SECTION 2 SPECIFICATIONS

GENERAL CHARACTERISTICS

The DSP56002 is fabricated in high-density HCMOS with TTL compatible inputs and outputs.

MAXIMUM RATINGS

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or V_{CC}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

MOTOROLA

DSP56002 Technical Data sheet, Rev. 3

■ 6367248 0156954 090 **■**

2-1

Thermal characteristics

Table 2-1 Absolute Maximum Ratings (GND = 0 V)

Rating	Symbol	Value	Unit	
Supply Voltage	V _{CC}	-0.3 to +7.0	V	
All Input Voltages	V _{IN}	$(GND - 0.5)$ to $(V_{CC} + 0.5)$	V	
Current Drain per Pin excluding V _{CC} and GND	I	10	mA	
Operating Temperature Range	T _J	-40 to +105	°C	
Storage Temperature	T _{stg}	-55 to +150	°C	

THERMAL CHARACTERISTICS

Table 2-2 Thermal Characteristics

Characteristic	Symbol	PQFP Value ³	TQFP Value ³	TQFP Value ⁴	PGA Value ³	Unit
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	50	48	40.6	22	°C/W
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	12.4	10.8	_	6.5	°C/W
Thermal characterization parameter	$\Psi_{ m JT}$	4.0	0.16	_	N/A	°C/W

- Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal-single-sided Printed Circuit Board per SEMI G38-87 in natural convection. (SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111) Measurements were made with the parts installed on thermal test boards meeting the specification
 - 2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.
 - These are measured values. See note 1 for test board conditions.
 - These are measured values; testing is not complete. Values were measured on a non-standard fourlayer thermal test board (two internal planes) at one watt in a horizontal configuration.

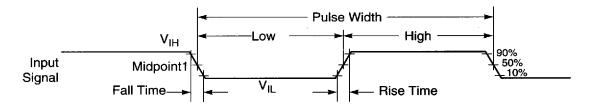
DC ELECTRICAL CHARACTERISTICS

Table 2-3 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Units
Supply Voltage	V _{CC}	4.5	5.0	5.5	V
Input High Voltage					
•EXTAL	V _{IHC}	4.0	_	V_{CC}	V
•RESET	V _{IHR}	2.5		V _{CC}	v
• MODA, MODB, MODC	V_{IHM}	3.5		V _{CC}	V
All other inputs	V_{IH}	2.0		v_{cc}	V
Input Low Voltage					
• EXTAL	V _{ILC}	-0.5		0.6	V
• MODA, MODB, MODC	V _{ILM}	-0.5		2.0	v
All other inputs	V_{IL}	-0.5	_	0.8	V
Input Leakage Current EXTAL, RESET, MODA/IRQA, MODB/IRQB, MODC/NMI, DR, BR, WT, CKP, PINIT, MCBG, MCBCLR, MCCLK, D20IN	I _{IN}	-1	_	1	μA
Tri-state (Off-state) Input Current (@ 2.4 V/0.4 V)	I _{TSI}	-10	_	10	μA
Output High Voltage (I _{OH} = -0.4 mA)	V _{OH}	2.4	_	_	V
Output Low Voltage ($I_{OL} = 3.0 \text{ mA}$) $\overline{\text{HREQ}} I_{OL} = 6.7 \text{ mA}$, TXD $I_{OL} = 6.7 \text{ mA}$	V _{OL}	_	_	0.4	V
Internal Supply Current at 40 MHz ¹	I _{CCI}		90	105	mA
• In Wait mode ²	I _{CCW}	_	12	20	mA
• In Stop mode ²	I _{CCS}	_	2	95	μA
Internal Supply Current at 66 MHz ¹	I _{CCI}	_	95	130	mA
• In Wait mode ²	I _{CCW}	_	15	25	mA
• In Stop mode ²	I _{CCS}	_	2	95	μA
Internal Supply Current at 80 MHz ¹	I _{CCI}		115	160	mA
• In Wait mode ²	I _{CCW}		18	30	mA
• In Stop mode ²	I _{CCS}	_	2	95	μA
PLL Supply Current ³				*	
• 40 MHz			1.0	1.5	mA
• 66 MHz		_	1.1	1.5	mA
• 80 MHz		_	1.2	1.8	mA
CKOUT Supply Current ⁴					
• 40 MHz		_	14	20	mA
• 66 MHz		_	28	35	mΑ
• 80 MHz		_	34	42	mA
Input Capacitance ⁵	C _{IN}	_	10	_	рF
Notes: 1 Section / Decign Considerations 1 1	1111	L		l	I F -

Notes: 1. Section 4 Design Considerations describes how to calculate the external supply current.

^{2.} In order to obtain these results all inputs must be terminated (i.e., not allowed to float).


^{3.} Values are given for PLL enabled.

^{4.} Values are given for CKOUT enabled.

^{5.} Periodically sampled and not 100% tested

AC ELECTRICAL CHARACTERISTICS

The timing waveforms in the AC Electrical Characteristics are tested with a V_{IL} maximum of 0.5 V and a V_{IH} minimum of 2.4 V for all pins, except EXTAL, $\overline{\text{RESET}},$ MODA, MODB, and MODC. These pins are tested using the input levels set forth in the DC Electrical Characteristics. AC timing specifications that are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal's transition. DSP56002 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.8 V and 2.0 V, respectively.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 2-1 Signal Measurement Reference

INTERNAL CLOCKS

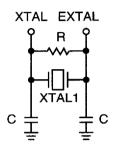
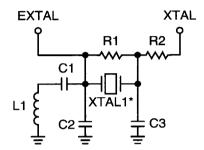

For each occurrence of T_H , T_L , T_C or I_{CYC} , substitute with the numbers in **Table 2-4**. DF and MF are PLL division and multiplication factors set in registers.

Table 2-4 Internal Clocks

Characteristics	Symbol	Expression
Internal Operation Frequency	f	
 Internal Clock High Period With PLL disabled With PLL enabled and MF ≤ 4 With PLL enabled and MF > 4 	T _H	$ET_{H} \\ (Min) 0.48 \times T_{C} \\ (Max) 0.52 \times T_{C} \\ (Min) 0.467 \times T_{C} \\ (Max) 0.533 \times T_{C}$
 Internal Clock Low Period With PLL disabled With PLL enabled and MF ≤ 4 With PLL enabled and MF > 4 	T_{L}	$\begin{array}{ccc} & \text{ET}_{\text{L}}\\ \text{(Min)} & 0.48 \times \text{T}_{\text{C}}\\ \text{(Max)} & 0.52 \times \text{T}_{\text{C}}\\ \text{(Min)} & 0.467 \times \text{T}_{\text{C}}\\ \text{(Max)} & 0.533 \times \text{T}_{\text{C}} \end{array}$
Internal Clock Cycle Time	T _C	$ET_C \times DF/MF$
Instruction Cycle Time	I _{CYC}	2×T _C


EXTERNAL CLOCK (EXTAL PIN)

The DSP56002 system clock may be derived from the on-chip crystal oscillator as shown in **Figure 2-2**, or it may be externally supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL physically unconnected to the board or socket. The rise and fall times of this external clock should be 4 ns maximum.

Fundamental Frequency Crystal Oscillator

Suggested Component Values R = 680 k Ω ± 10% C = 20 pf ± 20%

3rd Overtone Crystal Oscillator

Suggested Component Values

 $R1 = 470 \text{ k}\Omega \pm 10\%$

 $R2 = 330 \Omega \pm 10\%$

 $C1 = 0.1 \mu f \pm 20\%$

 $C2 = 26 \text{ pf} \pm 20\%$

C3 = 20 pf \pm 10% L1 = 2.37 μ H \pm 10%

XTAL = 40 MHz, AT cut, 20 pf load,

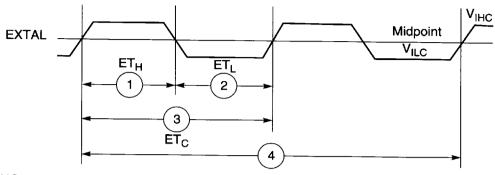
50 Ω max series resistance

Note:

- The suggested crystal source is ICM, # 433163 - 4.00 (4 MHz fundamental, 20 pf load) or # 436163 - 30.00 (30 MHz fundamental, 20 pf load).
- 2. To reduce system cost, a ceramic resonator may be used instead of the crystal. Suggested source:

 Murata-Erie #CST4.00MGW040
 (4 MHz with built-in load capacitors)

Note:


- 1. *3rd overtone crystal.
- The suggested crystal source is ICM, # 471163 - 40.00 (40 MHz 3rd overtone, 20 pf load).
- 3. R2 limits crystal current.
- 4. Reference Benjamin Parzen, <u>The Design of Crystal and Other Harmonic Oscillators</u>, John Wiley & Sons, 1983.

AA0211

Figure 2-2 Crystal Oscillator Circuits

MOTOROLA

2-6

NOTE: The midpoint is $\rm V_{ILC}$ + 0.5 ($\rm V_{IHC} - \rm V_{ILC}).$

AA0360

Figure 2-3 External Clock Timing

Table 2-5 Clock Operation

Characteristics	cteristics Symbol	40 MHz		66	MHz	80	MHz	W T
	Symbol	Min	Max	Min	Max	Min	Max	Unit
Frequency of Operation (EXTAL Pin)	E_f	0	40	0	66	0	80	MHz
Clock Input High • With PLL disabled (46.7% – 53.3% duty cycle) • With PLL enabled (42.5% – 57.5% duty cycle)	ET _H	11.7 10.5	∞ 235.5 μs	7.09 6.36	∞ 235.5 μs	5.8 5.3	∞ 235.5 µs	ns
Clock Input Low • With PLL disabled (46.7% – 53.3% duty cycle) • With PLL enabled (42.5% – 57.5% duty cycle)	ET _L	11.7 10.5	∞ 235.5 μs	7.09 6.36	∞ 235.5 μs	5.8 5.3	∞ 235.5 µs	ns
Clock Cycle Time With PLL disabled With PLL enabled	ET _C	25 25	∞ 409.6 μs			12.5 12.5	∞ 409.6 µs	ns
Instruction Cycle Time = $I_{CYC} = 2T_{C}$ • With PLL disabled • With PLL enabled	I _{CYC}	50 50	∞ 819.2 μs	30.3 30.3	∞ 819.2 μs	25 25	∞ 819.2 μs	ns
	(EXTAL Pin) Clock Input High • With PLL disabled (46.7% – 53.3% duty cycle) • With PLL enabled (42.5% – 57.5% duty cycle) Clock Input Low • With PLL disabled (46.7% – 53.3% duty cycle) • With PLL enabled (42.5% – 57.5% duty cycle) Clock Cycle Time • With PLL disabled • With PLL enabled Instruction Cycle Time = ICYC = 2TC • With PLL disabled • With PLL disabled • With PLL disabled	Frequency of Operation (EXTAL Pin) Clock Input High • With PLL disabled (46.7% – 53.3% duty cycle) • With PLL enabled (42.5% – 57.5% duty cycle) Clock Input Low • With PLL disabled (46.7% – 53.3% duty cycle) With PLL enabled (42.5% – 57.5% duty cycle) With PLL enabled (42.5% – 57.5% duty cycle) Clock Cycle Time • With PLL disabled • With PLL enabled Instruction Cycle Time = ICYC = 2TC • With PLL disabled • With PLL disabled • With PLL enabled	$ \begin{array}{ c c c c c } \hline \textbf{Characteristics} & \textbf{Symbol} \\ \hline \textbf{Min} \\ \hline \hline \textbf{Frequency of Operation} & \textbf{E}_f & \textbf{0} \\ \hline \textbf{(EXTAL Pin)} & \textbf{ET}_H & \\ \bullet \ \textbf{With PLL disabled} & \textbf{ET}_H & \\ \bullet \ \textbf{With PLL disabled} & \textbf{10.5} \\ \hline \textbf{(46.7\% - 53.3\% duty cycle)} & \textbf{10.5} \\ \hline \textbf{Clock Input Low} & \bullet \ \textbf{With PLL disabled} & \textbf{ET}_L & \\ \bullet \ \textbf{With PLL enabled} & \textbf{ET}_L & \textbf{10.5} \\ \hline \textbf{(46.7\% - 53.3\% duty cycle)} & \textbf{ET}_L & \textbf{10.5} \\ \hline \textbf{Clock Input Low} & \bullet \ \textbf{With PLL enabled} & \textbf{ET}_C & \textbf{25} \\ \hline \textbf{With PLL enabled} & \textbf{ET}_C & \textbf{25} \\ \hline \textbf{Instruction Cycle Time} & \textbf{ET}_{CYC} & \textbf{25} \\ \hline \textbf{Instruction Cycle Time} & \textbf{ICYC} & \textbf{50} \\ \hline \textbf{With PLL disabled} & \textbf{With PLL disabled} & \textbf{50} \\ \hline \hline \end{tabular} $	$ \begin{array}{ c c c c c c } \hline \textbf{Characteristics} & \textbf{Symbol} \\ \hline \textbf{Min} & \textbf{Max} \\ \hline \textbf{Frequency of Operation} & \textbf{E}_f & 0 & 40 \\ \hline \textbf{(EXTAL Pin)} & \textbf{ET}_H & & & & \\ \textbf{0} & \textbf{40} & & & \\ \textbf{Clock Input High} & \textbf{ET}_H & & & \\ \textbf{0} & \textbf{40} & & & \\ \textbf{11.7} & \textbf{0} & & \\ \textbf{With PLL disabled} & \textbf{ET}_H & & \\ \textbf{11.7} & \textbf{0} & & \\ \textbf{42.5\% - 53.3\% duty cycle} & & & \\ \textbf{10.5} & \textbf{235.5} \ \mu s \\ \textbf{Clock Input Low} & \textbf{With PLL disabled} & & \\ \textbf{42.5\% - 57.5\% duty cycle} & & & \\ \textbf{ET}_L & & & \\ \textbf{10.5} & \textbf{235.5} \ \mu s \\ \textbf{ET}_L & & \\ \textbf{10.5} & \textbf{235.5} \ \mu s \\ \textbf{ET}_C & \textbf{25} & \textbf{0} \\ \textbf{25} & \textbf{409.6} \ \mu s \\ \textbf{Instruction Cycle Time} & & \\ \textbf{Instruction Cycle Time} & & & \\ \textbf{IcyC} & \textbf{2T}_C & & \\ \textbf{With PLL disabled} & & \\ \textbf{S0} & \textbf{819.2} \ \mu s \\ \textbf{Min} & \textbf{Max} & & \\ \textbf{11.7} & \textbf{0} & & \\ \textbf{235.5} \ \mu s & \\ \textbf{25} & \textbf{409.6} \ \mu s \\ \textbf{10.5} & \textbf{235.5} \ \mu s \\ \textbf{25} & \textbf{409.6} \ \mu s \\ \textbf{10.5} & \textbf{250.6} \ \mu s \\ \textbf{25} & \textbf{30.6} \ \mu s \\ \textbf{25} & \textbf{25} & \textbf{25} \ \mu s \\ \textbf{25} & \textbf{25} \ \mu s \\ \textbf{25} & \textbf{25} \ \textbf{25}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Characteristics Symbol Min Max Min Max	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note: External Clock Input High and External Clock Input Low are measured at 50% of the input transition.

PHASE LOCK LOOP (PLL) CHARACTERISTICS

Table 2-6 Phase Lock Loop (PLL) Characteristics

Characteristics	Expression	Min	Max	Unit
VCO frequency when PLL enabled ^{1,2,3}	$MF \times E_f$	10	f	MHz
PLL external capacitor ⁴ (PCAP pin to V _{CCP})	MF × Cpcap @ MF ≤ 4 @ MF > 4	MF × 340 MF × 380	MF × 480 MF × 970	pF pF

Notes: 1

- 1. The E in ET_H , ET_L , and ET_C means external.
- 2. MF is the PCTL Multiplication Factor bits (MF0–MF11).
- 3. The maximum VCO frequency is limited to the internal operation frequency.
- 4. Cpcap is the value of the PLL capacitor (connected between PCAP pin and V_{CCP}) for MF = 1. The recommended value for Cpcap is: 400 pF for MF ≤ 4 and 540 pF for MF > 4.

RESET, STOP, MODE SELECT, AND INTERRUPT TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

WS = number of Wait States (0–15) programmed into the external bus access using BCR 1 Wait State = T_C

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing (All Frequencies)

Num	Characteristics	Min	Max	Unit
9	Delay from $\overline{\text{RESET}}$ Assertion to Address High Impedance (periodically sampled and not 100% tested).	_	26	ns
10	Minimum Stabilization Duration Internal Oscillator PLL Disabled ¹ External clock PLL Disabled ² External clock PLL Enabled ²	75000T _C 25T _C 2500T _C	_ _ _	ns ns ns
11	Delay from Asynchronous RESET Deassertion to First External Address Output (Internal Reset Deassertion)	8T _C	9T _C + 20	ns
12	Synchronous Reset Setup Time from $\overline{\text{RESET}}$ Deassertion to first CKOUT transition	8.5	T_{C}	ns
13	Synchronous Reset Delay Time from the first CKOUT transition to the First External Address Output	8T _C	8T _C + 6	ns
14	Mode Select Setup Time	21	_	ns
15	Mode Select Hold Time	0	-	ns
16	Minimum Edge-Triggered Interrupt Request Assertion Width	13		ns

DSP56002 Technical Data sheet, Rev. 3

MOTOROLA

2-8

367248 0156961 220

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing (All Frequencies) (Continued)

Num	Characteristics	Min	Max	Unit
16a	Minimum Edge-Triggered Interrupt Request Deassertion Width	13		ns
17	Delay from IRQA, IRQB, NMI Assertion to External Memory Access Address Out Valid Caused by First Interrupt Instruction Fetch Caused by First Interrupt Instruction Execution	5T _C + T _H 9T _C + T _H		ns ns
18	Delay from IRQA, IRQB, NMI Assertion to General Purpose Transfer Output Valid caused by First Interrupt Instruction Execution	11T _C + T _H	_	ns
19	Delay from Address Output Valid caused by First Interrupt Instruction Execute to Interrupt Request Deassertion for Level Sensitive Fast Interrupts ³		2 T _C + T _L + (T _C × WS) - 23	ns
20	Delay from RD Assertion to Interrupt Request Deassertion for Level Sensitive Fast Interrupts ³		$2T_C + (T_C \times WS) - 21$	ns
21	Delay from WR Assertion to Interrupt Request Deassertion for Level Sensitive Fast Interrupts ³ • WS = 0 • WS > 0	<u>-</u>	$2T_{C} - 21$ $T_{C} + T_{L} + (T_{C} \times WS) - 21$	ns ns
22	Delay from General-Purpose Output Valid to Interrupt Request Deassertion for Level Sensitive Fast Interrupts ³ —If Second Interrupt Instruction is: Single Cycle Two Cycles	_	T_{L} 31 $2T_{C} + T_{L} - 31$	ns ns
23	Synchronous Interrupt Setup Time from \overline{IRQA} , \overline{IRQB} , \overline{NMI} Assertion to the second CKOUT transition	10	T _C	ns
24	Synchronous Interrupt Delay Time from the second CKOUT transition to the First External Address Output Valid caused by the First Instruction Fetch after coming out of Wait State	13T _C + T _H	13T _C + T _H + 6	ns
25	Duration for IRQA Assertion to Recover from Stop State	12	_	ns
26	Delay from IRQA Assertion to Fetch of First Interrupt Instruction (when exiting 'Stop') ¹ Internal Crystal Oscillator Clock, OMR bit 6 = 0 Stable External Clock, OMR Bit 6 = 1 Stable External Clock, PCTL Bit 17 = 1	65548T _C 20T _C 13T _C	_ _ _	ns ns ns
	Duration of Level Sensitive IRQA Assertion to ensure interrupt service (when exiting 'Stop') ¹ • Internal Crystal Oscillator Clock, OMR bit 6 = 0 • Stable External Clock, OMR Bit 6 = 1 • Stable External Clock, PCTL Bit 17 = 1	65534T _C + T _L 6T _C + T _L 12	<u>-</u>	ns ns ns

MOTOROLA

DSP56002 Technical Data sheet. Rev. 3

2-9

■ 6367248 0156962 167 **■**

RESET, Stop, Mode Select, and Interrupt Timing

Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing (All Frequencies) (Continued)

Num	Characteristics	Min	Max	Unit
28	Delay from Level Sensitive IRQA Assertion to Fetch of First Interrupt Instruction (when exiting 'Stop') 1			
	 Internal Crystal Oscillator Clock, OMR bit 6 = 0 Stable External Clock, OMR bit 6 = 1 	65548T _C 20T _C	<u> </u>	ns ns
	 Stable External Clock, PCTL bit 17= 1 	13T _C	_	ns

Notes:

- A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:
 - after power-on reset, and
 - when recovering from Stop mode.

During this stabilization period, T_C, T_H, and T_L will not be constant. Since this stabilization period varies, a delay of 75,000 × T_C is typically allowed to assure that the oscillator is stable before executing

- 2. Circuit stabilization delay is required during reset when using an external clock in two cases:
 - after power-on reset, and
 - when recovering from Stop mode.
- 3. When using fast interrupts and $\overline{\text{IRQA}}$ and $\overline{\text{IRQB}}$ are defined as level-sensitive, then timings 19 through 22 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edgetriggered mode is recommended when using fast interrupt. Long interrupts are recommended when using Level-sensitive mode.

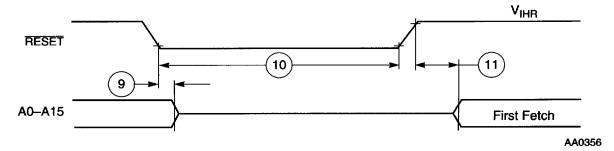


Figure 2-4 Reset Timing

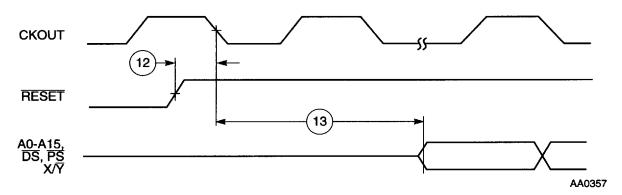


Figure 2-5 Synchronous Reset Timing

2-10 DSP56002 Technical Data sheet, Rev. 3

MOTOROLA

■ 6367248 0156963 0T3 **■**

RESET, Stop, Mode Select, and Interrupt Timing

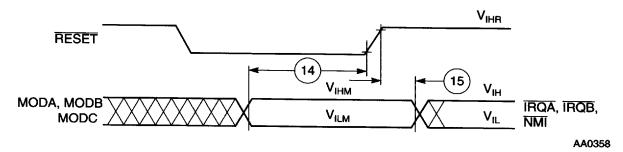


Figure 2-6 Operating Mode Select Timing

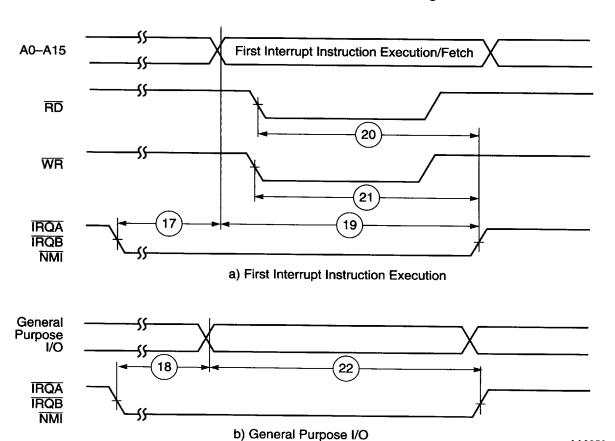


Figure 2-7 External Level-Sensitive Fast Interrupt Timing

RESET, Stop, Mode Select, and Interrupt Timing

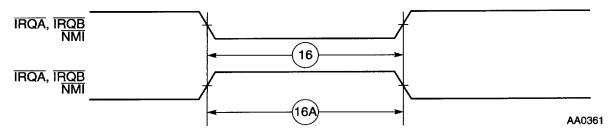


Figure 2-8 External Interrupt Timing (Negative Edge-Triggered)

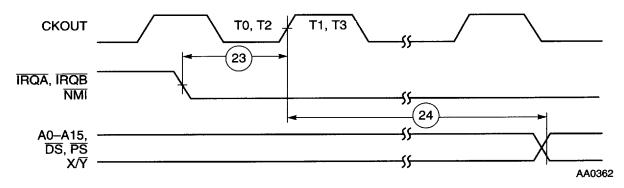


Figure 2-9 Synchronous Interrupt from Wait State Timing

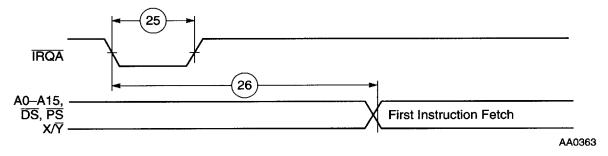


Figure 2-10 Recovery from Stop State Using IRQA

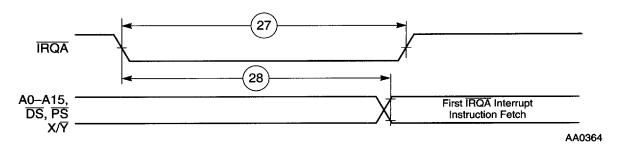


Figure 2-11 Recovery from Stop State Using IRQA Interrupt Service

2-12 DSP56002 Technical Data sheet, Rev. 3 MOTOROLA

■ 6367248 0156965 976 ■

HOST I/O (HI) TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

Note: Active low lines should be "pulled up" in a manner consistent with the ac and dc specifications.

Table 2-8 Host I/O Timing (All Frequencies)

Num	Characteristics	Min	Max	Unit
31	HEN/HACK Assertion Width ¹	T _C + 31 26 13	<u>-</u>	ns
32	HEN/HACK Deassertion Width ¹ • Between Two TXL Writes ² • Between Two CVR, ICR, ISR, RXL Reads ³	13 2T _C + 31 2T _C + 31		ns ns ns
33	Host Data Input Setup Time Before HEN/HACK Deassertion	4	_	ns
34	Host Data Input Hold Time After HEN/HACK Deassertion	3		ns
35	HEN/HACK Assertion to Output Data Active from High Impedance	0		ns
36	HEN/HACK Assertion to Output Data Valid	_	26	ns
37	HEN/HACK Deassertion to Output Data High Impedance ⁵	_	18	ns
38	Output Data Hold Time After HEN/HACK Deassertion ⁶	2.5		ns
39	HR/W Low Setup Time Before HEN Assertion	0		ns
40	HR/W Low Hold Time After HEN Deassertion	3		ns
41	HR/W High Setup Time to HEN Assertion	0		ns
42	HR/W High Hold Time After HEN/HACK Deassertion	3	<u>—</u>	ns
43	HA0-HA2 Setup Time Before HEN Assertion	0		ns
44	HA0-HA2 Hold Time After HEN Deassertion	3	<u>—</u>	ns
45	DMA HACK Assertion to HREQ Deassertion ⁴	3	45	ns
46	DMA HACK Deassertion to HREQ Assertion ^{4,5} • For DMA RXL Read • For DMA TXL Write • All other cases	$T_L + T_C + T_H$ $T_L + T_C$ 0	 	ns ns ns

MOTOROLA

DSP56002 Technical Data sheet, Rev. 3

2-13

■ 6367248 0156966 802 **■**

Host I/O (HI) Timing

Table 2-8 Host I/O Timing (Continued)(All Frequencies) (Continued)

Num	Characteristics	Min	Max	Unit
47	Delay from HEN Deassertion to HREQ Assertion for RXL Read ^{4,5}	$T_L + T_C + T_H$	_	ns
48	Delay from HEN Deassertion to HREQ Assertion for TXL Write ^{4,5}	$T_L + T_C$		ns
49	Delay from HEN Assertion to HREQ Deassertion for RXL Read, TXL Write 4,5	3	58	ns

Notes:

- See Host Port Considerations in Section 4.
- This timing must be adhered to only if two consecutive writes to the TXL are executed without polling TXDE or HREQ.
- 3. This timing must be adhered to only if two consecutive reads from one of these registers are executed without polling the corresponding status bits or HREQ
- 4. HREQ is pulled up by a 1 $k\Omega$ resistor.
- 5. Specifications are periodically sampled and not 100% tested.
- 6. May decrease to 0 ns for future versions.

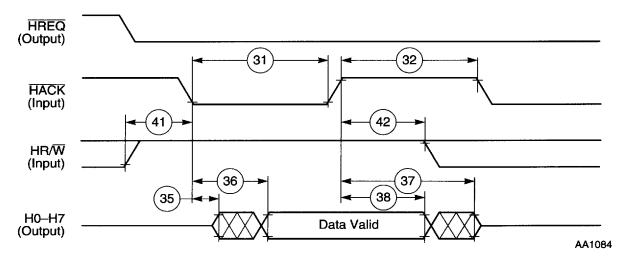


Figure 2-12 Host Interrupt Vector Register (IVR) Read

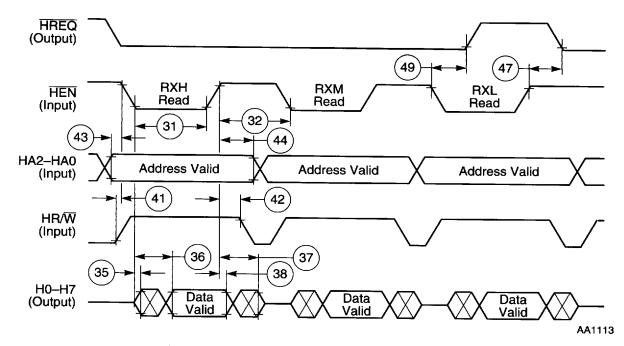


Figure 2-13 Host Read Cycle (Non-DMA Mode)

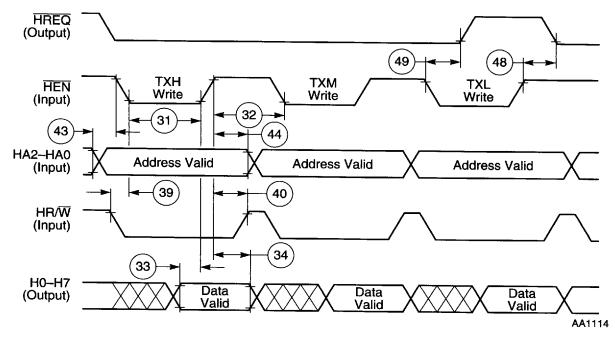


Figure 2-14 Host Write Cycle (Non-DMA Mode)

Host I/O (HI) Timing

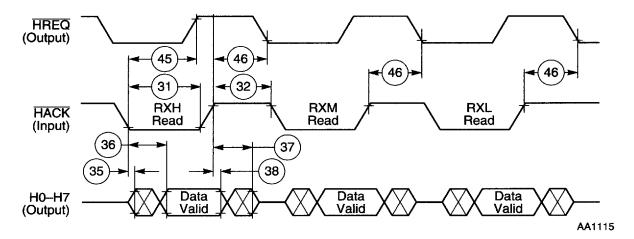


Figure 2-15 Host DMA Read Cycle

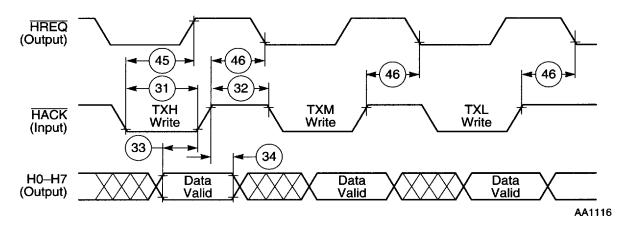


Figure 2-16 Host DMA Write Cycle

SERIAL COMMUNICATION INTERFACE (SCI) TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

 t_{SCC} = Synchronous Clock Cycle Time (For internal clock, t_{SCC} is determined by the SCI Clock Control Register and $T_{C.}$) The minimum t_{SCC} value is $8 \times T_{C.}$

Table 2-9 SCI Synchronous Mode Timing (All Frequencies)

Num	Characteristics	Min	Max	Unit
55	Synchronous Clock Cycle—t _{SCC}	8T _C		ns
56	Clock Low Period	t _{SCC} /2 - 10.5		ns
57	Clock High Period	t _{SCC} /2 - 10.5		ns
58	< intentionally blank >	_		
59	Output Data Setup to Clock Falling Edge (Internal Clock)	$t_{SCC}/4 + T_L - 26$	_	ns
60	Output Data Hold After Clock Rising Edge (Internal Clock)	$t_{SCC}/4-T_L-8$		ns
61	Input Data Setup Time Before Clock Rising Edge (Internal Clock)	$t_{SCC}/4 + T_L + 23$	_	ns
62	Input Data Not Valid Before Clock Rising Edge (Internal Clock)	_	$t_{SCC}/4 + T_L - 5.5$	ns
63	Clock Falling Edge to Output Data Valid (External Clock)	_	32.5	ns
64	Output Data Hold After Clock Rising Edge (External Clock)	T _C + 3		ns
65	Input Data Setup Time Before Clock Rising Edge (External Clock)	16		ns
66	Input Data Hold Time After Clock Rising Edge (External Clock)	21		ns

Table 2-10 SCI Asynchronous Mode Timing—1X Clock

Num	Characteristics	Min	Max	Unit
67	Asynchronous Clock Cycle—t _{ACC}	64T _C		ns
68	Clock Low Period	t _{ACC} /2-11	_	ns
69	Clock High Period	t _{ACC} /2-11		ns
70	< intentionally blank >			
71	Output Data Setup to Clock Rising Edge (Internal Clock)	t _{ACC} /2-51	_	ns
72	Output Data Hold After Clock Rising Edge (Internal Clock)	t _{ACC} /2-51		ns

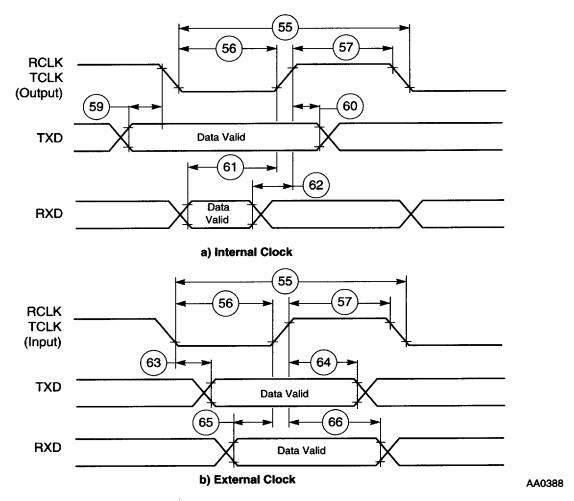


Figure 2-17 SCI Synchronous Mode Timing

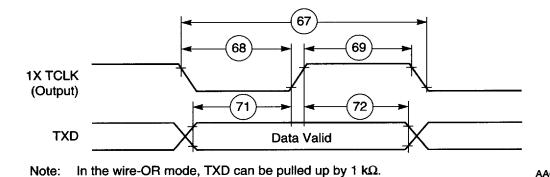


Figure 2-18 SCI Asynchronous Mode Timing

AA0389

2-18 DSP56002 Technical Data sheet. Rev. 3 MOTOROLA

6367248 0156971 177

SYNCHRONOUS SERIAL INTERFACE (SSI) TIMING

 $C_L = 50 pF + 2 TTL loads$

 t_{SSICC} = SSI clock cycle time

TXC (SCK Pin) = Transmit Clock

RXC (SC0 or SCK Pin) = Receive Clock

FST (SC2 Pin) = Transmit Frame Sync

FSR (SC1 or SC2 Pin) = Receive Frame Sync

i ck = Internal Clock

x ck = External Clock

g ck = Gated Clock

i ck a = Internal Clock, Asynchronous Mode (Asynchronous implies that STD and SRD are two different clocks)

i ck s = Internal Clock, Synchronous Mode (Synchronous implies that STD and SRD are the same clock)

bl = bit length

wl = word length

Table 2-11 SSI Timing

Num	Classic	40 MHZ or 66	MHz	80 MHz			
Num	Characteristics	Min	Max	Min	Max	Case	Unit
80	Clock Cycle-t _{SSICC} ¹	4T _C 3T _C	_	4T _C 3T _C	_	i ck x ck	ns
81	Clock High Period	$t_{\rm SSICC}/2-10.8$ $T_{\rm C}+T_{\rm L}$	_	T _C + 5 T _C + 5	_	i ck x ck	ns
82	Clock Low Period	$t_{\rm SSICC}/2-10.8$ $T_{\rm C}+T_{\rm L}$		T _C + 5 T _C + 5	_	i ck x ck	ns
84	RXC Rising Edge to FSR Out (bl) High	_	40.8 25.8	<u> </u>	30 25.8	x ck i ck a	ns
85	RXC Rising Edge to FSR Out (bl) Low	_	35.8 25.8		30 25.8	x ck i ck a	ns
86	RXC Rising Edge to FSR Out (wl) High	_	35.8 20.8	_	30 20.8	x ck i ck a	ns
87	RXC Rising Edge to FSR Out (wl) Low		35.8 20.8		30 20.8	x ck i ck a	ns
88	Data In Setup Time Before RXC (SCK in Synchronous Mode) Falling Edge	3.3 15.8 13		3.3 15.8 13		x ck i ck a i ck s	ns

Table 2-11 SSI Timing (Continued)

		40 MHZ or 60	6 MHz	80 MHz			TT
Num	Characteristics	Min	Max	Min	Max	Case	Unit
89	Data In Hold Time After RXC Falling Edge	18 3.3	_ _	18 3.3	_	x ck i ck	ns
90	FSR Input (bl) High Before RXC Falling Edge	0.8 17.4		0.8 17.4		x ck i ck a	ns
91	FSR Input (wl) High Before RXC Falling Edge	3.3 18.3	_	3.3 18.3		x ck i ck a	ns
92	FSR Input Hold Time After RXC Falling Edge	18.3 3.3	_	18.3 3.3		x ck i ck	ns
93	Flags Input Setup Before RXC Falling Edge	0.8 16.7	_	0.8 16.7		x ck i ck s	ns
94	Flags Input Hold Time After RXC Falling Edge	18.3 3.3	<u> </u>	18.3 3.3		x ck i ck s	ns
95	TXC Rising Edge to FST Out (bl) High		31.6 15.8	_	30 15.8	x ck i ck	ns
96	TXC Rising Edge to FST Out (bl) Low	_	33.3 18.3	_	30 18.3	x ck i ck	ns
97	TXC Rising Edge to FST Out (wl) High	_	30.8 18.3	_	30 18.3	x ck i ck	ns
98	TXC Rising Edge to FST Out (wl) Low		33.3 18.3	<u>-</u>	30 18.3	x ck i ck	ns
99	TXC Rising Edge to	_	33.3 +		30	x ck	ns
	Data Out Enable from High Impedance		T _H 20.8	_	20.8	i ck	
100	TXC Rising Edge to Data Out Valid	_	33.3 + T _H		30	x ck	ns
			22.4		22.4	i ck	
101	TXC Rising Edge to Data Out High Impedance ²	_	35.8 20.8		30 20.8	x ck i ck	ns

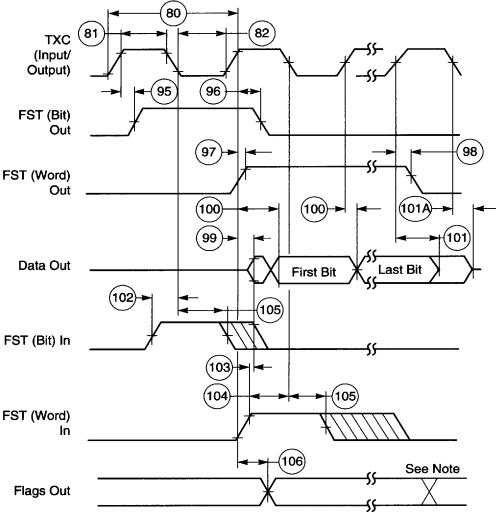
2-20

DSP56002 Technical Data sheet, Rev. 3

MOTOROLA

■ 6367248 0156973 T42 ■

Synchronous Serial Interface (SSI) Timing


Table 2-11 SSI Timing (Continued)

Num	Characteristics	40 MHZ or	66 MHz	80 MHz	3		
14dil	Characteristics	Min	Max	Min	Max	Case	Unit
101A	TXC Falling Edge to Data Out High Impedance ²		$T_C + T_H$	-	$T_C + T_H$	g ck	ns
102	FST Input (bl) Setup Time Before TXC Falling Edge	0.8 18.3	_	0.8 18.3	_	x ck i ck	ns
103	FST Input (wl) to Data Out Enable from High Impedance		30.8	_	30.8		ns
104	FST Input (wl) Setup Time Before TXC Falling Edge	0.8 20.0	_	0.8 20.0	_	x ck i ck	ns
105	FST Input Hold Time After TXC Falling Edge	18.3 3.3	_	18.3 3.3	_	x ck i ck	ns
106	Flag Output Valid After TXC Rising Edge	_	32.5 20.8	_	30 20.8	x ck i ck	ns

Notes: 1. For internal clock, External Clock Cycle is defined by I_{cyc} and SSI control register.

Periodically sampled and not 100% tested

Synchronous Serial Interface (SSI) Timing

Note: In the Network mode, output flag transitions can occur at the start of each time slot within the frame. In the Normal mode, the output flag state is asserted for the entire frame period.

Figure 2-19 SSI Transmitter Timing

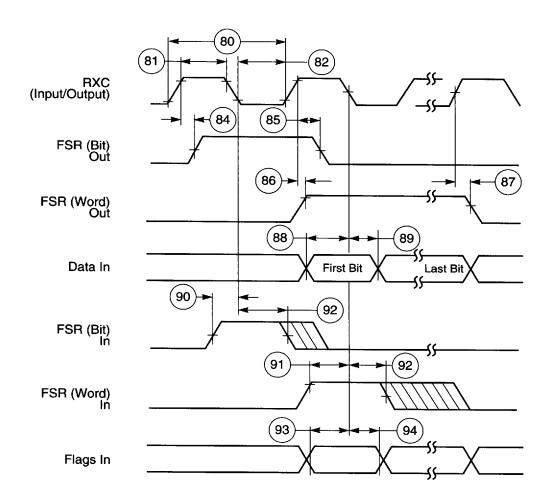


Figure 2-20 SSI Receiver Timing

EXTERNAL BUS ASYNCHRONOUS TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$ WS = Number of Wait States (0 to 15), as determined by BCR register

Capacitance Derating: The DSP56002 External Bus Timing Specifications are designed and tested at the maximum capacitive load of 50 pF, including stray capacitance. Typically, the drive capability of the External Bus pins (A0–A15, D0–D23, PS, DS, RD, WR, X/Y, EXTP) derates linearly at 1 ns per 12 pF of additional capacitance from 50 pF to 250 pF of loading. Port B and C pins (HI, SCI, SSI, and Timer) derate linearly at 1 ns per 5 pF of additional capacitance from 50 pF to 250 pF of loading. Active low lines should be "pulled up" in a manner consistent with the AC and DC specifications.

Table 2-12 External Bus Asynchronous Timing

No.	Characteristics		40 MHz		66 MHz		80 MHz	Unit
140.	Citaracteristics	Min	Max	Min	Max	Min	Max	Oiii
115	Delay from BR Assertion to BG Assertion With no external access from the DSP During external read or write access During external read-modify- write access During Stop mode— external bus will not be released and BG will not go low During Wait	$T_C + T_H$ $T_C + T_H$	$4T_C + T_H + (T_C \times WS) + 14$	$T_C + T_H$ $T_C + T_H$		$T_C + T_H$ $T_C + T_H$		ns
116	mode Delay from \overline{BR} Deassertion to \overline{BG} Deassertion	2T _C	4T _C + 12.5	2T _C	4T _C + 12.5	2T _C	4T _C + 12.5	ns

2-24

DSP56002 Technical Data sheet, Rev. 3

MOTOROLA

6367248 0156977 698

Table 2-12 External Bus Asynchronous Timing (Continued)

No.	Characteristics	4	0 MHz	6	6 MHz	80	MHz	
140.	Characteristics	Min	Max	Min	Max	Min	Max	Unit
1	BG Deassertion Duration During Wait mode All other cases	T _C - 5.5 2T _C + T _H - 5.5	<u> </u>	T _C _5.5 2T _C + T _H -5.5	_	T _{C -} 5.5 2T _C + T _H - 5.5	_	ns ns
118	Delay from Address, Data, and Control Bus High Impedance to BG Assertion	0		0		0		ns
	Delay from BG Deassertion to Address and Control Bus Enabled	0	T _H	0	T _H	0	T _H	ns
120	Address Valid to WR Assertion WS = 0 WS > 0	T _L -6 T _C -6	_	T _L - 4.5 T _C - 4.5	_	T _L - 4.5 T _C - 4.5		ns ns
121	WR Assertion Width • WS = 0 • WS > 0	$T_{C}-4 \\ WS \times \\ T_{C}+T_{L}$	_	$T_{C}-4$ $WS \times$ $T_{C}+T_{L}$		$T_C - 2$ $WS \times$ $T_C + T_L$	_	ns ns
122	WR Deassertion to Address Not Valid	T _H -6		T _H -4		T _H -4	_	ns
123	WR Assertion to Data Out Active From High Impedance WS = 0 WS > 0	T _H -4	<u> </u>	T _H -4		T _H -4		ns ns
124	Data Out Hold Time from WR Deassertion (the maximum specification is periodically sampled, and not 100% tested)	T _H -7	T _H – 2.5	T _H -5	T _H – 1.5	T _H -5	T _H – 1.5	ns
125	Data Out Setup Time to WR Deassertion WS = 0 WS > 0	$T_L - 0.8$ $WS \times$ $T_C + T_L$ $- 0.8$	-	$T_L - 0.4$ $WS \times$ $T_C + T_L$ $- 0.4$	_	$T_L - 0.5$ $WS \times$ $T_C + T_L$ $- 0.5$		ns ns

MOTOROLA

DSP56002 Technical Data sheet. Rev. 3

2-25

■ 6367248 0156978 524 **■**

External Bus Asynchronous Timing

 Table 2-12 External Bus Asynchronous Timing (Continued)

No.	Chamatanistics		40 MHz		66 MHz		80 MHz	7 T *4
No.	Characteristics	Min	Max	Min	Max	Min	Max	Unit
126	RD Deassertion to Address Not Valid	T _H	_	T _H -1	_	T _H	_	ns
127	Address Valid to \overline{RD} Deassertion • WS = 0 • WS > 0	$T_{C} + T_{L} - 6$ $((WS + 1) \times T_{C}) + T_{L} - 6$		$T_{C} + T_{L} - 6$ $((WS + 1) \times T_{C}) + T_{L} - 6$		$T_{C} + T_{L} - 6$ ((WS + 1) × T_{C}) + $T_{L} - 6$		ns ns
	Input Data Hold Time to RD Deassertion	0		0		0		ns
129	RD Assertion Width WS = 0 WS > 0	$T_{C} - 4$ ((WS + 1) × T_{C}) - 4		$T_{C}-4$ ((WS + 1) × T_{C}) - 4		$T_{C} - 4$ ((WS + 1) × T_{C}) - 4		ns ns
130	Address Valid to Input Data Valid • WS = 0 • WS > 0	_	$T_C + T_L - 9.5$ ((WS+1)× T_C)+ $T_L - 9.5$		$T_C + T_L - 7$ ((WS+1)× T_C)+ $T_L - 7$		$T_C + T_L - 6$ ((WS+1) × T_C) + $T_L - 6$	ns ns
	Address Valid to RD Assertion	T _L – 4.5	_	$T_{L} - 4.5$	_	T _L – 4.5		ns
	RD Assertion to Input Data Valid • WS = 0 • WS > 0	<u>-</u>	T _C – 7.5 ((WS+1)×T _C) – 7.5		T _C – 5.5 ((WS+1)×T _C) – 5.5		T _C – 5.5 ((WS+1)×T _C) – 5.5	ns ns
	WR Deassertion to RD Assertion	T _C -7	_	T _C -5	-	T _C -5	_	ns
	RD Deassertion to RD Assertion	T _C -4		T _C – 2.5	_	T _C - 2.5	_	ns
135	WR Deassertion to WR Assertion • WS = 0 • WS > 0	T_C-4 T_C+ T_H-4	_	T _C -3 T _C + T _H -3	<u>-</u>	T _C -3 T _C + T _H -3	<u>-</u>	ns ns

2-26 DSP56002 Technical Data sheet, Rev. 3 MOTOROLA

■ 6367248 0356979 460 ■

Table 2-12 External Bus Asynchronous Timing (Continued)

No.	. Characteristics	40	40 MHz		MHz	80	7 T	
140.		Min	Max	Min	Max	Min	Max	Unit
	RD Deassertion to WR Assertion							
	• WS = 0	T_C-4 T_C+	_	$T_{\rm C}$ – 2.5	_	T _C - 2.5 T _C +		ns
	• WS > 0	$T_C + T_H - 4$	_	T _C + T _H - 2.5	_	$T_C + T_H - 2.5$	_	ns

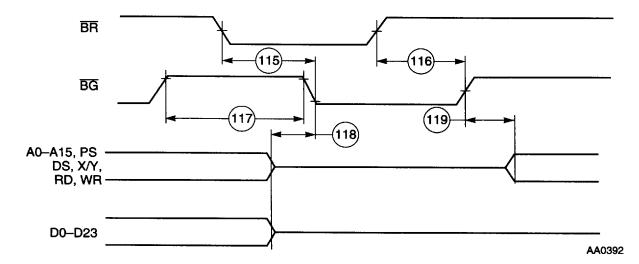
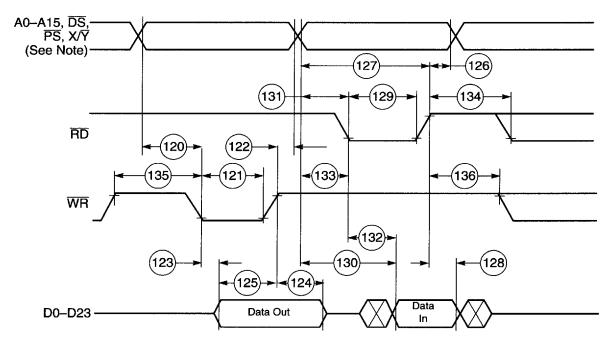



Figure 2-21 Bus Request / Bus Grant Timing

External Bus Asynchronous Timing

Note: During Read-Modify-Write instructions, the address lines do not change state.

Figure 2-22 External Bus Asynchronous Timing

EXTERNAL BUS SYNCHRONOUS TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

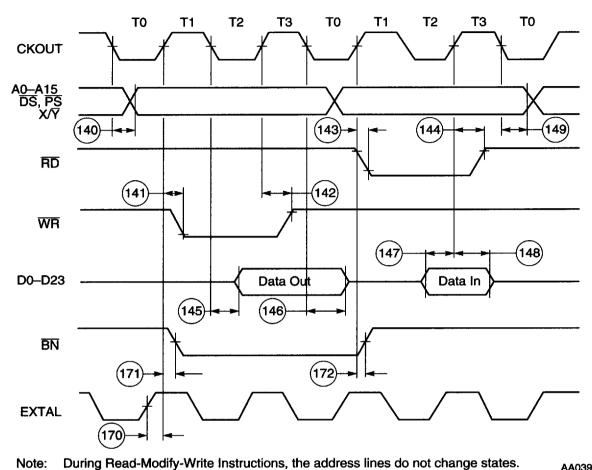

Capacitance Derating: The DSP56002 external bus timing specifications are designed and tested at the maximum capacitive load of 50 pF, including stray capacitance. Typically, the drive capability of the external bus pins (A0–A15, D0–D23, \overline{PS} , \overline{DS} , \overline{RD} , \overline{WR} , X/\overline{Y}) derates linearly at 1 ns per 12 pF of additional capacitance from 50 pF to 250 pF of loading. Port B and C pins (HI, SCI, SSI, and Timer) derate linearly at 1 ns per 5 pF of additional capacitance from 50 pF to 250 pF of loading. Active-low lines should be "pulled up" in a manner consistent with the ac and dc specifications.

Table 2-13 External Bus Synchronous Timing

Num	Characteristics	40	MHz	66	MHz	80	MHz	Unit
	Characteristics	Min	Max	Min	Max	Min	Max	Cilit
140	First CKOUT transition to Address Valid		6.2	_	5		5	ns
141	Second CKOUT transition to WR Assertion ¹ • WS = 0 • WS > 0		4.4 T _H + 4.4	_	4 T _H + 4	_	4 T _H + 4	ns ns
142	Second CKOUT transition to WR Deassertion	1.3	9.1	1	5	1	5	ns
143	Second CKOUT transition to RD Assertion		3.9	_	3.9		3.9	ns
144	Second CKOUT transition to RD Deassertion	0	3.4	-3	3	-3	3	ns
145	First CKOUT transition to Data-Out Valid		5.4		4.5	_	4.5	ns
146	First CKOUT transition to Data-Out Invalid ³	0		0	_	0		ns
147	Data-In Valid to second CKOUT transition (Setup)	3.4		3.4		3.4	_	ns
148	Second CKOUT transition to Data-In Invalid (Hold)	0	_	0		0		ns
149	First CKOUT transition to Address Invalid ³	0	_	0		0		ns

- Notes: 1. AC timing specifications which are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal's transition.
 - 2. WS are wait state values specified in the BCR.
 - 3. First CKOUT transition to data-out invalid (specification # T146) and first CKOUT transition to address invalid (specification # T149) indicate the time after which data/address are no longer guaranteed to be valid.
 - Timings are given from CKOUT midpoint to V_{OL} or V_{OH} of the corresponding pin(s).
 - First CKOUT transition is a falling edge of CKOUT for CKP = 0.

External Bus Synchronous Timing

During Read-Modify-Write Instructions, the address lines do not change states.

AA0395

Figure 2-23 Synchronous Bus Timing

MOTOROLA DSP56002 Technical Data sheet, Rev. 3 **■** 6367248 0156983 991 **■**

2-30

Table 2-14 Bus Strobe/Wait Timing

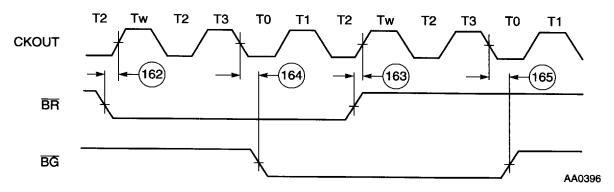
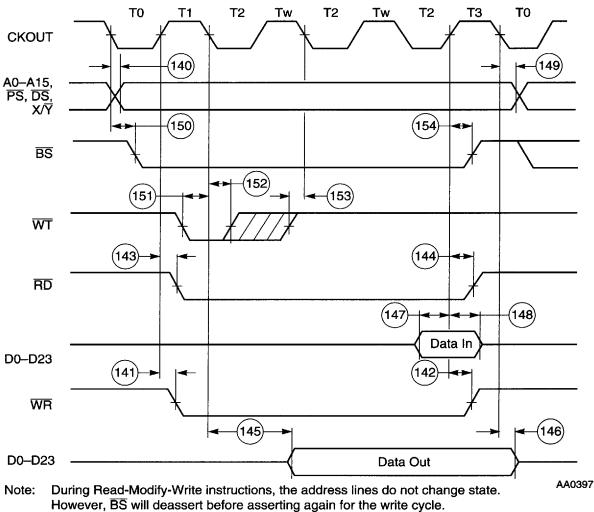
No.	Chamataistia	40 N	ИHz	66 N	ИHz	80 N	ИНz	T
INU.	Characteristics	Min	Max	Min	Max	Min	Max	Unit
150	First CKOUT transition to BS Assertion	_	5.6		5.6		5.6	ns
151	WT Assertion to first CKOUT transition (setup time)	5.3	_	5.3		5.3		ns
152	First CKOUT transition to WT Deassertion for Minimum Timing	0	T _C - 7.9	0	T _C - 7.9	0	T _C -6	ns
153	WT Deassertion to first CKOUT transition for Maximum Timing (2 wait states)	7.9	_	7.9	_	6	_	ns
154	Second CKOUT transition to \overline{BS} Deassertion		5.2	_	5.2	—	5.2	ns
155	BS Assertion to Address Valid	0	2.4	0	2.4	0	2.4	ns
156	BS Assertion to WT Assertion ¹	0	T _C – 10.9	0	T _C - 10.9	0	T _C - 8.8	ns
157	BS Assertion to WT Deassertion ^{1,3}	(WS-1) × T _C	WS×T _C - 13.5	$(WS-1) \times T_C$	WS×T _C - 13.5	(WS-1) ×	WS×T _C - 10.9	ns
158	WT Deassertion to BS Deassertion	$T_{C} + T_{L} + 3.3$	$\begin{array}{c} 2\times \\ T_C + T_L + \\ 7.8 \end{array}$	$\begin{array}{c} T_C + T_L + \\ 3.3 \end{array}$	$2 \times T_{C} + T_{L} + 7.8$	$T_{C} + T_{L} + 3.3$	$2 \times T_{C} + T_{L} + 7.8$	ns
159	Minimum BS Deassertion Width for Consecutive External Accesses	T _H -1	_	T _H -1	_	T _H -1	_	ns
160	BS Deassertion to Address Invalid ²	T _H -4.6	_	T _H -4.6		T _H -4.6		ns
161	Data-In Valid to \overline{RD} Deassertion (Set Up)	3.4	_	3.4	_	3.4	_	ns
162	BR Assertion to second CKOUT transition for Minimum Timing	9.5	T _C	9.5	T _C	9.5	T _C	ns

