

Dual, Continuous, Analog Highpass Filter

LF580 DATA SHEET

FEATURES

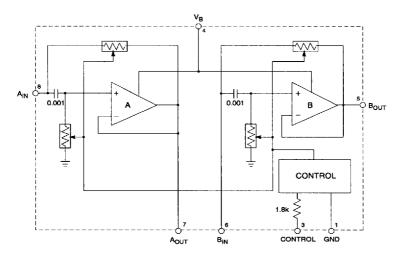
- · only 2 small capacitors required
- · 200 to 10 kHz adjustable corner frequency
- dual 12 dB/Oct Butterworth filter (24 dB/Oct cascaded)
- 1.1 to 3.0 VDC operating range
- · adjustable by a single potentiometer

STANDARD PACKAGING

- 8 pin MICROpac
- 8 pin MINIpac
- 8 pin PLID ®
- Chip (66 x 61mils)

DESCRIPTION

The LF580 continuous analog filter consists of two second order (12 dB/oct), tunable (0.2 to 10 kHz) highpass Butterworth filter blocks.


Tracking and corner frequency of each block are controlled by a single potentiometer. Cascading the two blocks together results in a single 24dB/oct high pass filter requiring only two external 0.001 µF capacitors for the filter response.

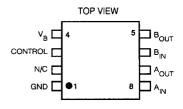
The output noise of each filter stage is typically $5.6\mu V$. Cascading the two filter blocks together will produce a noise level which is

$$V_N = \sqrt{(V_{N1})^2 + (V_{N2})^2}$$

Where $\rm V_N$ is the total output noise of both filters, $\rm V_{N1}$ and $\rm V_{N2}$ is the noise of each filter.

To improve the signal-to-noise ratio of the filter the LF580 should be placed after a preamplifier, provided that the signal level does not exceed the maximum signal capability of 50mVRMS

All resistors in ohms, all capacitors in microfarads unless otherwise stated


BLOCK DIAGRAM

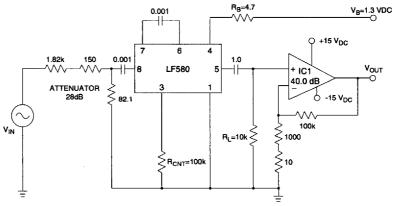
Revision Date: June 1994

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE/UNITS			
Supply Voltage	5 V DC			
Operating Temperature Range	-10°C to 50° C			
Storage Temperature Range	-40°C to 100° C			
CAUTION CLASS 1 ESD SENSITIVITY	É			

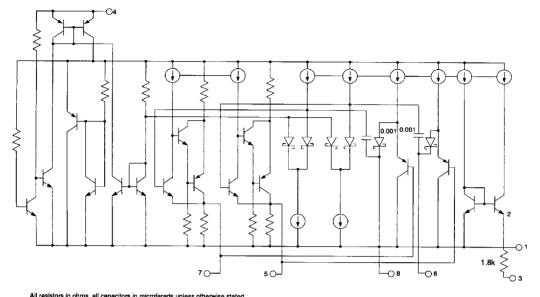
PIN CONNECTION

ELECTRICAL CHARACTERISTICS


Conditions: Frequency = 1 kHz, Temperature = 25°C, Supply Voltage V_p = 1.3 V

Parameter	Symbol	Conditions		Min	Тур	Мах	Units
Insertion Loss		V _{IN} =1 V _{RMS}	Note 1	-	2	3	dB
Current Drain	I _T	$R_{CNT} = 100 \text{ k}\Omega$		200	280	370	μА
Corner Frequency	fc	V _{IN} =1 V _{RMS}	Note 2	1300	1650	1900	Hz
Distortion	THD	V _{IN} = 1.25 V _{RMS}		-	2	5	%
Ouput Noise			Note 3	-	8	10	μV
Supply Rejection	SR	$V_B = 3.0V_{DC}$	Note 4	-	45	56	dB

All parameters and switches remain as shown in Test Circuit unless otherwise stated in "Conditions" column


Notes 1: Insertion Loss = 20 Log(V_{OUT}/V_{IN})-12

- 2: a) measure output voltage V_{OUT1} ($R_{CNT} = 100 k\Omega$) b) measure output voltage V_{OUT2} (R_{CNT} = 10.274k Ω) fc = 1000 x 2 (VOUT1 / VOUT2)
- 3: Output Noise = Vout /100, filter bandwidth 200Hz to 10kHz at 12dB/Oct
- 4: V_R modulated with 1V_{RMS} at 1 kHz Supply Rejection = 20 Log (Vour)-40

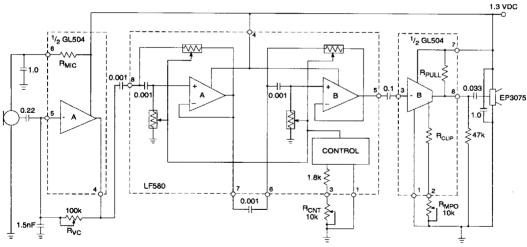

All resistors in ohms, all capacitors in microfarads unless otherwise stated in conditions column

Fig. 1 Test Circuit

All resistors in ohms, all capacitors in microfarads unless otherwise stated

Fig. 2 Functional Schematic

All resistors in ohms, all capacitors in microfarads unless otherwise stated

Fig. 3 GL504-LF580 Application Circuit

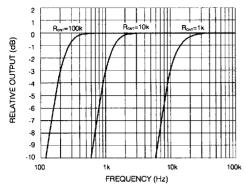
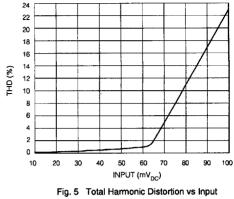



Fig. 4 Frequency Response at Various R_{CNT} Values

Level (measured at Pin 7)

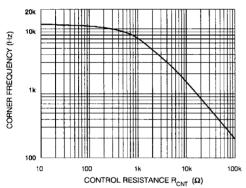


Fig. 6 Corner Frequency vs Control Resistance

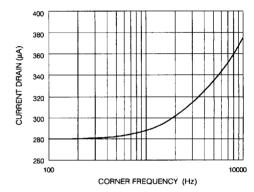


Fig. 7 Current Drain vs Comer Frequency

REVISION NOTES Corrections to Figure 2 and Figure 3

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

© Copyright October 1987 Gennum Corporation. All rights reserved. Printed in Canada.