

MICROCIRCUIT DATA SHEET

MRLM108A-X-RH REV 1A0

Original Creation Date: 12/21/98 Last Update Date: 04/16/99 Last Major Revision Date: 04/06/99

OPERATIONAL AMPLIFIERS (SINGLE) GUARANTEED TO 100K RAD(Si) TESTED TO MIL-STD-883, METHOD 1019.5

General Description

The LM108A is a precision operational amplifier having specifications a factor of ten better than FET amplifiers over a -55 C to +125 C temperature range.

The device operates with supply voltages from $\pm 2V$ to $\pm 20V$ and has sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.

The low current error of the LM108A makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from 10M Ohms source resistances, introducing less error than devices like the 709 with 10K Ohms sources. Integrators with drifts less than 500 uV/sec and analog time delays in excess of one hour can be made using capacitors no larger than 1uF.

Industry Part Number

LM108A

Prime Die

LM108A

Controlling Document

SEE FEATURES SECTION

NS Part Numbers

LM108AHRQML LM108AHRQMLV LM108AJ-8RQML LM108AJ-8RQMLV LM108AJRQMLV LM108AJRQMLV LM108AWGRQML LM108AWGRQMLV LM108AWRQMLV LM108AWRQMLV

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp Description Temp ($^{\circ}C$)

4 Dynamic tests at +25 5 Dynamic tests at +12 6 Dynamic tests at -55 7 Functional tests at +22 8A Functional tests at +12 8B Functional tests at -55 9 Switching tests at +25 10 Switching tests at +12	5
10Switching tests at+1211Switching tests at-55	

Features

CONTROLLING DOCUMENT:	
LM108AHRQML	5962R9863702QGA
LM108AHRQMLV	5962R9863702VGA
LM108AJ-8RQML	5962R9863702QPA
LM108AJ-8RQMLV	5962R9863702VPA
LM108AJRQML	5962R9863702QCA
LM108AJRQMLV	5962R9863702VCA
LM108AWGRQML	5962R9863702QZA
LM108AWGRQMLV	5962R9863702VZA
LM108AWRQML	5962R9863702QHA
LM108AWRQMLV	5962R9863702VHA

(Absolute Maximum Ratings)

Supply Voltage		
Power Dissipation		<u>+</u> 22V
(Note 2) METAL CAN CERDIP, 14 Lead CERDIP, 8 Lead CERPACK, 10 Lead CERAMIC SOIC		330mW @ +125 C 400mW @ +125 C 400mW @ +125 C 330mW @ +125 C 330mW @ +125 C
Differential Input Curre (Note 3)	ent	<u>+</u> 10mA
Differential Input Volta (Note 5)	age	+30V
Input Voltage (Note 4)		<u>+</u> 30V
Output Short-Circuit Du:	ration	<u>+</u> 20V Continuous
Operating Temperature Ra	ange	-55 C to +125 C
Storage Temperature Rang	ge	-65 C to +150 C
Thermal Resistance ThetaJA METAL CAN CERDIP, 14 Lead CERDIP, 8 Lead CERPACK, 10 Lead CERAMIC SOIC	(500LF/Min Air flow)	150 C/W 86 C/W 94 C/W 55 C/W 120 C/W 68 C/W 225 C/W 142 C/W 225 C/W 142 C/W
ThetaJC METAL CAN CERDIP, 14 Lead CERDIP, 8 Lead CERPACK, 10 Lead CERAMIC SOIC		38 C/W 13 C/W 17 C/W 21 C/W 21 C/W
Package Weight (Typical) METAL CAN CERDIP, 14 Lead CERDIP, 8 Lead CERPACK, 10 Lead CERAMIC SOIC	4	990mg 2180mg 1090mg 225mg 210mg
Maximum Junction Tempera	ature	175 C
Soldering Information (Soldering, 10 secon	nds)	300 C
ESD Tolerance (Note 6)		2000V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA) /ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.
- Note 4: For supply voltages less than ±20V, the absolute maximum input voltage is equal to the supply voltage.
- Note 5: This rating is $\pm 1.0V$ unless resistances of 2K Ohms or greater are inserted in series with the inputs to limit current in the input shunt diodes to the maximum allowable value.
- Note 6: Human body model, 1.5K Ohms in series with 100pF.

