Index of /ds/93/

9300.pdf	25-Aug-97	15:14	155K
9301.pdf	25-Aug-97	15:14	112K
9308.pdf	25-Aug-97	15:14	121K
9309.pdf	25-Aug-97	15:14	115K
9314.pdf	25-Aug-97	15:14	123K
9316.pdf	25-Aug-97	15:14	164 K
9321.pdf	25-Aug-97	15:15	124 K
9322.pdf	25-Aug-97	15:15	118K
9324.pdf	28-Mar-98	00:00	149K
9328.pdf	28-Mar-98	00:00	155K
9334.pdf	01-Apr-98	00:00	184K
9338.pdf	25-Aug-97	15:16	136 K
9348.pdf	25-Aug-97	15:16	91K
93L00.pdf	25-Aug-97	15:16	113K
93L01.pdf	25-Aug-97	15:16	98 K
93L08.pdf	25-Aug-97	15:16	99K
93L09.pdf	25-Aug-97	15:16	91K
93L10.pdf	25-Aug-97	15:16	147 K
93L12.pdf	25-Aug-97	15:17	104 K
93L14.pdf	25-Aug-97	15:17	106 K
93L16.pdf	25-Aug-97	15:17	147 K
93L21.pdf	25-Aug-97	15:17	105K
93L22.pdf	25-Aug-97	15:17	95K

[^0][ì93L28.pdf 16-Jul-98 00:00 100K

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
5.5 V

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Free Air Temperature Range Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.48			-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current				9.6			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 5)		0		30	0		30	MHz
${ }^{\text {tw }}$	Pulse Width (Note 5)	Clock	17			16	11		ns
		Clear	25			30	15		
tsu	Setup Time (Note 5)	S/L	36			30	13		ns
		Data	18			20	13		
		Clear	36			30	13		
t_{H}	Data Hold Time (Note 5)		0			0	-11		ns
$t_{\text {REL }}$	S/L Release Time (Notes 1 and 5)		10			10			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \hline \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{aligned}$	Input			40	$\mu \mathrm{A}$
			CP Input			80	
			$\overline{\text { PE Input }}$			92	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Input			-1.6	mA
			CP Input			-3.2	
			$\overline{\text { PE Input }}$			-3.7	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	MIL	-20		-80	mA
			COM	-18		-55	
I_{CC}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 4) } \end{aligned}$	MIL			86	mA
			COM			92	

Note 1: RELEASE TIME: tRELEASE is defined as the maximum time allowed for the logic level to be present at the logic input prior to the clock transition from low to high in order for the flip-flop(s) not to respond.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, SHIFT/LOAD grounded, and 4.5 V applied to J, K, and data inputs, ICC is measured by applying momentary ground, then 4.5 V to CLEAR, and then to CLOCK.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	Military		Commercial		Units
			$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		30		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		20		22	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		24		26	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		37		30	ns

Schematic Diagram

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

General Description

These BCD-to-decimal decoders consist of eight inverters and ten 4 -input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain "OFF" for all invalid input conditions.
These circuits provide familiar TTL inputs and outputs which are compatible for use with other TTL and DTL circuits. DC noise margins are typically 1 V and power dissipation is typically 125 mW . The diode-clamped, buffered inputs represent only one normalized Series 54/74 load.

Features

- Direct replacement for Signetics 8252
- Diode-clamped inputs
- All outputs are high for invalid BCD input conditions
- Typical power dissipation 125 mW
- Typical propagation delay 20 ns

No.	BCD Inputs				Decimal Outputs									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
I	H	L	H	L	H	H	H	H	H	H	H	H	H	H
N	H	L	H	H	H	H	H	H	H	H	H	H	H	H
V	H	H	L	L	H	H	H	H	H	H	H	H	H	H
A	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	H	H	H
I	H	H	H	H	H	H	H	H	H	H	H	H	H	H
D														

TL/F/6601-1
Order Number 9301DMQB, 9301FMQB or DM9301N See NS Package Number J16A, N16E or W16A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
5.5 V

Operating Free Air Temperature Range
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range
Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	MIL	-20		-70	mA
			COM	-20		-55	
Icc	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	MIL			44	mA
			COM		25	41	

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Military		Commercial		Units
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		35		30	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			30		30	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with the outputs open and all inputs grounded.

Logic Diagram

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {s }}(\mathrm{H})$	Setup Time HIGH, D_{n} to \bar{E}_{n}	6			10			ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{H})$	Hold Time HIGH, D_{n} to \bar{E}_{n}	4			-2.0			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time LOW, D_{n} to \bar{E}_{n}	10			12			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, D_{n} to \bar{E}_{n}	4			8			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	\bar{E}_{n} Pulse Width LOW	18			18			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR }}$ Pulse Width LOW	18			18			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}}_{\mathrm{n}}$	10			8			ns

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	MIL	-20		-70	mA
			COM	-20		-57	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)				100	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open and all inputs grounded.

Functional Description

Data can be entered into the latch when both of the enable inputs are LOW. As long as this logic condition exists, the output of the latch will follow the input. If either of the enable inputs goes HIGH, the data present in the latch at that time is held in the latch and is no longer affected by data input. The master reset overrides all other input conditions and forces the outputs of all the latches LOW when a LOW signal is applied to the Master Reset input

Truth Table

$\overline{\mathbf{M R}}$		$\overline{\text { E }}$	$\overline{\text { E }} \mathbf{1}$	D	Qn
Operation					
H	L	L	L	L	Data Entry
H	L	L	H	H	Data Entry
H	L	H	X	Qn-1	Hold
H	H	L	X	Qn-1	Hold
H	H	H	X	Qn-1	Hold
L	X	X	X	L	Reset

$Q_{n-1}=$ Previous Output State
$Q_{n}=$ Present Output State
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Leve
$\mathrm{X}=$ Immaterial

Logic Diagram

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 5 for test waveforms and output load.)

Symbol	Parameter	9308		Units
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		
		Min	Max	
$t_{\text {PLH }}$ tpHL	Propagation Delay En to Qn		$\begin{aligned} & 30 \\ & 22 \end{aligned}$	ns
$t_{\text {PLH }}$ tpHL	Propagation Delay Dn to Qn		$\begin{aligned} & 15 \\ & 18 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Qn		22	ns

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH^{\prime}	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	MIL	-20		-70	mA
			COM	-30		-85	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			27	44	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $I_{C C}$ is measured with the outputs open and all inputs at 4.5 V .

Symbol	Parameter	From (Input) To (Output)	Military		Commercial		Units
			$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$				
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		29		40	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		27		36	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Select to \bar{Y}		21		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to \bar{Y}		21		29	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		20		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		21		34	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to \bar{Y}		12		21	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data $\text { to } \bar{Y}$		13		13	ns

Logic Diagram

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW D_{n} to \bar{E}	$\begin{array}{r} 5.0 \\ 18 \\ \hline \end{array}$			$\begin{array}{r} 5.0 \\ 18 \\ \hline \end{array}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to \bar{E}	$\begin{gathered} 0 \\ 5.0 \\ \hline \end{gathered}$			$\begin{gathered} 0 \\ 5.0 \\ \hline \end{gathered}$			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time HIGH, D_{n} to $\overline{\mathrm{S}}_{\mathrm{n}}$	8.0			8.0			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, D_{n} to \bar{S}_{n}	8.0			8.0			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	E Pulse Width LOW	18			18			ns
$t_{w}(L)$	$\overline{M R}$ Pulse Width LOW	18			18			ns
$t_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}}$	0			0			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
		Data Inputs				60	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
		Data Inputs				-2.7	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	MIL	-20		-70	mA
			COM	-20		-70	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				55	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time.							

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)				
Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Q_{n}		$\begin{array}{r} 24 \\ 24 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } Q_{n}$		$\begin{array}{r} 12 \\ 24 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{n}		18	ns
$t_{\text {PHL }}$	Propagation Delay \bar{S}_{n} to Q_{n}		24	ns

Functional Description

The '9314 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the \bar{S}_{n} and D_{n} inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes:
D-TYPE LATCH—For D-type operation the $\overline{\mathrm{S}}$ input of a latch is held LOW. While the common Enable is active the latch output follows the D input. Information present at the latch output is stored in the latch when the Enable goes HIGH.
SET/RESET LATCH—During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the D input, and can be set by a LOW on the S input if the D input is HIGH. If both \bar{S} and D inputs are LOW, the D input will dominate and the latch will be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table.

Truth Table

$\overline{\mathbf{M R}}$	$\overline{\mathbf{E}}$	\mathbf{D}	$\overline{\mathbf{S}}$	$\mathbf{Q}_{\mathbf{n}}$	Operation
H	L	L	L	L	D Mode
H	L	H	L	H	
H	H	X	X	$Q_{\mathrm{n}-1}$	
H	L	L	L	L	R/S Mode
H	L	H	L	H	
H	L	L	H	L	
H	L	H	H	Q_{n-1}	
H	H	X	X	Q_{n-1}	
L	X	X	X	L	Reset

$\mathrm{H}=\mathrm{HIGH}$ Voltage Leve
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
$Q_{n-1}=$ Previous Output State
$\mathrm{Q}_{\mathrm{n}}=$ Present Output State

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

9316/DM9316 Synchronous 4-Bit Counters

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 9316 is a 4-bit binary counter. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enables inputs and internal gating. This mode of operating eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the load input are perfectly acceptable regardless of the logic levels on the clock or enable inputs. The clear function is asynchronous and a low level at the clear input sets of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs (P and T) must be high to count, and input T is fed-forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur regardless of the logic level in the clock.

Features

- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical clock frequency 35 MHz
- Pin-for-pin replacements popular 54/74 counters 5416A/7416A (binary)
- Alternate Military/Aerospace device (9316) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Operating Free Air Temperature Range

Military
Commercial
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 6)		0		25	0		25	MHz
tw	Pulse Width (Note 6)	Clock	25			25			ns
		Clear	20			20			
tsu	Setup Time (Note 6)	Data	20			20			ns
		Enable P	20			20			
		Load	25			25			
		Clear	20			20			
t_{H}	Any Hold Time (Notes 1 \& 6)		0			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \hline \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{aligned}$	Clock			80	$\mu \mathrm{A}$
			Enable T			80	
			Other			40	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	Clock			-3.2	$\mu \mathrm{A}$
			Enable T			-3.2	
			Other			-1.6	
Ios	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	MIL	-20		-57	mA
			COM	-18		-57	
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{c c}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$	MIL		59	85	mA
			COM		59	94	
$I_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \text { (Note 5) } \end{aligned}$	MIL		63	91	mA
			COM		63	101	

Note 1: The minimum HOLD time is as specified or as long as the CLOCK input takes to rise from 0.8 V to 2 V , whichever is longer.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: $\mathrm{I}_{\mathrm{CCH}}$ is measured with the LOAD input high, then again with the LOAD input low, with all other inputs high and all outputs open.
Note 5: I_{CL} is measured with the CLOCK input high, then again with the CLOCK input low, with all other inputs low and all outputs open.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

- $\mathrm{T}_{\mathrm{A}}=2 \mathrm{l}^{2}$

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		MHz
${ }_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock $\text { to } R C$		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clock } \\ & \text { to RC } \end{aligned}$		24	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clock } \\ & \text { to } Q \end{aligned}$		20	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q		23	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clock } \\ & \text { to } \mathrm{Q} \\ & \hline \end{aligned}$		21	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q		25	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { ENT } \\ & \text { to RC } \end{aligned}$		15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { ENT } \\ & \text { to RC } \end{aligned}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to Q } \end{aligned}$		36	ns

Timing Diagram

Sequence:
(1) Clear outputs to zero.
(2) Preset to binary twelve.
(3) Count to thirteen, fourteen, fifteen, zero, one, and two.
(4) Inhibit

Parameter Measurement Information

TL/F/6606-4
Note A: The input pulses are supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\text {MAX }}$.
Note B: Outputs Q_{D} and carry are tested at $t_{n}+16$ for $9316 / 8316$, where t_{n} is the bit time when all outputs are low.
Note C: $\mathrm{V}_{\text {REF }}=1.5 \mathrm{~V}$.

Parameter Measurement Information (Continued)

Note A: The input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Note B: Enable P and Enable T setup times are measured at $t_{n}+{ }_{16}$ for 8316/9316.
Note C: $\mathrm{V}_{\mathrm{REF}}=1.5 \mathrm{~V}$.

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W) Order Number 9316FMQB or DM9316W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
5.5 V

Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	MIL	-20		-70	mA
			COM	-1.3		-3.7	
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}($ Note 3)				50	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, An to $\bar{O} n$		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}} \mathrm{n}$		$\begin{array}{r} 14 \\ 18 \\ \hline \end{array}$	ns

Functional Description

The 9321 consists of two separate decoders each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs as shown in the logic symbol. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.

Logic Diagram

Truth Table (Each Decoder)

Inputs			Outputs			
E	A0	A1	$\overline{\mathbf{O}}$	$\overline{\mathbf{O} 1}$	$\overline{\mathbf{O} 2}$	$\overline{\mathbf{O}} \mathbf{3}$
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L
H	X	X	H	H	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

9321/DM9321 Dual 1-of-4 Decoder
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {I }}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	MIL	-20		-55	mA
			COM	-18		-55	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			30	48	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)					
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		14	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		14	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		20	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		21	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		23	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		27	ns

Logic Diagram

Physical Dimensions inches (millimeters) (Continued)

detail A

16-Lead Ceramic Flat Package (W) Order Number 9322FMQB or DM9322W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD
 SEMICONDUCTOR ${ }_{\text {im }}$
 9324/DM9324
 5-Bit Comparator

General Description

The 9324 expandable comparators provide comparison beable Input forces all three outputs LOW
tween two 5 -bit words and give three outputs-"less than",

Connection Diagram

Dual-In-Line Package

Order Number 9324DMQB, 9324FMQB, or DM9324N
See Package Number J16A, N16E or W16A

Pin Names	Description
\bar{E}	Enable Input (Active LOW)
A0-A4	Word A Parallel Inputs
B0-B4	Word B Parallel Inputs
A $<$ B	A Less than B Output (Active HIGH)
A $>$ B	A Greater than B Output (Active HIGH)
A $=$ B	A Equal to B Output (Active HIGH)

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

Military
Commercial
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.8			-0.8	mA
I_{OL}	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-3.2	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	MIL	-20		-70	mA
	Output Current		COM	-20		-70	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max				81	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		14	ns
$\mathrm{t}_{\text {PHL }}$	\bar{E} to $A=B$		14	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		25	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to A > B		22	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		26	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to A < B		21	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		30	ns
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to $A=B$		32	

Functional Description

The '24 5-bit comparators use combinational circuitry to directly generate "A greater than B" and "A less than B" outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals B" output is generated in one additional gate delay by decoding the " A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable Input ($\overline{\mathrm{E}}$).

Truth Table

Inputs		Outputs			
$\overline{\mathbf{E}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$	$\mathbf{A}<\mathbf{B}$	$\mathbf{A}>\mathbf{B}$	$\mathbf{A}=\mathbf{B}$
H	X	X	L	L	L
L	Word A $=$ Word B	L	L	H	
L	Word A > Word B	L	H	L	
L	Word B > Word A	H	L	L	

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 6$

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number 9324DMQB
Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Europe Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specification

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

Military
Commercial
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width with CP HIGH	30			30			ns
t_{w} (L)	$\overline{\mathrm{MR}}$ Pulse Width with CP LOW	40			40			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	33			33			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over Recommended Operating Free Air Temperature Range (Unless Otherwise Noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=2.4 \mathrm{~V} \\ & \mathrm{MR}, \mathrm{D}_{\mathrm{n}} \text { Inputs } \end{aligned}$			40	$\mu \mathrm{A}$
		CP Inputs			60	
		S Inputs			80	
		CP (COM) Inputs			120	
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$ $\overline{\mathrm{MR}}, \mathrm{D}_{\mathrm{n}}$ Inputs			-1.6	mA
		CP Inputs			-2.4	
		S Inputs			-3.2	
		CP (COM) Input			-4.8	

Electrical Characteristics

Over Recommended Operating Free Air Temperature Range (Unless Otherwise Noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
los	Short Circuit	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	MIL	-20		-70	mA
	Output Current	(Note 3)	COMM	-20		-70	
I_{cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max				77	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Right Frequency	20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		20	ns
$\mathrm{t}_{\text {PHL }}$	CP to Q7 or $\overline{\text { Q }}$		35	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q7		50	ns

Functional Description

The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register
has a 2-input multiplexer in front of the serial data input. The two data inputs D0 and D1 are controlled by the data select input (S) following the Boolean expression:
Serial data in: $\mathrm{S}_{\mathrm{D}}=$ SD0 + SD1
An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.

Shift Select Table

INPUTS			OUTPUT
S	D0	D1	Q7 $\left(\mathrm{t}_{\mathrm{n}}+8\right)$
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{n}+8=$ indicates state after eight clock pulse

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number 9328DMQB
Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detail a

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Fairchild Semiconductor | Fairchild Semiconductor | | Fairchild Semiconductor |
| :--- | :--- | :--- | :--- |\quad| National Semiconductor |
| :--- |
| Corporation |

FAIROHILD
 รЕMICロNロபСTロR ${ }_{\text {тм }}$
 9334／DM9334 8－Bit Addressable Latch

General Description

The DM9334 is a high speed 8－bit Addressable Latch de－ signed for general purpose storage applications in digital systems．It is a multifunctional device capable of storing single line data in eight addressable latches，and being a one－of－eight decoder and demultiplexer with active level high outputs．The device also incorporates an active level low common clear for resetting all latches，as well as an active level low enable．
The DM9334 has four modes of operation which are shown in the mode selection table．In the addressable latch mode， data on the data line（D）is written into the addressed latch． The addressed latch will follow the data input with all non－addressed latches remaining in their previous states．In the memory mode，all latches remain in their previous state and are unaffected by the data or address inputs．
In the one－of－eight decoding or demultiplexing mode，the ad－ dressed output will follow the state of the D input with all other inputs in the low state．In the clear mode all outputs are low and unaffected by the address and data inputs．

Connection Diagram

Dual－In－Line Package

Order Number 9334DMQB，9334FMQB，DM9334J or DM9334N See Package Number J16A，N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

Military
Commercial
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
0° to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
I_{OH}	High Level Output Current				-0.8			-0.8	mA
${ }^{\text {IOL }}$	Low Level Output Current				16			16	mA
t_{w}	ENABLE Pulse Width (Figure 1) (Note 5)		19	13		19	13		ns
t_{su}	Setup Time (Note 5)	Data 1 (Figure 5)	20	13		20	13		ns
		Data 0 (Figure 5)	20	14		20	14		
		Address (Figure 6) (Note 2)	10	5		10	5		
t_{H}	Hold Time (Note 5)	Data 1 (Figure 5)	0	-10		0	-10		ns
		Data 0 (Figure 5)	0	-13		0	-13		
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note 3) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.6		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.4 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{E}}$ Input			60	$\mu \mathrm{A}$
			Others			40	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=0.4 \mathrm{~V} \end{aligned}$	$\overline{\mathrm{E}}$ Input			-2.4	mA
			Others			-1.6	
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	MIL	-30		-100	mA
	Output Current		COM	-30		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			56	86	mA

Note 2: The ADDRESS setup time is the time before the negative ENABLE transition that the ADDRESS must be stable so that the correct latch is addressed without affecting the other latches.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output, (Figure 1)		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output, (Figure 1)		27	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output, (Figure 4)		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output, (Figure 4)		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Address to Output, (Figure 2)		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Address to Output, (Figure 2)		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output, (Figure 3)		31	ns

Function Tables

$\overline{\mathbf{E}}$	$\overline{\mathbf{C}}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active High Eight Channel Demultiplexer
H	L	Clear

Inputs						Present Output States								Mode
$\overline{\mathrm{C}}$	$\overline{\mathrm{E}}$	D	A0	A1	A2	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
L	H	X	X	X	X	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	L	L	L	L	L	
L	L	H	L	L	L	H	L	L	L	L	L	L	L	
L	L	L	H	L	L	L	L	L	L	L	L	L	L	
L	L	H	H	L	L	L	H	L	L	L	L	L	L	
-	-	-		-					-					Demultiplex
-	-	-		-					-					
-	-	-		-					-					
L	L	H	H	H	H	L	L	L	L	L	L	L	H	
H	H	X	X	X	X	$\mathrm{Q}_{\mathrm{N}-1}$								Memory
H	L	L	L	L	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$					
H	L	H	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$						
H	L	L	H	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$						
H	L	H	H	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$						Addressable
-	-	-		-				-						Latch
-	-	-		-				-						
-	-	-		-				-						
H	L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$						$\mathrm{Q}_{\mathrm{N}-1}$	L	
H	L	H	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$						$\mathrm{Q}_{\mathrm{N}-1}$	H	

[^1]$Q_{N-1}=$ Previous Output State

Logic Diagram

Switching Time Waveforms

Other Conditions: $\mathrm{C}=\mathrm{H}, \mathrm{A}=$ Stable
FIGURE 1.

Other Conditions: $\overline{\mathrm{E}}=\mathrm{L}, \overline{\mathrm{C}}=\mathrm{L}, \mathrm{D}=\mathrm{H}$
FIGURE 2.

Other Conditons: $\overline{\mathrm{E}}=\mathrm{H}$
FIGURE 3.

Other Conditions: $\overline{\mathrm{E}}=\mathrm{L}, \overline{\mathrm{C}}=\mathrm{H}, \mathrm{A}=$ Stable
FIGURE 4.

Other Conditions: $\mathrm{C}=\mathrm{H}, \mathrm{A}=$ Stable
FIGURE 5.

Switching Time Waveforms (Continued)

Other Conditions: $\overline{\mathrm{C}}=\mathrm{H}$
Note:
The shaded areas indicate when the inputs are permitted to change for predictable output performance. FIGURE 6.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number 9334DMQB or DM9334J
Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage 5.5 V
Operating Free Air Temperature Range

Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Military			Commercial			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW D_{A} to $C P$	$\begin{aligned} & 20 \\ & 12 \end{aligned}$			$\begin{aligned} & 20 \\ & 12 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\mathrm{D}_{\mathrm{A}} \text { to } \mathrm{CP}$	$\begin{gathered} 0 \\ -8.0 \\ \hline \end{gathered}$			$\begin{gathered} 0 \\ -8.0 \\ \hline \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW A_{n} to CP	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $A_{n} \text { to } C P$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 23 \\ & 13 \end{aligned}$			$\begin{aligned} & 23 \\ & 13 \end{aligned}$			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				27	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.1	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	MIL	-10		-70	mA
			COM	-10		-70	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$				135	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$C_{L}=15 \mathrm{pF}$				Units
		9338 (MIL)		DM9338 (COM)		
		Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B_{n} or C_{n} to Z_{n}		$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 13 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{A}} \text { to } \mathrm{Z}_{\mathrm{n}}$		$\begin{array}{r} 45 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 25 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 50 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Z_{n}		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	ns

Functional Description

The 93388 -bit multiple port register can be considered a 1bit slice of eight high speed working registers. Data can be written into any one and read from any two of the eight locations simultaneously. Master/slave operation eliminates all race problems associated with simultaneous read/write activity from the same location. When the clock input (CP) is LOW data applied to the data input line (D_{A}) enters the selected master. This selection is accomplished by coding the three write input select lines (A0-A2) appropriately. Data is stored synchronously with the rising edge of the clock pulse.
The information for each of the two slaved (output) latches is selected by two sets of read address inputs ($\mathrm{B} 0-\mathrm{B} 2$ and $\mathrm{C} 0-\mathrm{C} 2$). The information enters the slave while the clock is HIGH and is stored while the clock is LOW. If Slave Enable is LOW (SLE), the slave latches are continuously enabled. The signals are available on the output pins (Z_{B} and $\left.Z_{C}\right)$. The input bit selection and the two output bit selections can be accomplished independently or simultaneously. The data flows into the device, is demultiplexed according to the state of the write address lines and is clocked into the selected latch. The eight latches function as masters and store the input data. The two output latches are slaves and hold the
data during the read operation. The state of each slave is determined by the state of the master selected by its associated set of read address inputs.
The method of parallel expansion is shown in Figure a. One 9338 is needed for each bit of the required word length. The read and write input lines should be connected in common on all of the devices. This register configuration provides two words of n-bits each at one time, where n devices are connected in parallel.

Logic Symbol

TL/F/9794-2
$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

FIGURE a. Parallel Expansion

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

	9348 12-Input Parity Checker/Generator General Description The 9348 is a 12 -input parity checker/generator generating odd and even parity outputs. It can be used in high speed error detection applications.
	Connection Diagram Dual-In-Line Package Logic Symbol TL/F/9795-1 Order Number 9348DMQB or 9348FMQB See NS Package Number J16A or W16A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage 5.5 V
Operating Free Air Temperature Range
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	9348		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-0.8	mA
I_{OL}	Low Level Output Current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$	2.4			V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-3.2	mA
los	Short Circuit Output Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 2)	-20		-70	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			82	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time

Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \hline \end{aligned}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay 14 to PO	I2, $13,17,18=$ GND; Other Inputs (except l4) HIGH		$\begin{array}{r} 46 \\ 42 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay 14 to PE	I2, $13,17,18=$ GND; Other Inputs (except l4) HIGH		$\begin{array}{r} 51 \\ 48 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$	Propagation Delay I3 to PO	I7 = HIGH; Other Inputs (except I3) = GND		27	ns
$t_{\text {PHL }}$	Propagation Delay 14 to PO	All Inputs (except 14) = GND		25	ns

Functional Description

The 9348 is a 12-input parity generator. It provides odd and even parity for up to 12 data bits. The Even Parity output (PE) will be HIGH if an even number of logic ones are present on the inputs. The Odd Parity output (PO) will be HIGH if an odd number of logic ones are present on the inputs. The logic equations for the outputs are shown below.

Note: Less through delay is encountered from the $10,11,12$ and 13 inputs than 14 thru 111 inputs. Therefore, if some signals are slower than others, the slower signals should be applied to these four inputs for maximum speed.

Truth Table

Inputs		Outputs	
IO-I11		PO	PE
All Twelve	Inputs LOW	L	H
Any One	Inputs HIGH	H	L
Any Two	Inputs HIGH	L	H
Any Three	Inputs HIGH	H	L
Any Four	Inputs HIGH	L	H
Any Five	Inputs HIGH	H	L
Any Six	Inputs HIGH	L	H
Any Seven	Inputs HIGH	H	L
Any Eight	Inputs HIGH	L	H
Any Nine	Inputs HIGH	H	L
Any Ten	Inputs HIGH	L	H
Any Eleven	Inputs HIGH	H	L
Any Twelve	Inputs HIGH	L	H

H $=$ HIGH Voltage Level
L = LOW Voltage Level

Logic Diagram

Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Operating Free Air Temperature Range
MIL
Recommended Operating Conditions

Symbol	Parameter	93L00 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Voltage			-0.4	mA
lOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW, $\mathrm{J}, \overline{\mathrm{K}}$ and P0-P3 to CP	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW, $\mathrm{J}, \overline{\mathrm{K}}$ and P0-P3 to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW, $\overline{\text { PE to CP }}$	$\begin{aligned} & 68 \\ & 68 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW, $\overline{\text { PE to CP }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 38 \\ & 38 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width LOW	53			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	70			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V I	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			CP			40	
			$\overline{\mathrm{PE}}$			46	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$	Inputs			-400	$\mu \mathrm{A}$
			CP			-800	
			$\overline{\mathrm{PE}}$			-920	
IOS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$		-2.5		-25	mA
$I_{\text {CC }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				23	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.							

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	93L		Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	10		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}		$\begin{array}{r} 35 \\ 51 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		60	ns

Functional Description

The Logic Diagrams and Truth Table indicate the functional characteristics of the 93L00 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers.
The 93L00 has two primary modes of operation, shift right $(\mathrm{QO} \rightarrow \mathrm{Q1})$ and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. When the PE input is HIGH, serial data enters the first flip-flop Q0 via the J and $\overline{\mathrm{K}}$ inputs and is shifted one bit in the direction Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3 following each LOW-to-HIGH clock transition. The $\sqrt{\mathrm{K}}$ inputs provide the flexibility of the JK type input for special applications, and the simple D-type input for general applications by tying the two pins together.

When the $\overline{\mathrm{PE}}$ input is LOW, the 93L00 appears as four common clocked D flip-flops. The data on the parallel inputs P0-P3 is transferred to the respective Q0-Q3 outputs following the LOW-to-HIGH clock transition. Shift left operation (Q3 \rightarrow Q2) can be achieved by tying the Qn outputs to the $\mathrm{Pn}-1$ inputs and holding the $\overline{\mathrm{PE}}$ input LOW.
All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the 93L00 utilizes edge triggering, there is no restriction on the activity of the J, \bar{K}, Pn and $\overline{\mathrm{PE}}$ inputs for logic operation-except for the setup and release time requirements. A LOW on the asynchronous Master Reset ($\overline{\mathrm{MR}}$) input sets all Q outputs LOW, independent of any other input condition.

Truth Table

Operating Mode	Inputs ($\overline{\mathrm{MR}}=\mathrm{H}$)							Outputs @ $\mathrm{t}_{\mathrm{n}+1}$				
	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	PO	P1	P2	P3	Q0	Q1	Q2	Q3	Q3
Shift Mode	H	L	L	X	X	X	X	L	Q0	Q1	Q2	Q2
	H	L	H	X	X	X	X	Q0	Q0	Q1	Q2	Q2
	H	H	L	X	X	X	X	Q0	Q0	Q1	Q2	Q2
	H	H	H	X	X	X	X	H	Q0	Q1	Q2	Q2
Parallel	L	X	X	L	L	L	L	L	L	L	L	H
Entry Mode	L	X	X	H	H	H	H	H	H	H	H	L

[^2]

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

	National Semiconductor 93L01 1-of-10 Decoder General Description The 93L01 multipurpose decoders are designed to accept four inputs and provide ten mutually exclusive outputs. Features - Multifunction capability - Mutually exclusive outputs - Demultiplexing capability - Typical power dissipation of 45 mW
	Connection Diagram Dual-In-Line Package TL/F/9583-1 Logic Symbol Order Number 93LO1DMQB or 93L01FMQB See Package Number J16A or W16A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L01 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Current			-400	$\mu \mathrm{A}$
IOL	Low Level Output Current			4.8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$			-400	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			13	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I ICC is measured with all outputs open and all inputs grounded.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

Symbol	Parameter	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{p F}$		Units
		Min	Max	
tPLH	Propagation Delay		36	ns
$t_{\text {PHL }}$	An to $\bar{O} n$		36	

Functional Description

The 93L01 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input enables. The logic design of the 93L01 ensures that all out-
puts are HIGH when binary codes greater than nine are applied to the inputs. The most significant input A3 produces a useful inhibit function when the 93L01 is used as a 1-of-8 decoder.

Truth Table

Inputs				Outputs									
AO	A1	A2	A3	O0	01	02	O3	04	\bar{O}	06	07	O8	09
L	L	L	L	L	H	H	H	H	H	H	H	H	H
H	L	L	L	H	L	H	H	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H	H	H	H	H
H	H	L	L	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	L	H	H	H	H	H
H	L	H	L	H	H	H	H	H	L	H	H	H	H
L	H	H	L	H	H	H	H	H	H	L	H	H	H
H	H	H	L	H	H	H	H	H	H	H	L	H	H
L	L	L	H	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
L	H	L	H	H	H	H	H	H	H	H	H	H	H
H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H
H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level

Logic Diagram

TL/F/9583-3

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

93L08 Dual 4-Bit Latch General Description The 93L08 is a dual 4-bit D-type latch designed for general purpose storage applications in digital systems. Each latch contains both an active LOW Master Reset input and active LOW Enable inputs.		
Dual-In-Line Package$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24 \\ & \mathrm{GND}=\operatorname{Pin} 12 \end{aligned}$		
Pin Names $\left.\begin{array}{l} \text { D0a-D3a } \\ \text { D0b-D3b } \end{array}\right\}$ E0a, E1a, E0b, E1b $\overline{\mathrm{MR}}$, $\overline{\mathrm{MR}} \mathrm{b}$ $\left.\begin{array}{l} \text { Q0a-Q3a } \\ \text { Q0b-Q3b } \end{array}\right\}$	Description Parallel Latch Inputs AND Enable Inputs (Active LOW) Master Reset Inputs (Active LOW) Parallel Latch Outputs	

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-400	$\mu \mathrm{A}$
lOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {s }}(\mathrm{H})$	Setup Time HIGH, D_{n} to \bar{E}_{n}	8			ns
$t_{\text {h }}(\mathrm{H})$	Hold Time HIGH, D_{n} to \bar{E}_{n}	1			ns
$t_{s}(L)$	Setup Time LOW, D_{n} to E_{n}	18			ns
$t_{\text {h }}(L)$	Hold Time LOW, D_{n} to \bar{E}_{n}	4			ns
$t_{w}(L)$	\bar{E}_{n} Pulse Width LOW	32			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width LOW }}$	30			ns
trec	Recovery Time, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}}_{\mathrm{n}}$	10			ns

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=2.4 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			D_{n}			30	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$	Inputs			-400	$\mu \mathrm{A}$
			D_{n}			-640	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 2)		-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)				29	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I_{CC} is measured with all outputs open and all inputs grounded.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay En to Qn		$\begin{aligned} & 45 \\ & 38 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Dn to Qn		$\begin{aligned} & 27 \\ & 29 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Qn n		30	ns

Functional Description

Data can be entered into the latch when both of the enable inputs are LOW. As long as this logic condition exists, the output of the latch will follow the input. If either of the enable inputs goes HIGH, the data present in the latch at that time is held in the latch and is no longer affected by data input. The master reset overrides all other input conditions and forces the outputs of all the latches LOW when a LOW signal is applied to the Master Reset input.

Truth Table

$\overline{\text { MR }}$	E0	E1	D	Qn	Operation
H	L	L	L	L	Data Entry
H	L	L	H	L	Data Entry
H	L	H	X	Qn-1	Hold
H	H	L	X	Qn-1	Hold
H	H	H	X	Qn-1	Hold
L	X	X	X	L	Reset

$Q_{n-1}=$ Previous Output State
$Q_{n}=$ Present Output State
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

TL/F/9594-3

Physical Dimensions inches (millimeters)

24-Lead Ceramic Dual-In-Line Package (J)
Order Number 93L08DMQB
NS Package Number J24A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93 L09 (MIL)		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-400	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{II}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4			V
V OL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
II	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}$			-400	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-10		-40	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			11.5	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Functional Description

The 93L09 dual 4-input multiplexers are able to select two bits of either HIGH or LOW data or control from up to four sources, in one package. The 93L09 is the logical implementation of two-pole, four-position switch, with the position of the switch being set by the logic levels supplied to the two select inputs. Both assertion and negation outputs are provided for both multiplexers. The logic equations for the outputs are shown below:

The 93L09 is frequently used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the select inputs. A less obvious application is as a function generator. The 93L09 can generate two functions of three variables. This is useful for implementing random gating functions.

Truth Table

Select Inputs		Inputs (a or b)					Outputs (a or b)	
S0	S1	10	I1	I2	I3	Z	Z	
L	L	L	X	X	X	L	H	
L	L	H	X	X	X	H	L	
H	L	X	L	X	X	L	H	
H	L	X	H	X	X	H	L	
L	H	X	X	L	X	L	H	
L	H	X	X	H	X	H	L	
H	H	X	X	X	L	L	H	
H	H	X	X	X	H	H	L	

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
$\mathrm{X}=$ Immaterial

Logic Diagram

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
5.5 V

Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L10/93L16 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Voltage			-400	$\mu \mathrm{A}$
lOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW P_{n} to CP	$\begin{aligned} & 75 \\ & 75 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW P_{n} to CP	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\overline{P E}$ to CP	(Note 2) 53			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\overline{P E}$ to CP	$\begin{gathered} 7.0 \\ \text { (Note 2) } \\ \hline \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW CEP or CET to CP	$\begin{gathered} 26 \\ (\text { Note 1) } \\ \hline \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW CEP or CET to CP	(Note 1) 10			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width LOW }}$	65			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\text { MR }}$ to CP	30			ns

Note 1: The Setup Time " $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$ " and Hold Time "th (H) " between the Count Enable (CEP and CET) and the Clock (CP) indicate that the HIGH-to-LOW transition of the CEP and CET must occur only while the Clock is HIGH for conventional operation.
Note 2: The Setup Time " $\mathrm{t}_{\mathrm{s}}(\mathrm{H})$ " and Hold Time " $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$ " between the Parallel Enable ($\overline{\mathrm{PE}}$) and Clock (CP) indicate that the LOW-to-HIGH transition of the $\overline{\mathrm{PE}}$ must occur only while the Clock is HIGH for conventional operation.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	v
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{2}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \hline \end{aligned}$		2.4	3.4		V
VoL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			CET, CP, PE			40	
			P_{n}			13.3	
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}$	Inputs			-400	$\mu \mathrm{A}$
			CET, CP, PE			-800	
			P_{n}			-267	
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}($ Note 2)		-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$				27.5	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	13		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q		$\begin{aligned} & 32 \\ & 39 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC		$\begin{aligned} & 66 \\ & 30 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ tpHL	Propagation Delay CET to TC		$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	ns
tPHL	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		72	ns

Functional Description

The 93L10 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it increments to state 0 (LLLL). The 93L16 counts modulo-16 in binary sequence. From state 15 (HHHH) it increments to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset, parallel load, count-up and hold. Four control inputs-Master Reset ($\overline{\mathrm{MR}}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{M R}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The 93L10 and 93L16 contain masterslave flip-flops which are "next-state catching" because of the JK feedback. This means that when CP is LOW, information that would change the state of a flip-flop, whether from the counting logic or the parallel entry logic if either mode is momentarily enabled, enters the master and is locked in. Thus to avoid inadvertently changing the state of a master latch, and the subsequent transfer of the erroneous information to the slave when the clock rises, it is necessary to insure that neither the counting mode, nor the parallel entry mode is momentarily enabled while CP is LOW.
The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters-fully decoded in both types). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in Figures a and b. The TC output is subject to decoding
spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the state diagrams.

MULTISTAGE COUNTING

The ' $10 /$ '16 counters may be cascaded to provide multistage synchronous counting. Two methods commonly used to cascade these counters are shown in Figures a and b.
In multistage counting, all less significant stages must be at their terminal count before the next more significant counter is enabled. The ' $10 /$ ' 16 internally decodes the terminal count condition and "ANDs" it with the CET input to generate the terminal count (TC) output. This arrangement allows one to perform series enabling by connecting the TC output (enable signal) to the CET input of the following stage, Figure a. The setup requires very few interconnections, but has the following drawback: since it takes time for the enable to ripple through the counter stages, there is a reduction in maximum counting speed. To increase the counting rate, it is necessary to decrease the propagation delay of the TC signal, which is done in the second method.
The scheme illustrated in Figure b permits multistage counting, limited by the fan-out of the terminal count. The CEP input of the ' $10 /$ ' 16 is internally "ANDed" with the CET input and as a result, both must be HIGH for the counter to be enabled. The CET inputs are connected as before except for the second stage. There the CET input is left floating and is therefore HIGH. Also, all CEP inputs are connected to the terminal output of the first stage. The advantage of this method is best seen by assuming all stages except the second and last are in their terminal condition. As the second stage advances to its terminal count, an enable is allowed to trickle down to the last counter stage, but has the full cycle time of the first counter to reach it. Then as the TC of the first stage goes active (HIGH), all CEP inputs are activated, allowing all stages to count on the next clock.

Physical Dimensions inches (millimeters)

93L10/93L16 BCD Decade Counter/4-Bit Binary Counter
Physical Dimensions inches (millimeters) (Continued)

DETAIL A
16-Lead Ceramic Flat Package (W) Order Number 93L10FMQB or 93L16FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	$93 \mathrm{L12}$ (MIL)		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-400	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$			-400	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			13.3	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S0 to Z		$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SO to \bar{Z}		$\begin{array}{r} 70 \\ 50 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E} to Z		$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$		$\begin{array}{r} 70 \\ 45 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay In to Z		$\begin{array}{r} 70 \\ 65 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay In to \bar{Z}		$\begin{array}{r} 55 \\ 55 \\ \hline \end{array}$	ns

Functional Description

The 93L12 is a logical implementation of a single pole, eight position switch with the switch position controlled by the state of three Select inputs, S0, S1, S2. Both assertion and negation outputs are provided. The Enable input (E) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs. The logic function provided at the output is:
$\mathrm{Z}=\mathrm{E} \cdot(\mathrm{I} 0 \bullet \overline{\mathrm{~S} 0} \bullet \overline{\mathrm{~S}} 1 \bullet \overline{\mathrm{~S}} 2+11 \bullet \mathrm{~S} 0 \cdot \overline{\mathrm{~S}} 1 \bullet \mathrm{~S} 2$
$+\mathrm{I} 2 \cdot \overline{\mathrm{~S}} 0 \cdot \mathrm{~S} 1 \cdot \overline{\mathrm{~S}} 2+\mathrm{I} 3 \cdot \mathrm{~S} 0 \cdot \mathrm{~S} 1 \cdot \overline{\mathrm{~S}} 2$
$+14 \cdot \overline{\mathrm{~S}} 0 \cdot \mathrm{~S}_{1} \cdot \mathrm{~S} 2+15 \cdot \mathrm{~S} 0 \cdot \overline{\mathrm{~S}} 1 \cdot \mathrm{~S} 2$
$+\mathrm{I} 6 \cdot \mathrm{~S} 0 \cdot \mathrm{~S} 1 \bullet \mathrm{~S} 2$
$+17 \cdot \mathrm{SO} \cdot \mathrm{S} 1 \cdot \mathrm{~S} 2)$.
Truth Table

Inputs												Outputs	
\bar{E}	S2	S1	So	10	11	12	13	14	15	16	17	$\overline{\mathbf{Z}}$	Z
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H
H = HIGH Voltage Level L = LOW Voltage Level $\mathrm{X}=$ Immaterial													

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

	93L14 Quad Latch General Description The 93L14 is a multifunctional 4-bit latch designed for general purpose storage applications in high speed digital systems. All outputs have active pull-up circuitry to provide high capacitance drive and to provide low impedance in both logic states for good noise immunity. Features - Can be used as single input D latches or set/reset latches - Active low enable gate input - Overriding master reset
	Connection Diagram Dual-In-Line Package Logic Symbol TL/F/9612-1 Order Number 93L14DMQB or 93L14FMQB See NS Package Number J16A or W16A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L14 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Voltage			-400	$\mu \mathrm{A}$
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW D_{n} to \bar{E}	$\begin{aligned} & 10 \\ & 20 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to \bar{E}	$\begin{gathered} 0 \\ 10 \\ \hline \end{gathered}$			ns
$t_{s}(H)$	Setup Time HIGH, D_{n} to $\overline{\mathrm{S}}_{\mathrm{n}}$	15			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, D_{n} to $\overline{\mathrm{S}}_{\mathrm{n}}$	5			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	E Pulse Width LOW	30			ns
$t_{w}(\mathrm{~L})$	$\overline{M R}$ Pulse Width LOW	25			ns
$\mathrm{trec}^{\text {c }}$	Recovery Time, $\overline{\text { MR }}$ to $\overline{\mathrm{E}}$	5			ns

Functional Description

The 93L14 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the \bar{S}_{n} and D_{n} inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes:
D-TYPE-LATCH—For D-type operation the $\overline{\mathrm{S}}$ input of a latch is held LOW. While the common Enable is active the latch output follows the D input. Information present at the latch output is stored in the latch when the Enable goes HIGH.
SET/RESET LATCH—During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the D input, and can be set by a LOW on the $\overline{\mathrm{S}}$ input if the D input is HIGH. If both \bar{S} and D inputs are LOW, the D input will dominate and the latch wil be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table.

Logic Diagram

$\overline{\mathbf{M R}}$	$\overline{\mathbf{E}}$	\mathbf{D}	$\overline{\mathbf{S}}$	$\mathbf{Q}_{\boldsymbol{n}}$	Operation
H	L	L	L	L	D Mode
H	L	H	L	L	
H	H	X	X	$\mathrm{Q}_{\mathrm{n}-1}$	
H	L	L	L	L	R/S Mode
H	L	H	L	H	
H	L	L	H	L	
H	L	H	H	$\mathrm{Q}_{\mathrm{n}-1}$	
H	H	X	X	$\mathrm{Q}_{\mathrm{n}-1}$	
L	X	X	X	L	RESET

H $=$ HIGH Voltage Level
L $=$ LOW Voltage Level
$X=$ Immaterial
$\mathrm{Q}_{\mathrm{n}-1}=$ Previous Output State
$\mathrm{Q}_{\mathrm{n}}=$ Present Output State

Physical Dimensions inches (millimeters) (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 93L14FMQB
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
MIL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		93L12 (MIL)		
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5		V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-400	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{II}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
II	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$			-400	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			13.2	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.

Functional Description

The 93L21 consists of two separate decoders each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs as shown in the logic symbol. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input.

Truth Table (Each Decoder)

Inputs			Outputs			
$\overline{\mathbf{E}}$	A0	A1	O $\mathbf{0}$	$\overline{\mathbf{O}} \mathbf{1}$	O2	O $\mathbf{3}$
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L
H	X	X	H	H	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

TL/F/10197-3

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 5 for test waveforms and output load.)

Symbol	Parameter	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{p F}$		Units
		Min	$\mathbf{M a x}$	
tPLH	Propagation Delay		50	ns
tPHL	An to $\bar{O} n$		65	
tPLH	Propagation Delay		40	ns
tPHL	En to $\bar{O} n$		52	

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 5.5 V

Operating Free Air Temperature Range
MIL $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L22 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-400	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
II	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$			-400	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},($ Note 2)	-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$			13.2	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for test waveforms and output load)

Symbol	Parameter	$C_{L}=15 \mathrm{pF}$		Units
		Min	Max	
tPLH	Propagation Delay		36	ns
tPHL	S to Zn		49	ns
tPLH	Propagation Delay		30	ns
tPHL	10 or 11 to Zn		22	ns
tPLH	Propagation Delay		27	ns
tPHL	$\overline{\mathrm{E}}$ to Zn		27	ns

Functional Description

The 93L22 quad 2-input multiplexer provides the ability to select four bits of either data or control from two sources, in one package. The Enable input ($\overline{\mathrm{E}}$) is active LOW. When not activated all outputs (Z_{n}) are LOW regardless of all other inputs.
The 93L22 quad 2-input multiplexer is the logical implementation of a four-pole, two position switch, with the position of the switch being set by the logic levels supplied to the one select input. The logic equations for the outputs are shown below:
$\mathrm{Za}=\mathrm{E} \bullet(11 \mathrm{a} \bullet \mathrm{S}+10 \mathrm{a} \bullet \overline{\mathrm{S}}) \quad \mathrm{Zb}=\mathrm{E} \bullet(11 \mathrm{~b} \bullet \mathrm{~S}+10 \mathrm{~b} \bullet \overline{\mathrm{~S}})$ $\mathrm{Zc}=\mathrm{E} \bullet(11 \mathrm{c} \bullet \mathrm{S}+10 \mathrm{c} \bullet \overline{\mathrm{S}}) \quad \mathrm{Zd}=\mathrm{E} \bullet(11 \mathrm{~d} \bullet \mathrm{~S}+10 \mathrm{~d} \bullet \overline{\mathrm{~S}})$

A common use of the 93L22 is the moving of data from a group of registers to four common output busses. The particular register from which the data comes is determined by the state of the select input. A less obvious use is as a function generator. The 93L22 can generate four functions of two variables with one variable common. This is useful for implementing random gating functions.

Logic Diagram

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD $^{\text {FAR }}$ SEMICONDUCTOR $_{T M}$ 93L24 5-Bit Comparator

General Description

The 93L24 expandable comparator provides comparison between two 5-bit words and gives three outputs-"less than", "greater than" and "equal to". A HIGH on the active LOW Enable Input forces all three outputs LOW.

Connection Diagram

Order Number 93L24DMQB or 93L24FMQB
See Package Number J16A or W16A

Pin Names	Description
\bar{E}	Enable Input (Active LOW)
A0-A4	Word A Parallel Inputs
B0-B4	Word B Parallel Inputs
A<B	A Less than B Output (Active HIGH)
A $>B$	A Greater than B Output (Active HIGH)
A=B	A Equal to B Output (Active HIGH)

Dual-In-Line Package

Features

- Three separate outputs: $A<B, A>B, A=B$
- Easily expandable
- Active low enable input

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
GND $=$ Pin 8

Truth Table

Inputs			Outputs		
\bar{E}	An	Bn	A<B	A>B	A=B
H	X	X	L	L	L
L	Word A $=$ Word B	L	L	H	
L	Word A > Word B	L	H	L	
L	Word B < Word A	H	L	L	

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V

Operating Free Air Temperature Range MIL

Storage Temperature Range

Recommended Operating Conditions

Symbol	Parameter	93L24 (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-400	$\mu \mathrm{A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \hline \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.3	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}$			-0.8	mA
l_{OS}	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)	-2.5		-25	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			21	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E} to $A=B ; \bar{E}$ to $A<B, A>B$		$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay An to $A>B$; n to $A>B$		$\begin{aligned} & 54 \\ & 75 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay An to A<B; Bn to A<B		$\begin{aligned} & 70 \\ & 77 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay An or Bn to A=B		$\begin{aligned} & 100 \\ & 102 \\ & \hline \end{aligned}$	ns

Functional Description

The 93L24 5-bit comparators use combinational circuitry to directly generate "A greater than B" and "A less than B" outputs. As evident from the logic diagram, these ouptuts are generated in only three gate delays. The "A equals B" output is generated in one additional gate delay by decoding the " A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable Input ($\overline{\mathrm{E}}$).

Tying the $\mathrm{A}>\mathrm{B}$ output from one device into an A input on another device and the $A<B$ output into the corresponding B input permits easy expansion.
The A4 and B4 inputs are the most significant inputs and A0, B0 the least significant. Thus if A4 is HIGH and B4 is LOW, the $A>B$ output will be HIGH regardless of all other inputs except $\overline{\mathrm{E}}$.

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Flat Package (W)
Order Number 93L24FMQB
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V

Operating Free Air Temperature Range

MIL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	$93 \mathrm{L28}$ (MIL)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
l_{OH}	High Level Output Current			-400	$\mu \mathrm{A}$
I_{OL}	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{array}{r} \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 30 \\ & 30 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width with CP HIGH	60			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width with CP LOW	70			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.3	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$	$\overline{\mathrm{MR}}$, Dx			20	$\mu \mathrm{A}$
			CP (7, 10)			30	
			S			40	
			CP Com			60	
IIL	LOW Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}$	$\overline{\mathrm{MR}}$, Dx			-400	$\mu \mathrm{A}$
			CP (7, 10)			-600	
			S			-800	
			CP Com			-1200	
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$		-2.5		-25	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				25.3	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for test waveforms and output load)

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Right Frequency	5.0		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{7} or \bar{Q}_{7}		$\begin{aligned} & 45 \\ & 80 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{7}		110	ns

Functional Description

The two 8 -bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register
has a 2-input multiplexer in front of the serial data input. The two data inputs D0 and D1 are controlled by the data select input (S) following the Boolean expression:
Serial data in: $S_{D}=S D 0+S D 1$
An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.
Shift Select Table

Inputs			Output
S	D0	D1	Q7 ($\left.\mathbf{t}_{\mathbf{n}+8}\right)$
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathrm{n}+8=$ Indicates state after eight clock pulse

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number 93L28DMQB
Package Number J16A

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 93L28FMQB
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7 V
Input Voltage 5.5 V

Operating Free Air Temperature Range Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaraneed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	93L34 (Mil)			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
IOH	High Level Output Voltage			-400	$\mu \mathrm{A}$
IOL	Low Level Output Current			4.8	mA
T_{A}	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time HIGH, D to $\overline{\mathrm{E}}$	45			ns
$\mathrm{th}^{(H)}$	Hold Time HIGH, D to \bar{E}	-5			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time LOW, D to $\overline{\mathrm{E}}$	45			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, D to \bar{E}	-7			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW A_{n} to \bar{E}	$\begin{aligned} & 10 \\ & 10 \end{aligned}$			ns
$t_{w}(L)$	\bar{E} Pulse Width LOW	26			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { CL Pulse Width LOW }}$	35			ns

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-10 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.3	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			$\overline{\mathrm{E}}$			30	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$	Inputs			-0.4	mA
			$\overline{\mathrm{E}}$			-0.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Note 2)		-2.5		-25	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)				21	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all outputs open and all inputs grounded.							

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Q_{n}		$\begin{aligned} & 45 \\ & 42 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D to Q_{n}		$\begin{aligned} & 65 \\ & 45 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n} \text { to } Q_{n}$		$\begin{aligned} & 66 \\ & 66 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{C L}$ to Q_{n}		55	ns

Functional Description

The 93L34 has four modes of operation which are shown in the Mode Select Table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the Data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the Enable should be held HIGH while the Address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the 93L34 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

Mode Select Table		
$\overline{\mathbf{E}}$	$\overline{\mathbf{C L}}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH 8-Channel Demultiplexer
H	L	Clear

Inputs					Outputs								Mode
$\overline{C L}$	$\overline{\mathrm{E}}$	A0	A1	A2	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
L	H	X	X	X	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	D	L	L	L	L	L	L	L	Demultiplex
L	L	H	L	L	L	D	L	L	L	L	L	L	
L	L	L	H	L	L	L	D	L	L	L	L	L	
-	-	-	-	-	-	-	-	-	-	-	-	-	
\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	-	-	-	\bullet	\bullet	\bullet	
L	L	H	H	H	L	L	L	L	L	L	L	L	
H	H	X	X	X	Qt-1	Memory							
H	L	L	L	L	D	Qt-1	Addressable						
H	L	H	L	L	Qt-1	D	Qt-1	Qt-1	Qt-1	Qt-1	Qt-1	Qt-1	Latch
H	L	L	H	L	Qt-1	Qt-1	D	Qt-1	Qt-1	Qt-1	Qt-1	Qt-1	
-	-	-	-	-	-	-	-	-	-	-			
\bullet	-	\bullet	-	\bullet	-	\bullet	-	-	-	-	-	-	
H	L	H	H	H	Qt-1	D							
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level				L = LOW Voltage Level			$\mathrm{X}=$ Immaterial		Qt-1 = Previous Output State				

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 93L34FMQB
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V

Operating Free Air Temperature Range

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	$93 \mathrm{L38}$ (MIL)			Units
		Min	Nom	Max	
V_{cc}	Supply Voltage	4.5	5	5.5	V
V_{IH}	High Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7	V
l_{OH}	High Level Output Current			-400	$\mu \mathrm{A}$
I_{OL}	Low Level Output Current			4.8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{A}} \text { to } \mathrm{CP}$	$\begin{aligned} & 30 \\ & 22 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{A} to CP	$\begin{gathered} \hline 0 \\ -4.0 \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW A_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW A_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 40 \\ & 30 \end{aligned}$			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature (unless othewise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-10 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.3	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}$			-2	mA
l_{OS}	Short Circuit Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=\operatorname{Max} \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	-2.5		-25	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			70	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open and all input grounded.

Switching Characteristics

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		68	ns
$\mathrm{t}_{\text {PHL }}$	B_{n} or C_{n} or Z_{n}		95	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		70	ns
$\mathrm{t}_{\text {PHL }}$	D_{A} to Z_{n}		92	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		65	ns
$\mathrm{t}_{\text {PHL }}$	CP to Z_{n}		57	

Functional Description

The 93L38 8-bit multiple port register can be considered a 1 -bit slice of eight high speed working registers. Data can be written into any one and read from any two of the eight locations simultaneously. Master/slave operation eliminates all race problems associated with simultaneous read/write activity from the same location. When the clock input (CP) is LOW data applied to the data input line $\left(D_{A}\right)$ enters the selected master. This selection is accomplished by coding the three write input select lines (A0-A2) appropriately. Data is stored synchronously with the rising edge of the clock pulse.
The information for each of the two slaved (output) latches is selected by two sets of read address inputs (B0-B2 and $\mathrm{C} 0-\mathrm{C} 2)$. The information enters the slave while the clock is HIGH and is stored while the clock is LOW. If Slave Enable is LOW (SLE), the slave latches are continuously enabled. The signals are available on the output pins $\left(Z_{B}\right.$ and $\left.Z_{C}\right)$. The
input bit selection and the two output bit selections can be accomplished independently or simultaneously. The data flows into the device, is demultiplexed according to the state of the write address lines and is clocked into the selected latch. The eight latches function as masters and store the input data. The two output latches are slaves and hold the data during the read operation. The state of each slave is determined by the state of the master selected by its associated set of read address inputs.
The method of parallel expansion is shown in Figure 1. One 93 L 38 is needed for each bit of the required word length. The read and write input lines should be connected in common on all of the devices. This register configuration provides two words of n-bits each at one time, where n devices are connected in parallel.

FIGURE 1. Parallel Expansion

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number 93L38DMQB
Package Number J16A

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 93L38FMQB
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

[^0]: 16-Jul-98 00:00 88K

[^1]: X = Don't Care Condition
 L = Low Voltage Level
 H = High Voltage Level

[^2]: $t_{n+1}=$ Indicates state after next LOW-to-HIGH clock transition.
 $\mathrm{H}=$ HIGH Voltage Level
 L = LOW Voltage Level
 $\mathrm{X}=$ Immaterial

