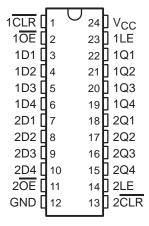
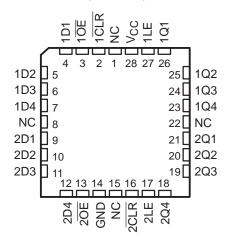
SDAS036D - APRIL 1982 - REVISED AUGUST 1995

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs


description

These dual 4-bit D-type latches feature 3-state outputs designed specifically for bus driving. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


The dual 4-bit latches are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs in true form, according to the function table. When LE is low, the outputs are latched. When the clear ($\overline{\text{CLR}}$) input goes low, the Q outputs go low independently of LE. The outputs are in the high-impedance state when the output-enable ($\overline{\text{OE}}$) input is at a high logic level.

The SN54ALS873B and SN54AS873A are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS873B and SN74AS873A are characterized for operation from 0°C to 70°C.

SN54ALS873B, SN54AS873A . . . JT PACKAGE SN74ALS873B, SN74AS873A . . . DW OR NT PACKAGE (TOP VIEW)

SN54ALS873B, SN54AS873A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE (each latch)

	INPU		OUTPUT	
OE	CLR	LE	D	Q
L	L	Х	Χ	L
L	Н	Н	Н	Н
L	Н	Н	L	L
L	Н	L	Χ	Q ₀
Н	Χ	Χ	Χ	Z

SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A **DUAL 4-BIT D-TYPE LATCHES**

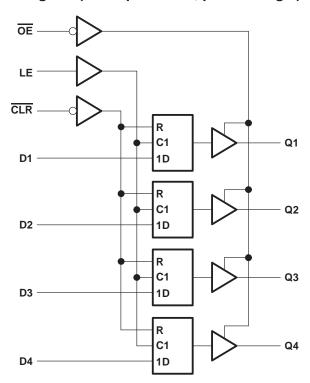
WITH 3-STATE OUTPUTS

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

logic symbol[†]

9

10


2D3

2D4

2 ΕN 10E 23 1LE C1 1 1CLR С 3 22 1D1 1D \triangleright ∇ 1Q1 4 21 1D2 1Q2 5 20 1D3 1Q3 6 19 1D4 1Q4 2OE ΕN 14 2LE C1 13 2CLR С 18 7 1D 2D1 ∇ 2Q1 \triangleright 8 17 2D2 2Q2

Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (each quad latch, positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

16

15

2Q3

2Q4

Supply voltage, V _{CC}	7 V
Input voltage, V _I	
Voltage applied to a disabled 3-state output	
Operating free-air temperature range, T _A : SN54ALS873B	-55°C to 125°C
SN74ALS873B	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54ALS873B			SN7	3B	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-1			-2.6	mA
loL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST C	ONDITIONS	SN	54ALS87	'3B	SN7	74ALS87	'3B	UNIT	
PARAMETER	1231 (1	UNDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
VIK	$V_{CC} = 4.5 V,$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V	
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2	2		V _{CC} -2	2			
Voн	V _{CC} = 4.5 V	$I_{OH} = -1 \text{ mA}$	2.4	3.3					V	
	vCC = 4.3 v	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2			
Voi	V _{CC} = 4.5 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
VOL		I _{OL} = 24 mA					0.35	0.5	v	
lozh	$V_{CC} = 5.5 V,$	V _O = 2.7 V			20			20	μΑ	
lozL	$V_{CC} = 5.5 V,$	V _O = 0.4 V			-20			-20	μΑ	
l _l	$V_{CC} = 5.5 V,$	$V_I = 7 V$			0.1			0.1	mA	
lіН	$V_{CC} = 5.5 V,$	V _I = 2.7 V			20			20	μΑ	
Ι _Ι L	$V_{CC} = 5.5 V,$	V _I = 0.4 V			- 0.2			- 0.2	mA	
10 [‡]	$V_{CC} = 5.5 V,$	V _O = 2.25 V	-20		-112	-30		-112	mA	
		Outputs high		11	21		11	21		
lcc	V _{CC} = 5.5 V	Outputs low		16	29		16	29	mA	
		Outputs disabled		20	31		20	31		

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			SN54AL	S873B	SN74AL	S873B	UNIT	
			MIN	MAX	MIN	MAX		
	Pulse duration	CLR low	15		15		ns	
t _W	ruise duration	LE high	10		10		115	
t _{su}	Setup time, data before LE↓		10		10		ns	
t _h	Hold time, data after LE↓		7	·	7		ns	

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C (C _L : R1 : R2 : T _A :	UNIT			
			SN54AL	S873B	SN74AL	S873B	
			MIN	MAX	MIN	MAX	
t _{PLH}	D	D Q		23	2	14	ns
^t PHL	D	ų ,	2	17	2	14	115
^t PLH	LE	Q	8	31	8	22	ns
^t PHL		ų ,	8	26	8	21	110
^t PHL	CLR	Q	6	27	6	20	ns
^t PZH	ŌĒ	Q	4	24	4	18	ns
^t PZL	OE .		4	23	4	18	115
^t PHZ	ŌĒ	0	2	12	2	10	ne
^t PLZ	OE	Q	2	30	2	15	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}	
Input voltage, V _I	7 V
Voltage applied to a disabled 3-state output	
Operating free-air temperature range, TA: SN54AS873A	–55°C to 125°C
SN74AS873A	0°C to 70°C
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54AS873A			SN74AS873A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-12			-15	mA
l _{OL}	Low-level output current			32			48	mA
TA	Operating free-air temperature	-55		125	0		70	°C

