Phone: (516) 997-7474 Fax: (516) 997-7479

Website: www.dionics-usa.com

OPTO-ISOLATED PHOTOVOLTAIC ISO-GATETM MOSFET DRIVERS

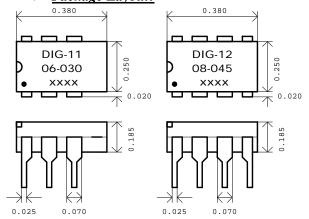
DIG-11-06-030 DIG-11-06-150 DIG-11-08-050 DIG-12-06-025 DIG-12-08-010 DIG-12-08-045 DIG-12-06-100 DIG-12-06-250

Features:

- Completely Isolated Voltage Signal Generation
- Dielectrically Isolated
- Logic Circuit Compatibility
- ➤ High Open Circuit Voltage
- ➤ High Operating Temperature
- > Fast Response Time
- ➤ High Isolation Resistance
- > Excellent Input/Output Linearity
- > Self Limiting Gate Voltage

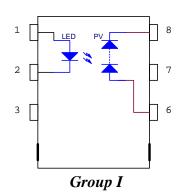
Applications:

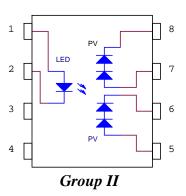
- Gate Drive For MOS devices
- Gate Drive For SCR
- ➤ Solid-State Relays
- ➤ Interface Between Logic Circuits & External Loads
- ➤ A.T.E. (Automatic Test Equipment)
- Switching Equipment
- > Isolation Amplifiers
- ➤ Load Control From Microprocessor I/O Ports
- ➤ Thermocouple Open Detectors


Description:

The photovoltaic MOSFET driver is a State-of- the-Art, optically coupled floating power source used primarily to control MOSFETs when electrical isolation between input and output is required. The ISO-GATETM is a state-of-the-art opto-isolator incorporating DIONICS' photovoltaic (PV) diode arrays and an infrared LED. The diode array is a unique I.C. consisting of series-connected photovoltaic diodes. The diodes are completely isolated from each other and from their common substrate by means of SiO_2 Dielectric Isolation (DI). These photovoltaic output chips are electrically isolated but optically coupled to the LED.

The typical input circuit to the LED is a limiting resistor connected in series with the LED. When activated, the LED emits infrared light towards the photovoltaic diode array, which then responds by generating an open circuit voltage (Voc). This Voc is floating and is therefore completely isolated. The Voc value depends on the LED input drive and load impedance. DIONICS, Inc offers a wide variety of package styles including low-cost plastic Mini-DIP's, high reliability TO-5 metal cans, 8-pin ceramic side brazed DIP's and ceramic chip carriers for hybrid manufacturers. Other custom packages and custom designs are also available.

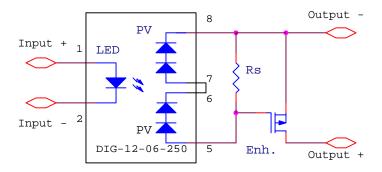

- o Group I: DIG-11-06-030; DIG-11-06-150; DIG-11-08-050.
- o Group II: DIG-12-06-025; DIG-12-06-100; DIG-12-06-250; DIG-12-08-010; DIG-12-08-045.


A Package Layout:

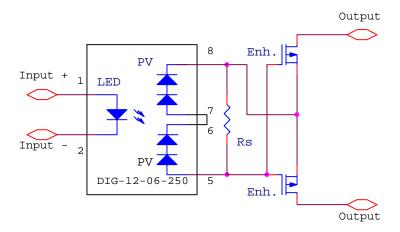
Pin Designation		
Pin Number	Group I	Group II
1	Input +	Input +
2	Input -	Input -
3	Not Connected	Not Connected
4	Not Connected	Not Connected
5	Not Connected	Output1+
6	Output +	Output1-
7	Not Connected	Output2+
8	Output -	Output2-

Group I and Group II Equivalent Circuits:

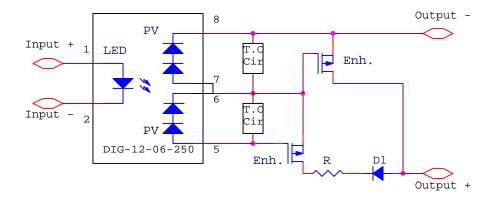
❖ Absolute Maximum Ratings (T _a = 25°C)							
LED Forward Current	Steady State	100 mA					
LED Forward Current	Peak 10% Duty Cycle	250 mA					
LED Forward Voltage	$I_f = 20mA$	1.7V*					
LED Reverse Current	$V_r = 3V$	100μΑ					
LED Reverse Voltage		5V					
Output Forward Voltage	$I_f = 10 \mu A$	20V					
Lead Soldering Time	At 260°C	10 sec					
Storage Temperature		-50 to 125°C					
Power Dissipation		150 mW					

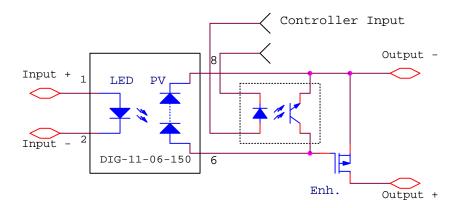

^{*} Note: DIG-12-06-100 and DIG-12-06-250 are rated @ 3.4 V Max.

