. This allows more time for the input buffer amplifier to respond to a large

Figure 9. MAX1159 Transfer Function
step-change in input signal. The input amplifier must have a high enough slew rate to complete the required output voltage change before the beginning of the acquisition time. Figure 11 shows an example of this circuit using the MAX427.
Figures $12 a$ and $12 b$ show how the MAX1175 and MAX1159 analog input current varies depending on whether the chip is operating or powered down. The part is fully powered down between conversions if the voltage at R / \bar{C} is set high during the second falling edge of $\overline{\mathrm{CS}}$. The input current abruptly steps to the powered up value at the start of acquisition. This step in the input current can disrupt the ADC input, depending on the driving circuit's output impedance at high frequencies. If the driving circuit cannot fully settle by the end of acquisition time, the accuracy of the system can be compromised. To avoid this situation, increase the acquisition time, use a driving circuit that can settle within tACQ, or leave the MAX1175/MAX1159 powered up by setting the voltage at R / \bar{C} low during the second falling edge of $\overline{\mathrm{CS}}$.

Layout, Grounding, and Bypassing

For best performance, use printed circuit (PC) boards. Do not run analog and digital lines parallel to each other, and do not lay out digital signal paths underneath the ADC package. Use separate analog and digital ground planes with only one point connecting the two ground systems (analog and digital) as close to the device as possible.
Route digital signals far away from sensitive analog and reference inputs. If digital lines must cross analog lines, do so at right angles to minimize coupling digital noise

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Figure 11. MAX1157/MAX1159/MAX1175 Fast-Settling Input Buffer
onto the analog lines. If the analog and digital sections share the same supply, isolate the digital and analog supply by connecting them with a low value (10 resistor or ferrite bead.

The ADC is sensitive to high-frequency noise on the AVDD supply. Bypass AVDD to AGND with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ low-ESR capacitor with the smallest capacitor closest to the device. Keep capacitor leads short to minimize stray inductance.

Figure 12a. MAX1175 Analog Input Current

Definitions
Integral Nonlinearity Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1157/MAX1159/ MAX1175 are measured using the endpoint method.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step-width and the ideal value of 1LSB. A DNL error specification of 1LSB guarantees no missing codes and a monotonic transfer function.

Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\mathrm{SNR}=((6.02 \times \mathrm{N})+1.76) \mathrm{dB}
$$

where $\mathrm{N}=14$ bits.
In reality, there are other noise sources besides quanti-

Figure 12b. MAX1159 Analog Input Current

14－Bit，135ksps，Single－Supply ADCs with Bipolar Analog Input Range

zation noise：thermal noise，reference noise，clock jitter， etc．SNR is computed by taking the ratio of the RMS signal to the RMS noise，which includes all spectral components minus the fundamental，the first five har－ monics，and the DC offset．

Signal－to－Noise Plus Distortion Signal－to－noise plus distortion（SINAD）is the ratio of the fundamental input frequency＇s RMS amplitude to the RMS equivalent of all the other ADC output signals．

$$
\operatorname{SINAD}(\mathrm{db})=20 \times \log \left(\frac{\text { Signal }_{\mathrm{RMS}}}{(\text { Noise }+ \text { Distortion })_{\mathrm{RMS}}}\right)
$$

Effective Number of Bits

 Effective number of bits（ENOB）indicates the global accuracy of an ADC at a specific input frequency and sampling rate．An ideal ADC＇s error consists of quanti－ zation noise only．With an input range equal to the full－ scale range of the ADC，calculate the effective number of bits as follows：$$
\mathrm{ENOB}=\left(\frac{\text { SINAD }-1.76}{6.02}\right)
$$

Total Harmonic Distortion
Total harmonic distortion（THD）is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself．This is expressed as：

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd－through 5th－order harmonics．

Spurious－Free Dynamic Range
Spurious－free dynamic range（SFDR）is the ratio of the RMS amplitude of the fundamental（maximum signal component）to the RMS value of the next largest fre－ quency component．

Chip Information
TRANSISTOR COUNT：15，383
PROCESS：BiCMOS

Ordering Information（continued）

PART	TEMP RANGE	PIN－PACKAGE	INPUT VOLTAGE RANGE	INL（LSB）
MAX1157AEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	0 to＋10V	± 1
MAX1157BEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	0 to＋10V	± 2
MAX1159ACUI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	$\pm 10 \mathrm{~V}$	± 1
MAX1159BCUI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	$\pm 10 \mathrm{~V}$	± 2
MAX1159AEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	$\pm 10 \mathrm{~V}$	± 1
MAX1159BEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	$\pm 10 \mathrm{~V}$	± 2
MAX1175ACUI＊	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	$\pm 5 \mathrm{~V}$	± 1
MAX1175BCUI＊	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 TSSOP	$\pm 5 \mathrm{~V}$	± 2
MAX1175AEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	$\pm 5 \mathrm{~V}$	± 1
MAX1175BEUI＊	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP	$\pm 5 \mathrm{~V}$	± 2

＊Future product－contact factory for availability．

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
NDTES

1. DIMENSIONS D AND E DO NDT INCLUDE FLASH
2. MDLD FLASH \quad R PROTRUSIONS NOT TO EXCEED 0.15 mm PER SIDE
3. CDNTRDLLING DIMENSION MILLIMETER
4. MEETS JEDEC OUTLINE MD-153. SEE JEDEC VARIATIONS TABLE
5. "N. REFERS TD NUMBER DF LEADS
6. THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZONE. THIS TDLERANCE
ZZNE IS DEFINED BY TWU PARALLEL PLANES. ONE PLANE IS THE SEEATING PLANE,
dATUM [-C-] THE OTHER PLANE IS AT THE SPECIFIED dISTANCE FRIM [-C-] IN THE DIRECTION INDICATED

[18ALLAS PRIPRIETARY INFIRMATION		
oval	POCCUENT CONTROL NO. $21-0066$	REV. F $1 / 1$

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

