March 1996

DM74AS646/DM74AS648 Octal Bus Transceiver and Register

General Description

This device incorporates an octal bus transceiver and an octal D-type register configured to enable multiplexed transmission of data from bus to bus or internal register to bus.

This bus transceiver features totem-pole TRI-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide this device with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. It is particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The registers in the AS646, 648 are edge-triggered D-type flip-flops. On the positive transition of the clock (CAB or CBA), the input bus data is stored.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A low input level selects real-time data, and a high level selects stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between stored and real-time data.

The enable \overline{G} and direction control pins provide four modes of operation; real-time data transfer from bus A to B, real-time data transfer from bus B to A, real-time bus A and/or B data transfer to internal storage, or internal store data transfer to bus A or B.

When the enable \overline{G} pin is low, the direction pin selects which bus receives data. When the enable \overline{G} pin is high, both buses become disabled yet their input function is still enabled.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin-for-pin compatible with LS TTL counterpart
- TRI-STATE® buffer-type outputs drive bus lines directly

Connection Diagram Dual-In-Line Package B2 G ВЗ B1 VCC CBA SBA 87 19 13 **8 TRANSCEIVERS** CONTROL LOGIC 12 10 GND CAB SAB DIR A8 TL/F/6324-1 Order Number DM74AS646NT, DM74AS646WM, DM74AS648NT or DM74AS648WM See NS Package Number M24B or N24C TRI-STATE® is a registered trademark of National Semiconductor Corporation

©1996 National Semiconductor Corporation

TL/F/632

RRD-B30M36/Printed in U. S. A.

Absolute Maximum Ratings

N Package

M Package 81.5°C/W

Note: This product meets application requirements of 500 temperature cycles from -65°C to +150°C.

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	I	Units			
	L	Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
Гон	High Level Output Current				-15	mA
l _{OL}	Low Level Output Current				48	mA
fCLK	Clock Frequency		0		90	MHz
tw	Width of Clock Pulse	High	5			ns
	<u> </u>	Low	6			ns
tsu	Data Setup Time		6↑			ns
t _H	Data Hold Time		0↑			ns
TA	Free Air Operating Tempera	ature	0		70	°C

41.1°C/W

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

nput Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max	$V_{CC} = 4.5V, I_{CC} = 4.5V, V_{IH} = Min$ $V_{CC} = 4.5V t_{CC} = 4.5V t_{CC} = 4.5V, V_{IH} = 2V, I_{CC} = 4.5V, V_{CC} =$	V _{IL} = Max 0 5.5V, I _{OH} = V _{IL} = Min	$I_{OH} = Max$ $I_{OH} = -3 \text{ mA}$ -2 mA	2 2.4 V _{CC} – 2	3.2	-1.2	v	
ow Level Output oltage nput Current @ Max	$V_{IH} = Min$ $V_{CC} = 4.5V to$ $V_{CC} = 4.5V, V_{IH} = 2V, I_{OL}$	5.5V, I _{OH} =	I _{OH} = -3 mA	2.4	3.2		٧	
Low Level Output Voltage nput Current @ Max	$V_{CC} = 4.5V \text{ to}$ $V_{CC} = 4.5V, V_{IH} = 2V, I_{OL}$	/ _{IL} = Min			3.2		٧	
Voltage nput Current @ Max	V _{CC} = 4.5V, V _{IH} = 2V, I _{OL}	/ _{IL} = Min	−2 mA	V _{CC} - 2			ļ	
Voltage nput Current @ Max	$V_{IH} = 2V, I_{OL}$	-					4 .	
	Vac = 5.5V				0.35	0.5	٧	
nout Voltage	ACC — 0:0A	$V_I = 7V$	Control Inputs			0.1	mA	
Input Voltage		$V_{I} = 5.5V$	A or B Ports			0.1	mA	
High Level Input Current	V _{CC} = 5.5V, V _{IH} = 2.7V (Note 1)		Control Inputs			20	μΑ	
			A or B Ports			70		
ow Level Input Current	V _{CC} = 5.5V, V _{IL} = 0.4V (Note 1)		Control Inputs			-0.5	mA	
			A or B Ports			-0.75	<u> </u>	
Output Drive Current	$V_{CC} = 5.5V, V$	/ _O = 2.25V		-30		-112	mA	
Supply Current	$V_{\rm CC} = 5.5 V$	Ì	Outputs High		120	195		
		'AS646	Outputs Low		130	211	mA	
			Outputs Disabled		130	211		
		'AS648	Outputs High		110	185	ША	
			Outputs Low		120	195	i	
	-		Outputs Disabled		120	195	ı	
2 30	igh Level Input Current DW Level Input Current utput Drive Current upply Current	igh Level Input Current $V_{CC} = 5.5V$, $V_{CC} = 5.5V$	igh Level Input Current $V_{CC} = 5.5V$, $V_{IH} = 2.7V$ (Note 1) by Level Input Current $V_{CC} = 5.5V$, $V_{IL} = 0.4V$ (Note 1) utput Drive Current $V_{CC} = 5.5V$, $V_{O} = 2.25V$ upply Current $V_{CC} = 5.5V$, $V_{O} = 2.25V$ 'AS646	V _{CC} = 5.5V, V _{IH} = 2.7V Control Inputs	V = 3.5V	V _{CC} = 5.5V, V _{IH} = 2.7V Control Inputs	V _{CC} = 5.5V, V _{IH} = 2.7V	

http://www.national.com

2

The (↑) arrow indicates the positive edge of the Clock is used for reference.

Symbol	Parameter	Conditions	From	То	DM74AS646		Units
			(Input)	(Output)	Min	Max	Jints
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V,$ $R_1 = R_2 = 500\Omega$			90		MHz
^t PLH	Propagation Delay Time Low to High Level Output	C _L = 50 pF	CBA or		2	8.5	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		CAB	A or B	2	9	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		Accept	D 4	2	9	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		A or B	B or A	1	7	ns
^t PLH	Propagation Delay Time Low to High Level Output		SBA or SAB (Note 2)		2	11	ns
t _{PHL}	Propagation Delay Time High to Low Level Output			A or B	2	9	ns
^t PZH	Output Enable Time to High Level Output				2	9	ns
^t PZL	Output Enable Time to Low Level Output		Enable		3	14	ns
^t PHZ	Output Disable Time from High Level Output		ভ	AorB	2	9	ns
^t PLZ	Output Disable Time from Low Level Output				2	9	ns
^t PZH	Output Enable Time to High Level Output				3	16	ns
^t PZL	Output Enable Time to Low Level Output		DID		3	18	ns
t _{PHZ}	Output Disable Time from High Level Output		DIR	A or B	2	10	ns
^t PLZ	Output Disable Time from Low Level Output				2	10	ns

Note 1: See Section 5 for test waveforms and output load.

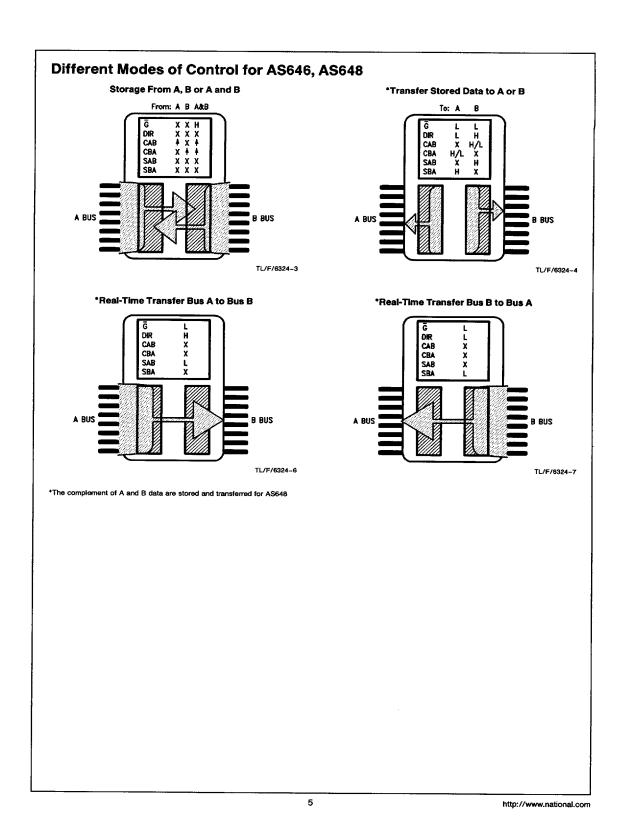
Note 2: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

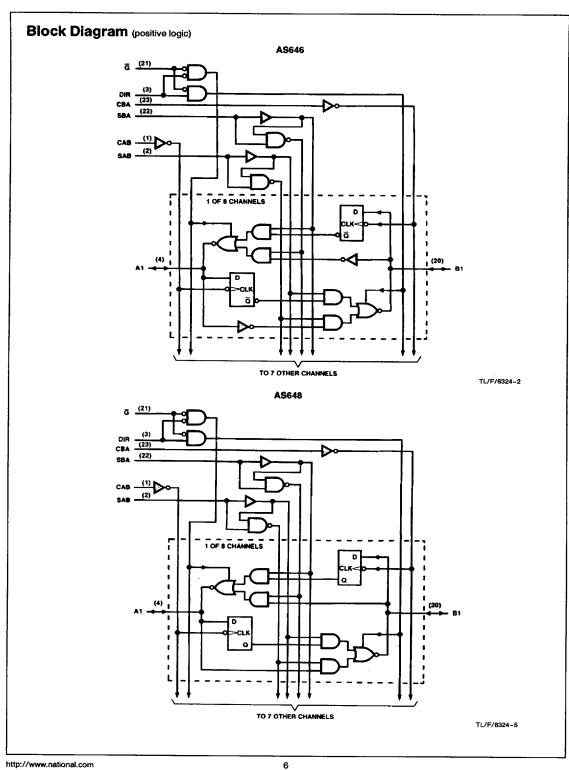
Symbol	Parameter	Conditions	From	То	DM74	Units	
	r a director	Conditions	(Input)	(Output)	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V,$ $R_1 = R_2 = 500\Omega$			90		MHz
^t PLH	Propagation Delay Time Low to High Level Output	C _L = 50 pF (Note 1)	CAB or CBA	A or B	2	8.5	ns
t _{PHL}	Propagation Delay Time High to Low Level Output				2	9	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		A or B	B or A	2	8	ns
t _{PHL}	Propagation Delay Time High to Low Level Output				1	7	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		SBA or SAB (Note 2)	A or B	2	11	ns
t _{PHL}	Propagation Delay Time High to Low Level Output				2	9	ns
^t PZH	Output Enable Time to High Level Output				2	9	ns
t _{PZL}	Output Enable Time to Low Level Output		Enable G	A or B	3	15	ns
t _{PHZ}	Output Disable Time from High Level Output			AUID	2	9	ns
^t PLZ	Output Disable Time from Low Level Output				2	9	ns
^t PZH	Output Enable Time to High Level Output				3	16	ns
t _{PZL}	Output Enable Time to Low Level Output		DIR	A or B	3	18	ns
[†] PHZ	Output Disable Time from High Level Output		Din	AUID	2	10	ns
t _{PLZ}	Output Disable Time from Low Level Output				2	10	ns

Note 1: See Section 5 for test waveforms and output load.

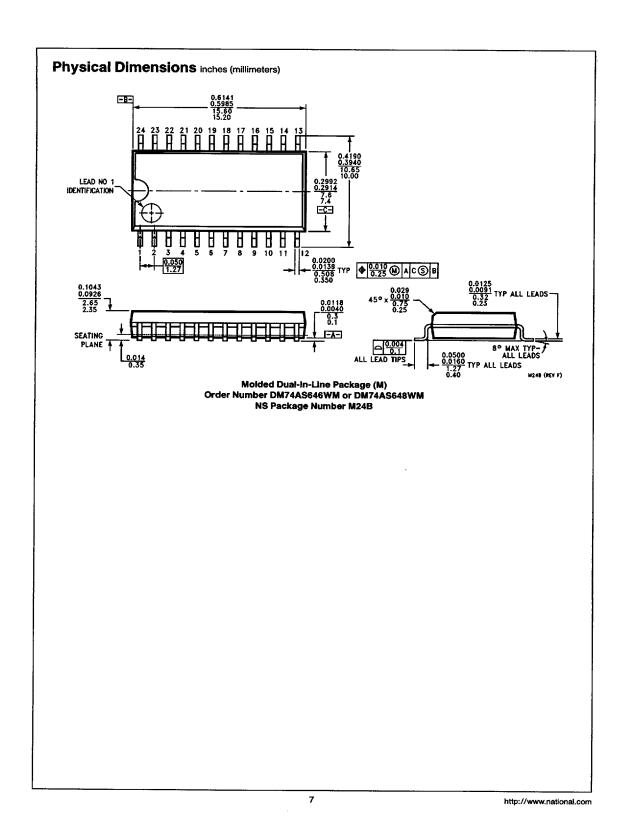
Note 2: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

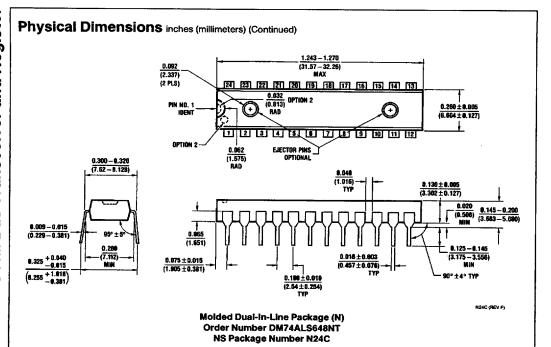
Function Table


	Inputs					Data	1/0*	Operation or Function		
G	DIR	CAB	СВА	SAB	SBA	A1 thru A8	B1 thru B8	'AS646	'AS648	
н	X X	H or L ↑	H or L ↑	X X	X X	Input	Input	Isolation, Hold Storage Store A and B Data	Isolation, Hold Storage Store A and B Data	
L		X X	X HorL	×	L H	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus	Real Time B Data to A Bus Stored B Data to A Bus	
L	ıπ	X Hor L	X X	ıπ	X X	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus	Real Time A Data to B Bus Stored A Data to B Bus	
X X	X X	↑ X	X ↑	X X	X X	Input Unspecified*	Unspecified* Input	Store A, B Unspecified* Store B, A Unspecified*	Store A, B Unspecified* Store B, A Unspecified*	


H-high level; L-low level; X-irrelevant; 1 -low-to-high level transition

http://www.national.com


4


^{*}The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

6

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor

Europe
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 180-530 85 85
English Tel: +49 (0) 180-532 83 25
Français Tel: +49 (0) 180-532 93 58
Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton I Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semio Japan Ltd. Tel: 81-04 Tel: 81-043-299-2308 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and sp