SI/CSI

TOUCH CONTROL HALOGEN LAMP DIMMER

FEATURES:

- Touch or pushbutton control of incandescent lamps and transformer-coupled halogen lamps
- Transformer can be Magnetic or Electronic
- Direct replacement for P/N SLB 0587
- Automatic safety shutdown
- PLL synchronization allows use as a Wall Switch
- Three operating modes
- Extension input for remote activation
- $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ AC line frequency
- +5V Power Supply (Vdd - Vss)
- LS7631, LS7632 (DIP); LS7631-S, LS7632-S (SOIC)

APPLICATIONS:

Electronic dimmers for wall switch control of ceiling mounted lighting, foot switch control of large floor lamps and hand switch control of table lamps.

BACKGROUND AND GENERAL DESCRIPTION:

A typical electronic dimmer may not operate properly with the inductive load encountered when driving a transformer-coupled low-voltage halogen lamp. The inductive load can cause a phenomenon called half-waving, wherein the triac fires in alternate half-cycles only, which may lead to the thermal destruction of the load transformer. The problems encountered in driving an inductive load are addressed by the LS7631/LS7632 CMOS ICs as follows:

1. Compensation for delayed triac cut-off.

When a trigger pulse is due to occur at a conduction angle which coincides with the on-state of the triac, the trigger pulse is delayed until the triac has turned off. This eliminates the underlying cause of half-waving.
2. Compensation for delayed triac turn-on.

At the set conduction angle, a triac trigger pulse of $130.2 \mu \mathrm{~s}(60 \mathrm{~Hz})$ is issued by the IC. If the triac fails to fire, a second trigger pulse of $260.4 \mu \mathrm{~s}$ width is issued 1 ms later as a second attempt to fire the triac during the same half-cycle.

3. Safety-shutdown.

If the frequency of occurrences of the delayed cut-off and delayed turn-on exceeds a preset threshold, a shutdown is initiated by turning off the triac trigger pulses. The safetyshutdown threshold value is accumulated in a 4-bit Up/Down counter. The count increments for every occurrence of delayed cut-off or delayed turn-on and decrements once every 8 SYNC pulses (AC line cycles). The counter will not decrement below zero. If the count reaches 15 , the safety-shut-down is effected.

PIN ASSIGNMENT - TOP VIEW

INPUT/OUTPUT DESCRIPTION:

VdD (Pin 1) Supply voltage positive terminal.
Vss (Pin 7) Supply voltage negative terminal.
MODE (Pin 2) - See Table 1
Both LS7631 and LS7632 can operate in 3 different modes.
The 3-state MODE input selects the operating modes:
Vss = Mode 0; Float = Mode 1; VDD = Mode 2
CAP (Pin 3) - PLL filter capacitor input. See Figure 6.
SYNC (Pin 4) - See Figure 6
The AC line frequency is applied to this input. All internal timings are synchronized to the AC phase through a PLL circuit. The Load On/Off status information is also derived from this input.

$\overline{\text { SENS }}$ (Pin 5) - See Table 1

A Logic 0 applied to this input alters the TRIG output either by turning it on, turning it off or by changing its conduction angle. Specifically which action takes place is dependent on the type of activation of the SENS input, namely SHORT or LONG touch and the prior state of TRIG output.

EXT (Pin 6)

Same functionality as the $\overline{\text { SENS }}$ input, except that a Logic 1 is the active level at this input. EXT input is intended to be operated from a remote site with long cable connection, when noise can be expected. The sampling method used at this input makes it less sensitive to noise.

$\overline{\text { TRIG (Pin 8) }}$

The TRIG output is a low level pulse occurring once every halfcycle of the AC and is intended to drive the gate of a triac in series with the load. The conduction angle, \varnothing, of the TRIG pulse can be varied by means of LONG and SHORT touches at either the SENS or the EXT input.

The functional differences between LS7631 and LS7632 are:
LS7631 - When a LONG touch is applied, the dimming direction automatically reverses whenever maximum or minimum conduction angles are reached.
LS7632 - When a LONG touch is applied, the dimming stops whenever maximum or minimum conduction angles are reached. In order to change dimming levels from maximum or minimum, LONG touch must be removed and reapplied. The purpose of this feature is to allow the user to positively locate maximum and minimum conduction angles.

LS7632 NOTE: If the User applies a LONG Touch when the TRIG Conduction Angle is within a "few" degrees of Maximum or Minimum, the TRIG Conduction Angle can move to Maximum or Minimum and stop without the User being able to observe a change in brightness. Therefore, the User should be instructed that if no change in brightness is observed in response to a LONG Touch, the LONG Touch should be removed and reapplied in order to produce a change in brightness.

TABLE 1

MODE	SHORT TOUCH		LONG TOUCH		DIMMING REVERSAL (Note 5)
	PRE-TOUCH Ø	POST-TOUCH Ø	PRE-TOUCH Ø	POST-TOUCH Ø	
0	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { MAX(Note 1) } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF/MIN } \\ & \text { MAX } \\ & \text { INTERMEDIATE } \end{aligned}$	Varies up from MIN Varies down from MAX Varies from INTERMEDIATE	N/A N/A NO
1	OFF ON	MEMORY (Notes 2, 3) OFF	OFF MIN MAX INTERMEDIATE	Varies from memory (Notes 2, 3,4) Varies up from MIN Varies down from MAX Varies from INTERMEDIATE	YES N/A N/A YES
2	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { MAX (Note 1) } \\ & \text { OFF } \end{aligned}$	$\begin{aligned} & \text { OFF/MIN } \\ & \text { MAX } \\ & \text { INTERMEDIATE } \end{aligned}$	Varies up from MIN Varies down from MAX Varies from INTERMEDIATE	N/A N/A YES

Note 1: A soft turn-on is produced by slewing up the conduction angle, \varnothing, from minimum at the rate of $1.4^{\circ} / 4.17 \mathrm{~ms}(60 \mathrm{~Hz})$.
There are a total of 84 discrete values of \varnothing.
Note 2: A soft turn-on is produced by slewing up ø, from minimum to memory. Upon power-up the memory value is defaulted to maximum conduction angle.
Note 3: "Memory" refers to the conduction angle, \varnothing, which existed prior to the current off-state.
Note 4: A soft turn-on is produced by slewing up ø from minimum to memory upon which the dimming is started.
Note 5: NO = Dimming direction does not reverse from prior dimming direction.
YES = Dimming direction does reverse from prior dimming direction. N/A = Does not apply.

ABSOLUTE MAXIMUM RATINGS:

PARAMETER	SYMBOL	VALUE	UNIT
DC supply voltage		+7	V
Any input voltage	VDD - Vss	Vss -0.3 to VDD +0.3	V
Operating temperature	TA	0 to +90	${ }^{\circ} \mathrm{C}$
Storage temperature	TsTG	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS: ($\mathrm{TA}=+25^{\circ} \mathrm{C}$, all voltages referenced to Vss . VDD $=+5 \mathrm{~V}$ unless otherwise noted.)						
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
Supply voltage	Vdd	4.5	5.0	5.5	V	-
Supply current	IDD	-	300	400	$\mu \mathrm{A}$	Output unloaded $\mathrm{VDD}=5.5 \mathrm{~V}$
SYNC Lo	VISL	-	-	2.1	V	-
SYNC Hi	VISH	2.9	-	-	V	-
EXT, SENS Lo	VIEL	-	-	1.5	V	-
EXT, SENS Hi	Vieh	3.5	-	-	V	-
TRIG Lo	Vol	-	0.2	-	V	-
TRIG Hi	VOH	-	5.0	-	V	-
$\overline{\text { TRIG Sink Current }}$	ITSNK	35	-	-	mA	VOTRIG $=2.5 \mathrm{~V}$

TIMING CHARACTERISTICS (See Figures 2, 3 and 4):

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
SYNC Frequency	fs	40	-	70	Hz	-
SHORT Touch	Tsı	42	-	333	ms	60 Hz
	Tsı	50	-	400	ms	50 Hz
LONG Touch	Ts2	342	-	infinite	ms	60 Hz
	Ts2	410	-	infinite	ms	50 Hz
TRIG pulse width	Tw	-	130.2	-	$\mu \mathrm{s}$	60 Hz
	Tw	-	156.2	-	$\mu \mathrm{s}$	50 Hz
Conduction Angle	\varnothing	41	-	158	deg	-
\varnothing incremental steps (Note 1)	$\Delta \varnothing$	-	1.4	-	deg	-
Soft-on slew rate	Ss	-	1.4	-	deg/4.17ms	60 Hz
	Ss	-	1.4	-	deg/5ms	50 Hz
A0 to A1/A2 to A0 slew rate	SAA	-	1.4	-	deg/33.3ms	60 Hz
(Note 2)	SAA	-	1.4	-	deg/40ms	50 Hz
A1 to B1/B2 to A2 slew rate	Sba	-	1.4	-	deg/66.7ms	60 Hz
(Note 3)	Sba	-	1.4	-	deg/80ms	50 Hz
B1 to B2 delay	TbD	-	500	-	ms	60 Hz
(Note 4)	TbD	-	600	-	ms	50 Hz

Note 1: Total number of steps $=83$.
Note 2: Number of steps from A0 to A1, or A2 to $A 0=68$.
Note 3: Number of steps from A1 to B1 or B2 to A2 = 15 .
Note 4: \varnothing is at minimum between B1 and B2. TbD is applicable for LS7631 only.
For LS7632 when minimum \varnothing is reached, dimming direction reverses only if the LONG Touch is terminated and reapplied.

FIGURE 2. TRIG OUTPUT CONDUCTION ANGLE, \varnothing

REPLACEMENT FOR P/N SLB 0587

LS7631 and LS7632 can be used in place of the SLB 0587 without modifying the application circuit recommended by the manufacturer of that IC.

FIGURE 3. LS7631 TRIG, \varnothing vs TOUCH (SENS OR EXT)

 R6 R5

TOUCH
 PLATE

NOTES

1. All circuits connected by broken lines are optional.
2. C 6 is used only with electronic extension and R7 is used only with a pushbutton.
3. Connection between Pin 6 \& Pin 7 should be broken when EXT is used.
4. As a precaution, transformer should have thermal protection.

$\mathrm{C} 1=0.15 \mu \mathrm{~F}, 200 \mathrm{~V}$	$\mathrm{C} 5=100 \mu \mathrm{~F}, 12 \mathrm{~V}$	$\mathrm{R} 4=1 \mathrm{M} \Omega$ to $5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
$* \mathrm{C} 1=0.15 \mu \mathrm{~F}, 400 \mathrm{~V}$	$\mathrm{C} 6=0.1 \mu \mathrm{~F}, 12 \mathrm{~V}$	(Select for Sensitivity)
$\mathrm{C} 2=0.15 \mu \mathrm{~F}, 200 \mathrm{~V}$	$\mathrm{R} 1=270 \Omega, 1 / 2 \mathrm{~W}$	$\mathrm{R}, \mathrm{R} 6=2.7 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
$* \mathrm{C} 2=0.082 \mu \mathrm{~F}, 400 \mathrm{~V}$	$* \mathrm{R} 1=1 \mathrm{k} \Omega, 1 \mathrm{~W}$	$* \mathrm{R}, \mathrm{R} 6=4.7 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
$\mathrm{C} 3=0.02 \mu \mathrm{~F}, 12 \mathrm{~V}$	$\mathrm{R} 2=680 \Omega, 1 / 4 \mathrm{~W}$	$\mathrm{R}=150 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$\mathrm{C} 4=0.002 \mu \mathrm{~F}, 12 \mathrm{~V}$	$* \mathrm{R} 2=1.5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$	$\mathrm{R}=62 \Omega, 1 / 4 \mathrm{~W}$
$*=$ component change for 220 VAC	$\mathrm{R} 3=1.5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$	$\mathrm{D} 1=1 \mathrm{~N} 4148$

$R 4=1 \mathrm{M} \Omega$ to $5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
(Select for Sensitivity)
$1.76=2.7 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
$R 7=150 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$R 8=62 \Omega, 1 / 4 \mathrm{~W}$
$\mathrm{D} 1=1 \mathrm{~N} 4148$

Z = 5.6V, 1 W (Zener) T = Q4004L4 Typical Triac (1)

* T = Q5003L4 Typical Triac (1) $L=100 \mu \mathrm{H}$ (RFI Filter)
* $\mathrm{L}=200 \mu \mathrm{H}$ (RFI Filter)
(1) For loads greater than 6A, use an alternistor

EXTENSIONS: All switching and dimming functions can be implemented by utilizing the EXT input. Use a pushbutton or the electronic switch in conjunction with a Touch Plate as shown in Figure 7. When the plate is touched, a logic high level is generated at the EXT input of the IC for both halfcycles of the line frequency. (See Figure 6)

APPLICATION EXAMPLE:

A typical implementation of the light dimmer circuit is shown in Fig. 6. Here the brightness of the lamp is set by touching the touch plate. The function of different components are as follows:

- The 5V DC supply for the chip is provided by Z, D1, R1, C2 and C5.
- R2 and C4 generate the filtered signal for the SYNC input for synchronizing the internal PLL with the line frequency.
- R3 and C6 act as a filter circuit for the electronic extension. If extensions are not used, the EXT input (Pin 6) should be tied to Vss (Pin 7).
- R4, R5 and R6 set up the sensitivity of the SENS input.
- C3 is the filter capacitor for the internal PLL.
- R8 provides current limiting and isolation between the chip output and the triac gate.
- C1 and L are RFI filter circuits.

