LM3812/LM3813 Current Gauge IC with Ultra Low Loss Sense Element and PWM Output #### **General Description** The LM3812/LM3813 Current Gauges provide easy to use precision current measurement with virtually zero insertion loss (typically $0.004\Omega).$ The LM3812 is used for high-side sensing and the LM3813 is used for low-side sensing. A Delta Sigma analog to digital converter is incorporated to precisely measure the current and to provide a current averaging function. Current is averaged over 50 msec (precision mode) or 6 msec (fast mode) time periods in order to provide immunity to current spikes. The ICs have a pulse-width modulation (PWM) output which indicates the current magnitude and direction. The shutdown pin can be used to inhibit false triggering during start-up, or to enter a low quiescent current mode. The LM3812 and LM3813 are factory-set in two different current options. The sense range is -1A to +1A or -7A to +7A. The sampling time is also factory-set for a given part. The user specifies a particular part number to match the current range and response time for a given application. #### **Key Specifications** - Ultra low insertion loss (typically 0.004Ω) - 2V to 5.25V supply range - ±2% accuracy at room temperature (LM3812PM-1.0, LM3813PM-1.0) - Low quiescent current in shutdown mode (typically 2.5 µA) #### **Features** - No external sense element required - PWM output indicates the current magnitude and direction - PWM output can be interfaced with microprocessors - lacktriangle Precision $\Delta\Sigma$ current-sense technique - Low temperature sensitivity - Available in two different sampling times with better accuracy in precision mode - Internal filtering rejects false trips - Internal Power-On-Reset (POR) #### **Applications** - Battery charge/discharge gauge - Motion control diagnostics - Power supply load monitoring and management - Resettable smart fuse #### **Connection Diagrams** #### **Ordering Information** | Order No.# | Sense
Range | Sampling
Interval* | Sensing
Method | NS
Package
Number [‡] | Package
Type | Supplied As: | |---------------|----------------|-----------------------|-------------------|--------------------------------------|-----------------|-----------------------------| | LM3812FM-1.0 | ±1A | 6 ms | High-side | M08A | SO-8 | 95 units in Rails | | LM3812FMX-1.0 | ±1A | 6 ms | High-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3812PM-1.0 | ±1A | 50 ms | High-side | M08A | SO-8 | 95 units in Rails | © 1998 National Semiconductor Corporation DS100122 #### Ordering Information (Continued) | | Sense | Sampling | Sensing | NS | Package | Supplied As: | |---------------|-------|-----------|-----------|---------------------|---------|-----------------------------| | Order No.# | Range | Interval* | Method | Package | Туре | | | | | | | Number [‡] | | | | LM3812PMX-1.0 | ±1A | 50 ms | High-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3812FM-7.0 | ±7A | 6 ms | High-side | M08A | SO-8 | 95 units in Rails | | LM3812FMX-7.0 | ±7A | 6 ms | High-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3812PM-7.0 | ±7A | 50 ms | High-side | M08A | SO-8 | 95 units in Rails | | LM3812PMX-7.0 | ±7A | 50 ms | High-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3813FM-1.0 | ±1A | 6 ms | Low-side | M08A | SO-8 | 95 units in Rails | | LM3813FMX-1.0 | ±1A | 6 ms | Low-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3813PM-1.0 | ±1A | 50 ms | Low-side | M08A | SO-8 | 95 units in Rails | | LM3813PMX-1.0 | ±1A | 50 ms | Low-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3813FM-7.0 | ±7A | 6 ms | Low-side | M08A | SO-8 | 95 units in Rails | | LM3813FMX-7.0 | ±7A | 6 ms | Low-side | M08A | SO-8 | 2.5k units on Tape and Reel | | LM3813PM-7.0 | ±7A | 50 ms | Low-side | M08A | SO-8 | 95 units in Rails | | LM3813PMX-7.0 | ±7A | 50 ms | Low-side | M08A | SO-8 | 2.5k units on Tape and Reel | [#] In the order number, the suffix F indicates that the part will operate