Am73/8307 • Am73/8308

Octal Three-State Bidirectional Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC} 1.15V V_{OH} interfaces with TTL, MOS, and CMOS
- 48mA, 300pF bus drive capability
- Am73/8307 has inverting tranceivers
- Am73/8308 has noninverting transceivers
- Separate TRANSMIT and RECEIVE Enables
- 20 pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8307 and Am73/8308 are 8-bit, 3-state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

Separate TRANSMIT and RECEIVE Enables are provided for microprocessor system with separated read and write control bus lines.

The output high voltage (V_{OH}) is specified at $V_{CC}-1.15V$ minimum to allow interfacing with MOS, CMOS, TTL, ROM RAM, or microprocessors.

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Supply Voltage	7.0V
Input Voltage	5.5V
Output Voltage	5.5V
Lead Temperature (Soldering, 10 seconds)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

Paramete	ECTRICAL CHARAC ers Descripti		over operating temperating Test Cor			Min	Typ (Note 1)	Max	Units	
			A PORT (A ₀ -A ₇)		•				
V _{IH}	Logical "1" Input Voltage		$\overline{T} = 0.8V, \overline{R} = 2.0V$			2.0			Volts	
V _{IL}	Logical "0" Input Voltage		$\overline{T} = 0.8V, \overline{R} = 2.0V$		COMIL			0.8	16-14-	
٧IL	Logical o input voltage		1 = 0.6V, N = 2.0V		MIL			0.7	Volts	
	Logical "T" Output Valtage		T = 2.0V, Ā = 0.8V	I _{OH} = -	0.4mA	V _{CC} -1.15	V _{CC} -0.7		1/	
V _{OH}	Logical "1" Output Voltage		1 = 2.0V, n = 0.6V	1 _{OH} = -		2.7	3.95		Volts	
1/	Lasiant "0" Outset Vallage		$\overline{T} = 2.0V, \overline{R} = 0.8V$	I _{OL} = 8r			0.3	0.4		
V OL	Logical "0" Output Voltage			'L I _{OL} = 16	imA	T	0.35	0.50	Volts	
los	Output Short Circuit Current	!	\overline{T} = 2.0V, \overline{R} = 0.8V, V_O = V_{CC} = MAX, Note 2	OV,		-10	-38	-75	mA	
l _{IH}	Logical "1" Input Current		$\overline{T} = 0.8V$, $\overline{R} = 2.0V$, $V_1 = 2$.7V			0.1	80	μА	
I _I	Input Current at Maximum I	nput Voltage	$\overline{T} = \overline{R} = 2.0V, V_{CC} = MAX$		X	T		1	mA	
I _{IL}	Logical "0" Input Current		$\overline{T} = 0.8V$, $\overline{R} = 2.0V$, $V_1 = 0$.4V			-70	-200	μА	
V _C	Input Clamp Voltage		$\overline{T} = \widetilde{R} = 2.0V$, $I_{IN} = -12mA$				-0.7	-1.5	Volts	
	Output/Input 3-State Curren		$\overline{T} = \overline{R} = 2.0V$ $V_O = 0.4V$		4V			-200	μА	
I _{OD}	Output/input 3-State Current	1	1 - H - 2.0V	$V_0 = 4.0$			1	80	μΑ	
			B PORT (B ₀ -B ₇)						
V _{IH}	Logical "1" Input Voltage		\overline{T} = 2.0V, \overline{R} = 0.8V			2.0			Volts	
	Logical "O" Input Valtage		T = 2.0V, R = 0.8V		COM'L			0.8	1/-14-	
v_{IL}	Logical "0" Input Voltage		1 = 2.0V, H = 0.6V		MIL	1		0.7	Volts	
V _{OH}	Logical "1" Output Voltage			I _{OH} = -	0.4mA	V _{CC} -1.15	V _{CC} -0.8		+	
		$\overline{T} = 0.8V, \overline{R} = 2.0V$	I _{OH} = -		2.7	3.9		Volts		
				I _{OH} = -		2.4	3.6		1	
V _{OL}	Logical "0" Output Voltage		$\overline{T} = 0.8V, \overline{A} = 2.0V$ $I_{OL} = 2$	I _{OL} = 20			0.3	0.4	Volts	
				I _{OL} = 48			0.4	0.5		
los	Output Short Circuit Current	i i	T - 0.8V P - 2.0V V 0V		-25	-50	-150	mA		
I _{IH}	Logical "1" Input Current		$\overline{T} = 2.0V, \ \overline{R} = 0.8V, \ V_1 = 2$.7V			0.1	80	μΑ	
կ	Input Current at Maximum I	nput Voltage	$\overline{T} = \overline{R} = 2.0V$, $V_{CC} = MAX$	VI = VCC MA	κ			1	mA	
I _{IL}	Logical "0" Input Current		$\overline{T} = 2.0V, \overline{R} = 0.8V, V_1 = 0$.4V			-70	-200	μΑ	
V _C	Input Clamp Voltage		$\overline{T} = \overline{R} = 2.0V$, $I_{IN} = -12m$	١			-0.7	-1.5	Volts	
1	Output/input 3-State Curren		T = R = 2.0V	V _O = 0.4	4V			-200		
OD	Odiput/input 3-State Curren		$V_{O} = 4.0V$					200	μΑ	
			CONTROL INPUTS	T, R				,		
V _{IH}	Logical "1" Input Voltage					2.0			Volts	
					COM'L	1		0.8	Volts	
V _{IL}	Logical "0" Input Voltage		MIL				0.7	VOILS		
I _{IH}	Logical "1" Input Current		V _I = 2.7V		•		0.5	20	μА	
I _I	Input Current at Maximum I	nput Voltage	V _{CC} = MAX, V _I = V _{CC} MAX				1.0	mA		
	Logical "0" Input Current V _I = 0.4V			Ā		-0.1	-0.25	mA		
IL.			V _I = 0.4V			-0.25	-0.5	1 "		
V _C	Input Clamp Voltage		I _{IN} = -12mA				-0.8	-1.5	Valts	
			POWER SUPPLY CUP	RENT						
		A 70/0007	$T = \overline{R} = 2.0V, V_1 = 2.0V, V_{CC} = MAX$			1	70	100		
		Am73/8307	$\overline{T} = 0.4V$, $V_{INA} = \overline{R} = 2.0V$, $V_{CC} = MAX$			100	150	mA.		
I _{CC}	Power Supply Current	A70/000C	$\overline{T} = \overline{R} = 2.0V, V_1 = 0.4V, V_2 = 0.4V$				70	100		
	Am73/8308		$\overline{T} = V_{\text{INA}} = 0.4V, \ \overline{R} = 2.0V, \ V_{\text{CC}} = \text{MAX}$				90	140	ma	

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25^{\circ}C$)

arameter	Description	Test Conditions	Тур	Max	Units
	A PORT DATA/M	ODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	\overline{T} = 2.4V, \overline{R} = 0.4V (Figure A) R_1 = 1k, R_2 = 5k, C_1 = 30pF	8	12	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	\overline{T} = 2.4V, \overline{R} = 0.4V (Figure A) R_1 = 1k, R_2 = 5k, C_1 = 30pF	11	16	ns
[†] PLZA	Propagation Delay from a Logical "0" to 3-State from \vec{R} to A Port	B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF	10	15	ns
t _{PHZA}	Propagation Delay from a Logical "1" to 3-State from R to A Port	B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLA	Propagation Delay from 3-State to a Logical "0" from $\overline{\mathbf{R}}$ to A Port	B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 30$ pF	25	35	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from $\overline{\bf R}$ to A Port	B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	24	35	ns
	B PORT DATA/N	IODE SPECIFICATIONS			
^t PDHLB	Propagation Delay to a Logical "0" from A Port to B Port	$\overline{T} = 0.4V$, $\overline{R} = 2.4V$ (Figure A) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$	12	18	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	8	12	ns
t _{POLHB}	Propagation Delay to a Logical "1" from A Port to B Port	$\overline{T} = 0.4V, \overline{R} = 2.4V \text{ (Figure A)}$ $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	15	23	ns
, 52, 15		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	9	14	ns
t _{PL} ZB	Propagation Delay from a Logical "0" to 3-State from T to B Port	A_0 to $A_7 = 2.4V$, $\overline{R} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	13	18	ns
t _{PHZB}	Propagation Delay from a Logical "1" to 3-State from T to B Port	A_0 to $A_7 = 0.4V$, $R = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLB	Propagation Delay from 3-State to a Logical "0" from T to B Port	A ₀ to A ₇ = 2.4V, \vec{R} = 2.4V (Figure B) \vec{S}_3 = 1, \vec{R}_5 = 100 Ω , \vec{C}_4 = 300pF	32	40	ns
		$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	18	25	ns
t _{PZHB}	Propagation Delay from 3-State to a Logical "1" from	A_0 to $A_7 = 0.4V$, $\overline{R} = 2.4V$ (Figure B) $\overline{S_3} = 0$, $R_5 = 1k$, $C_4 = 300pF$	25	35	ns
'PZHB	T to B Port	$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	16	25	ns

FUNCTION TABLE

Control Inputs		Resulting Conditions		
Transmit Receive		A Port	B Port	
1	0	Out	ln	
0	1	In	Out	
1	1	3-State 3-Sta		
0	0	Both Active*		

^{*}This is not an intended logic condition and may cause oscillations.

