

LH0033/LH0063 **Fast and Ultra Fast Buffers**

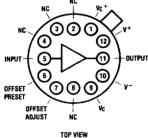
General Description

The LH0033 and LH0063 are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz. The LH0033 will provide $\pm\,10$ mA into 1 $k\Omega$ loads ($\pm\,100$ mA peak) at slew rates of 1500V/ μ s. The LH0063 will provide ± 250 mA into 50Ω loads ($\pm\,500$ mA peak) at slew rates up to 6000V/µs. In addition, both exhibit excellent phase linearity up to 20 MHz.

Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators. In addition, the LH0063 can continuously drive 50Ω coaxial cables or be used as a yoke driver for high resolution CRT displays. For additional applications information, see AN-48.

These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033 is specified for operation from -55°C to +125°C; the LH0033C and the LH0063C are specified from -25°C to +85°C. The LH0033 is available in either a 1.5W metal TO-8 package or an 8-pin ceramic dual-in-line package. The LH0063 is available in a 5W 8-pin TO-3 package.

Features


- Ultra fast (LH0063): 6000 V/µs
- Wide range single or dual supply operation
- Wide power bandwidth: DC to 100 MHz
- High output drive: ± 10 V with 50Ω load
- Low phase non-linearity: 2 degrees
- Fast rise times: 2 ns
- High input resistance: $10^{10}\Omega$

Advantages

- Only 10V supply needed for 5 Vp-p video out
- Speed does not degrade system performance
- Wide data rate range for phase encoded systems

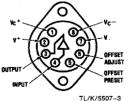
Connection Diagrams

LH0033G Metal Can Package

Case is electrically isolated

TI /K/5507-1

Order Number LH0033G, LH0033G-MIL or LH0033CG See NS Package Number G12B


Dual-In-Line Package OFFSET OFFSET ACHUST

LH0033J

TE/K/5507-2

Order Number LH0033J or LH0033CJ See NS Package Number HY08A

> I H0063K Metal Can Package

Top View Case is electrically isolated

Order Number LH0063CK See NS Package Number K08A

2-8

6501124 0095276 7TO **=**

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Office/Distributors for availability and specifications. Supply Voltage $(V^+ - V^-)$

Power Dissipation (See Curves)

LH0063C 5W LH0033/LH0033C 2.2W Junction Temperature 175°C

Input Voltage
Continuous Output Current

LH0063C ± 250 mA LH0033/LH0033C ± 100 mA Peak Output Current LH0063C

LH0033/LH0033C

± 500 mA ± 250 mA 300°C

Lead Temp. (Soldering, 10 seconds)

Operating Temperature Range

LH0033

-55°C to +125°C

LH0033C and LH0063C Storage Temperature Range

-65° to +150°C

ESD rating to be determined.

DC Electrical Characteristics $V_S = \pm 15V$, $T_{MIN} \le T_A \le T_{MAX}$, unless otherwise specified, (Note 1)

±Vs

Parameter	Conditions	LH0033			LH0033C			11-14-
		Min	Тур	Max	Min	Тур	Max	Units
Output Offset Voltage	$R_S = 100\Omega, T_J = 25^{\circ}C,$ $V_{IN} = 0V \text{ (Note 2)}$ $R_S = 100\Omega$		5.0	10 15		12	20 25	mV mV
Average Temperature Coefficient of Offset Voltage	R _S = 100Ω, V _{IN} = 0V (Note 3)		50	100		50	100	μV/°C
Input Bias Current	V _{IN} =0V T _J =25°C (Note 2) T _A =25°C (Note 4) T _J =T _A =T _{MAX}			250 2.5 10			500 5.0 20	pA nA nA
Voltage Gain	$V_{O} = \pm 10V,$ $R_{S} = 100\Omega,$ $R_{L} = 1.0k\Omega$	0.97	0.98	1.00	0.96	0.98	1.00	V/V
Input Impedance	$R_L = 1 k\Omega$	10 ¹⁰	1011		1010	1011		Ω
Output Impedance	$V_{IN} = \pm 1.0V,$ $R_L = 1.0k$		6.0	10		6.0	10	Ω
Output Voltage Swing	$V_I = \pm 14V, R_L = 1.0k$ $V_I = \pm 10.5V,$	±12			±12			٧
	$R_L = 100\Omega, T_A = 25^{\circ}C$	±9.0			± 9.0			٧
Supply Current	V _{IN} = 0V (Note 5)		20	22		21	24	mA
Power Consumption	V _{IN} =0V		600	660	-	630	720	mW

AC Electrical Characteristics $T_J = 25^{\circ}C$, $V_S = \pm 15V$, $R_S = 50\Omega$, $R_L = 1.0 \text{ K}\Omega$ (Note 6)

Parameter	Conditions	LH0033			LH0033C			Units
		Min	Тур	Max	Min	Тур	Max	Units
Slew Rate	$V_{IN} = \pm 10V$	1000	1500		1000	1400		V/µs
Bandwidth	V _{IN} = 1.0 Vrms		100			100		MHz
Phase Non-Linearity	BW = 1.0Hz to 20 MHz		2.0			2.0		degrees
Rise Time	$\Delta V_{IN} = 0.5V$		2.9	*		3.2		ns
Propagation Delay	$\Delta V_{IN} = 0.5V$		1.2			1.5		ns
Harmonic Distortion	f>1 kHz		< 0.1			< 0.1		%

Note 1: LH0033 is 100% production tested as specified at 25° C, 125°C, and -55°C. LH0033AC/C are 100% production tested at 25°C only. Specifications at temperature extremes are verified by sample testing, but these limited are not used to calculate outgoing quality level.

Note 2: Specification is at 25°C junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_J = 25$ °C. When supply voltages are ± 15 V, no-load operating junction temperature may rise 40-60°C above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV, and I_B will change significantly during warm-up. Refer to I_B vs temperature graph for expected values.

Note 3: LH0033 is 100% production tested for this parameter. LH0033C is sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta V_{OS}/\Delta T$ is the average value calculated from measurements at 25°C and T_{MAX} .

Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing.

Note 5: Guaranteed through correlated automatic pulse testing at T J=25°C.

Note 6: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

Note 7: Refer to RETS0033 for the LH0033G military specifications.

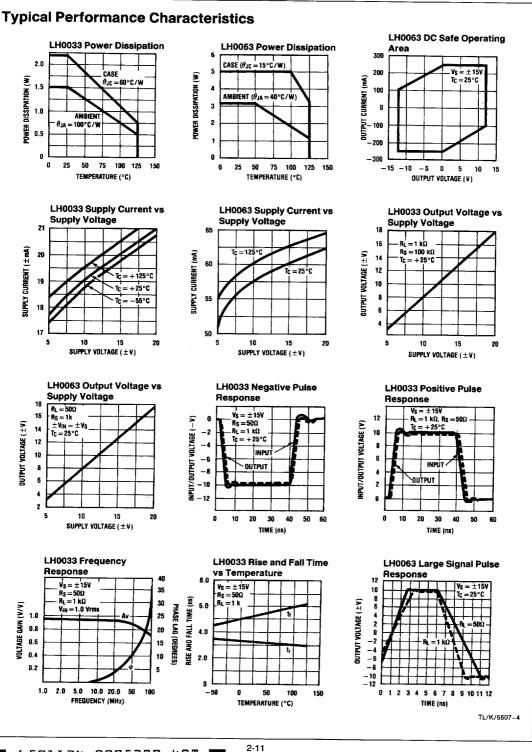
6501124 0095277 637

2-9

DC Electrical Characteristics $V_S = \pm 15V$, $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified (Note 1)

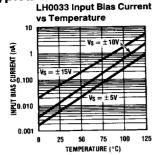
Parameter	Conditions		Units		
	Conditions	Min	Тур	Max	
Output Offset Voltage	$R_S \le 100k\Omega$, $T_J = 25^{\circ}C$, $R_L = 100\Omega$ (Note 2)		10	50	m∨
				100	mV
Average Temperature Coefficient of Output Offset Voltage	R _S ≤100 kΩ		300		μV/°(
Input Bias Current	T _J = 25°C (Note 2)		10	30	nA
·				100	nA
Voltage Gain	$V_{IN} = \pm 10V$, $R_S \le 100 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$	0.94	0.96	1.0	V/V
Voltage Gain	$V_{IN} = \pm 10V$, $R_S \le 100 \text{ k}\Omega$, $R_L = 50\Omega$ $T_J = 25^{\circ}\text{C}$	0.91	0.93	0.98	V/V
Input Capacitance	Case Shorted to Output		8.0		pF
Output Impedance	$V_{OUT} = \pm 10V$, $R_S \le 100 \text{ k}\Omega$, $R_L = 50\Omega$		1.0	4.0	Ω
Output Current Swing	$V_{IN} = \pm 10V$, $R_S \le 100 \text{ k}\Omega$	0.2	0.25		Α
Output Voltage Swing	$R_L = 50\Omega$	± 10	±13		V
Output Voltage Swing	$V_S = \pm 5.0V$, $R_L = 50\Omega$, $T_J = 25$ °C	5.09	7.0		Vp-p
Supply Current	$T_J = 25^{\circ}C, R_L = \infty, V_S = \pm 15V$		50	65	mA
Supply Current	V _S = ±5.0V		40		mA
Power Consumption	$T_J = 25^{\circ}C, R_L = \infty, V_S = \pm 15V$		1.5	1.95	w
Power Consumption	$V_{S} = \pm 5.0V$		400		mW

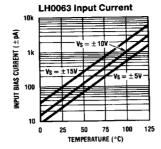
AC Electrical Characteristics $T_J\!=\!25^{\circ}\text{C},\,V_S\!=\pm\,15\text{V},\,R_S\!=\!50\Omega,\,R_L\!=\!50\Omega$ (Note 3)

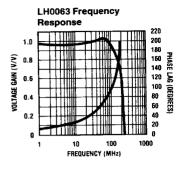

Parameter	Conditions		Units		
	Conditions	Min	Тур	Max	
Siew Rate	$R_L = 1.0 \text{ k}\Omega, V_{IN} = \pm 10V$		6000		V/μs
Slew Rate	$R_L = 50\Omega$, $V_{IN} = \pm 10V$, $T_J = 25^{\circ}C$	2000	2400		V/μs
Bandwidth	V _{IN} = 1.0 Vrms		200		MHz
Phase Non-Linearity	BW = 1.0 Hz to 20 MHz		2.0		degrees
Rise Time	ΔV _{IN} = 0.5V		1.9		ns
Propagation Delay	$\Delta V_{1N} = 0.5V$		2.1		ns
Harmonic Distortion			<0.1		%

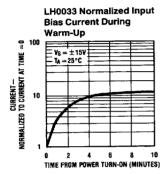
Note 1: LH0063C is 100% production tested at 25°C only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing qualify level.

Note 2: Specification is at 25°C junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at T_J=25°C. When supply voltages are ±15V, no-load operating junction temperature may rise 40-60°C above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV, and I_B will change significantly during warm-up. Refer to I_B vs temperature graph for expected values.

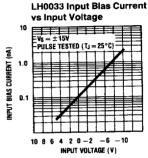

Note 3: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.


2-10

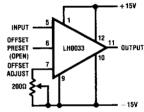



6501124 0095279 40T |

Typical Performance Characteristics (Continued)

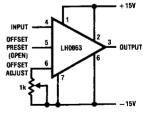


TL/K/5507-5


Application Hints

RECOMMENDED LAYOUT PRECAUTIONS

RF/video printed circuit board layout rules should be followed when using the LH0033 and LH0063 since they will provide power gain to frequencies over 100 MHz. Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.


OFFSET VOLTAGE ADJUSTMENT

Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or 1 k Ω for the LH0063 between the offset adjust pin and V $^-$, as illustrated in Figures 1 and 2.

TL/K/5507-6

FIGURE 1. Offset Zero Adjust for LH0033 (Pin numbers shown for TO-8)

TL/K/5507-7

FIGURE 2. Offset Zero Adjust for LH0063

Application Hints (Continued)

OPERATION FROM SINGLE OR ASYMMETRICAL POWER SUPPLIES

Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where V $^+ = +5$ V and V $^- = -12$ V. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$\Delta V_O \cong (1 - A_V) \frac{(V^+ - V^-)}{2} = 0.005(V^+ - V^-)$$

where:

Av = No load voltage gain, typically 0.99

V+ = Positive supply voltage

V -= Negative supply voltage

For the above example, $\Delta V_{\rm O}$ would be $-35 {\rm mV}$. This may be adjusted to zero as described in *Figure 2*. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the Typical Applications section.

SHORT CIRCUIT PROTECTION

In order to optimize transient response and output swing, output current limit has been omitted from the LH0033 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V+ and V_C+ pins and V- and V_C- pins as illustrated in *Figures 3 and 4*. Resistor values may be predicted by:

$$R_{LIM} \cong \frac{V^+}{I_{SC}} = \frac{V^-}{I_{SC}}$$

where:

I_{SC}≤100 mA for LH0033

 $I_{SC} \le 250$ mA for LH0063

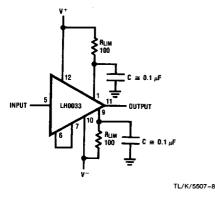


FIGURE 3. LH0033 Using Resistor Current Limiting

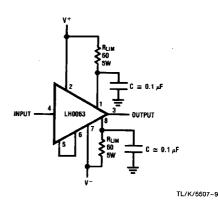


FIGURE 4. LH0063 Using Resistor Current Limiting

2-13

Application Hints (Continued)

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling V_C^+ and V_C^- pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5 and 6. In Figures 5 and 6, the current sources are saturated during normal operation, thus apply full supply voltage to the V_C pins. Under fault conditions, the voltage decreases as required by the overload.

For Figure 5:

$$R_{LIM} = \frac{V_{BE}}{I_{SC}} = \frac{0.6V}{60 \text{ mA}} = 10\Omega$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$R_{LIM} = \frac{V_{BE}}{1/3(I_{SC})} = \frac{0.6V}{1/3(200 \text{ mA})} = 8.2\Omega$$

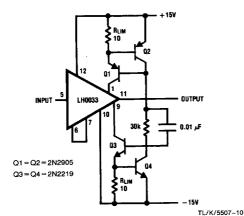


FIGURE 5. LH0033 Current Limiting Using Current Sources

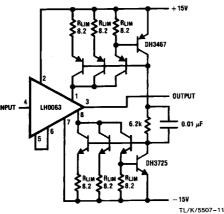


FIGURE 6. LH0063 Current Limiting Using Current Sources

CAPACITIVE LOADING

Both the LH0033 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from $(C\times d_V/d_t)$ should be limited below absolute maximum peak current ratings for the devices.

Thus for the LH0033:

$$\left(\frac{\Delta V_{IN}}{\Delta t}\right) \times C_L \leq I_{OUT} \leq \pm 250 \text{ mA}$$

and for the LH0063:

$$\left(\frac{\Delta V_{IN}}{\Delta t}\right) \times C_L \le I_{OUT} \le \pm 500 \text{ mA}$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below total package power rating:

$$\begin{split} &P_Dpkg. \geq P_{DC} + P_{AC} \\ &P_Dpkg. \geq (V^+ - V^-) \times I_S + P_{AC} \\ &P_{AC} \cong (Vp - p)^2 \times f \times C_L \end{split}$$

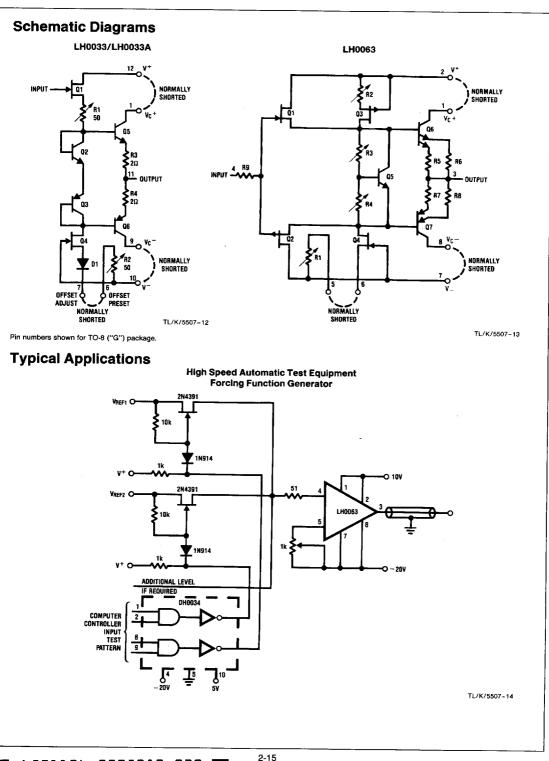
where:

Vp-p = Peak-to-peak output voltage swing

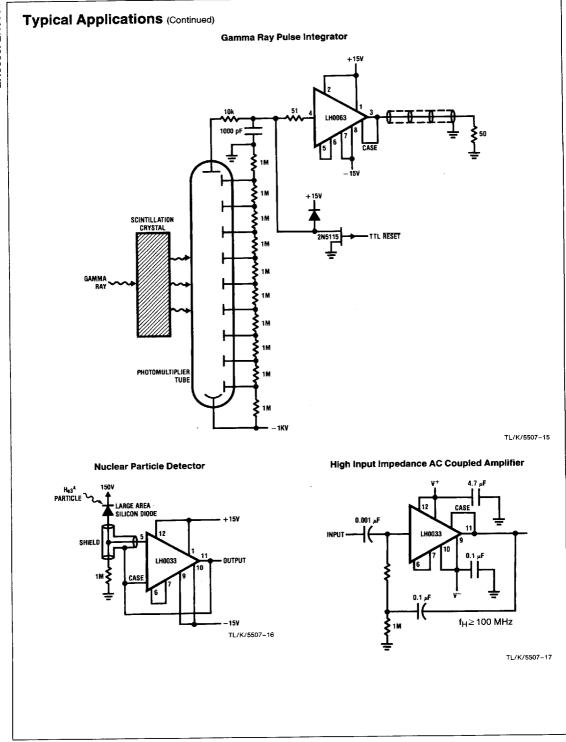
= Frequency

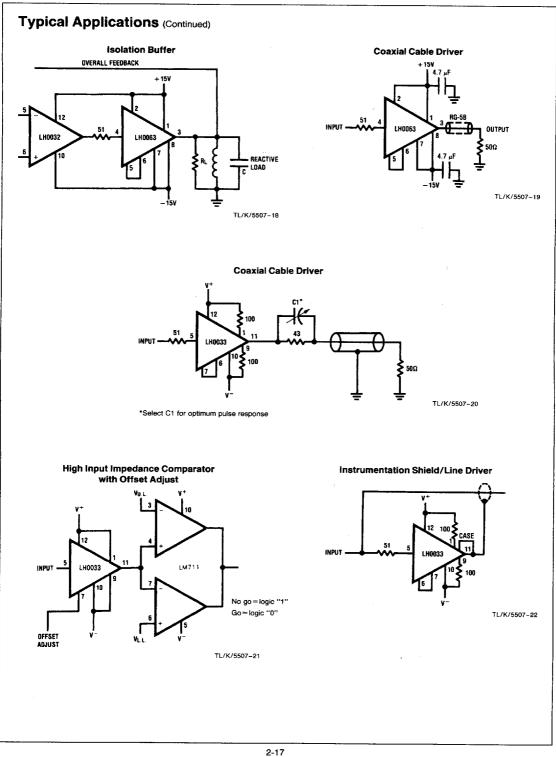
C_L = Load Capacitance

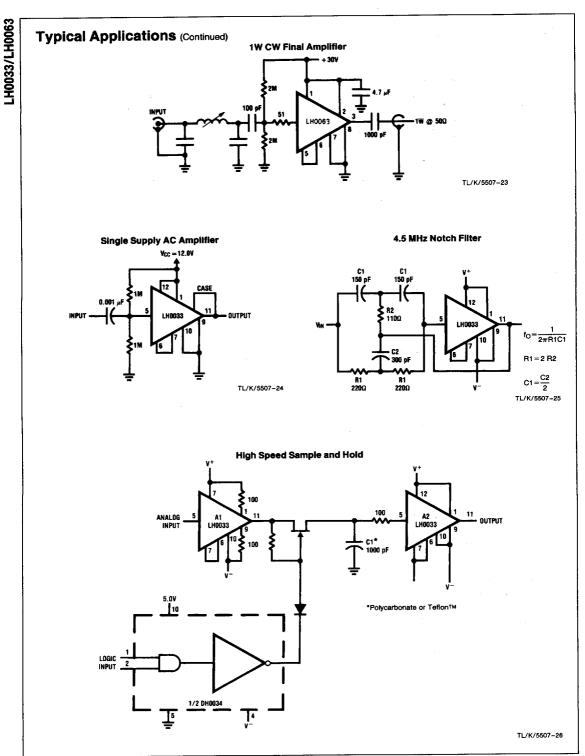
OPERATION WITHIN AN OP AMP LOOP


Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LM6218, LM6361 or LH0032. An isolation resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

HARDWARE


In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to the system chassis.


DESIGN PRECAUTION


Power supply bypassing is necessary to prevent oscillation with both the LH0033 and LH0063 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1/_4$ to 1/2'' of the device package) to a ground plane. Capacitors should be one or two 0.1 $\mu\mathrm{F}$ in parallel for the LH0033; adding a 4.7 $\mu\mathrm{F}$ solid tantalum capacitor will help in troublesome instances. For the LH0063, two 0.1 $\mu\mathrm{F}$ ceramic and one 4.7 $\mu\mathrm{F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

■ 6501124 0095283 930 **■**

6501124 0095286 64T **=**