

PRELIMINARY DATA SHEET

DESCRIPTION

The LX1676 is a highly integrated maximizing regulator response. VRM power supply controller IC PWM featuring two regulator stages.

The two constant frequency voltage-mode PWM phases configured as a single biphase high current output core supply.

balances the currents in the two indication will stay valid. phases. Power loss and noise, due to 180° out of phase.

Α synchronized Transient Correction Loop† di/dt load changes, the circuit can be the lower MOSFETs. configured for droop only, overshoot only or both.

capacitor requirements

A true differential input amplifier is switching used for remote voltage sensing at the processor core.

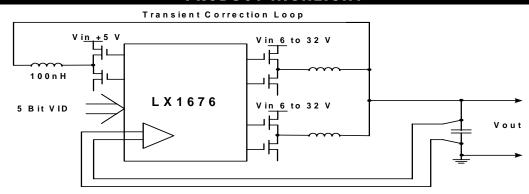
A VID code generator provides an are internal reference that will set the output voltage. This VID code can be changed during operation and the In biphase operation, the high reference will slew the output voltage to current (>25A) output is generated by its new setting at a preset rate. During a LoadSHARETM; technique that VID changes on the fly the Power Good

Current through the lower phase 1 the ESR of the input capacitors, are MOSFET will be sampled using its minimized by operating the PWMs R_{DS(ON)} for current limit and shut down.

For further protection, an over provides voltage circuit will trip at a specified exceptional control of the output setting and clamp the output by turning droop and overshoot during very high off the upper MOSFETs and turning on

The upper MOSFET drivers will use a bootstrap capacitor to provide the This architecture also minimizes upper drive voltage over the input while voltage range of 6 to 32 volts.

IMPORTANT: For the most current data, consult *MICROSEMI*'s website: http://www.microsemi.com † Patent numbers US6292378, US6285571, US6356063


KEY FEATURES

- High Current Biphase Operation
- Outputs As Low As 0.925V
- † Biphase LoadSHARETM
- † Transient Correction Loop Reduces Required Capacitance
- Differential Amplifier For Remote Voltage Sensing
- Integrated High Current **MOSFET Drivers**
- 200KHz to 1MHz Frequency Operation
- Programmable Slew Rate Control For Start-Up Sequence and VID change
- VID Changes On The Fly
- Power Good Indicator
- Short Circuit Protection
- Output Over Voltage and Under Voltage Protection
- No current-sense resistors

APPLICATIONS

- AMD Mobile AthlonTM or Duron™ Processor Core Voltage Supply
- Voltage Regulator Modules

PRODUCT HIGHLIGHT

Note: Available in Tape & Reel. Append the letter "T" to the part number. (i.e. LX1676-CLMT)

PRELIMINARY DATA SHEET

ABSOLUTE MAXIMUM RATINGS

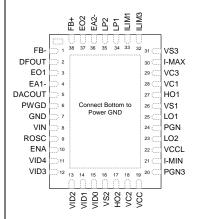
Supply Input Voltage (VCCL, VCC)	0.3V to 6.0V
Battery Input Voltage (VIN)	0.3V to 36V
Current Limit Sense (ILIM1, ILIM3)	0.3V to 36V
Topside Driver Supply Input Voltage (VC1, VC2, VC3)	3 toVSx 6.0V
Topside Driver Return Input Voltage (VS1, VS2)	5V to 36V
Differential Sense Input Voltage (FB+, FB-)	0.3V to 6.0V
VID0 – VID4, Input Voltage	0.3V to 6V
High Side Driver Peak (<500ns) Current (HO1/2, I-MAX)	<u>+</u> 1A
Low Side Driver Peak (<500ns) Sink Current (LO1/2, I-MIN)	<u>+</u> 1.5A
Operating Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering 10 seconds)	

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal. *x* denotes respective pin designator 1, 2, or 3

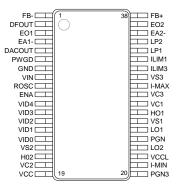
THERMAL DATA

LQ Plastic MLPQ 38-Pin

THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	8°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	35°C/W


PW Plastic TSSOP 38-Pin

THERMAL RESISTANCE-JUNCTION TO CASE, $ heta_{ extsf{JC}}$?°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	?°C/W


Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PACKAGE PIN OUT

LQ PACKAGE (Top View)

PW PACKAGE (Top View)

PRELIMINARY DATA SHEET

	FUNCTIONAL PIN DESCRIPTION
Name	Description
FB+	Differential Amplifier Positive Input – Feedback from output
FB-	Differential Amplifier Negative Input – Feedback from output
DFOUT	Differential Amplifier Output
EA1-	Phase 1 Error Amplifier Negative Input
EO1	Phase 1 Error Amplifier Output
GND	Analog Ground
ROSC	A resister to ground sets PWM frequency
ENA	Enable Input – Logic Low disables all converter phases
DACOUT	DAC Output voltage – 50uA bi-directional current source
VID4	Digital Input for VID code – Has an internal pull-up resister
VID3	Digital Input for VID code – Has an internal pull-up resister
VID2	Digital Input for VID code – Has an internal pull-up resister
VID1	Digital Input for VID code – Has an internal pull-up resister
VID0	Digital Input for VID code – Has an internal pull-up resister
PWGD	Power Good Output Pin – Open drain output pin for power good indication. High = Power Good
VCC	IC Supply Voltage. Nominal +5V
VC3	Supply for transient correction phase upper MOSFET driver, bootstrap voltage
PGN3	Power ground pin for Transient Correction Loop driver
I-MIN	Output Driver for lower Transient Correction Loop MOSFET
VS3	Low side of upper driver for Transient Correction Loop – MOSFET Driver power return
I-MAX	Output Driver for upper Transient Correction Loop MOSFET
ILIM3	Transient Correction Loop current sense – A resister sets an upper limit for over current detection and shut down.
LP1	Phase 2 differential amplifier positive input, filtered feedback from phase 1 output
EA2-	Negative Input of phase 2 integrating amplifier
EO2	Output of phase 2 integrating amplifier
LP2	Phase 2 differential amplifier negative input, filtered feedback from phase 2 output
VIN	Battery Voltage Input.
LO2	Driver Output for phase 2 lower MOSFET
VS2	Low side of upper gate driver for phase 2.
HO2	Driver Output for phase 2 upper MOSFET
VC2	Supply for phase 2 upper MOSFET driver, bootstrap voltage
PGN	Power ground pin for current sensing of lower MOSFET R _{DS(ON)} for phase 1.
LO1	Driver Output for phase 1 lower MOSFET
ILIM1	Over-Current Limit Set – A resister sets an upper limit for over current detection and shut down.
VS1	Low side of upper gate driver for phase #1.
HO1	Driver Output for phase 1 upper MOSFET
VC1	Supply for phase 1 upper MOSFET driver, bootstrap voltage
VCCL	Voltage bus for the lower MOSFET drivers. Nominal +5V

PRELIMINARY DATA SHEET

Parameter	Symbol		LX1676		Unit
Farameter	Зупівої	Min	Тур	Max	Ulli
C Input Supply Voltage	VCC	4.2		5.5	ΙV
Battery Input Voltage	VIN	5.5		35	V
Biphase Topside Driver Return Voltage	VS1, VS2	0		35	V
Transient Correction Phase Driver Return Voltage	VS3	0		5	V

PRELIMINARY DATA SHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C}$ except where otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VIN = 12V, Switching Frequency = 500KHz.

Parameter	Symbol	Test Conditions		LX1676		Units
Parameter	Symbol	Symbol Test Conditions		Тур	Max	Uni
REGULATOR						
IC Supply Current	I _{Q(VCC)}	ENA = VCC, FB+ = FB-	1	5	9	m
	IQ(VCC)	ENA = GND			1	μA
Low Side Driver Operating	I _{Q(VCCL)}	ENA = VCC, FB+ = FB-		0.5	1	m/
Current	IQ(VCCL)	21477 = 700, 1 21 = 1 2		0.0	'	1117
High Side Driver Operating	$I_{Q(VCx)}$	ENA = VCC, FB+ = FB-		2	4	m,
Current	iQ(VCX)	2101 - 100,131 - 13		_	<u> </u>	
ERROR AMPLIFIER: PHASE 1	1			1		
Input Offset Voltage	Vos	Common Mode Voltage (V _{CM}) = 1.4V	-6		6	m
Input Bias Current	I _{EA1}		-100	70	100	n/
DC Open Loop Gain		OMBB 50 IB	60	70	0.5	ql
Input Common Mode Range	V _{ICM}	CMRR > 50dB	8.0	4.0	2.5	V
Output Voltage Swing	V _{EO1(MAX)}	$I_{EA1} = 2mA$		4.0	0.5	V
Unity Gain Bandwidth	V _{EO1(MIN)}	I _{EA1} = -20uA		0.15 20	0.5	N 41
DIFFERENTIAL AMPLIFIER	UGBW			20		MI
Input Offset Voltage	Vos	V _{CM} =1.4V	-6		6	m
Gain	ADA	V _{CM} =1.4V	0.99	1	1.01	V/
Common Mode Rejection Ratio	CMRR _{DA}	0.8V < V _{CM} < 2.5V	0.99	65	1.01	d d
Input Resistance	R _{IN}	Measured at FB+ Input		30		k
Input Common Mode Range	V _{CM}	ineasured at 1 b+ input	0	30	3	/
Source / Sink Current	V CM	V _{DFOUT} = 0V		5		m
	V _{DFOUT(MAX)}			4.0		
Output Voltage Swing	V _{DFOUT} (MIN)			0.2		\
Unity Gain Bandwidth	UGBW	TEAT - 2007		10		МІ
Slew Rate	SR			5		V/
OSCILLATOR	1 0.1				1	,
Maximum Clock Frequency	f _{MAX}	R _{PWM} =10kΩ	0.9	1	1.1	М
Minimum Clock Frequency	f _{MIN}	R _{PWM} =50kΩ	180	200	220	KH
Frequency Stability	TIVIIIN	TYPWW-00132	100	4		9/
PWM OUTPUT	1				1	
		During Transient Correction Switching			100	
Maximum Duty Cycle	DC_{MAX}	Transient Correction Not switching	40		50	%
Minimum Pulse Width	t _{PWM(MIN)}	3000pF Load		60		N
Dead Time	1 77171(171117)	3000pF Load at 50% of VCCL	50	80	200	N
Ramp Amplitude		VIN = 6V		0.70		
	V_{RAMP}	VIN = 12		1.40		\
		VIN = 24 V		2.80		
PHASE 2 INTEGRATING AMPLIFIE	R					
Input Offset Voltage	Vos	V _{CM} =1.4V	-6		6	М
DC Open Loop Gain				70		D
<u> </u>	$V_{EO2(MAX)}$	$I_{EA2} = 2mA$		4.0		V
Output Voltage Swing	V _{EO2(MIN)}	$I_{EA2} = -20uA$		0.15	0.5	٧
Unity Gain Bandwidth	UGBW			20		MH

PRELIMINARY DATA SHEET

ELECTRICAL CHARACTERISTICS (CONT)

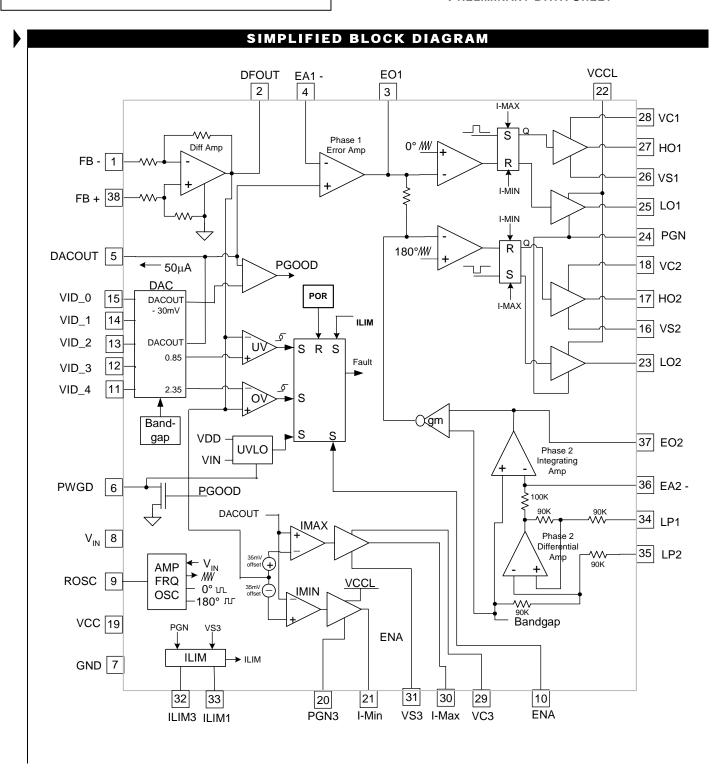
Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$ except where otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VIN = 12V, Switching Frequency = 500KHz.

Parameter	Symbol	Test Conditions		LX1676		Units
		Tool Conditions	Min	Тур	Max	0
PHASE 2 DIFFERENTIAL AMPLIFIE						
Input Offset Voltage	Vos	LP1=LP2	-6		6	m
Gain	A _{DA}		0.98	1	1.02	V/
Common Mode Rejection Ratio	CMRR _{DA}	Common Mode Voltage = 0 to 2 V		60		d
Input Resistance	R _B			180		K
Unity Gain Bandwidth	UGBW			4		MI
TRANSIENT CONTROL LOOP	•		<u>,</u>			
Voltage Droop Sense						
Propagation Delay: FB+ and				50		n
FB- to I-MAX						
Voltage Overshoot Sense						
Propagation Delay: FB+ and				50		n
FB- to I-MIN						
Voltage Droop Sense Threshold		V _{DFOUT} Rising 3000pF Load		40		n
Voltage Overshoot Sense		, i		40		
Threshold		V _{DFOUT} Falling 3000pF Load		40		n
OUTPUT DRIVERS				I.		
Driver						
Rise Time	t _{RISE}	CL = 3000pF, VCx - VSx = 5V		50		r
 Fall Time 	t _{FALL}			50		
High Side Driver Voltage:	- TALL					
[V _{HOx} - V _{VSx}]						
■ Drive High		$V_{HOx} = 20 \text{mA}, VCx - VSx = 5.0 \text{ V}$	4.8	4.9		,
■ Drive Low		$V_{HOx} = -20 \text{mA}, VCx - VSx = 5.0 \text{ V}$		0.1	0.2	
Low Side Driver Voltage:		VHOX = ZOTTE I, VOX = VOX = 0.0 V		0.1	0.2	
[V _{LOx} - V _{PGN}]						
Drive High		$V_{LOx} = 20$ mA, VCCL - VPGN = 5.0 V	4.8	4.9		'
Drive Low		$V_{LOx} = -20$ mA, VCCL - VPGN = 5.0 V	1.0	0.1	0.2	
		VCx - VSx = 5.0 V, Load = 3300pf at		0.1	0.2	
High Side Driver Current	I_{HOx}	<500nSec		1		
		VCCL - PGN = 5.0 V, Load = 3300pf at				
Lower MOSFET Driver Current	I_{LOx}	<500nSec		1.5		
PHASE 1 OVER CURRENT PROTE	CTION	<00011060		<u> </u>	<u> </u>	<u> </u>
Current Sense Bias Current	I _{ILIM1}		44	50	60	μ
Current Sense Delay	t		200	400	500	μ n
TRANSIENT CORRECTION LOOP	t _{CSD(ILIM1)}	ENT PROTECTION	200	400	300	
		LINI FROIECTION	40	50	60	
Current Sense Bias Current	I _{ILIM3}		40	50	60	μ
Current Sense Delay	t _{CSD(ILIM3)}	(15)	200	400	500	n
ENABLE INPUT / VOLTAGE IDENT	IFICATION (\	אוע) 		4.5	Ì	
Logic Low Threshold				1.5		'
Hysteresis				0.3		'
Pullup Resistance]			100]	K
POWER GOOD	•			ı		
Low Output Voltage	V_{PWGD}	$I_{PWGD} = -3mA$		0.5		,

PRELIMINARY DATA SHEET

ELECTRICAL CHARACTERISTICS (CONT)

Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$ except where otherwise noted and the following test conditions: VCC = 5V, VCCL = 5V, VIN = 12V, Switching Frequency = 500KHz.


Parameter	Symbol	I Test Conditions		LX1676		
Farameter	Symbol			Тур	Max	Units
UVLO						
VCC						
Threshold		VCC Rising		4.2		
Hysteresis				0.3		V
VIN						V
Threshold		VIN Rising		5.5		
Hysteresis		-		0.3		
OVER VOLTAGE PROTECTION						
Over Voltage Threshold	-			2.35		V
UNDER VOLTAGE PROTECTION						
Under Voltage Threshold				0.800		V
DAC						
Initial DACOLIT Acquirect		$1 \le V_{DACOUT} \le 1.4$			1	%
Initial DACOUT Accuracy		$0.925 \le V_{DACOUT} < 1$ $1.4 < V_{DACOUT} \le 2$			2	70
High Side Driver Current	I _{HOx}	VCx - VSx = 5.0 V, Load = 3300pf at < 500nSec		1		Α
Lower MOSFET Driver Current	I _{LOx}	VCCL - PGN = 5.0 V, Load = 3300pf at <500nSec		1.5		А
VID Logic High Threshold			0.5	1.3	2	V
VID Hysteresis				0.3		V

VOLTAGE IDENTIFICATION (VID) CODE

VID[4:0]	$V_{OUT}(V)$	VID[4:0]	$V_{OUT}(V)$
00000	2.000	10000	1.275
00001	1.950	10001	1.250
00010	1.900	10010	1.225
00011	1.850	10011	1.200
00100	1.800	10100	1.175
00101	1.750	10101	1.150
00110	1.700	10110	1.125
00111	1.650	10111	1.100
01000	1.600	11000	1.075
01001	1.550	11001	1.050
01010	1.500	11010	1.025
01011	1.450	11011	1.000
01100	1.400	11100	0.975
01101	1.350	11101	0.950
01110	1.300	11110	0.925
01111	Shutdown	11111	Shutdown

PRELIMINARY DATA SHEET

PRELIMINARY DATA SHEET

Typical VRM Application Typical VRM application Fig. 1 Typical VRM application Roce: (7), (5) 00 Pyt-Lonal Class of the content of the

PRELIMINARY DATA SHEET

THEORY OF OPERATION

GENERAL DESCRIPTION

The LX1676 is a voltage-mode pulse-width modulation controller integrated circuit. The PWM frequency is programmable from 200kHz to 1MHz. The device has external compensation, for more flexibility of the loop response. The LX1676 also makes use of a true differential input amplifier for remote voltage sensing at the actual processor core. This is a very important feature now that the core voltages are in the 1 to 2 volt range. The reference for the biphase PWM output is a 5 bit VID code DAC. The VID code DAC can generate a reference voltage of 0.925 to 2.000 volts. The output of the DAC is a bi-directional current source and is connected to the DACOUT pin. Connecting a capacitor from this pin to ground will generate a linear ramp, which will determine the rate of change of the output voltage. The rate of change can be set so that the current required to charge the total output capacitance is below the maximum current limit trip point. This will allow VID changes on the fly without tripping the over current sensor.

POWER UP AND INITIALIZATION

At power up, the LX1676 monitors the supply voltage to VCC and Vin, Before both supplies reach their undervoltage lock-out (UVLO) thresholds, a power on reset condition will prevent soft-start from beginning, the oscillator is disabled and all MOSFETs are kept off.

SOFT-START

Once the supplies are above the UVLO threshold and the Enable pin is brought high, the soft-start capacitor begins to be charged up by the reference DAC through the DACOUT pin. The capacitor voltage at the DACOUT pin rises as a linear ramp. The DACOUT pin is connected to the error amplifier's non-inverting input which controls the output voltage. The output voltage will follow the DACOUT pin voltage.

Phase 3 (hysteretic phase) is disabled during soft-start.

OVER-CURRENT PROTECTION

There are two separate current limit circuits in the LX1676. One looks at the phase 1 lower MOSFET drain current and the second looks at the phase 3 upper MOSFET drain current. Both circuits have a 400 nS delay before a current limit command is issued to the current limit latch, once set the current limit latch will hold all three phases off until it is reset.

The Over-Current Protection is disabled during positive VID changes.

To reset the current limit latch either the enable command (ENA) must be cycled low then back high or the input power must cycle off and then back on.

OVER-CURRENT PROTECTION (PHASE 1)

The phase 1 current limit uses the RDS(ON) of the lower MOSFET, together with a resistor (RSET) to set the actual current limit point. The current limit comparator senses the current 400 nS after the lower MOSFET is switched on. A current source supplies a current (ISET), of $50\mu A$ which flows into RSET and determines the current limit trip point. The value of RSET is selected to set the current limit for the application.

Phase 1 RSET is calculated by:

$$R_{SET} = \frac{ILimit \bullet R_{DS(ON)}}{50 \,\mu\text{A}}$$

The current limit comparator will trip when the drop across RSET equals the drop across the lower MOSFET RDS(ON)., at this time the comparator outputs a signal to set the I limit latch and removes the enable command. The Over-Current sensing is done on phase 1 only because phase 2 current is always being forced to equal the phase 1 current, therefore the current trip point is set at half of the desired current limit. For an output current limit setting of 30 amps, the current trip point for phase 1 is set at 15 amps.

When the phase 1 over current latch is set all three phases are disabled, all MOSFETs are turned off.

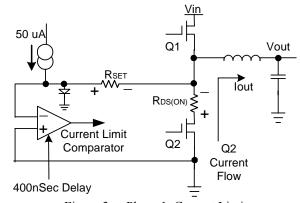


Figure 3: Phase 1 Current Limit

The delay before current limit is activated will result in current pulses exceeding the calculated values during the delay period if a short circuit is applied during that time.

PRELIMINARY DATA SHEET

THEORY OF OPERATION (CONT)

OVER-CURRENT PROTECTION (PHASE 3)

The hysteretic phase has its own current limit protection because with it's very fast response time with a 100 nH inductor the upper MOSFET cannot be allowed to stay on during an output short circuit condition. The phase 3 overcurrent sensing uses the RDS(ON) of the upper MOSFET with a resistor RSET to determine the over current limit point. A current source draws 50uA through RSET which determines the required drop across the MOSFET RDS(ON) to initiate a current limit condition.

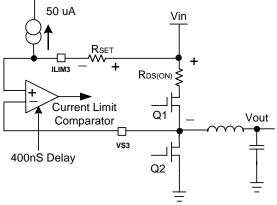


Figure 4 Phase 3 Current Limit

Phase 3 RSET is calculated by:

$$Rset = \frac{ILimit \bullet RDSon}{50uA}$$

OVER VOLTAGE PROTECTION

An over voltage protection circuit monitors the output voltage and will latch all three phases off if an over voltage condition (greater than 2.35 V) is detected. Both MOSFETs for phase 3 will be held off and the lower MOSFETs for phase 1 and 2 will be held on to discharge the output capacitor till the output voltage drops below .85 volt, at .85 volts all MOSFETs will be turned off.

FAULT LOGIC

There are a number of possible states that will cause a fault condition that will disable the output MOSFET drivers. A fault condition will be caused by the following:

- Enable (ENA) pin being pulled low
- Over-current condition on either phase 1 or phase 3
- Over Voltage output ≥ 2.35 V
- Under Voltage output < 0.85V

In all cases except Over Voltage all MOSFET drivers will be disabled. For an Over Voltage fault the lower MOSFETs for phase 1 and 2 will be held on to discharge the bulk capacitance on the output till a lower limit of .85 volts is reached then all MOSFETS will be turned off.

To reset a fault it necessary to cycle the ENA pin low then back high or remove and reapply the input voltage VIN

The Under Voltage monitor is not enabled until the output voltage has ramped up to the level commanded by the DACOUT pin and the PWGD output in high.

PWM FREQUENCY

An external resistor sets the PWM frequency from the ROSC pin to ground.

The equation for ROSC is:

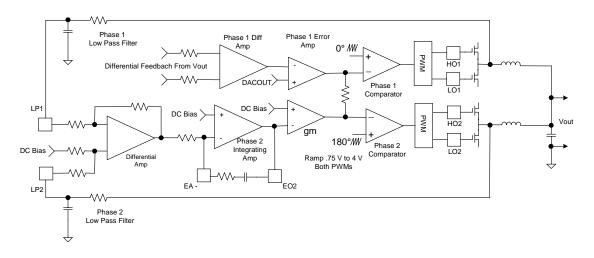
$$ROSC = \frac{1}{(K \bullet f) + 100e - 9}$$

where ROSC is in $K\Omega$, f is in Hz, K=105e-12

PRELIMINARY DATA SHEET

THEORY OF OPERATION (CONT)

THEORY OF OPERATION FOR A BI-PHASE, LOADSHARETM CONFIGURATION


The basic principle used in LoadSHARETM in a multiple phase buck converter topology is that if multiple, identical, inductors have the same identical voltage impressed across their leads, they must then have the same identical current passing through them. The current that we would like to balance between inductors is mainly the DC component along with as much as possible the transient current. All inductors in a multiphase buck converter topology have their output side tied together at the output filter capacitors. Therefore this side of all the inductors has the same identical voltage.

If the input side of the inductors can be forced to have the same equivalent DC potential on this lead, then they will have the same DC current flowing. To achieve this requirement, phase 1 will be the control phase that sets the output operating voltage, under normal PWM operation. To force the current of phase 2 to be equal to the current of phase 1; a second feedback loop is used. Phase 2 has a low pass filter connected from the input side of each inductor. This side of the inductors has a square wave signal that is proportional to its duty cycle. The output of each LPF is a DC (+ some AC) signal that is proportional to the magnitude and duty cycle of its respective inductor signal.

The second feedback loop will use the output of the phase 1 LPF as a reference signal for an error amplifier that will compare this reference to the output of the phase 2 LPF. This error signal will be amplified and used to control the PWM circuit of phase 2. Therefore, the duty cycle of phase 2 will be set so that the equivalent voltage potential will be forced across the phase 2 inductor as compared to the phase 1 inductor. This will force the current in the phase 2 inductor to follow and equal the phase 1 inductor current.

With the LoadSHARETM topology it is possible to imbalance the phases so that one phase will supply more current than the other under unique situations. The LX1676 will normally be used with the same supply voltages on phase 1 and 2 PWM inputs and will have equal currents in both phases.

Fig. 5 LoadSHARE Control Loop

PRELIMINARY DATA SHEET

THEORY OF OPERATION (CONT)

LOOP GAIN AUTOMATIC COMPENSATION

The ramp shown in figure 5 is automatically adjusted to keep its amplitude fixed ratio to Vin over the range of 6 to 32 V input.

This maintains a constant loop gain that is set by the feedback networks around the error amplifiers independent of PWM input voltage.

TRANSIENT CORRECTION LOOP

Phase 3 is a Transient Correction Loop that can sum a large amount of current into the output node when required by an out of range condition. The differential feedback summing amplifier is connected directly to the output terminals and has sufficient bandwidth to follow any fast changes in output voltage. The feedback error voltage is compared to the commanded reference voltage (DACOUT) by two high speed comparators, I-Max and I-Min. The other inputs of these comparators are offset from the DACOUT as shown in Fig 6. If the error in output voltage exceeds the offset in either direction the appropriate MOSFET will be turned on to force current into or out of the output node to correct the voltage error. The very low value inductor (100nH) allows large amounts of current to be forced into or out of the output node very quickly.

When the Transient Correction Loop is switching it forces the appropriate upper or lower MOSFETs in phases 1 and 2 to stay on (100% or 0% duty cycle) until the error is corrected.

The two drivers for the Transient Correction Loop have outputs (I-Max) and (I-Min) that may be used to drive a half bridge to correct for both low and high output voltage conditions. This permits pulling the output low if an overshoot occurs due to a rapid reduction in load current. With a conventional Buck regulator rapid changes in the negative direction are not possible due to the low voltage available as a forcing function.

The two outputs (I-MAX and I-MIN) are completely independent. A single MOSFET and diode can be used to correct for voltage droop only or voltage overshoot only when driven by the appropriate output. If the I-MAX driver is not used the VB3 and VS3 pins must be connected to +5 volts.

Under normal operation the Transient Correction phase is only active for a very brief time during high di/dt loads on the output.

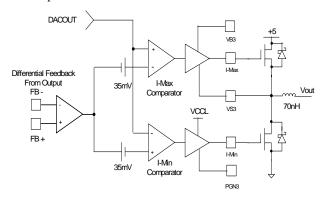


Figure 6: Phase 3 Transient Correction Loop

PRELIMINARY DATA SHEET

APPLICATION NOTE

OUTPUT INDUCTOR

The output inductor should be selected to meet the requirements of the output voltage ripple in steady-state operation and the inductor current slew-rate during transient. The peak-to-peak output voltage ripple is:

$$V_{RIPPLE} = ESR \times I_{RIPPLE}$$

where

$$\Delta I = \frac{V_{IN} - V_{OUT}}{L} \times \frac{D}{f \text{ s}}$$

 ΔI is the inductor ripple current, L is the output inductor value and ESR is the Effective Series Resistance of the output capacitor.

 ΔI should typically be in the range of 20% to 40% of the maximum output current. Higher inductance results in lower output voltage ripple, allowing slightly higher ESR to satisfy the transient specification. Higher inductance also slows the inductor current slew rate in response to the load-current step change, ΔI , resulting in more output-capacitor voltage droop. When using electrolytic capacitors, the capacitor voltage droop is usually negligible, due to the large capacitance

The inductor-current rise and fall times are:

$$T_{RISE} = L \times \frac{\Delta I}{\left(V_{IN} - V_{OUT}\right)}$$

and

$$T_{\text{fall}} = L \times \frac{\Delta I}{V_{\text{out}}}$$

The inductance value can be calculated by:

$$L = \frac{V_{IN} - V_{OUT}}{\Delta I} \times \frac{D}{f \text{ s}}$$

OUTPUT CAPACITOR

The output capacitor is sized to meet ripple and transient performance specifications. Effective Series Resistance (ESR) is a critical parameter. When a step load current occurs, the output voltage will have a step that equals the product of the ESR and the current step, ΔI . In an advanced

microprocessor power supply, the output capacitor is usually selected from ESR instead of capacitance or RMS current capability. A capacitor that satisfies the ESR requirements usually has a larger capacitance and current capability than strictly needed

The allowed ESR can be found by:

$$ESR \times (I_{RIPPLE} + \Delta I) < V_{EX}$$

Where IRIPPLE is the inductor ripple current, ΔI is the maximum load current step change, and VEX is the allowed output voltage excursion in the transient.

Electrolytic capacitors can be used for the output capacitor, but are less stable with age than tantalum capacitors. As they age, their ESR degrades, reducing the system performance and increasing the risk of failure. It is recommended that multiple parallel capacitors be used, so that, as ESR increase with age, overall performance will still meet the processor's requirements.

There is frequently strong pressure to use the least expensive components possible, however, this could lead to degraded long-term reliability, especially in the case of filter capacitors. Microsemi's demonstration boards use the CDE Polymer AL-EL (ESRE) filter capacitors, which are aluminum electrolytic, and have demonstrated reliability. The OS-CON series from Sanyo generally provides the very best performance in terms of long term ESR stability and general reliability, but at a substantial cost penalty. The CDE Polymer AL-EL (ESRE) filter series provides excellent ESR performance at a reasonable cost. Beware of off-brand, very low-cost filter capacitors, which have been shown to degrade in both ESR and general electrolytic characteristics over time.

INPUT CAPACITOR

The input capacitor and the input inductor, if used, are to filter the pulsating current generated by the buck converter to reduce interference to other circuits connected to the same 5V rail. In addition, the input capacitor provides local de-coupling for the buck converter. The capacitor should be rated to handle the RMS input current requirement. The RMS input current is:

$$I_{RMS} = I_L \sqrt{d(0.5 - d)}$$
 for $d \le 0.5$

Where I_L is the inductor current and d is the duty cycle. The maximum RMS value of $0.25I_L$ will occur when d = 25% or 75%.

PRELIMINARY DATA SHEET

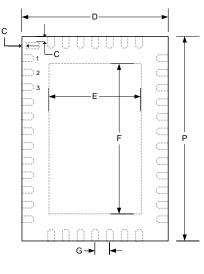
APPLICATION NOTE

SOFT-START CAPACITOR

An external soft-start capacitor is connected to the DACOUT pin and will be charged at a linear rate by the internal 50uA bi-directional current source after the UVLO circuit has been satisfied. Whenever the VID code is changed during normal operation the soft-start capacitor will determine the rate of change at the output.

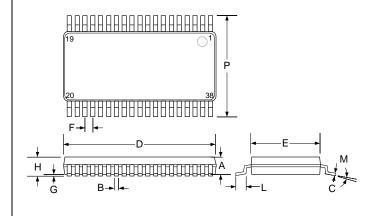
PROGRAMMING THE OUTPUT VOLTAGE

Output voltage is determined by the internal 5 bit DAC. The DAC inputs are the Voltage Identification (VID) 0-4 lines, the VID table lists the available output voltages for the corresponding VID codes.


There are no external resistor dividers to program output voltage and only the steps listed are available.

PRELIMINARY DATA SHEET

PACKAGE DIMENSIONS


LQ 38-Pin Micro Leadframe Package (MLPQ)

	1
V	· L—~~~~~~~~
—	B→ -
н	A

	MILLIN	METERS	INC	HES	
Dim	MIN	MAX	MIN MAX		
Α	0.20 REF		0.007	8 REF	
В	.18	.30	0.007	0.011	
С	.18	.18	0.007	.007	
D	5.00	BSC	.196 BSC		
E	3.00	3.25	0.118	0.127	
F	5.00	5.25	.196	.206	
G	0.50 BSC		0.019	BSC	
Н	0	0.05	0	0.019	
I	0.70	0.80	0.027	0.031	

PW 38-Pin Thin Small Shrink Outline (TSSOP)

	MILLIMETERS		INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.85	0.95	0.033	0.037	
В	0.19	0.25	0.19	0.009	
С	0.09	0.20	0.003	0.008	
D	9.60	9.80	0.378	0.390	
E	4.30	4.50	0.169	0.176	
F	0.50	BSC	0.0196 BSC		
G	0.05	0.15	0.002	0.005	
Н	_	1.10	_	0.043	
L	0.50	0.75	0.020	0.030	
M	0°	8°	0°	8°	
Р	6.25	6.50	0.246	0.256	
*LC	_	0.10	_	0.004	

Note:

 Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006") on any side. Lead dimension shall not include solder coverage.

PRELIMINARY DATA SHEET

>	NOTES

PRODUCT PRELIMINARY DATA – Information contained in this document is pre-production data, and is proprietary to Microsemi. It may not be modified in any way without the express written consent of Microsemi. Product referred to herein is not guaranteed to achieve preliminary or production status and product specifications, configurations, and availability may change at any time.