in Fast Mode, the suffix P indicates that the part will operate in Precision Mode. Suffix M indicates that the part is available in Surface Mount package. Suffix X indicates that the part is available in 2.5k units on Tape and Reel. #### Pin Description (High-Side, LM3812) | Pin | Name | Function | |-----|-------------------------|---| | 1 | SENSE+, V _{DD} | High side of internal current sense, also supply voltage. | | 2 | SENSE- | Low side of internal current sense. | | 3 | FLTR+ | Filter input — provides anti-aliasing for delta sigma modulator. | | 4 | FLTR- | Filter input. | | 5 | SD | Shutdown pin. Connected to V_{DD} through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically 3 μ A). | | 6 | PWM | PWM output indicates the current magnitude and direction. | | 7 | GND | Ground | | 8 | GND | Ground | #### Pin Description (Low-Side, LM3813) | Pin | Name | Function | |-----|-----------------|---| | 1 | SENSE+, GND | High side of internal current sense, also ground. | | 2 | SENSE- | Low side of internal current sense. | | 3 | FLTR+ | Filter input - provides anti-aliasing for delta sigma modulator. | | 4 | FLTR- | Filter input. | | 5 | SD | Shutdown pin. Connected to V_{DD} through a pull up resistor for normal operation. When low, the IC goes into a low current mode (typically 3 μ A). | | 6 | PWM | PWM output indicates the current magnitude and direction. | | 7 | GND | Ground | | 8 | V _{DD} | V _{DD} (supply) | ^{*} Current is sampled over a fixed interval. The average current during this interval is indicated by the duty cycle of the PWM output during next interval. [‡] The Package code M08A is internal to National Semiconductor and indicates an 8-lead surface mount package, SO-8. #### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Absolute Maximum Supply Voltage 5.5V Power Dissipation (Note 2) ESD Susceptibility (Note 3) 1.5 kV Sense Current (peak, for 200 msec) (Note 4) 10A Sink Current for PWM pin 1mA Voltage on Pin 5 5.25V 150°C Maximum Junction Temperature -65°C to +150°C Storage Temperature Lead Temperature (Soldering, 10 sec) 260°C #### **Operating Ratings** (Note 1) Input Voltage 2.0V to 5.25V Sense Current (continuous) (Note 4) -40°C to +125°C Ambient Temperature Range -55°C to $+150^{\circ}\text{C}$ Junction Temperature Range #### **Electrical Characteristics** #### LM3812PM-1.0, LM3812FM-1.0, LM3813PM-1.0, LM3813FM-1.0 $V_{DD} = 5.0V$ for the following specifications. Supply bypass capacitor is $1\mu F$ and filter capacitor is $0.1\mu F$. | Symbol | Parameter | Conditions | Typ
(Note 5) | Limit
(Note 6) | Units | |------------------|------------------------------|--|------------------------|----------------------|---------| | I _{ACC} | Average Current Accuracy | LM3812PM-1.0, LM3813PM-1.0 | 0.9 | | А | | | (Note 7) | (Precision Mode, t _S ≈ 50 msec) | | 0.882 / 0.864 | A (min) | | | | | | 0.918 / 0.936 | A (max) | | | | LM3812FM-1.0, LM3813FM-1.0 | 0.9 | | Α | | | | (Fast Mode, t _S ≈ 6 msec) | | 0.868 / 0.850 | A (min) | | | | | | 0.932 / 0.950 | A (max) | | e _n | Effective Output Noise (rms) | Precision Mode | 2 | | mA | | | | Fast Mode | 12 | | mA | #### LM3812PM-7.0, LM3812FM-7.0, LM3813PM-7.0, LM3813FM-7.0 V_{DD} = 5.0V for the following specifications. Supply bypass capacitor is 1 μ F and filter capacitor is 0.1 μ F. | Symbol | Parameter | Conditions | Typ
(Note 5) | Limit
(Note 6) | Units | |------------------|------------------------------|---|-----------------|----------------------|---------| | I _{ACC} | Average Current Accuracy | LM3812PM-7.0, LM3813PM-7.0 | 2.5 | | Α | | | (Note 7) | (Precision Mode, t _S ≈ 50 msec) | | 2.400 / 2.350 | A (min) | | | | | | 2.600 / 2.650 | A (max) | | | | LM3812FM-7.0, LM3813FM-7.0 | 2.5 | | Α | | | | (Fast Mode, t _S ≈ 6 msec) (Note 8) | | 2.350 / 2.288 | A (min) | | | | | | 2.650 / 2.712 | A (max) | | e _n | Effective Output Noise (rms) | Precision Mode | 20 | | mA | | | | Fast Mode | 120 | | mA | #### **Common Device Parameters** Unless otherwise specified, V_{DD} = 5.0V for the following specifications. Supply bypass capacitor is 1 μ F and filter capacitor is 0.1 μ F. | Symbol | Parameter | Conditions | Typ