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc = \pm 20V$, Vcm = 0V, Rs = 50 Ohms

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	+Vcc = 35V, -Vcc = -5V, Vcm = -15V			-0.5	0.5	mV	1
	voreage				-1	1	mV	2, 3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V			-0.5	0.5	mV	1
					-1	1	mV	2, 3
					-0.5	0.5	mV	1
					-1	1	mV	2, 3
		+Vcc = +5V, -Vcc = -5V			-0.5	0.5	mV	1
					-1	1	mV	2, 3
Delta Vio/Delta	Temperature Coeffient of	$25 \text{ C} \leq \text{TA} \leq +125 \text{ C}$	1		-5	5	uV/C	2
T	Input Offset Voltage	$25 \text{ C} \leq \text{TA} \leq -55 \text{ C}$	1		-5	5	uV/C	3
Iio	Input Offset Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V			-0.2	0.2	nA	1
Current	current				-0.4	0.4	nA	2, 3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V			-0.2	0.2	nA	1
					-0.4	0.4	nA	2, 3
					-0.2	0.2	nA	1
					-0.4	0.4	nA	2, 3
		+Vcc = +5V, -Vcc = -5V			-0.2	0.2	nA	1
					-0.4	0.4	nA	2, 3
Delta Iio/Delta	Temperature Coeffient of	$25 \text{ C} \leq \text{TA} \leq +125 \text{ C}$	1		-2.5	2.5	pA/C	2
T	Input Offset Current	$25 \text{ C} \leq \text{TA} \leq -55 \text{ C}$	1		-2.5	2.5	pA/C	3

DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc = \pm 20V$, Vcm = 0V, Rs = 50 Ohms

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iib	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V			-0.1	2	nA	1
	Currenc				-1	2	nA	2
					-0.1	3	nA	3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V			-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
					-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
		+Vcc = +5V, -Vcc = -5V			-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
-Iib	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V			-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
		+Vcc = 5V, -Vcc = -35V, Vcm = 15V			-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
					-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
		+Vcc = +5V, -Vcc = -5V			-0.1	2	nA	1
					-1	2	nA	2
					-0.1	3	nA	3
+PSRR	Power Supply Rejection Ratio	+Vcc = 10V, -Vcc = -20V			-16	16	uV/V	1, 2, 3
-PSRR	Power Supply Rejection Ratio	+Vcc = 20V, -Vcc = -10V			-16	16	uV/V	1, 2, 3
CMRR	Common Mode Rejection Ratio	Vcm = <u>+</u> 15V			96		dB	1, 2, 3
Ios+	Short Circuit Current	+Vcc = +15V, -Vcc = -15V, t \leq 25mS			-15		mA	1, 2, 3

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: \pm Vcc = \pm 20V, Vcm = 0V, Rs = 50 Ohms

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
los-	Short Circuit Current	+Vcc = +15V, -Vcc = -15V, t \leq 25mS				15	mA	1, 2, 3
Icc	Power Supply Current	+Vcc = +15V, -Vcc = -15V				0.6	mA	1, 2
						0.8	mA	3

AC/DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: \pm Vcc = \pm 20V, Vcm = 0V, Rs = 50 Ohms AC: \pm Vcc = \pm 20V, Vcm = 0V, Rs = 50 Ohms

+Vop	Output Voltage Swing	Rl = 10K Ohms		16		V	4, 5, 6
-Vop	Output Voltage Swing	Rl = 10K Ohms			-16	V	4, 5, 6
Avs+	Open Loop Voltage Gain	Rl = 10K Ohms, Vout = +15V	3	80		V/mV	4
	Galli		3	40		V/mV	5,6
Avs-	Open Loop Voltage Gain	Rl = 10K Ohms, Vout = -15V	3	80		V/mV	4
	Gain		3	40		V/mV	5,6
Avs	Open Loop Voltage Gain	\pm Vcc = \pm 5V, Rl = 10K Ohms, Vout = \pm 2V	3	20		V/mV	4, 5, 6
TR(tr)	Transient Response Rise Time	Rl = 10K Ohms, Cl = 100pF, f < 1KHz, Vin = +50mV	4		1000	nS	9, 10, 11
TR(os)	Transient Response Overshoot	Rl = 10K Ohms, Cl = 100pF, f < 1KHz, Vin = +50mV	4		50	00	9, 10, 11
Sr(+)	Slew Rate	Av = 1, $Vin = -5V$ to $+5V$		0.05		V/uS	9, 10, 11
Sr(-)	Slew Rate	Av = 1, $Vin = +5V$ to $-5V$		0.05		V/uS	9, 10, 11
NI(BB)	Noise Broadband	BW = 10Hz to 5KHz, Rs = 0 Ohms	2		15	uVrms	\$ 9
NI(PC)	Noise Popcorn	BW = 10Hz to 5KHz, Rs = 100K Ohms	2		40	uVpk	9

DC PARAMETERS: DRIFT VALUES

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: <u>+</u>Vcc = <u>+</u>20V, Vcm = 0V, Rs = 50 Ohms. "Delta calculations performed on JAN S and QMLV devices at group
B, subgroup 5 only".

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage				-0.25	0.25	mV	1
+Iib	Input Bias Current				-0.5	0.5	nA	1
-Iib	Input Bias Current				-0.5	0.5	nA	1

DC/AC PARAMETERS: POST RADIATION LIMITS +25 C (SEE NOTE 5)

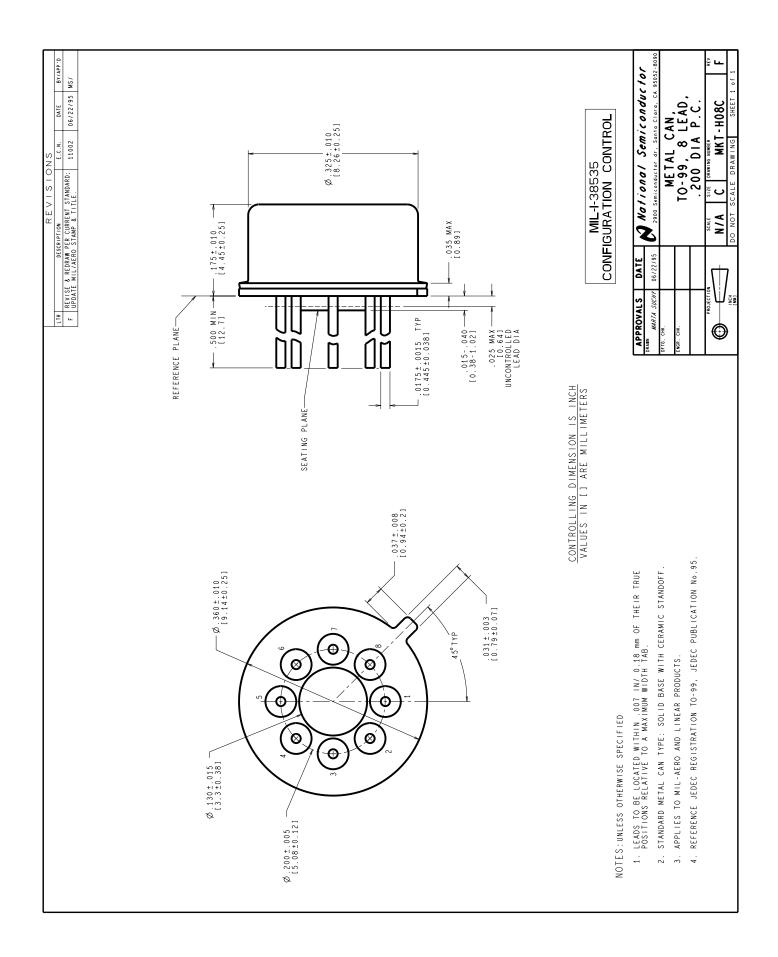
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $\pm Vcc = \pm 20V$, Vcm = 0V, Rs = 50 Ohms.

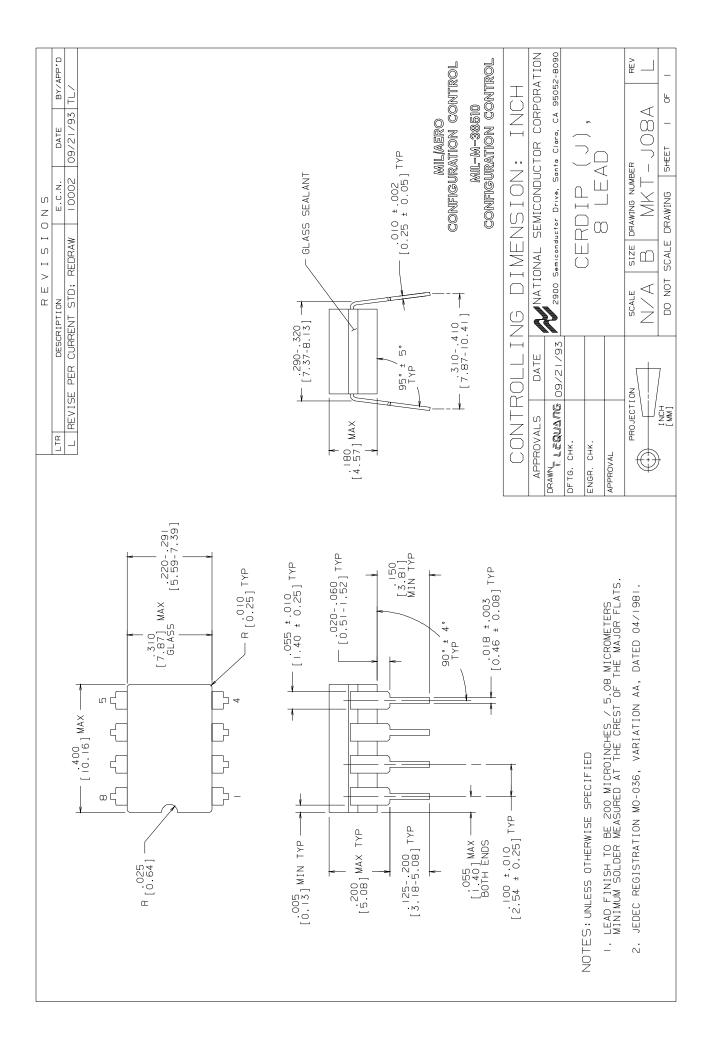
+Iib	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V	5	5.0	nA	1
	Gallono	+Vcc = 5V, -Vcc = -35V, Vcm = -15V	5	5.0	nA	1
			5	5.0	nA	1
		+Vcc = +5V, -Vcc = -5V	5	5.0	nA	1
-Iib	Input Bias Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V	5	5.0	nA	1
	Current	+Vcc = 5V, -Vcc = -35V, Vcm = -15V	5	5.0	nA	1
			5	5.0	nA	1
		+Vcc = +5V, -Vcc = -5V	5	5.0	nA	1
Iio	Input Offset Current	+Vcc = 35V, -Vcc = -5V, Vcm = -15V	5	0.5	nA	1
	Current	+Vcc = 5V, -Vcc = -35V, Vcm = -15V	5	0.5	nA	1
			5	0.5	nA	1
		+Vcc = +5V, -Vcc = -5V	5	0.5	nA	1

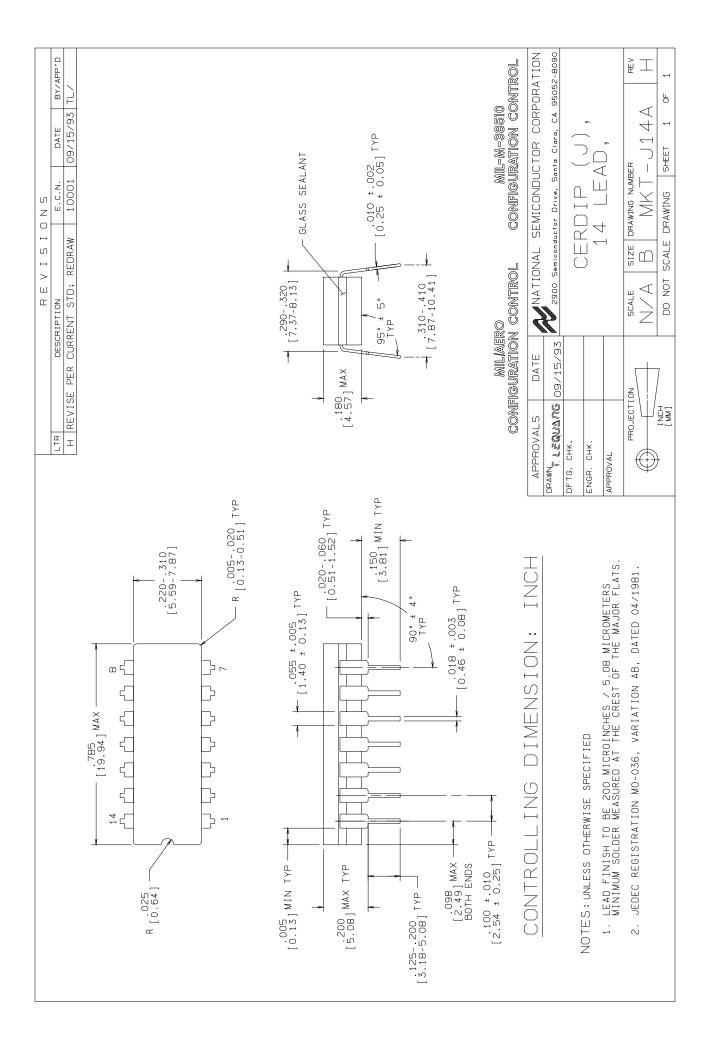
Note 1: Calculated parameter.

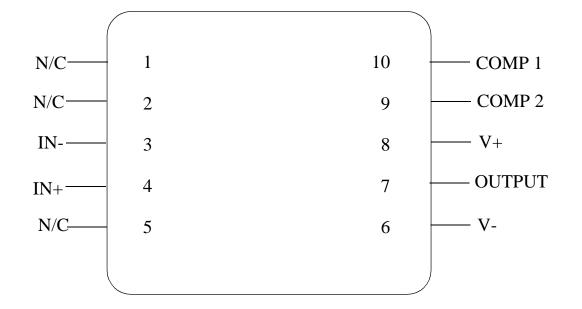
Test on either A360, J273 AC or bench test. Datalog reading in K = V/mV. Note 2:

Note 3:

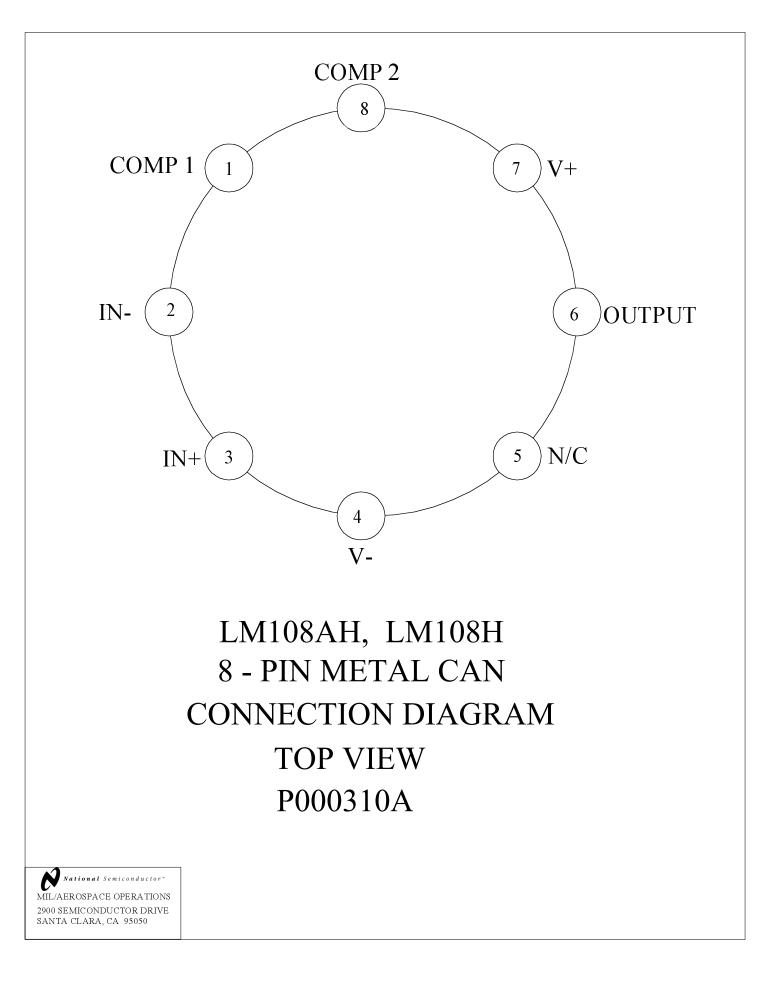

Note 4: Bench test.

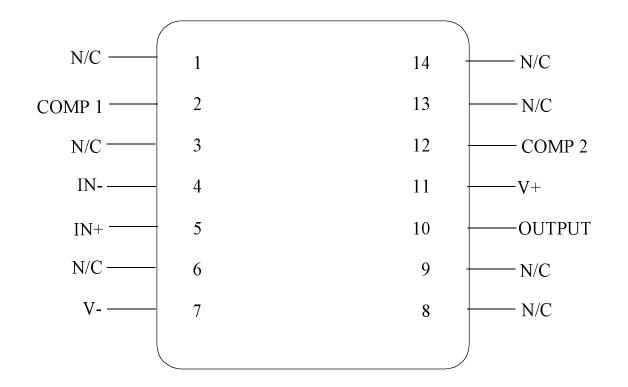

Note 5: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, Method 1019.5.


GRAPHICS# DESCRIPTION METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG) H08CRF J08ARL CERDIP (J), 8 LEAD (P/P DWG) J14ARH CERDIP (J), 14 LEAD (P/P DWG) P000253A CERAMIC SOIC (WG), 10 LEAD (PINOUT) P000310A METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (PINOUT) P000311A CERDIP (J), 14 LEAD (PINOUT) P000312A CERDIP (J), 8 LEAD (PINOUT) P000431A CERPACK (W), 10 LEAD (PINOUT) W10ARG CERPACK (W), 10 LEAD (P/P DWG) CERAMIC SOIC (WG), 10 LEAD (P/P DWG) WG10ARC


Graphics and Diagrams

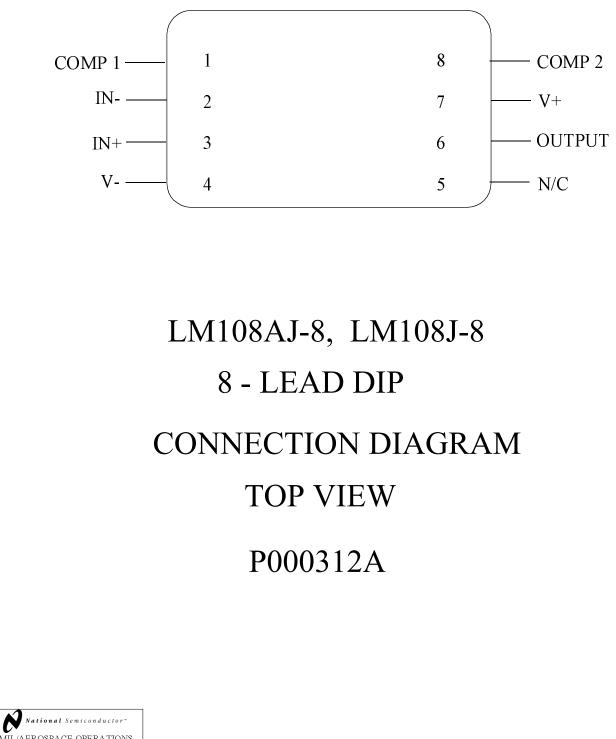
See attached graphics following this page.

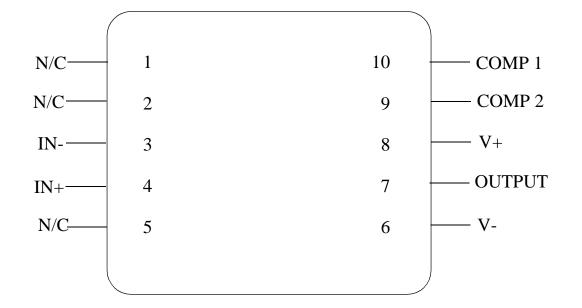




LM108AWG 10 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000253A

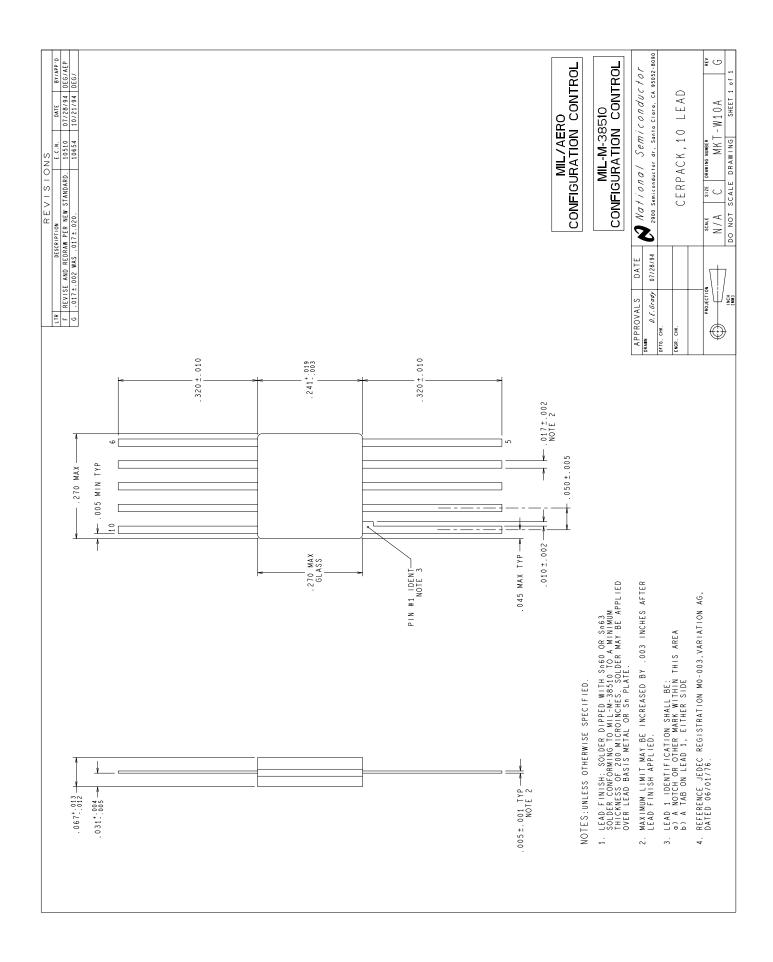
2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

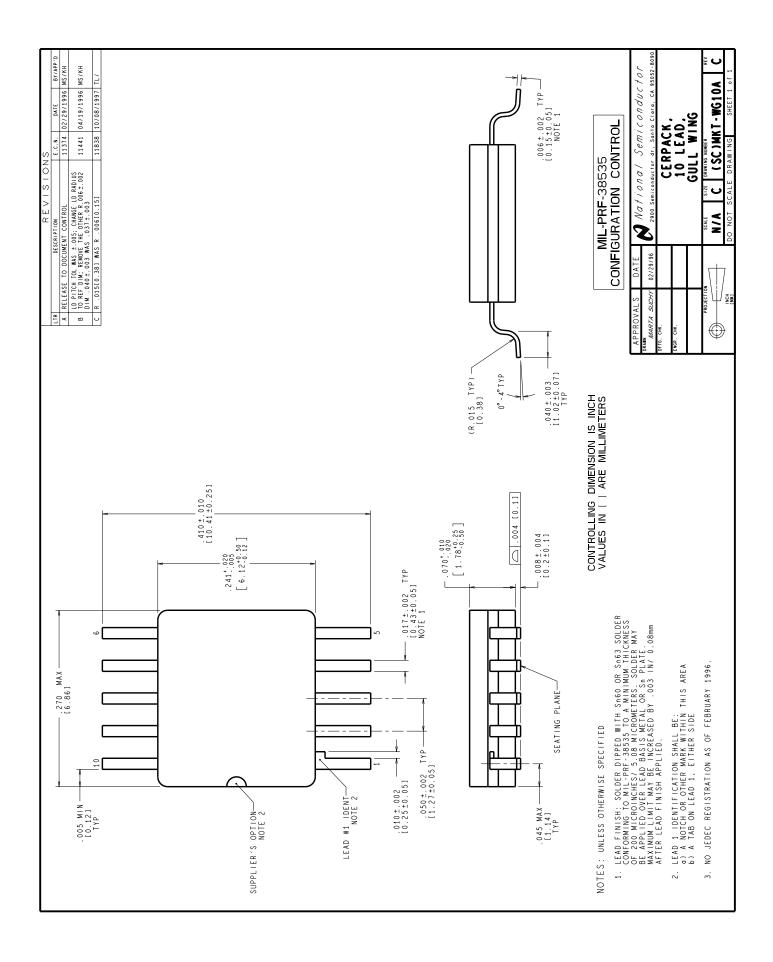



LM108AJ, LM108J 14 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000311A

Mational Semiconductor-MIL/AEROSPACE OPERATIONS

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050


MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050



LM108AW 10 - LEAD CERPACK CONNECTION DIAGRAM TOP VIEW P000431A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes			
0A0	M0003181	04/16/99		Initial MDS Release: MRLM108A-X-RH, Rev. 0A0 - Rad Hard Data Sheet.			
1A0	M0003364	03364 04/16/99 Rose Malone Update MDS: MRLM108A-X-RH, Rev. 0A0 to MRLM1 Rev. 1A0. Update Thermal Resistance - Cerpac Air) from 150 C/W to 225 C/W, Electricals: D Drift Values and Post Radiation Section - Re reference to Rs=5 Mohms from Iio, +Iib, -Iib Correction made to correlate with test progr					