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN	54AS87	3A	SN	74AS87	3A	UNIT
PARAMETER	1551 CC	DNDITIONS	MIN	TYP [†]	MAX	MIN	TYP	MAX	UNII
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2	2		V _{CC} -2	2		
Voн	V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2.4	3.2					V
	vCC = 4.5 v	$I_{OH} = -15 \text{ mA}$				2.4	3.3		
Voi	Vaa – 4 5 V	I _{OL} = 32 mA		0.25	0.5				V
VOL	VCC = 4.5 V	I _{OL} = 48 mA					0.35	0.5	V
lozh	$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			50			50	μΑ
lozL	$V_{CC} = 5.5 V,$	V _O = 0.4 V			-50			-50	μΑ
ΙĮ	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
l _{IH}	$V_{CC} = 5.5 V,$	V _I = 2.7 V			20			20	μΑ
I _{IL}	V _{CC} = 5.5 V,	V _I = 0.4 V			- 0.5			- 0.5	mA
I _O ‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	-30		-112	mA
		Outputs high		68	110		68	110	
ICC	$V_{CC} = 5.5 \text{ V}$	Outputs low		67	109		67	109	mA
		Outputs disabled		80	129		80	129	

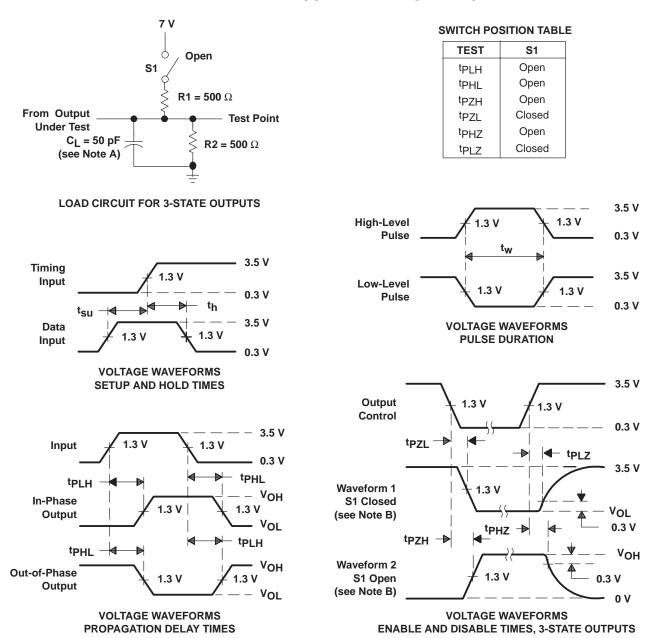
[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

					SN74A	UNIT	
			MIN	MAX	MIN	MAX	UNIT
4 *	Pulse duration	CLR low	5		5		ns
t _W *	ruise duration	LE high	6		5		
t _{su} *	Setup time, data before LE \downarrow		2		2		ns
th*	${\sf t_h}^\star$ Hold time, data after LE \downarrow				4.5		ns

^{*} On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.


SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A DUAL 4-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS SDAS036D - APRIL 1982 - REVISED AUGUST 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C C _L R1 R2 T _A	UNIT			
			SN54A	S873A	SN74A	S873A	
			MIN	MAX	MIN	MAX	
t _{PLH}	D	Q	3	12.5	3	9.5	ns
t _{PHL}	D	ά	3	8.5	3	7.5	
t _{PLH}	LE	Q	6	15.5	6	13	ns
t _{PHL}	LL	y	4	9	4	7.5	115
t _{PHL}	CLR	Q	3	10.5	3	9	ns
^t PZH	ŌĒ	Q	2	8	2	6.5	ns
t _{PZL}	UE .	ν	4	11	4	10.5	115
^t PHZ	ŌĒ	Q	2	8	2	7.5	
t _{PLZ}	OE .	Q	2	8.5	2	7.5	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

ti.com 28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
84032013A	ACTIVE	LCCC	FK	28	1	None	Call TI	Level-NC-NC-NC
8403201KA	OBSOLETE	CFP	W	24		None	Call TI	Call TI
8403201LA	ACTIVE	CDIP	JT	24	1	None	Call TI	Level-NC-NC-NC
SN54ALS873BJT	ACTIVE	CDIP	JT	24	1	None	Call TI	Level-NC-NC-NC
SN74ALS873BDW	ACTIVE	SOIC	DW	24	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN74ALS873BDWR	ACTIVE	SOIC	DW	24	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN74ALS873BNT	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74ALS873BNT3	OBSOLETE	PDIP	NT	24		None	Call TI	Call TI
SN74AS873ADW	OBSOLETE	SOIC	DW	24		None	Call TI	Call TI
SN74AS873ADWR	OBSOLETE	SOIC	DW	24		None	Call TI	Call TI
SN74AS873ANT	OBSOLETE	PDIP	NT	24		None	Call TI	Call TI
SNJ54ALS873BFK	ACTIVE	LCCC	FK	28	1	None	Call TI	Level-NC-NC-NC
SNJ54ALS873BJT	ACTIVE	CDIP	JT	24	1	None	Call TI	Level-NC-NC-NC
SNJ54AS873AFK	OBSOLETE	LCCC	FK	28		None	Call TI	Call TI
SNJ54AS873AJT	OBSOLETE	CDIP	JT	24		None	Call TI	Call TI
SNJ54AS873AW	OBSOLETE	CFP	W	24		None	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated