Single/Dual 180MHz, 350V/us Rail-to-Rail Input and Output Low Distortion Op Amps

feATURES

- -3 dB Bandwidth: $320 \mathrm{MHz}, A_{V}=1$
- Gain-Bandwidth Product: $180 \mathrm{MHz}, A_{V} \geq 10$
- Slew Rate: 350V/us
- Wide Supply Range: 2.5V to 12.6V
- Large Output Current: 85 mA

■ Low Distortion, 5MHz: -90dBc

- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail

■ Input Offset Voltage, Rail-to-Rail: 2.5mV Max

- Common Mode Rejection: 89dB Typ
- Power Supply Rejection: 87dB Typ
- Open-Loop Gain: 100V/mV Typ
- Shutdown Pin: LT1809
- Single in 8-Pin S0 and 6-Pin SOT-23 Packages
- Dual in 8-Pin SO and MSOP Packages
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Driving A/D Converters
- Low Voltage Signal Processing
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Video Line Driver
$\overline{\mathbf{\Omega}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTIOn

The LT ${ }^{\circledR}$ 1809/LT1810 are single/dual low distortion rail-to-rail input and output op amps with a $350 \mathrm{~V} / \mu \mathrm{s}$ slew rate. These amplifiers have a -3 dB bandwidth of 320 MHz at unity-gain, a gain-bandwidth product of $180 \mathrm{MHz}\left(\mathrm{A}_{V} \geq 10\right)$ and an 85 mA output current to fit the needs of low voltage, high performance signal conditioning systems.

The LT1809/LT1810 have an input range that includes both supply rails and an output that swings within 20 mV of either supply rail to maximize the signal dynamic range in low supply applications.

The LT1809/LT1810 have very low distortion (-90 dBc) up to 5 MHz that allows them to be used in high performance data acquisition systems.

The LT1809/LT1810 maintain their performance for supplies from 2.5 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.

The LT1809 is available in the 8 -pin S0 package with the standard op amp pinout and the 6-pin SOT-23 package. The LT1810 features the standard dual op amp pinout and is available in 8 -pin SO and MSOP packages. These devices can be used as a plug-in replacement for many op amps to improve input/output range and performance.

TYPICAL APPLICATION

High Speed ADC Driver

Distortion vs Frequency

LT1809/LT1810

ABSOLUTG MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 12.6 V	Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Voltage (Note 2) .. $\mathrm{V}_{\text {S }}$	Junction Temperature $150^{\circ} \mathrm{C}$
Input Current (Note 2) $\pm 10 \mathrm{~mA}$	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3) Indefinite	Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	$\begin{aligned} & \text { LT1809CS6 } \\ & \text { LT1809IS6 } \end{aligned}$		LT1809CS8 LT1809IS8
	S6 PART MARKING		S8 PART MARKING
	LTKY LTUF		$\begin{aligned} & 1809 \\ & 1809 \end{aligned}$
	ORDER PART NUMBER		ORDER PART NUMBER
	LT1810CMS8 LT1810IMS8		LT1810CS8 LT1810IS8
	MS8 PART MARKING		S8 PART MARKING
	LTRF LTTQ		$\begin{aligned} & 1810 \\ & 18101 \end{aligned}$

Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{\text {CM }}=V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {LT1809 SO-8 } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 3.0 \\ & 3.0 \end{aligned}$	mV mV mV mV
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Shift	$\begin{aligned} & V_{\text {CM }}=V^{-} \text {to } V^{+} \text {LT1809 SO-8 } \\ & V_{\text {CM }}=V^{-} \text {to } V^{+} \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)			0.7	6	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	-27.5	$\begin{array}{r} 1.8 \\ -13 \end{array}$	8	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\left.\Delta\right\|_{B}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		14.8	35.5	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\text {SHDN }}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
los	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 1.2 \\ 4 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		0.25	5.2	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{gathered} 25 \\ 4 \\ 15 \end{gathered}$	$\begin{aligned} & 80 \\ & 10 \\ & 42 \\ & \hline \end{aligned}$		V / mV V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 66 \\ & 61 \end{aligned}$	$\begin{aligned} & 82 \\ & 78 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 82 \\ & 78 \end{aligned}$		dB dB
	Input Common Mode Range		V ${ }^{-}$		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	71	87		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	65	87		dB
	Minimum Supply Voltage (Note 6)			2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$		$\begin{gathered} 12 \\ 50 \\ 180 \end{gathered}$	$\begin{gathered} \hline 50 \\ 120 \\ 375 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=25 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 20 \\ 80 \\ 330 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ 180 \\ 650 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 45 \\ & \pm 35 \end{aligned}$	$\begin{aligned} & \pm 85 \\ & \pm 70 \\ & \hline \end{aligned}$		mA mA
Is	Supply Current per Amplifier			12.5	17	mA
	Supply Current, Shutdown	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V} \overline{\text { SHDN }}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V} \overline{\text { SHDN }}=0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.55 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.90 \end{aligned}$	mA mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN Pin Current }}$	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 420 \\ & 220 \end{aligned}$	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$V^{\text {SHDN }}=0.3 \mathrm{~V}$		0.1	75	$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage Low				0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage High		$\mathrm{V}_{S}-0.5$			V
t_{ON}	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100$		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V}^{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100$		50		ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$		160		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{P-P}$		300		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		23.5		MHz
THD	Total Harmonic Distortion	$V_{S}=5 \mathrm{~V}, A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{P-P}, f_{C}=5 \mathrm{MHz}$		-86		dB
ts	Settling Time	$0.1 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=500 \Omega$		27		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150 \Omega$		0.015		\%
$\Delta \theta$	Differential Phase (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150 \Omega$		0.05		Deg

LT1809/LT1810

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {LT1809 SO-8 } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.5 \\ & 3.5 \end{aligned}$	mV mV mV mV
Vos TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 9 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \text {LT1809 S0-8 } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}, \mathrm{V}_{\text {CM }}=\mathrm{V}^{+}$	\bullet		1.2	6.5	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-30	$\begin{gathered} \hline 2 \\ -14 \end{gathered}$	10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		16	40	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.45	6	$\mu \mathrm{A}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	\bullet	$\begin{aligned} & 20 \\ & 3.5 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 8.5 \\ & 40 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{aligned} & 64 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{array}{r} 58 \\ 54 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	V-		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	70	83		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	64	83		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=25 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 12 \\ 55 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ 140 \\ 400 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=25 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} \hline 50 \\ 110 \\ 370 \end{gathered}$	$\begin{aligned} & 120 \\ & 220 \\ & 700 \\ & \hline \end{aligned}$	mV mV mV
$I_{S C}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & \pm 40 \\ & \pm 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 75 \\ & \pm 65 \end{aligned}$		mA mA
Is	Supply Current per Amplifier		\bullet		15	20	mA
	Supply Current, Shutdown	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.58 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.1 \end{aligned}$	mA mA
$\bar{\square} \overline{\text { SHDN }}$	$\overline{\text { SHDN Pin Current }}$	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V} \overline{S H D N}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V} \overline{S H D N}=0.3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 420 \\ & 220 \\ & \hline \end{aligned}$	$\begin{aligned} & 850 \\ & 550 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		2		$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage Low		\bullet			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage High		\bullet	$V_{S}-0.5$			V

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
$t_{\text {ON }}$	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100$	\bullet	80	ns
$\mathrm{I}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V}_{\overline{\text { SHDN }}}=4.5 \mathrm{~V}$ to $0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100$	\bullet	50	ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	145	MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{\text {P-P }}$	\bullet	250	$\mathrm{~V} / \mu \mathrm{S}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$	\bullet	20	MHz

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}$, 0 V ; $\mathrm{V}_{\overline{S H D N}}=0$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {LT1809 S0-8 } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\overline{V_{\text {OS }} \text { TC }}$	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \text {LT1809 S0-8 } \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	\bullet		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}, \mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$	\bullet		1.2	7	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-35	$\begin{gathered} 2 \\ -17 \end{gathered}$	12	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\triangle{ }^{\text {a }}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		19	47	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} 6 \\ 12 \end{gathered}$	$\begin{aligned} & \overline{\mu \mathrm{A}} \\ & \mu \mathrm{~A} \end{aligned}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.08 \\ 0.5 \end{gathered}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & \overline{\mu \mathrm{A}} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.58	7.5	$\mu \mathrm{A}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{L}=100 \Omega \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 17 \\ & 2.5 \\ & 10 \end{aligned}$	$\begin{gathered} \hline 60 \\ 7 \\ 35 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet	$\begin{aligned} & 63 \\ & 58 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet	$\begin{aligned} & 57 \\ & 52 \end{aligned}$	$\begin{aligned} & 78 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Input Common Mode Range		\bullet	V-		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	69	83		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	63	83		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.3	2.5	V
V_{0}	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=25 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 18 \\ 60 \\ 210 \end{gathered}$	$\begin{gathered} 70 \\ 150 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 55 \\ 120 \\ 375 \end{gathered}$	$\begin{aligned} & 130 \\ & 240 \\ & 750 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 30 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \pm 70 \\ & \pm 60 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current per Amplifier		\bullet		15	21	mA
	Supply Current, Shutdown	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.58 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{S}=3 \mathrm{~V}$, 0 V ; $\mathrm{V}_{S H D N}=0$ pen; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 420 \\ & 220 \end{aligned}$	$\begin{aligned} & 900 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$V_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$	\bullet	3		$\mu \mathrm{A}$
$\mathrm{V}_{\text {L }}$	SHDN Pin Input Voltage Low		\bullet		0.3	V
V_{H}	$\overline{\text { SHDN Pin Input Voltage High }}$		-	$V_{S}-0.5$		V
t_{ON}	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100$	\bullet	80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\widehat{S H D N}}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100$	\bullet	50		ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	140		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}_{\text {P-P }}$	\bullet	180		$\mathrm{V} / \mathrm{\mu S}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$	\bullet	14		MHz

$T_{A}=25^{\circ} \mathrm{C} . V_{S}= \pm 5 \mathrm{~V}, V_{\overline{S H D N}}=$ open, $V_{C M}=O V, V_{O U T}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {LT1809 S0-8 } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \text {LT1809 S0-8 } \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$		1	6	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 V \end{aligned}$	-30	$\begin{gathered} 2 \\ -12.5 \end{gathered}$	10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {B }}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		14.5	40	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{0 \mathrm{~S}}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		0.45	7	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$f=10 \mathrm{kHz}$		5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
$\mathrm{A}_{\mathrm{VOL}}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & 30 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 12 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	70	89		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	64	89		dB
	Input Common Mode Range		V^{-}		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	71	87		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	65	90		dB
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=25 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 12 \\ 50 \\ 180 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ 140 \\ 425 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=25 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 35 \\ & 90 \\ & 310 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 700 \end{aligned}$	mV mV mV

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=$ open, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ISC	Short-Circuit Current		± 55	± 85		mA
Is	Supply Current per Amplifier			15	20	mA
	Supply Current, Shutdown	$V^{\text {SHDN }}=0.3 \mathrm{~V}$		0.6	1.3	mA
$\overline{\text { ISHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$		420	750	$\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$		0.1	75	$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage Low				0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage High		$\mathrm{V}^{+}-0.5$			V
t_{ON}	Turn-On Time	$V^{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100$		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V} \overline{\text { SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100$		50		ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	110	180		MHz
SR	Slew Rate	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \\ & \hline \end{aligned}$	175	350		V/us
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=8 \mathrm{~V}_{\text {P-P }}$		14		MHz
THD	Total Harmonic Distortion	$A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$		-90		dB
ts	Settling Time	$0.1 \%, \mathrm{~V}_{\text {STEP }}=8 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{L}=500 \Omega$		34		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=2, R_{L}=150 \Omega$		0.01		\%
$\Delta \theta$	Differential Phase (NTSC)	$A_{V}=2, R_{L}=150 \Omega$		0.01		Deg

The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {SHON }}=0$ pen, $\mathrm{V}_{\mathrm{CM}}=\mathbf{O V}$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{O}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{\text {CM }}=V^{+} \text {LT1809 S0-8 } \\ & V_{\text {CM }}=V^{-} \text {LT1809 S0-8 } \\ & V_{\text {CM }}=V^{+} \\ & V_{\text {CM }}=V^{-} \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.25 \\ & 3.75 \\ & 3.75 \end{aligned}$	mV mV mV mV
Vos TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\text {CM }}=V^{-} \text {to } V^{+} \text {LT1809 S0-8 } \\ & V_{\text {CM }}=V^{-} \text {to } V^{+} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 3.25 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet		1.2	6.5	mV
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-37.5	$\begin{array}{r} 2.5 \\ -15 \end{array}$	12.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\triangle{ }^{\text {d }}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		17.5	50	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.1 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ 12 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 0.06 \\ 0.5 \end{gathered}$	$\begin{gathered} 2.25 \\ 6 \end{gathered}$	$\mu \mathrm{A}$
$\triangle \mathrm{l}_{0 \mathrm{~S}}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.56	8.25	$\mu \mathrm{A}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 27 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 80 \\ & 10 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	69	86		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	63	86		dB
	Input Common Mode Range		\bullet	V ${ }^{-}$		V+	V

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=$ open, $\mathrm{V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	-	70	83		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	\bullet	64	83		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} \hline 20 \\ 50 \\ 210 \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ 475 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=25 \mathrm{~mA}$	\bullet		$\begin{gathered} 60 \\ 120 \\ 370 \end{gathered}$	$\begin{aligned} & 140 \\ & 240 \\ & 750 \end{aligned}$	mV mV mV
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current		\bullet	± 45	± 75		mA
I_{5}	Supply Current per Amplifier		\bullet		17.5	25	mA
	Supply Current, Shutdown	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		0.6	1.5	mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$V_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$	\bullet		420	850	$\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		3		$\mu \mathrm{A}$
$\underline{\mathrm{V}_{\mathrm{L}}}$	$\overline{\text { SHDN }}$ Pin Input Voltage Low		\bullet			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage High		\bullet	$\mathrm{V}^{+}-0.5$			V
ton	Turn-On Time	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100$	\bullet		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V} \overline{\text { SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100$	\bullet		50		ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	85	170		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	140	300		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=8 \mathrm{~V}_{\text {P-P }}$	\bullet		12		MHz

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{S H O N}}=0$ pen, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{\text {CM }}=V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {LT1809 S0-8 } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.75 \\ & 4.25 \\ & 4.25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OS}$	Input Offset Voltage Shift	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \text {LT1809 SO-8 } \\ & V_{C M}=V^{-} \text {to } V^{+} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.00 \\ & 3.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet		1.2	7.5	mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-45	$\begin{gathered} \hline 2.8 \\ -17 \\ \hline \end{gathered}$	14	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta{ }^{\text {B }}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		19.8	59	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.1 \\ & 0.6 \end{aligned}$	$\begin{gathered} 7 \\ 14 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {OS }}$	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 0.08 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.68	10.5	$\mu \mathrm{A}$
$A_{\text {VOL }}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	\bullet	$\begin{gathered} \hline 22 \\ 3 \end{gathered}$	$\begin{aligned} & 70 \\ & 10 \end{aligned}$		V / mV V / mV

ELECTRICAL CHARACTERISTICS
The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SHDN}}=$ open, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	68	86		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet	62	86		dB
	Input Common Mode Range		\bullet	V ${ }^{-}$		V ${ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	\bullet	69	83		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	\bullet	63	83		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	$\bullet \bullet$		$\begin{gathered} 23 \\ 60 \\ 220 \end{gathered}$	$\begin{aligned} & 100 \\ & 170 \\ & 525 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$ mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=25 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 75 \\ 130 \\ 375 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 160 \\ & 260 \\ & 775 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
${ }_{\text {ISC }}$	Short-Circuit Current		\bullet	± 30	± 75		mA
Is	Supply Current per Amplifier		\bullet		19	25	mA
	Supply Current, Shutdown	$V_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$	\bullet		0.65	1.6	mA
I $\overline{\text { SHDN }}$	SHDN Pin Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		420	900	$\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		4		$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage Low		\bullet			0.3	V
V_{H}	SHDN Pin Input Voltage High		\bullet	$\mathrm{V}^{+}-0.5$			V
t_{ON}	Turn-On Time	$V_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100$	\bullet		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to $0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100$	\bullet		50		ns
GBW	Gain-Bandwidth Product	Frequency $=2 \mathrm{MHz}$	\bullet	80	160		MHz
SR	Slew Rate	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	110	220		V/us
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=8 \mathrm{~V}_{\text {P-P }}$	\bullet		8.5		MHz

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4 V , the input current should be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT1809C/LT1809I and LT1810C/LT1810I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT1809C/LT1810C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1809C/LT1810C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1809I/LT1810l are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Thermal resistance varies depending upon the amount of PC board metal attached to the V^{-}pin of the device. θ_{JA} is specified for a certain amount of $20 z$ of copper metal trace connecting to the V^{-}pin as described in the thermal resistance tables in the Applications Information section.
Note 10: Matching parameters are the difference between the two amplifiers of the LT1810.

LT1809/LT1810

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

1809 G10

$\overline{\text { SHDN }}$ Pin Current

 vs SHDN Pin Voltage

1809 G13

1809 G11
Output Short-Circuit Current vs Power Supply Voltage

1809 G14
Offset Voltage vs Output Current

Supply Current

 vs SHDN Pin Voltage

1809 G12

Open-Loop Gain

1809 G15
Warm-Up Drift vs Time (LT1809S8)

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

$\pm 5 \mathrm{~V}$ Large-Signal Response

5V Small-Signal Response

$\pm 5 \mathrm{~V}$ Small-Signal Response

Output Overdriven Recovery

5V Large-Signal Response

Shutdown Response

APPLICATIONS INFORMATION

Rail-to-Rail Characteristics

The LT1809/LT1810 have an input and output signal range that includes both negative and positive power supply. Figure 1 depicts a simplified schematic of the amplifier. The input stage is comprised of two differential amplifiers, a PNP stage Q1/Q2 and a NPN stage Q3/Q4 that are active over different ranges of common mode input voltage. The PNP differential pair is active for common mode voltages between the negative supply to approximately 1.5 V below the positive supply. As the input voltage moves closer toward the positive supply, the transistor $Q 5$ will steer the tail current l_{1} to the current mirror Q6/Q7, activating the NPN differential pair and causing the PNP pair to become inactive for the rest of the input common mode range up to the positive supply.
A pair of complementary common emitter stages Q14/Q15 form the output stage, enabling the output to swing from rail-to-rail. The capacitors C1 and C2 form the local feedback loops that lower the output impedance at high frequency. These devices are fabricated on Linear Technology's proprietary high speed complementary bipolar process.

Power Dissipation

The LT1809/LT1810 amplifiers combine high speed with large output current in a small package, so there is a need to ensure that the die's junction temperature does not exceed $150^{\circ} \mathrm{C}$. The LT1809 is housed in an S0-8 package or a 6-lead SOT-23 package and the LT1810 is in an S0-8 or 8-lead MSOP package. All packages have the V^{-}supply pin fused to the lead frame to enhance the thermal conductance when connecting to a ground plane or a large metal trace. Metal trace and plated through-holes can be used to spread the heat generated by the device to the backside of the PC board. For example, on a 3/32" FR-4 board with $20 z$ copper, a total of 660 square millimeters connected to Pin 4 of LT1810 in an S0-8 package (330 square millimeters on each side of the PC board) will bring the thermal resistance, θ_{JA}, to about $85^{\circ} \mathrm{C} / \mathrm{W}$. Without extra metal trace connected to the V^{-}pin to provide a heat sink, the thermal resistance will be around $105^{\circ} \mathrm{C} / \mathrm{W}$. More information on thermal resistance for all packages with various metal areas connecting to the V^{-}pin is provided in Tables 1,2 and 3 for thermal consideration.

Figure 1. LT1809 Simplified Schematic Diagram

APPLICATIONS InFORMATION

Table 1. LT1809 6-Lead SOT-23 Package

COPPER AREA	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMML RESISTANCE (JUNCTION-TO-AMBIENT)
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	2500	$135^{\circ} \mathrm{C} / \mathrm{W}$
270	2500	$145^{\circ} \mathrm{C} / \mathrm{W}$
100	2500	$160^{\circ} \mathrm{C} / \mathrm{W}$
20	2500	$200^{\circ} \mathrm{C} / \mathrm{W}$
0		

Device is mounted on topside.
Table 2. LT1809/LT1810 SO-8 Package

COPPER AREA			
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	BACKSIDE $\left(\mathbf{m m}^{2}\right)$	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMAL RESISTANCE (JUNCTION-TO-AMBIENT)
1100	1100	2500	$65^{\circ} \mathrm{C} / \mathrm{W}$
330	330	2500	$85^{\circ} \mathrm{C} / \mathrm{W}$
35	35	2500	$95^{\circ} \mathrm{C} / \mathrm{W}$
35	0	2500	$100^{\circ} \mathrm{C} / \mathrm{W}$
0	0	2500	$105^{\circ} \mathrm{C} / \mathrm{W}$

Device is mounted on topside.
Table 3. LT1810 8-Lead MSOP Package

COPPER AREA			
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	BACKSIDE $\left(\mathbf{m m}^{2}\right)$	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMAL RESISTANCE $($ (JUNCTION-TO-AMBIENT)
540	540	2500	$110^{\circ} \mathrm{C} / \mathrm{W}$
100	100	2500	$120^{\circ} \mathrm{C} / \mathrm{W}$
100	0	2500	$130^{\circ} \mathrm{C} / \mathrm{W}$
30	0	2500	$135^{\circ} \mathrm{C} / \mathrm{W}$
0	0	2500	$140^{\circ} \mathrm{C} / \mathrm{W}$

Device is mounted on topside.
Junction temperature T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} as follows:

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ occurs at the maximum supply current with the output voltage at half of either supply voltage (or the maximum swing is less than $1 / 2$ the supply voltage). $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ is given by:

$$
P_{D(\operatorname{MAX})}=\left(V_{S} \bullet I_{S(M A X)}\right)+\left(V_{S} / 2\right)^{2} / R_{L}
$$

Example: An LT1810 in S0-8 mounted on a $2500 \mathrm{~mm}^{2}$ area of PC board without any extra heat spreading plane
connected to its V^{-}pin has a thermal resistance of $105^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}$. Operating on $\pm 5 \mathrm{~V}$ supplies with both amplifiers simultaneously driving 50Ω loads, the worstcase power dissipation is given by:

$$
\begin{aligned}
P_{D(\text { MAX })} & =2 \cdot(10 \cdot 25 \mathrm{~mA})+2 \cdot(2.5)^{2} / 50 \\
& =0.5+0.250=0.750 \mathrm{~W}
\end{aligned}
$$

The maximum ambient temperature that the part is allowed to operate is:

$$
\begin{aligned}
T_{A} & =T_{J}-\left(P_{D(M A X)} \cdot 105^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.750 \mathrm{~W} \cdot 105^{\circ} \mathrm{C} / \mathrm{W}\right)=71^{\circ} \mathrm{C}
\end{aligned}
$$

To operate the device at higher ambient temperature, connect more metal area to the V^{-}pin to reduce the thermal resistance of the package as indicated in Table 2.

Input Offset Voltage

The offset voltage will change depending upon which input stage is active and the maximum offset voltage is guaranteed to be less than 3 mV . The change of $\mathrm{V}_{0 S}$ over the entire input common mode range (CMRR) is less than 2.5 mV on a single 5 V and 3 V supply.

Input Bias Current

The input bias current polarity depends upon a given input common voltage at whichever input stage is operating. When the PNP input stage is active, the input bias currents flow out of the input pins and flow into the input pins when the NPN input stage is activated. Because the input offset current is less than the input bias current, matching the source resistances at the input pin will reduce total offset error.

Output

The LT1809/LT1810 can deliver a large output current, so the short-circuit current limit is set around 90 mA to prevent damage to the device. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ (refer to the Power Dissipation section) when the output is continuously short circuited. The output of the amplifier has reverse-biased diodes connected to each supply. If the output is forced

APPLICATIONS INFORMATION

beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to several hundred milliamps, no damage to the device will occur.

Overdrive Protection

When the input voltage exceeds the power supplies, two pairs of crossing diodes, D1 to D4, will prevent the output from reversing polarity. If the input voltage exceeds either power supply by 700 mV , diodes D1/D2 or D3/D4 will turn on, keeping the output at the proper polarity. For the phase reversal protection to perform properly, the input current must be limited to less than 5 mA . If the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current.

The LT1809/LT1810's input stages are also protected against differential input voltages of 1.4 V or higher by back-to-back diodes, D5/D8, that prevent the emitter-base breakdown of the input transistors. The current in these diodes should be limited to less than 10mA when they are active. The worst-case differential input voltage usually occurs when the input is driven while the output is shorted to ground in a unity-gain configuration. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins by a pair of protection diodes on each pin that are connected to the power supplies as shown in Figure 1.

Capacitive Load

The LT1809/LT1810 is optimized for high bandwidth and low distortion applications. It can drive a capacitive load about 20 pF in a unity-gain configuration and more with higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the
output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability. Graphs on capacitive loads indicate the transient response of the amplifier when driving capacitive load with a specified series resistor.

Feedback Components

When feedback resistors are used to set up gain, care must be taken to ensure that the pole formed by the feedback resistors and the total capacitance at the inverting input does not degrade stability. For instance, the LT1809 in a noninverting gain of 2 , set up with two 1 K resistors and a capacitance of $3 p F$ (device plus PC board), will probably ring in transient response. The pole that is formed at 106MHz will reduce phase margin by 34 degrees when the crossover frequency of the amplifier is around 70 MHz . A capacitor of 3pF or higher connected across the feedback resistor will eliminate any ringing or oscillation.

$\overline{\text { SHDN }}$ Pin

The LT1809 has a $\overline{\text { SHDN }}$ pin to reduce the supply current to less than 1.25 mA . When the SHDN pin is pulled low, it will generate a signal to power down the device. If the pin is left unconnected, an internal pull-up resistor of 10k will keep the part fully operating as shown in Figure 1. The output will be high impedance during shutdown, and the turn-on and turn-off time is less than 100ns. Because the inputs are protected by a pair of back-to-back diodes, the input signal will feed through to the output during shutdown mode if the amplitude of signal between the inputs is larger than 1.4 V .

LT1809/LT1810

TYPICAL APPLICATIONS

Driving A/D Converters

The LT1809/LT1810 have a 27 ns settling time to 0.1% of a 2 V step signal and 20Ω output impedance at 100 MHz making it ideal for driving high speed A/D converters. With the rail-to-rail input and output and low supply voltage operation, the LT1809 is also desirable for single supply applications. As shown in Figure 2, the LT1809 drives a 10Msps, 12-bit ADC, the LTC1420. The lowpass filter, R3 and C 1 , reduces the noise and distortion products that might come from the input signal. High quality capacitors
and resistors, an NPO chip capacitor and metal-film surface mount resistors, should be used since these components can add to distortion. The voltage glitch of the converter, due to its sampling nature, is buffered by the LT1809 and the ability of the amplifier to settle it quickly will affect the spurious-free dynamic range of the system. Figure 2 to Figure 7 depict the LT1809 driving the LTC1420 at different configurations and voltage supplies. The FFT responses show better than 90 dB of SFDR for a $\pm 5 \mathrm{~V}$ supply, and 80 dB on a 5 V single supply for the 1.394 MHz signal.

Figure 2. Noninverting A/D Driver

1809 F03
Figure 3. 4096 Point FFT Response

TYPICAL APPLICATIONS

Figure 4. Inverting A/D Driver

Figure 6. Single Supply A/D Driver

1809 F05
Figure 5. 4096 Point FFT Response

1809 F07
Figure 7. 4096 Point FFT Response

LT1809/LT1810

TYPICAL APPLICATIONS

Single Supply Video Line Driver

The LT1809 is a wideband rail-to-rail op amp with a large output current that allows it to drive video signals in low supply applications. Figure 8 depicts a single supply video line driver with $A C$ coupling to minimize the quiescent power dissipation. Resistors R1 and R2 are used to levelshift the input and output to provide the largest signal swing. A gain of 2 is set up with R3 and R4 to restore the signal at $\mathrm{V}_{\text {OUT }}$, which is attenuated by 6 dB due to the matching of the 75Ω line with the back-terminated
resistor, R5. The back termination will eliminate any reflection of the signal that comes from the load. The input termination resistor, R_{T}, is optional-it is used only if matching of the incoming line is necessary. The values of $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are selected to minimize the droop of the luminance signal. In some less stringent requirements, the value of capacitors could be reduced. The -3dB bandwidth of the driver is about 95 MHz on 5 V supply and the amount of peaking will vary upon the value of capacitor $\mathrm{C4}$.

Figure 8. 5V Single Supply Video Line Driver

Figure 9. Video Line Driver Frequency Response

PACKAG DESCRIPTION Dimensions in incheses minilimeters unless othemisise noled.

S6 Package
6-Lead Plastic SOT-23
(LTC DWG \# 05-08-1634)

1. DIMENSIONS ARE IN MILLIMETERS
2. DIMENSIONS ARE INCLUSIVE OF PLATING
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
4. MOLD FLASH SHALL NOT EXCEED 0.254 mm
5. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)

PACKAGE DESCRIPTION Dimensions in incteses (milimemers) unless othemisis noled.

MS8 Package
8-Lead Plastic MSOP
(LTC DWG \# 05-08-1660)

Dimensions in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010 " (0.254 mm) PER SIDE

LT1809/LT1810

TYPICAL APPLICATION

Single 3V Supply, 4MHz, 4th Order Butterworth Filter

Benefiting from a low voltage supply operation, low distortion and rail-to-rail output of LT1809, a low distortion filter that is suitable for antialiasing can be built as
shown Figure 10. On a 3V supply, the filter has a passband of 4 MHz with $2.5 \mathrm{~V}_{\text {P-p }}$ signal and a stopband that is greater than 70 dB to frequency of 100 MHz .

Figure 10. Single 3V Supply, 4MHz, 4th Order Butterworth Filter

1809 F11
Figure 11. Filter Frequency Response

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1395	400MHz Current Feedback Amplifier	800V/us Slew Rate, Shutdown
LT1632/LT1633	Dual/Quad 45MHz, 45V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $1.35 \mathrm{mV} \mathrm{V}_{0 \mathrm{~S}(\mathrm{MAX})}, 70 \mathrm{~mA}$ Output Current, Max Supply Current 5.2mA per Amplifier
LT1630/LT1631	Dual/Quad 30MHz, 10V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $525 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}, 70 \mathrm{~mA}$ Output Current, Max Supply Current 4.4 mA per Amplifier
LT1806/LT1807	Single/Dual 325MHz, 140V/us Rail-to-Rail Input and Output Op Amps	High DC Accuracy, $550 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Low Noise $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Low Distortion -80 dBc at 5 MHz