(Note 5) | Limit
(Note 6) | Units | |------------------|-------------------|-------------------------|-----------------|-------------------|------------------| | I _{Q1} | Quiescent Current | Normal Mode, SD = high | 100 | | μA | | | | | | 160 | μ A (max) | | I _{Q2} | Quiescent Current | Shutdown Mode, SD = low | 2.5 | | μА | | | | | | 10 | μ A (max) | | D _{RES} | PWM Resolution | Precision Mode | 0.1 | | % | | | | Fast Mode | 0.8 | | % | #### Common Device Parameters (Continued) Unless otherwise specified, V_{DD} = 5.0V for the following specifications. Supply bypass capacitor is $1\mu F$ and filter capacitor is $0.1\mu F$. | Symbol | Parameter | Conditions | Typ
(Note 5) | Limit
(Note 6) | Units | |-----------------|-----------------------------|--|------------------------|-------------------|----------| | ts | Sampling Time | Precision Mode | 52 | | ms | | | | | | 40 | ms (min) | | | | | | 80 | ms (max) | | | | Fast Mode | 6 | | ms | | | | | | 4 | ms (min) | | | | | | 10 | ms (max) | | f _P | Frequency of PWM Waveform | Precision Mode (t _S ≈ 50 msec) | 20 | | Hz | | | | | | 12.5 | Hz (min) | | | | | | 25 | Hz (max) | | | | Fast Mode (t _S ≈ 6 msec) | 160 | | Hz | | | | | | 100 | Hz (min) | | | | | | 250 | Hz (max) | | V _{TH} | Threshold High Level for SD | | 1.2 | | V | | | | | | 1.8 | V (min) | | V _{TL} | Threshold Low Level for SD | | 1.3 | | V | | | | | | 0.7 | V (max) | | V _{OH} | Logic High Level for PWM | Load current = 1mA, 2V ≤ V _{DD} ≤ | V _{DD} - 0.05 | | V | | | | 5.25V | | $V_{DD} - 0.2$ | V (min) | | V_{OL} | Logic Low Level for PWM | Sink current = 1mA, 2V ≤ V _{DD} ≤ | 0.04 | | V | | | | 5.25V | | 0.2 | V (max) | | P _i | Insertion Loss | I _{SENSE} = 1A (Note 9) | 0.004 | | Ω | Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Note 2: At elevated temperatures, devices must be derated based on package thermal resistance. The device in the surface-mount package must be derated at θ_{JA} = 150°C/W (typically), junction-to-ambient. Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. Note 4: The absolute maximum peak and continuous currents specified are not tested. These specifications are dependent on the θ_{JA} , which is 150°C/W for the S08 package. Note 5: Typical numbers are at 25°C and represent the most likely parametric norm. Specifications in standard type face are for T_J= 25°C and those with **boldface** type apply over full operating temperature ranges. Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Quality Level (AOQL). Note 7: There is a variation in accuracy over time due to thermal effects. Please refer to the PWM Output and Current Accuracy section for more information. Note 8: The PWM accuracy for LM3812PM-7.0, LM3812FM-7.0, LM3813PM-7.0, and LM3813FM-7.0 depends on the amount of copper area under pins 1 and 2, and the layout. Please refer to the PWM Output and Current Accuracy section for more information. Note 9: The tolerance of the internal lead frame resistor is corrected internally. The temperature coefficient of this resistor is 2600 ppm/°C. #### Typical Performance Characteristics Supply bypass capacitor is $0.1\mu F$ and filter capacitor is $0.1\mu F$. # Measured Current vs Actual Current (LM3812-1.0 and LM3813-1.0) # Measured Current vs Actual Current (LM3812-7.0 and LM3813-7.0) # PWM Frequency vs Supply Voltage (Precision Mode) PWM Frequency vs Supply Voltage (Fast Mode) ## PWM Frequency vs Temperature (Precision Mode) PWM Frequency vs Temperature (Fast Mode) # Typical Performance Characteristics Supply bypass capacitor is $0.1\mu F$ and filter capacitor is $0.1\mu F$. (Continued) #### Operating Current vs Supply Voltage #### Shutdown Current vs Supply Voltage #### Operating Current vs Temperature #### Shutdown Current vs Temperature #### Current vs Duty Cycle #### Accuracy