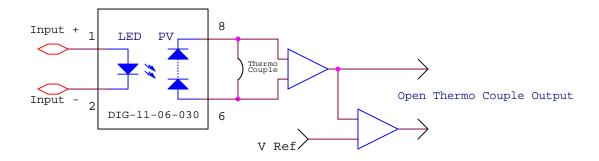
❖ Individual Channel Electrical Characteristics (T_a =25°C)

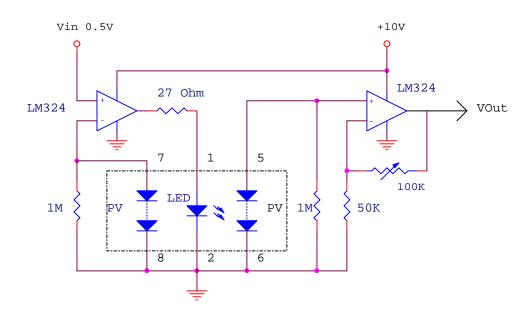

		MODEL NUMBERS DIG -																
		12-0	8-010	12-06-025 12-08-045			12-06-100 12-06-250			11-06-030 11-08-050			11-06-150		Unit			
Parameter	Symbol	Min.	Тур.	Min.	Тур.	Min.	Тур.	Min.	Тур.	Min.	Тур.	Min.	Тур.	Min.	Typ.	Min.	Typ.	
Open Circuit Voltage	V_{oc}																	
$I_{led} = 2mA$		6.0	8.0	5.0	6.5	7.0	8.0	5.0	6.0	5.0	6.0	4.5	5.5	6.5	9.0	5.0	6.0	V
$I_{led} = 10mA$		8.0	9.0	6.5	7.5	8.5	9.0	6.5	7.0	6.5	7.3	6.0	6.5	7.5	10.0	6.5	7.0	V
$I_{led} = 30 \text{mA}$		9.0	10.0	7.0	6.3	9.5	10.0	7.5	7.8	7.5	8.0	6.5	7.0	8.5	11.0	7.5	8.0	V
Short Circuit Current	I_{sc}																	
$I_{led} = 2mA$		0.2	0.5	0.5	1.0	0.6	1.0	1.0	2.0	2.0	3.0	0.15	1.1	0.6	2.0	1.5	3.0	mA
$I_{led} = 10mA$		1.35	3.0	3.0	6.0	4.0	8.0	8.0	12.0	12.5	25.0	1.0	7.0	4.0	13.0	10.0	18.0	mA
$I_{led} = 30mA$		4.0	9.0	9.0	20.0	12.0	25.0	30.0	40.0	37.5	75.0	3.5	20.0	12.0	40.0	30.0	55.0	mA
Turn-On Time																		
$I_f = 50 \text{ mA}; C = 10 \text{pF}$	7																	
P.W = 100us;	Ton	-	3.0	-	10.0	-	8.0	-	3.0	-	3.0	-	8.0	-	5.0	-	3.0	m
$f = 1kHz; R_s = 10M\Omega$																		
Temp. Coefficient	Q	-	-100	-	-80	-	-100	-	-80	-	-80	-	-40	-	-50	-	-40	mV/°C
(Channels in Series)																		
Isolation Voltage	V_{iso}																	
$I_{iso} = 50 \mu A @ 2 sec$			2500								2500 VDC							
Operating Temp.	Top		-50°C To +100°C								-50°C To +80°C							
(Channels in Series)	1																	
Turn-Off Time	$T_{\rm off}$																	
$I_f = 50 \text{ mA}; C = 10 \text{pF}$		The Photovoltaic array stops generating current within one microsecond of the trailing edge																
P.W = 100us;		of LED current the discharge time is solely dependent upon discharge circuitry and capacitive load.																
$f = 1 \text{kHz}; R_s = 10 \text{M}\Omega$																		

Typical Applications


1. Power MOSFET Photovoltaic SPST N/O DC Relays


2. Power MOSFET SPDT Photovoltaic SPST N/O AC-DC Relays:


3. Power MOSFET Photovoltaic SPST N/O Relays With High Speed Turn-Off:


4. Power MOSFET Photovoltaic SPST N/O Relays With Opto-Transitor for High Speed Turn-Off:

5. Open Thermocouple Detector:

6. Isolation Amplifier:

