DMCA1 DIE

Siliconix incorporated

N-Channel Lateral DMOS Quad FETs

The Siliconix DMCA1 Die is a monolithic array of single-pole, single-throw analog switches designed for high-speed switching audio. video in high-frequency applications in communications, instrumentation, and process control. Designed on the Siliconix DMOS process, the product is rated for analog signals of ± 10 V.

These bidirectional switches feature very low interelectrode capacitance and on-resistance to achieve low insertion loss, crosstalk, and feedthrough performance. The threshold voltage is 2 V maximum, simplifying driver requirements for low level signal applications.

For additional design information please consult the typical performance curves DMCA/B.

DESIGNED FOR:

- Ultra-High Speed Switching
- High Gain Amplifiers

FEATURES

- < 1 ns Switching ton Ultra-Low Capacitance C_G < 3.5 pF
- g_{fs} (gain) > 10000 μ mhos

T-51-11 DMCA1CHP* SD5000I SD5000N SD5001N SD5400CY SD5401CY *Meets or exceeds specification for all part numbers listed below

Nominal Thickness 0.009 Inches 0.228 mm

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C Unless Otherwise Noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMITS	UNITS	
Gate-Source, Gate-Drain Voltage	V _{GS} , V _{GD}	30/-25		
Drain-Substrate, Source-Substrate Voltage	V _{DB} , V _{SB}	25	V	
Drain-Source, Source-Drain Voltage	V _{DS} , V _{SD}	20		
Gate-Substrate Voltage	V _{GB} ¹	30/-0.3		
Drain Current	I _D	50	mA	
Storage Temperature	T _{stg}	-65 to 150	°C	

¹This series features an internal zener diode for gate protection

DMCA1 DIE

SPECIFICATIONS ^a				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYPb	MIN	MAX	UNIT	
STATIC					•			
Drain-Source Breakdown Voltage	V _{(BR)DS}	V _{GS} = V _{BS} = -5 V, I _D = 10 nA		30	20		<u> </u>	
Source-Drain Breakdown Voltage	V _{(BR)SD}	V _{GD} = V _{BD} = -5 V, I _S = 10 nA		22	20		٧	
Drain-Substrate Breakdown Voltage	V _{(BR)DB}	V _{GB} = 0 V, I _D = 10 nA, Source OPEN		35	25		İ	
Source-Substrate Breakdown Voltage	V _{(BR)SB}	V _{GB} = 0 V, I _S = 10 μA, Drain OPEN		35	25		1	
Drain-Source Leakage	I _{DS(OFF)}	$V_{GS} = V_{BS} = -5 \text{ V}, V_{DS} = 20 \text{ V}$		0.9			nA	
Source-Drain Leakage	I _{DS(OFF)}	$V_{GD} = V_{BO} = -5 \text{ V, } V_{DS} = 20 \text{ V}$		1	ļ		1	
Gate Leakage	I _{GBS}	$V_{DB} = V_{GS} = 0 \text{ V}, V_{GB} = 30 \text{ V}$		10-5			μА	
Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS} = V_{GS(th)}, I_S = 1 \mu A$ $V_{SB} = 0 V$		0.7	0.1	2.0	٧	
Drain-Source On-Resistance	r _{ds(on)}	V _{SB} = 0 V, I _D = 1 mA	V _{GS} = 5 V	58			Ω	
			V _{GS} = 10 V	38				
			V _{GS} = 15 V	30				
			V _{GS} = 20 V	26				
Resistance Match		I _D = 1 mA, V _{SB} = 0 V, V _{GS} = 5 V		1				
DYNAMIC								
Forward Transconductance	9 _{fs}	$V_{DS} = 10 \text{ V}, V_{SB} = 0 \text{ V}$ $I_{D} = 20 \text{ mA}, f = 1 \text{ kHz}$		11			mS	
Gate-Node Capacitance	C _(GS+GD+GB)			2.5				
Drain-Node Capacitance	C _(GD+DB)	$V_{DS} = 10 \text{ V, f} = 1 \text{ MHz}$		1.1			рF	
Source-Node Capacitance	C _(GS+SB)	V _{GS} = V _{BS} = -15 V		3.7				
Reverse Transfer Capacitance	C _{rss}			0.2				
Crosstalk		f = 3 kHz, See Test Circuits in DMCA Performance Curves		-107			dB	
SWITCHING								
Tum-On Time	t d(ON)			0.5	I			
	ţ	$V_{DD}=5$ V, $R_L=680~\Omega$		0.6	1		ns	
Turn-Off Time	t _{d(OFF)}	V _{IN} = 5 V		2		\neg		
	ţ	寸		6				

NOTES: a T_A = 25°C unless otherwise noted. b For design aid only, not subject to production testing.