vs Supply Voltage # **Typical Performance Characteristics** Supply bypass capacitor is $0.1\mu F$ and filter capacitor is $0.1\mu F$. (Continued) Accuracy vs Temperature (LM3812-1.0 and LM3813-1.0) Accuracy vs Temperature (LM3812-7.0 and LM3813-7.0) **Error vs Current (LM3812-1.0 and LM3813-1.0)** (Note 10) **Error vs Current (LM3812-7.0 and LM3813-7.0)** (Note 10) Note 10: These curves are valid for precision and fast mode parts, as they represent a statistical average such that the noise is insignificant. Typical Application Circuits In the application circuits, the $0.1\mu F$ ceramic capacitor between pins 1 and 8 is used for bypassing, and the $0.1\mu F$ ceramic capacitor between pins 3 and 4 is used for filtering. Shutdown (\overline{SD}) is tied to V_{DD} through a $10k\Omega$ resistor. FIGURE 1. High Side Sense **Typical Application Circuits** In the application circuits, the $0.1\mu F$ ceramic capacitor between pins 1 and 8 is used for bypassing, and the $0.1\mu F$ ceramic capacitor between pins 3 and 4 is used for filtering. Shutdown (\overline{SD}) is tied to V_{DD} through a $10k\Omega$ resistor. (Continued) FIGURE 4. High Voltage Operation — $\rm V_{IN}$ Greater Than 5.25V (High Side Sense) (PWM output is referred to Pin 7) FIGURE 5. High Voltage Operation — $\rm V_{IN}$ Greater Than 5.25V (Low Side Sense) #### **Product Operation** The current is sampled by the delta-sigma modulator, as illustrated in $Figure\ 6$. The pulse density output of the delta-sigma modulator is digitally filtered. The digital output is then compared to the output of a digital ramp generator. This produces a PWM output. The duty cycle of the PWM output is proportional to the amount of current flowing. A duty cycle of 50% indicates zero current flow. If the current is flowing in positive direction, the duty cycle will be greater than 50%. Conversely, the duty cycle will be less than 50% for currents flowing in the negative direction. A duty cycle of 95.5% (4.5%) indicates the current is at $I_{\rm MAX}$ ($-I_{\rm MAX}$). The IC can sense currents from $-I_{\rm MAX}$ to $+I_{\rm MAX}$. Options for $I_{\rm MAX}$ are 10A. The sense current is given by: $$I_{SENSE} = 2.2 (D-0.5)(I_{MAX})$$ where D is the duty cycle of the PWM waveform, and I_{MAX} is the full scale current (1A or 10A). Similarly, the duty cycle is given by: $$D = [I_{SENSE}/(2.2 I_{MAX})] + 0.5$$ For quick reference, see the Conversion Tables in *Table 1* and *Table 2*. The user should note that, while the LM3812-7.0/LM3813-7.0 will read 10A full scale, it is rated for 10A operation for a duration of no more than 200 msec, and 7A operation continuously. In this IC, the current is averaged over 50 msec time slots for precision mode and 6 msec time periods for fast mode. Hence, momentary current surges of less than 50 msec or 6 msec for the precision or fast mode respectively are tolerated. This is a sampled data system which requires an anti-aliasing filter, provided by the filter capacitor. The delta-sigma modulator converts the sensed current to the digital domain. This allows digital filtering, and provides immunity to current and noise spikes. This type of filtering would be difficult or impossible to accomplish on an IC with analog components. When ordering, the user has to specify whether the part is being used for low-side or high-side sense. The user also needs to specify the full scale value and speed of response, i.e. precision (50 ms) or fast (6 ms). See the Ordering Information table for details. FIGURE 6. Functional block diagram of LM3812 and LM3813 # PWM Output and Current Accuracy #### Offset The PWM output is quantized to 1024 levels in precision mode (128 levels in fast mode). Therefore, the duty cycle can change only in increments of 1/1024 (or 1/128). There is a one-half (0.5) quantization cycle delay in the output of the PWM circuitry. That is to say that instead of a duty cycle of N/1024 (or N/128), the duty cycle actually is $(N+\frac{1}{2})/1024$ (or $(N+\frac{1}{2})/128$). The quantization error can be corrected for if a more precise result is desired. To correct for this error, simply subtract 1/2048 (or 1/256) from the measured duty cycle. The extra half cycle delay will show up as a DC offset of ½ bit if it is not corrected for. For precision mode parts this is approximately 1.1 mA for 1 Amp parts, and 11 mA for 7 Amp parts. For fast mode parts, an offset of ½ bit is 8 times larger than for precision mode parts, and results in approximately 8.8 mA for a 1 Amp part is 88 mA for a 7 Amp part. #### Jitter In addition to quantization, the duty cycle will contain some jitter. The jitter is quite small (for example, the standard deviation of jitter is only 0.1% for the LM3812/13PM-1.0). Statistically the jitter can cause an error in a current sample. Because the jitter is a random variable, the mean and standard deviation are used. The mean, or average value, of the jitter is zero. The standard deviation (0.1%) can be used to define the peak error caused from jitter. The crest factor has often been used to define the maximum error caused by jitter. The crest factor defines a limit within which 99.7% of the samples fall. The crest factor is defined as $\pm 0.3\%$ error in the duty cycle. Since the jitter is a random variable, averaging multiple outputs will reduce the effective jitter. Obeying statistical laws, the jitter is reduced by the square root of the number of readings that are averaged. For example, if four readings of the duty cycle are averaged, the resulting jitter (and crest factor) are reduced by a factor of two. #### Jitter and Noise Jitter in the PWM output appears as noise in the current measurement. The Electrical Characteristics show noise measured in current RMS (root mean square). Arbitrarily one could specify PWM jitter, as opposed to noise. In either case the effect results in a random error in an individual current measurement. Noise, just like jitter, can be reduced by averaging many readings. The RMS value of the noise corresponds to one standard deviation. The crest factor can be calculated in terms of current, and is equal to ± 3 sigma (RMS value of the noise). Noise will also be reduced by averaging multiple readings, and follows the statistical laws of a random variable. #### Accuracy of 7A Versions The graph of Figure 7 shows two possible responses to a 7A current step. The flat response shows basically a 7A level with some noise. This is what is possible with a good thick trace and a good thermal connection to the IC on the sense pins. The second trace that asymptotically approaches a higher value shows what can happen under extremely poor thermal conditions. Here a very small wire connects the IC to the current source. The very small wire does not allow heat in the sense resistor to dissipate. Hence, as the sense resistor heats up, a temperature difference between the sense element and the die gets larger, and an error develops. Eventually the temperature difference reaches steady state, which accounts for the under-damped exponential response. FIGURE 7. Transient Response to 7 Amp Step Current #### Difference Between Precision Mode and Fast Mode The graphs shown in Figure 8 and Figure 9 illustrate the typical response of ± 1 Ampere current gauges operating in fast mode and precision mode respectively. In these graphs, the horizontal axis indicates time, and the vertical axis indicates measured current (the PWM duty cycle has been converted to current). The graphs were generated for an actual current of 500 mA. The main difference between the two modes of operation is the variation in successive readings. On comparing these graphs, it can be observed that the difference between successive readings is greater in fast mode. The difference between successive readings manifests itself as jitter in the PWM output or noise in the current measurement (when duty cycle of the PWM output is converted to