DMCA1 DIE ### Siliconix incorporated ## **N-Channel Lateral DMOS Quad FETs** The Siliconix DMCA1 Die is a monolithic array of single-pole, single-throw analog switches designed for high-speed switching audio. video in high-frequency applications in communications, instrumentation, and process control. Designed on the Siliconix DMOS process, the product is rated for analog signals of ± 10 V. These bidirectional switches feature very low interelectrode capacitance and on-resistance to achieve low insertion loss, crosstalk, and feedthrough performance. The threshold voltage is 2 V maximum, simplifying driver requirements for low level signal applications. For additional design information please consult the typical performance curves DMCA/B. #### **DESIGNED FOR:** - Ultra-High Speed Switching - High Gain Amplifiers #### **FEATURES** - < 1 ns Switching ton Ultra-Low Capacitance C_G < 3.5 pF - g_{fs} (gain) > 10000 μ mhos #### T-51-11 DMCA1CHP* SD5000I SD5000N SD5001N SD5400CY SD5401CY *Meets or exceeds specification for all part numbers listed below Nominal Thickness 0.009 Inches 0.228 mm ### ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C Unless Otherwise Noted) | PARAMETERS/TEST CONDITIONS | SYMBOL | LIMITS | UNITS | | |---|-----------------------------------|------------|-------|--| | Gate-Source, Gate-Drain Voltage | V _{GS} , V _{GD} | 30/-25 | | | | Drain-Substrate, Source-Substrate Voltage | V _{DB} , V _{SB} | 25 | V | | | Drain-Source, Source-Drain Voltage | V _{DS} , V _{SD} | 20 | | | | Gate-Substrate Voltage | V _{GB} ¹ | 30/-0.3 | | | | Drain Current | I _D | 50 | mA | | | Storage Temperature | T _{stg} | -65 to 150 | °C | | ¹This series features an internal zener diode for gate protection # DMCA1 DIE | SPECIFICATIONS ^a | | | | LIMITS | | | | | |------------------------------------|-------------------------|--|------------------------|--------|-----|--------|----------|--| | PARAMETER | SYMBOL | TEST CONDITIONS | | TYPb | MIN | MAX | UNIT | | | STATIC | | | | | • | | | | | Drain-Source Breakdown Voltage | V _{(BR)DS} | V _{GS} = V _{BS} = -5 V, I _D = 10 nA | | 30 | 20 | | <u> </u> | | | Source-Drain Breakdown Voltage | V _{(BR)SD} | V _{GD} = V _{BD} = -5 V, I _S = 10 nA | | 22 | 20 | | ٧ | | | Drain-Substrate Breakdown Voltage | V _{(BR)DB} | V _{GB} = 0 V, I _D = 10 nA, Source OPEN | | 35 | 25 | | İ | | | Source-Substrate Breakdown Voltage | V _{(BR)SB} | V _{GB} = 0 V, I _S = 10 μA, Drain OPEN | | 35 | 25 | | 1 | | | Drain-Source Leakage | I _{DS(OFF)} | $V_{GS} = V_{BS} = -5 \text{ V}, V_{DS} = 20 \text{ V}$ | | 0.9 | | | nA | | | Source-Drain Leakage | I _{DS(OFF)} | $V_{GD} = V_{BO} = -5 \text{ V, } V_{DS} = 20 \text{ V}$ | | 1 | ļ | | 1 | | | Gate Leakage | I _{GBS} | $V_{DB} = V_{GS} = 0 \text{ V}, V_{GB} = 30 \text{ V}$ | | 10-5 | | | μА | | | Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS} = V_{GS(th)}, I_S = 1 \mu A$ $V_{SB} = 0 V$ | | 0.7 | 0.1 | 2.0 | ٧ | | | Drain-Source On-Resistance | r _{ds(on)} | V _{SB} = 0 V, I _D = 1 mA | V _{GS} = 5 V | 58 | | | Ω | | | | | | V _{GS} = 10 V | 38 | | | | | | | | | V _{GS} = 15 V | 30 | | | | | | | | | V _{GS} = 20 V | 26 | | | | | | Resistance Match | | I _D = 1 mA, V _{SB} = 0 V, V _{GS} = 5 V | | 1 | | | | | | DYNAMIC | | | | | | | | | | Forward Transconductance | 9 _{fs} | $V_{DS} = 10 \text{ V}, V_{SB} = 0 \text{ V}$ $I_{D} = 20 \text{ mA}, f = 1 \text{ kHz}$ | | 11 | | | mS | | | Gate-Node Capacitance | C _(GS+GD+GB) | | | 2.5 | | | | | | Drain-Node Capacitance | C _(GD+DB) | $V_{DS} = 10 \text{ V, f} = 1 \text{ MHz}$ | | 1.1 | | | рF | | | Source-Node Capacitance | C _(GS+SB) | V _{GS} = V _{BS} = -15 V | | 3.7 | | | | | | Reverse Transfer Capacitance | C _{rss} | | | 0.2 | | | | | | Crosstalk | | f = 3 kHz, See Test Circuits
in DMCA Performance Curves | | -107 | | | dB | | | SWITCHING | | | | | | | | | | Tum-On Time | t d(ON) | | | 0.5 | I | | | | | | ţ | $V_{DD}=5$ V, $R_L=680~\Omega$ | | 0.6 | 1 | | ns | | | Turn-Off Time | t _{d(OFF)} | V _{IN} = 5 V | | 2 | | \neg | | | | | ţ | 寸 | | 6 | | | | | NOTES: a T_A = 25°C unless otherwise noted. b For design aid only, not subject to production testing.