DD-42900 ARINC 429 MICROPROCESSOR INTERFACE DEVICE

DESCRIPTION

DDC's DD-42900 provides a complete and flexible interface between a microprocessor and an ARINC 429 data bus. The DD-42900 interfaces to a processor through a 128 x 32 bit static ram as well as four 32×32 receive FIFO's and two 32×32 transmit FIFO's. The DD-42900 can be easily interfaced to 8- or 16-bit processors via a buffered shared RAM configuration.

The DD-42900 supports four ARINC 429 Receive channels (Rx0, Rx1, Rx2 and Rx3) each receiving data independently. The receive data rates (high or low speed) for channel Rx0 and Rx1 can be programmed independently from Rx2 and Rx3. The DD-42900 can decode and sort data based on the ARINC 429 Label and SDI bits via the Data Match Processor, and store it in RAM and/or FIFO's via the Data Store Processor.

The DD-42900 supports two ARINC 429 Transmit channels (Tx0 and Tx1) and can transmit data independently. The transmit data rate can also be programmed independently. There are two 32 x 32 bit FIFO's for each of the transmitters that send out data.

The DD-42900 has the capability of programming three general purpose interrupts as well as generating an interrupt based on an error condition. The general purpose interrupts can be programmed to trigger other external hardware. They can either be LEVEL or PULSE driven.

The features built into the DD-42900 enable the user to off-load the host processor and use that processing time to implement operations other than polling the ARINC 429 Bus. The decoding and sorting of data allows the user to gather data much quicker than past designs. If the user requires a microprocessor in the avionics box, this device will facilitate a clean and quick design.

Data Device Corporation 105 Wilbur Place Bohemia, New York 11716 631-567-5600 Fax: 631-567-7358 www.ddc-web.com

FEATURES

- Four ARINC 429 Receive Channels
- Two ARINC 429 Transmit Channels
- 128 x 32 Shared RAM Interface
- Label and Destination Decoding and Sorting
- Four 32 x 32 Receive FIFOs
- Two 32 x 32 Transmit FIFO's
- Interfaces Easily to 8- or 16-Bit Microprocessors
- Built-in Fault Detection Circuitry
- Free "C" Library Software
- Available as a Chipset:
 - DD-00429VP ASIC µP
 - DD-00429FP ASIC µP

FOR MORE INFORMATION CONTACT:

Technical Support: 1-800-DDC-5757 ext. 7234

All trademarks are the property of their respective owners. © 1998, 1999 Data Device Corporation

FIGURE 1. DD-42900 BLOCK DIAGRAM

TABLE 1. DD-42900 ABSOLUTE MAXIMUM RATINGS (TC = +25°C UNLESS OTHERWISE SPECIFIED)

PARAMETER	MIN	МАХ	UNITS
DC Supply Voltage	-0.3	6.0	Vdc
Signal Input Voltage (logic inputs)	-0.3	Vdd + 0.3	Vdc
ARINC 429 Input Voltage	-29	+29	Vdc
Storage Temperature	-85	125	°C
Operating Temperature	-40	85	°C
Lead Temperature (soldering)		300 (for 10 sec)	°C
Body Temperature (soldering)		210 (for 30 sec)	°C
Signal Input Voltage(ARINC 429 Inp)	-29	+29	Vdc

TABLE 2. DD-42900 ELECTRICAL SPECIFICATIONS (4.5V VDD, 5.5V= -40°C, TC = +85°C UNLESS OTHERWISE SPECIFIED)									
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES				
LOGIC INPUTS/OUTPUTS									
DC Supply Voltage	Vdd	4.5	5.5	Vdc					
DC Supply Current	Idd		42.2	mA	Device operation @ 16 MHz, Typical Idd = 38.4 mA @ 5.0V. (@85°C)				
Schmitt "0" Threshold	Vt-		0.2*Vdd	Vdc	RESET RC, 16 MHZ CLOCK				
Schmitt "1" Threshold	Vt+	0.8*Vdd		Vdc	RESET RC, 16 MHZ CLOCK				
Schmitt Hysteresis	Vh	1		Vdc	RESET RC, 16 MHZ CLOCK				
Input Logic Voltage Low	Vil		0.8	Vdc	All other Inputs. (See Note 1).				
Input Logic Voltage High	Vih	2.0		Vdc	All other Inputs. (See Note 1).				
Input Logic Current Low	lil	-25.3	-137	μA	Input pins with internal pull-up logic: INT/MOT, 8/16, ZERO WAIT MODE and MASTER RESET @ Vdd = 5.5V				
Input Logic Current Low	lil	-1.0	1.0	μA	All other Inputs. (See Note 1).				
Input Logic Current High	lih	-1.0	1.0	μA	All other Inputs. (See Note 1).				
Output Voltage Logic Low	Vol		0.4	Vdc	lol=3.84 mA minimum @Vdd= 4.5V. (See note 2)				
Output Voltage Logic High	Voh	2.4		Vdc	loh=3.84 mA minimum @Vdd= 4.5V. (See note 2)				
Output Leakage Current, Hi-Z	loz	-10	10	μΑ	For TXDB0-TXDB15, D0-D15, READY, DTACK, ERROR, IRQ3, IRQ2 and IRQ1 @ Vdd = 5.5V				

NOTES:

TTL compatible input logic voltage levels at CMOS input logic current levels.
CMOS output logic voltage at current levels.

TABLE 3. DD-42900 SPECIFICATIONS (TC = +25°C UNLESS OTHERWISE SPECIFIED)									
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES				
LOGIC INPUTS/OUTPUTS									
ARINC 429 LINE INPUTS									
Logic 1 Input Voltage	Vih	6.5	13.0	Vdc	nominal +10 V, differential Vab				
Logic 0 Input Voltage	Vil	-6.5	-13.0	Vdc	nominal -10 V, differential Vab				
Null Input Voltage	Vnul	-2.5	+2.5	Vdc	nominal 0 V, differential Vab				
Common Mode Voltage	Vcm		5	Vdc					
Differential Input Impedance	Ri	12		k Ohms					
Input Impedance to Vdd	Rh	12		k Ohms					
Input Impedance to Ground	Rg	12		k Ohms					
Input Capacitance	Ci		20	pF					
Input Capacitance to Vcc	Ch		20	pF					
Input Capacitance to Ground	Cg		20	pF					

ARINC 429 RECEIVERS

The DD-42900 supports four ARINC 429 inputs, designated Receive channels 0 through 3 (Rx0, Rx1, Rx2 and Rx3). The architecture of each of the four receiver circuits is identical and each receives data independently. ARINC 429 data is directly received into the DD-42900 with no additional circuitry required. Input protection, in accordance with the ARINC 429 specification, is provided along with voltage level translation from +5 V bipolar, nonreturn-to-zero data to conventional, +5 V logic levels.

Receive Data Rates: Data rates can be programmed for channels 0 and 1 independently of channels 2 and 3 via bits 2 and 3 of Arinc Control Register 2. The receiver circuitry will successfully decode an incoming ARINC 429 data stream as long as the data rate is within ±5% of the nominal rate as determined by the Hi Speed/Low Speed Bit and the associated ARINC Clock input (ARINC CLK 0 or ARINC CLK 1). The two 1 MHz ARINC clock inputs may be tied to the 1 MHz clock output or may be connected to another clock source. The ARINC CLK input should nominally be 10 times (for High-Speed Mode) or 80 times (for Low-Speed Mode) the desired ARINC Data Rate. ARINC CLK 0 is used to synchronize channels Rx0 and Rx1 while ARINC CLK 1 is used to synchronize channels Rx2 and Rx3.

Filtering and Sorting Rx Data: The receiver circuitry converts the serial data stream to a 32-bit-wide parallel data word. The 32-bit word is processed internally by a Data Match Processor (DMP). It compares the incoming data to a table of data initialized by the processor. This determines what incoming data is to be saved, where it is going to be saved, and if any interrupts are to be generated. The table of data is stored in a 128 word x 16 bit Data Match Table (DMT) RAM. When a match between the

received ARINC 429 data and the criteria stored in a DMT entry is found, the received data, the storage address and modes, and interrupt parameters are passed to the Data Store Processor (DSP). The storage address in the Receive RAM is the address of the first matching DMT entry minus 200 hex.

There are three requirements that must be met in order to match incoming ARINC 429 data to each DMT entry:

- 1) **System Address Label:** Bits 0-7 of the DMT are compared to the System Address Label (SAL) of the incoming ARINC 429 data word. If the DMT SAL entry is zero then the SAL of the incoming data word is ignored (or considered a match).
- 2) Source/Destination Bits: Bits 8 and 9 of each DMT entry are compared to the Source/Destination (S/D) bits of the incoming ARINC 429 data word. If these bits match, or if Bit 10 of the DMT entry is set to a 1, then the S/D bit comparison is considered a match. It is also possible, through the DMP Control Register 1, to enable "All Call Mode" as defined in the ARINC 429 specification. When enabled for a particular receive channel, the S/D bits will be considered a match when the incoming ARINC 429 data contains a 00 in its S/D bit pair.
- 3) **Receive Channel Number:** Bits 12 and 13 of each DMT entry are compared to the number of the channel which received the ARINC 429 data.

A Data Match has occurred when all of the previous conditions are satisfied; the data will then be stored in a RAM location whose address equals the matching DMT entry minus 200 hex. Bit 11 of each DMT entry, when set, will cause the incoming ARINC 429 data to be stored in the corresponding receive channel FIFO (as well as the Rx RAM) when the data match conditions are met.

Bits 14 and 15 of each DMT entry provide the ability to cause one of three general purpose interrupts upon a data match condition. If set to "00" then no interrupt will occur upon a data match condition (more information on interrupts is described later).

ARINC 429 TRANSMITTER(S)

The DD-42900 supports two ARINC 429 transmitters. Each of these channels transmits data independently and are designated Tx0 and Tx1. The transmit output of the DD-42900 is a TTL encoded digital data stream which can be connected directly to the ARINC 429 line driver.

Transmit Data Rates: Data rates can be programmed for channels 0 and 1 independently. The transmit data rate is determined by the High-Speed/Low-Speed Bit for each of the Tx channels in ARINC Control Register 1 and the associated ARINC Clock input (ARINC CLK 0 or ARINC CLK 1). The two, 1 MHz ARINC clock inputs may be tied to the 1 MHz clock output or may be connected to another clock source to achieve transmit data rates other than 100 kHz or 12.5 kHz. The transmit clock input should be 10 times (for High-Speed Mode) or 80 times (for Low-Speed Mode) the desired ARINC transmit data rate.

Transmit FIFOs: Each transmitter channel is provided with an output FIFO which is 32 words deep by 32 bits wide. When writing data to the Tx FIFO, the associated Disable Tx(n) bit in ARINC Control Register 2 can be set to a logic zero until the FIFO is loaded with the desired data. Upon setting the Disable Tx(n) low the transmit channel will send the 32-bit message words with appropriate interword gaps on the ARINC 429 output. A status bit indicating that the FIFO is empty is supplied for each transmitter in the ARINC Status Register.

Wraparound testing can be performed from Tx0 to Rx0 and Rx1, and from Tx1 to Rx2 and Rx3. Wraparound testing is enabled by setting the appropriate bits in ARINC Control Register 1. The parity of the transmitted word can be altered to even parity (instead of the usual odd parity) by setting the associated Txn Parity bit in the ARINC Control Register 1. This is useful to verify proper operation of the parity check circuitry for each of the receive circuits during wraparound test mode.

PROCESSOR INTERFACE

The processor interface allows for the use of either an 8- or 16bit data bus. Intel or Motorola control signal formats can also be used.

INTERRUPT OPERATIONAL MODES

The DD-42900 provides four interrupt outputs. Three of these interrupt outputs (IRQ1, IRQ2, and IRQ3) are general purpose programmable interrupts. The fourth interrupt is an Error interrupt output which is specifically used to provide indications of various error conditions and is nonmaskable.

ERROR INTERRUPT OPERATION

When an error condition occurs, the ERROR output pin goes low to indicate the presence of an error. The error pin will go high again when the Error Status Register is clear. Each of these bits is cleared by either reading the Error Status Register or removing the error condition.

GENERAL PURPOSE INTERRUPTS

The three general purpose interrupt outputs can be used for multilevel interrupts or to trigger other external hardware for various conditions. Each condition can be mapped to any one of the three general purpose interrupts or disabled (by mapping to IRQ0 which does not exist). Each interrupt output can be programmed to be either a LEVEL interrupt or PULSE interrupt via IRQ Control Register 2. When programmed for pulse interrupt mode, the associated interrupt pin will go low for 1 μ S and return high again. When programmed for LEVEL interrupt mode, the interrupt will remain until the associated IRQ Status Register is read, thus clearing the associated bits in each interrupt register.

Each of the individual interrupt registers can be masked by setting their corresponding bit in IRQ Control Register 1. It should be noted that the masking function only prevents the associated IRQ pin from becoming active. When the mask bit is cleared, an interrupt can occur in LEVEL IRQ mode if one or more interrupt conditions occurred during the time when the mask was set. If the user needs to ensure the interrupt will not occur upon clearing the mask bit, the CPU should be programmed to read the associated interrupt status register immediately prior to clearing the IRQ mask bit.

ZERO WAIT MODE OPERATION

When Zero Wait Mode is enabled by not grounding the ZERO WAIT pin, the host microprocessor may read data from the DD-42900 shared memory resources (DMT and Rx RAM) without using the READY or DTACK signals to insert wait states into the microprocessor cycle. This is accomplished by an additional "dummy read" of the desired address. This dummy read causes the DD-42900 to fetch the data from the source and place it in a latch. The data can then be read from the latch (word-by-word or byte-by-byte) by reading the same addresses. Thus for a 32-bit read in 8-bit mode, the microprocessor would perform a total of five read operations. The first read would be the dummy read; subsequent reads would transfer the data.

Data Device Corporation www.ddc-web.com

FIGURE 2. DD-00429FP ASIC MECHANICAL OUTLINE (PLASTIC)

TABLE 4. DD-42900 PINOUTS (DIP AND FLAT PACK)								
PIN NO.	FUNCTION	PIN NO.	FUNCTION	PIN NO.	FUNCTION	PIN NO.	FUNCTION	
1	GND	17	A8	33	D0	49	IRQ3	
2	GND	18	A9	34	D1	50	IRQ2	
3	INTEL/MOTO	19	A10	35	D2	51	IRQ1	
4	8/16 BIT	20	CSO	36	D3	52	1 MHZ OUT	
5	TX0 A	21	CS1	37	D4	53	ARINC CLK 1	
6	TX0 B	22	CS2	38	D5	54	ARINC CLK 0	
7	TX1 A	23	GND	39	D6	55	+5V	
8	TX1 B	24	GND	40	D7	56	+5V	
9	A0	25	ZERO WAIT MODE	41	D8	57	RX3 B	
10	A1	26	READY	42	D9	58	RX3 A	
11	A2	27	RD (DS)	43	D10	59	RX2 B	
12	A3	28	WR (RD/WR)	44	D11	60	RX2 A	
13	A4	29	DTACK	45	D12	61	RX1 B	
14	A5	30	ERROR	46	D13	62	RX1 A	
15	A6	31	MASTER RESET	47	D14	63	RX0 B	
16	A7	32	16 MHZ CLOCK	48	D15	64	RX0 A	

FIGURE 3A. DD-42900DP DIP MECHANICAL ASSEMBLY

FIGURE 3B. DD-42900FP FLAT PACK MECHANICAL ASSEMBLY

TABLE 5. DD-00429FP ASIC PINOUTS								
PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION	PIN NO.	DESCRIPTION	
1	+5V	41	+5V	81	+5V	121	+5V	
2	TX DB11	42	XTAL1 (N/C)	82	OSC CLK OUT (N/C)	122	RESET 1	
3	TX DB12	43	GND	83	BIST T1A (N/C)	123	CW STRB1	
4	TX DB13	44	TSB2 (N/C)	84	BIST T1B (N/C)	124	EN TX1 OUT	
5	TX DB14	45	TSB3 (N/C)	85	BIST DMT (N/C)	125	TX1 B IN	
6	TX DB15	46	TSA0 (N/C)	86	BIST RAM7 (N/C)	126	TX1 A IN	
7	EN RX1	47	TSA1 (N/C)	87	BIST RAM24 (N/C)	127	TX1 EMPTY	
8	EN RX0	48	TSA2 (N/C)	88	DO	128	LD TX1 HI	
9	SELECT	49	TSA3 (N/C)	89	D1	129	LD TX1 LO	
10	RX RDY1	50	TMA0 (N/C)	90	D2	130	+5V	
11	RX RDY0	51	TMA1 (N/C)	91	D3	131	GND	
12	GND	52	TMA2 (N/C)	92	D4	132	+5V	
13	GND	53	TMA3 (N/C)	93	D5	133	16 MHZ CLOCK	
14	GND	54	TMA4 (N/C)	94	D6	134	EN RX3	
15	INTEL/MOTO	55	TMA5 (N/C)	95	D7	135	EN RX2	
16	8/16 BIT	56	TMA6 (N/C)	96	GND	136	RX RDY 3	
17	+5V	57	TMA7 (N/C)	97	+5V	137	RX RDY 2	
18	TX0 A	58	TSB0 (N/C)	98	GND	138	+5V	
19	ТХО В	59	TSB1 (N/C)	99	+5V	139	GND	
20	TX1 A	60	+5V	100	D8	140	RESET 0	
21	TX1 B	61	GND	101	D9	141	CW STRB0	
22	GND	62	TMB0 (N/C)	102	D10	142	EN TX0 OUT	
23	A0	63	TMB1 (N/C)	103	D11	143	TX0B IN	
24	A1	64	TMB2 (N/C)	104	D12	144	TX0A IN	
25	A2	65	TMB3 (N/C)	105	D13	145	TX0 EMPTY	
26	A3	66	TMB4 (N/C)	106	D14	146	LOAD TX0 HI	
27	A4	67	TMB5 (N/C)	107	D15	147	LD TX0 LO	
28	A5	68	TMB6 (N/C)	108	GND	148	GND	
29	A6	69	TMB7 (N/C)	109	GND	149	TX DB0	
30	A7	70	ZERO WAIT MODE	110	IRQ3	150	TX DB1	
31	A8	71	READY	111	IRQ2	151	TX DB2	
32	A9	72	RD or DS	112	IRQ1	152	TX DB3	
33	A10	73	WR or RD/WR	113	RESET RC	153	TX DB4	
34	CS0	74	DTACK	114	ARINC CLK OUT	154	TX DB5	
35	CS1	75	ERROR	115	ARINC CLK 1	155	TX DB6	
36	CS2	76	MASTER RESET	116	ARINC CLK 0	156	TX DB7	
37	BIST R3 (N/C)	77	+5V	117	BIST R0 (N/C)	157	TX DB8	
38	GND	78	BIST TOA (N/C)	118	BIST R1 (N/C)	158	TX DB9	
39	+5V	79	BIST TOB (N/C)	119	BIST R2 (N/C)	159	TX DB10	
40	GND	80	GND	120	GND	160	GND	

ORDERING INFORMATION

Full Assembly:

Chip Set:

*Note: The DD-03182† and DD-03282† are required to complete the ARINC 429 Interface. The DD-00429 is the Microprocessor Interface/RAM/FIFO and Interrupt Controller.

Application Note AN/A-6 **DD-42900 Frequently Asked Questions** is available on request.

†Note: These Transceiver/Line Driver part numbers are provided for historical reference only. These components are now provided by Device Engineering Inc. For a complete cross-reference chart, please visit DEI at www.deiaz.com,(480) 303-0822. NOTES:

NOTES:

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

Please visit our web site at www.ddc-web.com for the latest information.

105 Wilbur Place, Bohemia, New York 11716-2482

For Technical Support - 1-800-DDC-5757 ext. 7234 Headquarters - Tel: (631) 567-5600, Fax: (631) 567-7358 Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610 West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988 United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264 Ireland - Tel: +353-21-341065, Fax: +353-21-341568 France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425 Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089 Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689 World Wide Web - http://www.ddc-web.com