current). The accuracy of the measurement depends on the noise in the current waveform. The accuracy can be improved by averaging several outputs. Although the variations in successive readings is more in fast mode, a very accurate measurement can be obtained by averaging the readings. For example, on averaging the readings shown in this example, the average current measurement is 497.5 mA for fast mode operation (*Figure 8*), and 502.3 mA for precision mode operation (*Figure 9*). These values are very close to the actual value of 500 mA. Moreover, the accuracy depends on the number of readings that are averaged. ### **PWM Output and Current Accuracy** (Continued) 530 520 SENSE (my) 500 490 480 40 0 80 120 160 200 Time (ms) DS100122-25 FIGURE 8. Typical Response of LM3812FM-1.0/LM3813FM-1.0 (Fast Mode Operation) 530 520 SENSE (mA) 500 490 510 FIGURE 9. Typical Response of LM3812PM-1.0/LM3813PM-1.0 (Precision Mode Operation) 200 400 600 800 1000 1200 1400 Time (ms) #### **Look-Up Tables** 480 470 The following tables show how to convert the duty cycle of the PWM output to a current value, and vice versa. The quantization error of ½ bit is not shown in these tables. Please see the PWM Output and Current Accuracy section for more details. ## Look-Up Tables (Continued) TABLE 1. Current to Duty Cycle Conversion Table | Sense Current | Duty Cycle | Sense Current | Duty Cycle | |---------------|------------|---------------|------------| | (Amps)* | (%) | (Amps)* | (%) | | 1.00 | 95.5 | -1.00 | 4.5 | | 0.95 | 93.2 | -0.95 | 6.8 | | 0.90 | 90.9 | -0.90 | 9.1 | | 0.85 | 88.6 | -0.85 | 11.4 | | 0.80 | 86.4 | -0.80 | 13.6 | | 0.75 | 84.1 | -0.75 | 15.9 | | 0.70 | 81.8 | -0.70 | 18.2 | | 0.65 | 79.5 | -0.65 | 20.5 | | 0.60 | 77.3 | -0.60 | 22.7 | | 0.55 | 75.0 | -0.55 | 25.0 | | 0.50 | 72.7 | -0.50 | 27.3 | | 0.45 | 70.5 | -0.45 | 29.5 | | 0.40 | 68.2 | -0.40 | 31.8 | | 0.35 | 65.9 | -0.35 | 34.1 | | 0.30 | 63.6 | -0.30 | 36.4 | | 0.25 | 61.4 | -0.25 | 38.6 | | 0.20 | 59.1 | -0.20 | 40.9 | | 0.15 | 56.8 | -0.15 | 43.2 | | 0.10 | 54.5 | -0.10 | 45.5 | | 0.05 | 52.3 | -0.05 | 47.7 | | 0.00 | 50.0 | -0.00 | 50.0 | ^{*}Maximum Sense Current = 1.0 Amps for LM3812PM-1.0, LM3812FM-1.0, LM3813PM-1.0, and LM3813FM-1.0. The sense current should be multiplied by 10 for LM3812PM-7.0, LM3812FM-7.0, LM3813PM-7.0 and LM3813FM-7.0. TABLE 2. Duty Cycle to Current Conversion Table | Duty Cycle | Sense Current | Duty Cycle | Sense Current | |------------|---------------|------------|---------------| | (%) | (Amps) | (%) | (Amps) | | 95.5 | 0.990 | 50.0 | -0.000 | | 92.5 | 0.935 | 47.5 | -0.055 | | 90.0 | 0.880 | 45.0 | -0.110 | | 87.5 | 0.825 | 42.5 | -0.165 | | 85.0 | 0.770 | 40.0 | -0.220 | | 82.5 | 0.715 | 37.5 | -0.275 | | 80.0 | 0.660 | 35.0 | -0.330 | | 77.5 | 0.605 | 32.5 | -0.385 | | 75.0 | 0.550 | 30.0 | -0.440 | | 72.5 | 0.495 | 27.5 | -0.495 | | 70.0 | 0.440 | 25.0 | -0.550 | | 67.5 | 0.385 | 22.5 | -0.605 | | 65.0 | 0.330 | 20.0 | -0.660 | | 62.5 | 0.275 | 17.5 | -0.715 | | 60.0 | 0.220 | 15.0 | -0.770 | | 57.5 | 0.165 | 12.5 | -0.825 | | 55.0 | 0.110 | 10.0 | -0.880 | | 52.5 | 0.055 | 7.5 | -0.935 | | 50.0 | 0.000 | 5.0 | -0.990 | ^{*}Maximum Sense Current = 1.0 Amps for LM3812PM-1.0, LM3812FM-1.0, LM3813PM-1.0, and LM3813FM-1.0. The sense current should be multiplied by 10 for LM3812PM-7.0, LM3812FM-7.0, LM3813PM-7.0 and LM3813FM-7.0. t = 1.2 for fast mode and t = 10 for precision mode. Duty cycle of the PWM waveform during any sampling interval indicates the current magnitude (average) and direction during the previous sampling interval. FIGURE 10. Typical Timing Diagram for Mostly Positive Current #### Physical Dimensions inches (millimeters) unless otherwise noted 8-lead (0.150" Wide) Molded Small Outline Package See Ordering Information table for Order Numbers NS Package Number M08A #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 60 60 Email: europe support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications