Am73/8303 • Am73/8304B

Octal Three-State Bidirectional Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- · PNP inputs reduce input loading
- V_{CC} -1.15V V_{OH} interfaces with TTL, MOS and CMOS
- 48mA, 300pF bus drive capability
- Am73/8303 inverting transceivers
- Am73/8304B noninverting transceivers
- Transmit/Receive and Chip Disable simplify control logic
- 20-pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am73/8303 and Am73/8304B are 8-bit 3-State Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3-state condition. Chip Disable is functionally the same as an active LOW chip select.

The output high voltage (V_{OH}) is specified at V_{CC} -1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Am73/8304B LOGIC DIAGRAM

Am73/8303 has inverting transceivers

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

 $V_{CC} = Pin 20$ GND = Pin 10

12-17

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	05.4- 4500
Supply Voltage	-65 to +150°C
Input Voltage	7.0V
	5.5V
Output Voltage	5.5V
Lead Temperature (Soldering, 10 seconds)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

MIL COM'L

 $T_A = -55 \text{ to } +125^{\circ}\text{C}$ $T_A = 0 \text{ to } +70^{\circ}\text{C}$ V_{CC} MIN = 4.5V V_{CC} MIN = 4.75V

 V_{CC} MAX = 5.5V

 V_{CC} MAX = 5.25V DC ELECTRICAL CHARACTERISTICS over operating temperature range Тур **Parameters** Description **Test Conditions** Min (Note 1) Max Units A PORT (A₀-A₇) VIH Logical "1" Input Voltage $CD = V_{IL} MAX, T/\overline{R} = 2.0V$ 2.0 Volts $\frac{\text{CD}}{\text{T/R}} = \text{V}_{\text{IL}} \text{ MAX},$ $\frac{\text{T/R}}{\text{R}} = 2.0 \text{V}$ VIL COMIL Logical "0" Input Voltage 0.8 Volts MIL V_{OH} $\frac{CD}{T/R} = V_{IL} MAX,$ T/R = 0.8VLogical "1" Output Voltage $l_{OH} = -0.4mA$ V_{CC}-1.15 V_{CC}-0.7 Volts $I_{OH} = -3.0 \text{mA}$ 3.95 I_{OL} = 8mA VOL Logical "0" Output Voltage $\frac{\text{CD}}{\text{T/R}} = V_{\text{IL}} \text{ MAX},$ $\frac{\text{T/R}}{\text{R}} = 0.8 \text{V}$ 0.3 0.4 Volts COM'L I_{OL} = 16mA 0.35 0.50 $CD = V_{IL} MAX, T/\overline{R} = 0.8V, V_O = 0V, V_{CC} = MAX, Note 2$ los Output Short Circuit Current -10-38 -75 mA Ιн Logical "1" Input Current CD = V_{IL} MAX, T/\overline{R} = 2.0V, V_{I} = 2.7V 0.1 80 μА ų Input Current at Maximum Input Voltage CD = 2.0V, VCC MAX, VI = VCC MAX mΑ I_IL Logical "0" Input Current $CD = V_{IL} MAX, T/\overline{R} = 2.0V, V_I = 0.4V$ -70 -200 μA V_C Input Clamp Voltage $CD = 2.0V, I_{IN} = -12mA$ -0.7-1.5 Volts lop Output/Input 3-State Current $V_0 = 0.4V$ CD = 20V-200 μΑ $V_0 = 4.0V$ 80 B PORT (B₀-B₇) VIH Logical "1" Input Voltage CD = VIL MAX, T/R = VIL MAX 2.0 Volts $\begin{array}{l} C\underline{D} = \text{V}_{IL} \text{ MAX,} \\ T/\overline{R} = \text{V}_{IL} \text{ MAX} \end{array}$ V_{IL} COMI Logical "0" Input Voltage 0.8 Volts Mit 0.7 $I_{OH} = -0.4mA$ V_{CC}-1.15 V_{CC}-0.8 VOH $\frac{CD}{T/R} = V_{IL} MAX,$ $\frac{D}{T/R} = 2.0V$ Logical "1" Output Voltage $I_{OH} = -5.0 mA$ 2.7 3.9 Volts I_{OH} = -10mA 2.4 3.6 VOL $\frac{CD}{T/R} = V_{IL} MAX$ $I_{OL} = 20mA$ Logical "0" Output Voltage 0.3 0.4 Volts l_{OL} = 48mA 0.5 $CD = V_{IL} MAX, T/\overline{R} = 2.0V, V_{O} = 0V$ $V_{CC} = MAX, Note 2$ los Output Short Circuit Current -25 -50-150mΑ Logical "1" Input Current ш $CD = V_{iL} MAX, T/\overline{R} = V_{iL} MAX, V_i = 2.7V$ 0.1 80 иA ł Input Current at Maximum Input Voltage CD = 2.0V, $V_{CC} = MAX$, $V_I = V_{CC} MAX$ mA Ι_{ΙL} Logical "0" Input Current $CD = V_{IL} \text{ MAX, T/\overline{R}} = V_{IL} \text{ MAX, V}_{I} = 0.4V$ -70 -200 μA V_C Input Clamp Voltage $CD = 2.0V, I_{1N} = -12mA$ -0.7-1.5 Volts lop Output/Input 3-State Current $V_O = 0.4V$ CD = 2.0V-200 μА $V_0 = 4.0V$ 200 CONTROL INPUTS CD, T/R V_{IH} Logical "1" Input Voltage 2.0 Volts $V_{\rm IL}$ Logical "0" Input Voltage COMI 0.8 Volts MIL 0.7 Logical "1" Input Current Ιн $V_1 = 2.7V$ 0.5 20 щA ų Input Current at Maximum Input Voltage V_{CC} = MAX, V_I = V_{CC} MAX 1.0 mA 1_{IL} T/R Logical "0" Input Current -0.1 $V_I = 0.4V$ -0.25CD -0.1 -0.25 Vc Input Clamp Voltage $I_{JN} = -12mA$ -0.8-1.5Volts **POWER SUPPLY CURRENT** $CD = V_1 = 2.0V, V_{CC} = MAX$ Am73/8303 70 100 mΑ CD = 0.4V, $V_{INA} = T/\overline{R} = 2.0V$, $V_{CC} = MAX$ lcc Power Supply Current 100 150 $CD = 2.0V, V_I = 0.4V, V_{CC} = MAX$ Am73/8304B 70 100 mΑ $CD = V_{INA} = 0.4V$, $T/\overline{R} = 2.0V$, $V_{CC} = MAX$ 90 140

Tvp

			Тур		
arameters	Description	Test Conditions	(Note 1)	Max	Units
	A PORT DATA/M	ODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	8	12	ns
[†] PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	11	16	ns
^t PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	10	15	ns
^t PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 30$ pF	20	30	ns
[†] PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	30	ns
	B PORT DATA/N	IODE SPECIFICATIONS			
t _{PDHLB}	Propagation Delay to a Logical "0" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	12	18	ns
	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	7	12	ns
^t PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	15	20	ns
,		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	9	14	ns
^t PLZB	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	13	18	ns
[†] PHZB	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 0.4$ V, $T/\overline{R} = 2.4$ V (Figure 3) $S_3 = 0$, $R_5 = 1$ k, $C_4 = 15$ pF	8	15	ns
t _{PZLB}	Propagation Delay from 3-State to a Logical "0" from CD to B Port	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 100 Ω , C ₄ = 300pF	25	35	ns
		$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	16	25	ns
tрzнв	Propagation Delay from 3-State to a Logical "1" from	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 300pF	22	35	ns
	CD to B Port	$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	14	25	ns
	TRANSMIT RECEIV	E MODE SPECIFICATIONS			
^t TRL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	23	35	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	22	35	ns
t _{RTL}	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	26	35	ns
^t RTH	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 0, R ₃ = 300Ω, C ₂ = 5pF	27	35	ns

Notes: 1. All typical values given are for $V_{\rm CC}=5.0{\rm V}$ and ${\rm T_A}=25{\rm ^{o}C}$. 2. Only one output at a time should be shorted.

FUNCTION TABLE

Inputs	Conditions		
Chip Disable	0	0	1
Transmit/Receive	0	1	х
A Port	Out	ln	HI-Z
B Port	In	Out	HI-Z

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0V, T_A = 25°C)

Parameters	Description	Test Conditions	Typ (Note 1)	Max	Unite
	A PORT DATA/	MODE SPECIFICATIONS			_
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	14	18	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	13	18	ns
^t PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	11	15	ns
t _{PHZA}	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
t _{PZLA}	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	27	35	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4$ V, $T/\overline{R} = 0.4$ V (Figure 3) $S_3 = 0$, $R_5 = 5$ k, $C_4 = 30$ pF	19	25	ns
	B PORT DATA/	MODE SPECIFICATIONS			<u> </u>
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	18	23	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
[†] PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	16	23	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
t _{PLZB}	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 15pF	13	18	ns
[†] PHZB	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
^t PZLB	Propagation Delay from 3-State to a Logical "0" from CD to B Port	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 100 Ω , C ₄ = 300pF	32	40	ns
		$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	16	22	ns
^t PZHB	Propagation Delay from 3-State to a Logical "1" from CD to B Port	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 300pF	26	35	ns
		$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	14	22	ns
	TRANSMIT RECEIV	E MODE SPECIFICATIONS			
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	30	40	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	28	40	ns
^t RTL	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 300\Omega$, $C_2 = 5pF$	31	40	ns
Р ЕТТН	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 1, R ₃ = 300Ω, C ₂ = 5pF	28	40	ns

Notes: 1. All typical values given are for $V_{CC} = 5.0 V$ and $T_A = 25 ^{\circ} C$.

2. Only one output at a time should be shorted.

DEFINITION OF FUNCTIONAL TERMS

Ag-Ag A port inputs/outputs are receiver output drivers when T/R is LOW and are transmit inputs when T/R is HIGH.

B₀-B₇ B port inputs/outputs are transmit output drivers when T/\overline{R} is HIGH and receiver inputs when T/\overline{R} is LOW.

Chip Disable forces all output drivers into 3-state when HIGH (same function as active LOW chip select, \overline{CS}).

Transmit/Receive direction control determines whether A port or B port drivers are in 3-state. With T/\overline{R} HIGH A port is the input and B port is the output. With T/\overline{R} LOW A port is the output and B port is the input.

CD

T/R

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

Note: C₁ includes test fixture capacitance.

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.

Note: C2 and C3 include test fixture capacitance.

Figure 2. Propagation Delay from T/\overline{R} to A Port or B Port.

Note: C₄ includes test fixture capacitance. Port input is in a fixed logical condition.

Figure 3. Propagation Delay from CD to A Port or B Port.

Metallization and Pad Layouts

Am73/8303

Am73/8304B

DIE SIZE .069" X .089"

DIE SIZE .069" X .089"

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am73/8303 Order Number	Am73/8304B Order Number	Package Type (Note 1)	Operating (Note 2)	Screening Level (Note 3)
DP7303J	DP7304BJ	D-20	M	C-3
DP7303JB	DP7304BJB	D-20	М	B-3
DP8303J	DP8304BJ	D-20	С	C-1
DP8303JB	DP8304BJB	D-20	C	B-1
DP8303N	DP8304BN	P-20	С	C-1
DP8303NB	DP8304BNB	P-20	C	B-1
AM7303X AM8303X	AM7304BX AM8304BX	Dice Dice	M C	Visual inspection to MIL-STD-883 Method 2010B.

Notes:

- 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads.

 2. C = 0 to 70°C, V_{CC} = 4.75 to 5.25V, M = -55 to +125°C, V_{CC} = 4.50 to 5.50V.

 3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.