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25$ °C)

Parameter	Description	Test Conditions	Тур	Max	Units
	A PORT DATA/	MODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	\overline{T} = 2.4V, \overline{R} = 0.4V (Figure A) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	14	18	ns
t _{PDLHA}	Propagation Delay to a Logical "1" from B Port to A Port	$\overline{T} = 2.4V, \overline{R} = 0.4V$ (Figure A) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	13	18	ns
[†] PLZA	Propagation Delay from a Logical "0" to 3-State from $\overline{\textbf{R}}$ to A Port	B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	11	15	ns
^t PHZA	Propagation Delay from a Logical "1" to 3-State from $\overline{\mbox{\bf R}}$ to A Port	B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
^t PZLA	Propagation Delay from 3-State to a Logical "0" from $\widetilde{\mathbf{R}}$ to A Port	B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	24	35	ns
^t PZ HA	Propagation Delay from 3-State to a Logical "1" from $\overline{\bf R}$ to A Port	B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	21	30	ns
	B PORT DATA/	MODE SPECIFICATIONS			
tPDHLB	Propagation Delay to a Logical "0" from A Port to B Port	$\overline{T} = 0.4V$, $\overline{R} = 2.4V$ (Figure A) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$	18	23	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
^t PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	$\overline{T} = 0.4V, \ \overline{R} = 2.4V \ (Figure A)$ $R_1 = 100\Omega, \ R_2 = 1k, \ C_1 = 300pF$	16	23	ns
		$R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$	11	18	ns
^t PLZB	Propagation Delay from a Logical "0" to 3-State from \overline{T} to B Port	A_0 to $A_7 = 0.4V$, $\overline{R} = 2.4V$ (Figure B) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	13	18	ns
^t PHZB	Propagation Delay from a Logical "1" to 3-State from T to B Port	A_0 to $A_7 = 2.4V$, $\overline{R} = 2.4V$ (Figure B) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLB	Propagation Delay from 3-State to a Logical "0" from \overline{T} to B Port	A_0 to $A_7 = 0.4$ V, $\overline{R} = 2.4$ V (Figure B) $S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300$ pF	25	35	ns
		$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	17	25	ns
t _{PZHB}	Propagation Delay from 3-State to a Logical "1" from \overline{T} to B Port	A_0 to $A_7 = 2.4$ V, $\overrightarrow{R} = 2.4$ V (Figure B) $S_3 = 0$, $R_5 = 1$ k, $C_4 = 300$ pF	24	35	ns
		$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	17	25	ns

DEFINITION OF FUNCTIONAL TERMS

A ₀ -A ₇	A port inputs/outputs are receiver output drivers when
	Receive is LOW and Transmit is HIGH, and are
	transmit inputs when Receive is HIGH and Transmit
	is LOW

B₀-B₇ B port inputs/outputs are transmit output drivers when Transmit is LOW and Receive is HIGH, and are receiver inputs when Transmit is HIGH and Receive is LOW.

Receive

Transmit, These controls determine whether A port and B port drivers are in 3-state. With both Transmit and Receive HIGH both ports are in 3-state. Transmit and Receive both LOW activate both drivers and may cause oscillations. This is not an intended logic condition. With Transmit HIGH and Receive LOW A port is the output and B port is the input. With Transmit LOW and Receive HIGHB port is the output and A port is the input.

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

10% to 90%

Note: C₁ includes test fixture capacitance

Figure A. Propagation Delay from A Port to B Port or from B Port to A Port

Note: C₄ includes test fixture capacitance. Port input is in a fixed logical condition. See AC table.

Figure B. Propagation Delay to/from Three-State from \overline{R} to A Port and \overline{T} to B Port

20

Metallization and Pad Layouts

Am73/8307

Am73/8308

DIE SIZE .069" X .089"

DIE SIZE .069" X .089"

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range and screening level.

Am73/8307 Order Number	Am73/8308 Order Number	Package Type (Note 1)	Operating Range (Note 2)	Screening Level (Note 3)
DP7307J	DP7308J	D-20	M	C-3
DP7307JB	DP7308JB	D-20	M	B-3
DP8307J /	DP8308J —	D-20	С	C-1
DP8307JB /	DP8308JB	D-20	С	B-1
DP8307N <	DP8308N	P-20	С	C-1
DP8307NB /	DP8308NB	P-20	С	B-1
AM7307X /	AM7308X AM8308X	Dice Dice	M C	Visual Inspection to MIL-STD-883 Method 20103

Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flatpack. Number following letter is number of leads.

2. C = 0 to 70° C, $V_{CC}=4.75$ to 5.25V, M = -55 to $+125^{\circ}$ C, $V_{CC}=4.50$ to 5.50V. 3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.