Am73/8307 • Am73/8308 ### Octal Three-State Bidirectional Bus Transceivers ### DISTINCTIVE CHARACTERISTICS - 8-bit bidirectional data flow reduces system package count - 3-state inputs/outputs for interfacing with bus-oriented systems - PNP inputs reduce input loading - V_{CC} 1.15V V_{OH} interfaces with TTL, MOS, and CMOS - 48mA, 300pF bus drive capability - Am73/8307 has inverting tranceivers - Am73/8308 has noninverting transceivers - Separate TRANSMIT and RECEIVE Enables - 20 pin ceramic and molded DIP package - Low power 8mA per bidirectional bit - Advanced Schottky processing - Bus port stays in hi-impedance state during power up/down - 100% product assurance screening to MIL-STD-883 requirements ### GENERAL DESCRIPTION The Am73/8307 and Am73/8308 are 8-bit, 3-state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading. Separate TRANSMIT and RECEIVE Enables are provided for microprocessor system with separated read and write control bus lines. The output high voltage (V_{OH}) is specified at $V_{CC}-1.15V$ minimum to allow interfacing with MOS, CMOS, TTL, ROM RAM, or microprocessors. ### ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired) | Storage Temperature | -65 to +150°C | |--|---------------| | Supply Voltage | 7.0V | | Input Voltage | 5.5V | | Output Voltage | 5.5V | | Lead Temperature (Soldering, 10 seconds) | 300°C | ### **ELECTRICAL CHARACTERISTICS** The Following Conditions Apply Unless Otherwise Noted: | Paramete | ECTRICAL CHARAC
ers Descripti | | over operating temperating Test Cor | | | Min | Typ
(Note 1) | Max | Units | | |-----------------|---|--|---|-------------------------|-------|-----------------------|----------------------|-------|--------|--| | | | | A PORT (A ₀ -A ₇ |) | | • | | | | | | V _{IH} | Logical "1" Input Voltage | | $\overline{T} = 0.8V, \overline{R} = 2.0V$ | | | 2.0 | | | Volts | | | V _{IL} | Logical "0" Input Voltage | | $\overline{T} = 0.8V, \overline{R} = 2.0V$ | | COMIL | | | 0.8 | 16-14- | | | ٧IL | Logical o input voltage | | 1 = 0.6V, N = 2.0V | | MIL | | | 0.7 | Volts | | | | Logical "T" Output Valtage | | T = 2.0V, Ā = 0.8V | I _{OH} = - | 0.4mA | V _{CC} -1.15 | V _{CC} -0.7 | | 1/ | | | V _{OH} | Logical "1" Output Voltage | | 1 = 2.0V, n = 0.6V | 1 _{OH} = - | | 2.7 | 3.95 | | Volts | | | 1/ | Lasiant "0" Outset Vallage | | $\overline{T} = 2.0V, \overline{R} = 0.8V$ | I _{OL} = 8r | | | 0.3 | 0.4 | | | | V OL | Logical "0" Output Voltage | | | 'L I _{OL} = 16 | imA | T | 0.35 | 0.50 | Volts | | | los | Output Short Circuit Current | ! | \overline{T} = 2.0V, \overline{R} = 0.8V, V_O = V_{CC} = MAX, Note 2 | OV, | | -10 | -38 | -75 | mA | | | l _{IH} | Logical "1" Input Current | | $\overline{T} = 0.8V$, $\overline{R} = 2.0V$, $V_1 = 2$ | .7V | | | 0.1 | 80 | μА | | | I _I | Input Current at Maximum I | nput Voltage | $\overline{T} = \overline{R} = 2.0V, V_{CC} = MAX$ | | X | T | | 1 | mA | | | I _{IL} | Logical "0" Input Current | | $\overline{T} = 0.8V$, $\overline{R} = 2.0V$, $V_1 = 0$ | .4V | | | -70 | -200 | μА | | | V _C | Input Clamp Voltage | | $\overline{T} = \widetilde{R} = 2.0V$, $I_{IN} = -12mA$ | | | | -0.7 | -1.5 | Volts | | | | Output/Input 3-State Curren | | $\overline{T} = \overline{R} = 2.0V$ $V_O = 0.4V$ | | 4V | | | -200 | μА | | | I _{OD} | Output/input 3-State Current | 1 | 1 - H - 2.0V | $V_0 = 4.0$ | | | 1 | 80 | μΑ | | | | | | B PORT (B ₀ -B ₇ |) | | | | | | | | V _{IH} | Logical "1" Input Voltage | | \overline{T} = 2.0V, \overline{R} = 0.8V | | | 2.0 | | | Volts | | | | Logical "O" Input Valtage | | T = 2.0V, R = 0.8V | | COM'L | | | 0.8 | 1/-14- | | | v_{IL} | Logical "0" Input Voltage | | 1 = 2.0V, H = 0.6V | | MIL | 1 | | 0.7 | Volts | | | V _{OH} | Logical "1" Output Voltage | | | I _{OH} = - | 0.4mA | V _{CC} -1.15 | V _{CC} -0.8 | | + | | | | | $\overline{T} = 0.8V, \overline{R} = 2.0V$ | I _{OH} = - | | 2.7 | 3.9 | | Volts | | | | | | | | I _{OH} = - | | 2.4 | 3.6 | | 1 | | | V _{OL} | Logical "0" Output Voltage | | $\overline{T} = 0.8V, \overline{A} = 2.0V$ $I_{OL} = 2$ | I _{OL} = 20 | | | 0.3 | 0.4 | Volts | | | | | | | I _{OL} = 48 | | | 0.4 | 0.5 | | | | los | Output Short Circuit Current | i i | T - 0.8V P - 2.0V V 0V | | -25 | -50 | -150 | mA | | | | I _{IH} | Logical "1" Input Current | | $\overline{T} = 2.0V, \ \overline{R} = 0.8V, \ V_1 = 2$ | .7V | | | 0.1 | 80 | μΑ | | | կ | Input Current at Maximum I | nput Voltage | $\overline{T} = \overline{R} = 2.0V$, $V_{CC} = MAX$ | VI = VCC MA | κ | | | 1 | mA | | | I _{IL} | Logical "0" Input Current | | $\overline{T} = 2.0V, \overline{R} = 0.8V, V_1 = 0$ | .4V | | | -70 | -200 | μΑ | | | V _C | Input Clamp Voltage | | $\overline{T} = \overline{R} = 2.0V$, $I_{IN} = -12m$ | ١ | | | -0.7 | -1.5 | Volts | | | 1 | Output/input 3-State Curren | | T = R = 2.0V | V _O = 0.4 | 4V | | | -200 | | | | OD | Odiput/input 3-State Curren | | $V_{O} = 4.0V$ | | | | | 200 | μΑ | | | | | | CONTROL INPUTS | T, R | | | | , | | | | V _{IH} | Logical "1" Input Voltage | | | | | 2.0 | | | Volts | | | | | | | | COM'L | 1 | | 0.8 | Volts | | | V _{IL} | Logical "0" Input Voltage | | MIL | | | | 0.7 | VOILS | | | | I _{IH} | Logical "1" Input Current | | V _I = 2.7V | | • | | 0.5 | 20 | μА | | | I _I | Input Current at Maximum I | nput Voltage | V _{CC} = MAX, V _I = V _{CC} MAX | | | | 1.0 | mA | | | | | Logical "0" Input Current V _I = 0.4V | | | Ā | | -0.1 | -0.25 | mA | | | | IL. | | | V _I = 0.4V | | | -0.25 | -0.5 | 1 " | | | | V _C | Input Clamp Voltage | | I _{IN} = -12mA | | | | -0.8 | -1.5 | Valts | | | | | | POWER SUPPLY CUP | RENT | | | | | | | | | | A 70/0007 | $T = \overline{R} = 2.0V, V_1 = 2.0V, V_{CC} = MAX$ | | | 1 | 70 | 100 | | | | | | Am73/8307 | $\overline{T} = 0.4V$, $V_{INA} = \overline{R} = 2.0V$, $V_{CC} = MAX$ | | | 100 | 150 | mA. | | | | I _{CC} | Power Supply Current | A70/000C | $\overline{T} = \overline{R} = 2.0V, V_1 = 0.4V, V_2 = 0.4V$ | | | | 70 | 100 | | | | | Am73/8308 | | $\overline{T} = V_{\text{INA}} = 0.4V, \ \overline{R} = 2.0V, \ V_{\text{CC}} = \text{MAX}$ | | | | 90 | 140 | ma | | ### AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25^{\circ}C$) | arameter | Description | Test Conditions | Тур | Max | Units | |--------------------|--|---|-----|-----|-------| | | A PORT DATA/M | ODE SPECIFICATIONS | | | | | ^t PDHLA | Propagation Delay to a Logical "0" from B Port to A Port | \overline{T} = 2.4V, \overline{R} = 0.4V (Figure A)
R_1 = 1k, R_2 = 5k, C_1 = 30pF | 8 | 12 | ns | | ^t PDLHA | Propagation Delay to a Logical "1" from B Port to A Port | \overline{T} = 2.4V, \overline{R} = 0.4V (Figure A)
R_1 = 1k, R_2 = 5k, C_1 = 30pF | 11 | 16 | ns | | [†] PLZA | Propagation Delay from a Logical "0" to 3-State from \vec{R} to A Port | B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF | 10 | 15 | ns | | t _{PHZA} | Propagation Delay from a Logical "1" to 3-State from R to A Port | B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$ | 8 | 15 | ns | | [†] PZLA | Propagation Delay from 3-State to a Logical "0" from $\overline{\mathbf{R}}$ to A Port | B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1$ k, $C_4 = 30$ pF | 25 | 35 | ns | | ^t PZHA | Propagation Delay from 3-State to a Logical "1" from $\overline{\bf R}$ to A Port | B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$ | 24 | 35 | ns | | | B PORT DATA/N | IODE SPECIFICATIONS | | | | | ^t PDHLB | Propagation Delay to a Logical "0" from
