FEATURES

- Fast Access Times: 17/20/25 ns
- Two Chip Enable Controls
- Low-Power Standby When Deselected
- TTL Compatible I/O
- 5 V ±10% Supply
- Fully-Static Operation
- 2 V Data Retention
- Package: 32-Pin, 400-mil SOJ

FUNCTIONAL DESCRIPTION

The LH521007A is a high-speed 1,048,576-bit static RAM organized as $128K \times 8$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enables (\overline{E}_1, E_2) permit Read and Write operations when active $(\overline{E}_1 = LOW)$ and $E_2 = HIGH$ or place the RAM in a low-power standby mode when inactive $(\overline{E}_1 = HIGH)$ or $E_2 = LOW$. Standby power drops to its lowest level when all inputs are stable and are at CMOS levels, while the chip is in standby mode.

Write cycles occur when both Chip Enables and Write Enable are active. Data is transferred from the DQ pins to the memory location specified by the 17 address lines. The proper use of the Output Enable control (\overline{G}) can prevent bus contention.

When both Chip Enables are active and \overline{W} is inactive, a static Read will occur at the memory location specified by the address lines. \overline{G} must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

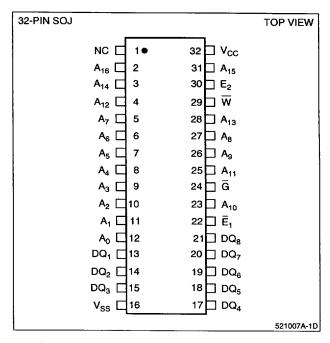


Figure 1. Pin Connections for SOJ Package

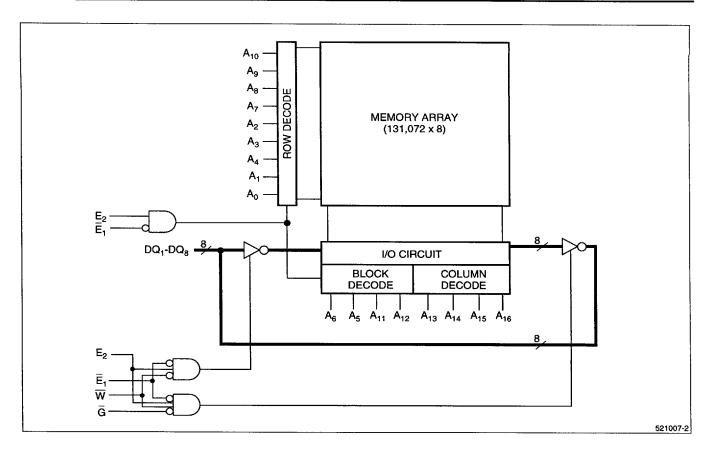


Figure 2. LH521007A Block Diagram

TRUTH TABLE

E ₁	E ₂	G	w	MODE	DQ	lcc
Н	Х	Х	Х	Standby	High-Z	Standby
Х	L	Х	Х	Standby	High-Z	Standby
L	Н	Н	Н	Read	High-Z	Active
L	Н	L	Н	Read	Data Out	Active
L	Н	Х	L	Write	Data In	Active

NOTE:

X = Don't Care, L = LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION		
A ₀ - A ₁₆	Address Inputs		
DQ ₁ – DQ ₈	Data Inputs/Outputs		
Ē₁, E₂	Chip Enable input		
G	Output Enable input		
W	Write Enable input		
Vcc	Positive Power Supply		
Vss	Ground		

ABSOLUTE MAXIMUM RATINGS 1

PARAMETER	RATING			
Vcc to Vss Potential	-0.5 V to 7 V			
Input Voltage Range	-0.5 V to V _{CC} + 0.5 V			
DC Output Current ²	± 40 mA			
Storage Temperature Range	-65°C to 150°C			
Power Dissipation (Package Limit)	1.0 W			

NOTES:

- Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T _A	Temperature, Ambient	0		70	°C
Vcc	Supply Voltage	4.5	5.0	5.5	V
Vss	Supply Voltage	0	0	0	٧
V _{IL}	Logic '0' Input Voltage 1	-0.5		0.8	٧
V _{IH}	Logic '1' Input Voltage	2.2		Vcc + 0.5	٧

NOTE:

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP 1	MAX	UNIT
Icc ₁	Operating Current ²	tcycle = 17 ns	-	115	180	mA
I _{CC1}	Operating Current ²	tcycle = 20 ns		105	175	mA
lcc1	Operating Current ²	tcycle = 25 ns		95	165	mA
I _{SB1}	Standby Current	$\overline{E}_1 \ge V_{IH}$ or $E_2 \le V_{IL}$ $t_{CYC} = min, l_{OUT} = 0$		12	25	mA
I _{SB2}	Standby Current	$\overline{E}_1 \ge V_{CC} - 0.2 \text{ V or } E_2 \le 0.2 \text{ V},$ $t_{CYC} = \text{min, } l_{OUT} = 0$		0.5	2	mA
lu	Input Leakage Current	V _{IN} = 0 V to V _{CC}	-2		2	μΑ
lıo	I/O Leakage Current	V _{IN} = 0 V to V _{CC}	-2		2	μΑ
VoH	Output High Voltage	$I_{OH} = -4.0 \text{ mA}$	2.4			V
V _{OL}	Output Low Voltage	I _{OL} = 8.0 mA			0.4	V
V _{DR}	Data Retention Voltage	$\overline{E}_1 \ge V_{CC} - 0.2 \text{ V}$ and $E_2 \le 0.2 \text{ V}$	2		5.5	٧
I _{DR}	Data Retention Current	$V_{CC} = 3 \text{ V}, \overline{E}_1 \ge V_{CC} - 0.2 \text{ V} \text{ and } E_2 \le 0.2 \text{ V}$			500	μА

NOTES:

- 1. Typical values at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.
- 2. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open.

SHARP

^{1.} Negative undershoot of up to 3.0 V is permitted once per cycle.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE 1,2

PARAMETER	RATING				
C _{IN} (Input Capacitance)	7 pF				
C _{DQ} (I/O Capacitance)	8 pF				

NOTES:

- 1. Capacitances are maximum values at 25°C measured at 1.0 MHz with $V_{Bias} = 0$ V and $V_{CC} = 5.0$ V.
- 2. Sample tested only.

For data retention mode, either $\overline{E}_1 \ge V_{CC} - 0.2 \text{ V}$ or $E_2 \le 0.2 \text{ V}$. The other control signals must be at valid CMOS levels ($V_{CC} - 0.2 \text{ V} \le V_{IN} \le 0.2 \text{ V}$). The address and data buses are 'Don't Care.'

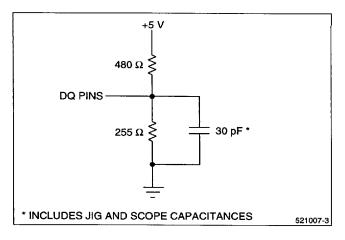


Figure 3. Output Load Circuit

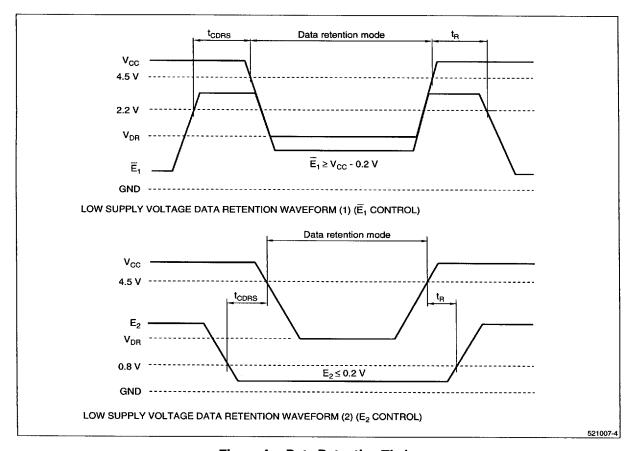


Figure 4. Data Retention Timing

SHARP

■ 8180798 0015624 7T4 **■**

AC ELECTRICAL CHARACTERISTICS 1 (Over Operating Range)

SYMBOL	DESCRIPTION	-17		-20		-25		UNITS	
	D-30.11 110N	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	
	RE	AD CYCLE							
t _{RC}	Read Cycle Timing	17		20		25		ns	
taa	Address Access Time		17		20		25	ns	
toH	Output Hold from Address Change	3		5		5		ns	
tea	Chip Enable to Valid Data		17		20		25	ns	
t _{ELZ}	Chip Enable to Output Active ^{2,3}	5		5		5		ns	
t _{EHZ}	Chip Disable to Output High-Z 2,3		7		8		10	ns	
t _{GA}	G Low to Valid Data		6		7		8	ns	
t _{GLZ}	G Low to Output Active 2,3	0		0		0		ns	
t _{GHZ}	G High to Output High-Z 2,3		5		8		10	ns	
t _{PU}	Chip Enable to Power Up Time ⁴	0		0		0		ns	
t _{PD}	Chip Disable to Power Down Time 4		17		20		25	ns	
The second secon	WF	RITE CYCLE		L					
twc	Write Cycle Time	17		20		25		ns	
tew	Chip Enable to End of Write	12		13		15		ns	
t _{AW}	Address Valid to End of Write	12		13		15		ns	
tas	Address Setup	0		0		0		ns	
t _{AH}	Address Hold from End of Write	0		0		0		ns	
t _{WP}	W Pulse Width	12		13		15		ns	
tow	Input Data Setup Time	8		9		10		ns	
t _{DH}	Input Data Hold Time	0		0		0		ns	
twnz	W Low to Output High-Z ^{2,3}	0	7	0	8	0	10	ns	
twiz	W High to Output Active 2,3	3		5		5		ns	

NOTES:

- 1. AC Electrical Characteristics specified at 'AC Test Conditions' levels.
- Active output to High-Z and High-Z to output active tests specified for a ±500 mV transition from steady state levels into the test load. CLoad = 5 pF.
- 3. Sample tested only.
- 4. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \overline{W} and E_2 are HIGH, \overline{E}_1 and \overline{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until t_{AA} .

Read Cycle No. 2

Chip is in Read Mode: \overline{W} is HIGH. Timing illustrated for the case when addresses are valid before \overline{E}_1 and E_2 are both active. Data Out is not specified to be valid until tea or tga, but may become valid as soon as telz or tglz. Outputs will transition directly from High-Z to Valid Data Out. Valid data will be present following tga only if tea timing is met.

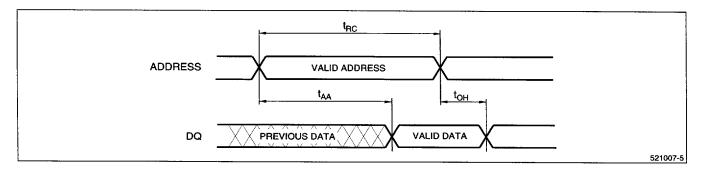


Figure 5. Read Cycle No. 1

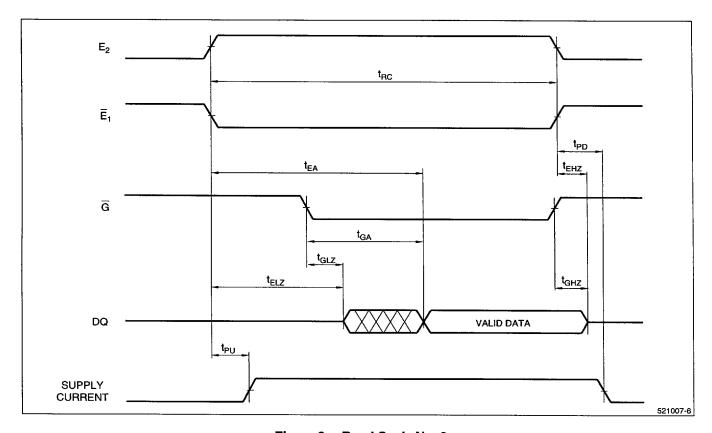


Figure 6. Read Cycle No. 2

TIMING DIAGRAMS – WRITE CYCLE

Addresses must be stable during Write cycles. The outputs will remain in the High-Z state if \overline{W} is LOW when both \overline{E}_1 and E_2 are active. If \overline{G} is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with \overline{G} active, it is recommended that \overline{G} be held HIGH for all Write cycles. This will prevent outputs from becoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (W Controlled)

Chip is selected: \overline{E}_1 and \overline{G} are LOW, E_2 is HIGH. Using only \overline{W} to control Write cycles may not offer the best performance since both t_{WHZ} and t_{DW} timing specifications must be met.

Write Cycle No. 2 (E Controlled)

 \overline{G} is LOW. DQ lines may transition to Low-Z if the falling edge of \overline{W} occurs after the falling edge of \overline{E} .

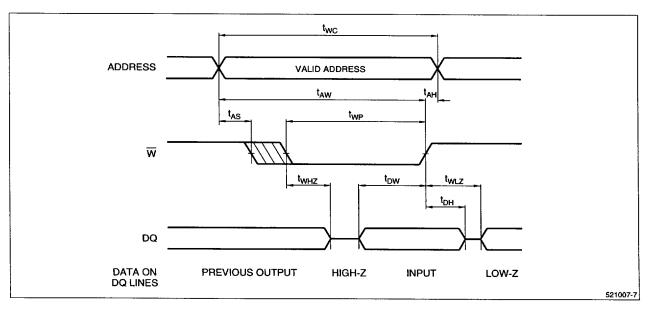


Figure 7. Write Cycle No. 1

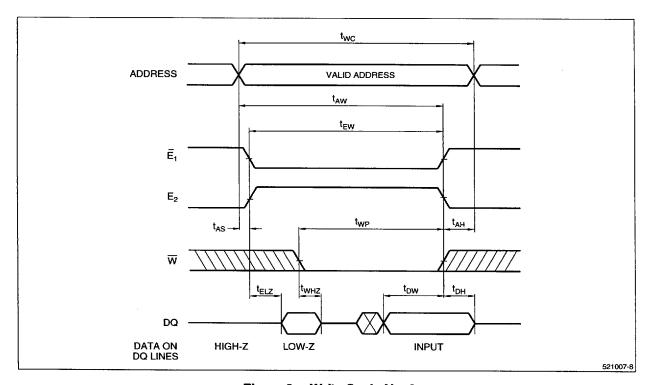
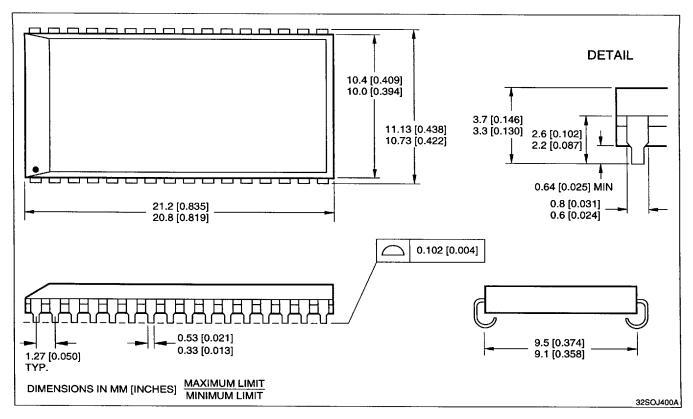
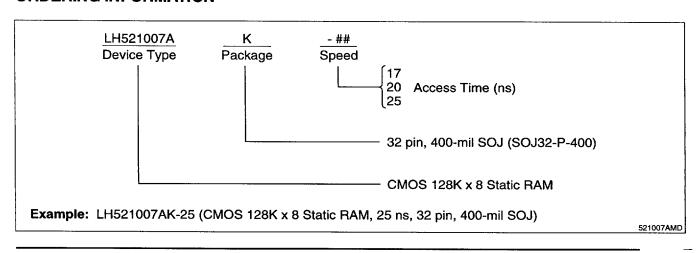



Figure 8. Write Cycle No. 2

■ 8180798 0015627 403 **■**


SHARP

PACKAGE DIAGRAM

32-pin, 400-mil SOJ

ORDERING INFORMATION

SHARP

■ 8180798 0015628 34T ■