A Port to B Port | $\overline{T} = 0.4V$, $\overline{R} = 2.4V$ (Figure A) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$ | 12 | 18 | ns | | | | $R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$ | 8 | 12 | ns | | t _{POLHB} | Propagation Delay to a Logical "1" from
A Port to B Port | $\overline{T} = 0.4V, \overline{R} = 2.4V \text{ (Figure A)}$ $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$ | 15 | 23 | ns | | , 52, 15 | | $R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$ | 9 | 14 | ns | | t _{PL} ZB | Propagation Delay from a Logical "0" to 3-State from T to B Port | A_0 to $A_7 = 2.4V$, $\overline{R} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$ | 13 | 18 | ns | | t _{PHZB} | Propagation Delay from a Logical "1" to 3-State from T to B Port | A_0 to $A_7 = 0.4V$, $R = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$ | 8 | 15 | ns | | [†] PZLB | Propagation Delay from 3-State to a Logical "0" from T to B Port | A ₀ to A ₇ = 2.4V, \vec{R} = 2.4V (Figure B)
\vec{S}_3 = 1, \vec{R}_5 = 100 Ω , \vec{C}_4 = 300pF | 32 | 40 | ns | | | | $S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$ | 18 | 25 | ns | | t _{PZHB} | Propagation Delay from 3-State to a Logical "1" from | A_0 to $A_7 = 0.4V$, $\overline{R} = 2.4V$ (Figure B)
$\overline{S_3} = 0$, $R_5 = 1k$, $C_4 = 300pF$ | 25 | 35 | ns | | 'PZHB | T to B Port | $S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$ | 16 | 25 | ns | ### **FUNCTION TABLE** | Control Inputs | | Resulting Conditions | | | |------------------|---|----------------------|--------|--| | Transmit Receive | | A Port | B Port | | | 1 | 0 | Out | ln | | | 0 | 1 | In | Out | | | 1 | 1 | 3-State 3-Sta | | | | 0 | 0 | Both Active* | | | ^{*}This is not an intended logic condition and may cause oscillations. ### AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25$ °C) | Parameter | Description | Test Conditions | Тур | Max | Units | |---------------------------|--|--|-----|-----|-------| | | A PORT DATA/ | MODE SPECIFICATIONS | | | | | ^t PDHLA | Propagation Delay to a Logical "0" from B Port to A Port | \overline{T} = 2.4V, \overline{R} = 0.4V (Figure A)
R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF | 14 | 18 | ns | | t _{PDLHA} | Propagation Delay to a Logical "1" from B Port to A Port | $\overline{T} = 2.4V, \overline{R} = 0.4V$ (Figure A)
R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF | 13 | 18 | ns | | [†] PLZA | Propagation Delay from a Logical "0" to 3-State from $\overline{\textbf{R}}$ to A Port | B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$ | 11 | 15 | ns | | ^t PHZA | Propagation Delay from a Logical "1" to 3-State from $\overline{\mbox{\bf R}}$ to A Port | B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$ | 8 | 15 | ns | | ^t PZLA | Propagation Delay from 3-State to a Logical "0" from $\widetilde{\mathbf{R}}$ to A Port | B_0 to $B_7 = 0.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$ | 24 | 35 | ns | | ^t PZ HA | Propagation Delay from 3-State to a Logical "1" from $\overline{\bf R}$ to A Port | B_0 to $B_7 = 2.4V$, $\overline{T} = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$ | 21 | 30 | ns | | | B PORT DATA/ | MODE SPECIFICATIONS | | | | | tPDHLB | Propagation Delay to a Logical "0" from A Port to B Port | $\overline{T} = 0.4V$, $\overline{R} = 2.4V$ (Figure A) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$ | 18 | 23 | ns | | | | $R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$ | 11 | 18 | ns | | ^t PDLHB | Propagation Delay to a Logical "1" from A Port to B Port | $\overline{T} = 0.4V, \ \overline{R} = 2.4V \ (Figure A)$ $R_1 = 100\Omega, \ R_2 = 1k, \ C_1 = 300pF$ | 16 | 23 | ns | | | | $R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$ | 11 | 18 | ns | | ^t PLZB | Propagation Delay from a Logical "0" to 3-State from \overline{T} to B Port | A_0 to $A_7 = 0.4V$, $\overline{R} = 2.4V$ (Figure B)
$S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$ | 13 | 18 | ns | | ^t PHZB | Propagation Delay from a Logical "1" to 3-State from T to B Port | A_0 to $A_7 = 2.4V$, $\overline{R} = 2.4V$ (Figure B)
$S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$ | 8 | 15 | ns | | [†] PZLB | Propagation Delay from 3-State to a Logical "0" from \overline{T} to B Port | A_0 to $A_7 = 0.4$ V, $\overline{R} = 2.4$ V (Figure B) $S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300$ pF | 25 | 35 | ns | | | | $S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$ | 17 | 25 | ns | | t _{PZHB} | Propagation Delay from 3-State to a Logical "1" from \overline{T} to B Port | A_0 to $A_7 = 2.4$ V, $\overrightarrow{R} = 2.4$ V (Figure B) $S_3 = 0$, $R_5 = 1$ k, $C_4 = 300$ pF | 24 | 35 | ns | | | | $S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$ | 17 | 25 | ns | ### **DEFINITION OF FUNCTIONAL TERMS** | A ₀ -A ₇ | A port inputs/outputs are receiver output drivers when | |--------------------------------|--| | | Receive is LOW and Transmit is HIGH, and are | | | transmit inputs when Receive is HIGH and Transmit | | | is LOW | B₀-B₇ B port inputs/outputs are transmit output drivers when Transmit is LOW and Receive is HIGH, and are receiver inputs when Transmit is HIGH and Receive is LOW. ## Receive Transmit, These controls determine whether A port and B port drivers are in 3-state. With both Transmit and Receive HIGH both ports are in 3-state. Transmit and Receive both LOW activate both drivers and may cause oscillations. This is not an intended logic condition. With Transmit HIGH and Receive LOW A port is the output and B port is the input. With Transmit LOW and Receive HIGHB port is the output and A port is the input. # SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS 10% to 90% Note: C₁ includes test fixture capacitance Figure A. Propagation Delay from A Port to B Port or from B Port to A Port Note: C₄ includes test fixture capacitance. Port input is in a fixed logical condition. See AC table. Figure B. Propagation Delay to/from Three-State from \overline{R} to A Port and \overline{T} to B Port 20 ### Metallization and Pad Layouts ### Am73/8307 Am73/8308 DIE SIZE .069" X .089" DIE SIZE .069" X .089" #### ORDERING INFORMATION Order the part number according to the table below to obtain the desired package, temperature range and screening level. | Am73/8307
Order Number | Am73/8308
Order Number | Package
Type
(Note 1) | Operating
Range
(Note 2) | Screening
Level
(Note 3) | |---------------------------|---------------------------|-----------------------------|--------------------------------|---| | DP7307J | DP7308J | D-20 | M | C-3 | | DP7307JB | DP7308JB | D-20 | M | B-3 | | DP8307J / | DP8308J — | D-20 | С | C-1 | | DP8307JB / | DP8308JB | D-20 | С | B-1 | | DP8307N < | DP8308N | P-20 | С | C-1 | | DP8307NB / | DP8308NB | P-20 | С | B-1 | | AM7307X / | AM7308X
AM8308X | Dice
Dice | M
C | Visual Inspection
to MIL-STD-883
Method 20103 | Notes: 1. P = Molded DIP, D = Hermetic DIP, F = Flatpack. Number following letter is number of leads. 2. C = 0 to 70° C, $V_{CC}=4.75$ to 5.25V, M = -55 to $+125^{\circ}$ C, $V_{CC}=4.50$ to 5.50V. 3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.