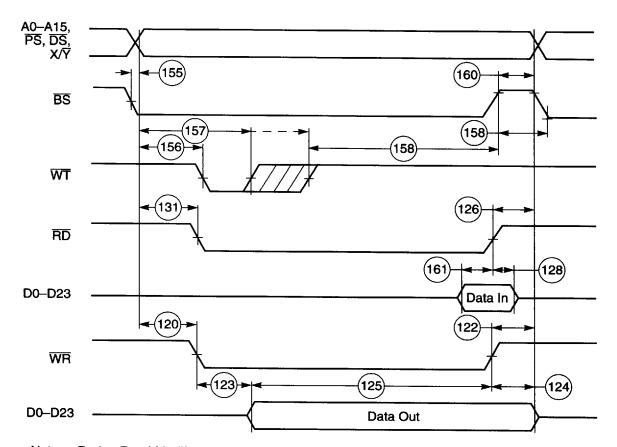
External Bus Synchronous Timing

Table 2-14 Bus Strobe/Wait Timing (Continued)

NT.	Characteristics	40 N	ИНz	66 N	ИНz	80 N	МНz	TT:4
No.	Characteristics	Min	Max	Min	Max	Min	Max	- Unit
163	BR Deassertion to second CKOUT transition for Minimum Timing	8	T _C	8	T _C	8	T _C	ns
164	First CKOUT transition to BG Assertion		8.8	_	8.8	_	8.8	ns
165	First CKOUT transition to BG Deassertion	_	5.3		5.3	_	5.3	ns
170	EXTAL to CKOUT with PLL Disabled EXTAL to CKOUT ⁵ with PLL Enabled and MF < 5	3 0.3	9.7 3.7	3 0.3	9.7 3.7	3 0.3	9.7 3.7	ns ns
171	Second CKOUT transition to BN Assertion	_	5.7	_	5.7		5.7	ns
172	Second CKOUT transition to BN Deassertion		5	_	5	_	5	ns

- Notes: 1. If wait states are also inserted using the BCR and if the number of wait states is greater than 2, then specification numbers T156 and T157 can be increased accordingly.
 - BS deassertion to address invalid indicates the time after which the address are no longer guaranteed to
 - 3. The minimum number of wait states when using $\overline{BS}/\overline{WT}$ is two (2).
 - 4. For read-modify-write instructions, the address lines will not change states between the read and the write cycle. However, BS will deassert before asserting again for the write cycle. If wait states are desired for each of the read and write cycle, the $\overline{\text{WT}}$ pin must be asserted once for each cycle.
 - 5. When EXTAL frequency is less than 33 MHz, then timing T170 is not guaranteed for a period of 1000× T_C after PLOCK assertion following the events below:
 - when enabling the PLL operation by software,
 - · when changing the Multiplication Factor,
 - when recovering from the Stop state if the PLL was turned off and it is supposed to turn, on
 - when exiting the Stop state.


Figure 2-24 Synchronous Bus Request / Bus Grant Timing

External Bus Synchronous Timing

will deassert before asserting again for the write cycle.

Figure 2-25 Synchronous BS / WT Timings

Note: During Read-Modify-Write instructions, the address lines do not change state. However, $\overline{\text{BS}}$ will deassert before asserting again for the write cycle.

Figure 2-26 Asynchronous BS / WT Timings

OnCE PORT TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

Table 2-15 OnCE Port Timing

Num	Characteristics	Min	Max	Unit
230	DSCK Low	40	_	ns
231	DSCK High	40	_	ns
232	DSCK Cycle Time	200		ns
233	DR Asserted to DSO (ACK) Asserted	5T _C	_	ns
234	DSCK High to DSO Valid		42	ns
235	DSCK High to DSO Invalid	3	_	ns
236	DSI Valid to DSCK Low (Setup)	15	_	ns
237	DSCK Low to DSI Invalid (Hold)	3	_	ns
238	Last DSCK Low to OS0-OS1, ACK Active	$3T_C + T_L$	-	ns
239	DSO (ACK) Asserted to First DSCK High	2T _C		ns
240	DSO (ACK) Assertion Width	$4T_C + T_H - 3$	5T _C + 7	ns
241	DSO (ACK) Asserted to OS0–OS1 High Impedance ²		0	ns
242	OS0-OS1 Valid to second CKOUT transition	T _C – 21		ns
243	Second CKOUT transition to OS0-OS1 Invalid	0		ns
244	Last DSCK Low of Read Register to First DSCK High of Next Command	7T _C + 10	_	ns
245	Last DSCK Low to DSO Invalid (Hold)	3	_	ns
246	$\overline{ m DR}$ Assertion to second CKOUT transition for Wake Up from Wait state	12	T _C	ns
247	Second CKOUT transition to DSO after Wake Up from Wait state	17T _C	_	ns
248	 DR Assertion Width To recover from Wait state To recover from Wait state and enter Debug mode 	15 13T _C + 15	12T _C -15 —	ns
249	DR Assertion to DSO (ACK) Valid (enter Debug mode) After Asynchronous Recovery from Wait State	17T _C	_	ns
250A	 DR Assertion Width to Recover from Stop state¹ Stable External Clock, OMR Bit 6 = 0 Stable External Clock, OMR Bit 6 = 1 Stable External Clock, PCTL Bit 17= 1 	15 15 15	$65548T_{C} + T_{L}$ $20T_{C} + T_{L}$ $13T_{C} + T_{L}$	ns ns ns

2-36 DSP56002 Technical Data sheet, Rev. 3

MOTOROLA

■ 6367248 0356989 30T **■**

Table 2-15	OnCE Port Timing
-------------------	------------------

Num	Characteristics	Min	Max	Unit
250B	DR Assertion Width to Recover from Stop state and enter Debug mode ¹		- A 4 (5), re	
	 Stable External Clock,OMR Bit 6 = 0 	65549T _C + T _L	_	ns
	 Stable External Clock,OMR Bit 6 = 1 	$21T_C + T_L$		ns
	Stable External Clock,PCTL Bit 17= 1	$14T_C + T_L$	_	ns
251	DR Assertion to DSO (ACK) Valid (enter Debug mode) after recovery from Stop state ¹			
	 Stable External Clock, OMR Bit 6 = 0 	$65553T_{C} + T_{L}$	_	ns
	 Stable External Clock, OMR Bit 6 = 1 	$25T_C + T_L$	<u> </u>	ns
	Stable External Clock, PCTL Bit 17= 1	$18T_C + T_L$	_	ns

Notes: 1. A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:

- after power-on Reset, and
- when recovering from Stop mode.

During this stabilization period, T_C , T_H , and T_L will not be constant. Since this stabilization period varies, a delay of $75,000 \times T_C$ is typically allowed to assure that the oscillator is stable before executing programs. While it is possible to set OMR bit 6 = 1 when using the internal crystal oscillator, it is not recommended and these specifications do not guarantee timings for that case.

2. The maximum specified is periodically sampled and not 100% tested.

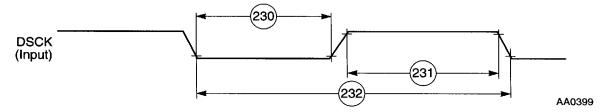


Figure 2-27 OnCE Serial Clock Timing

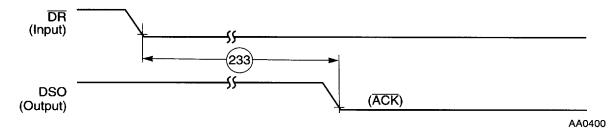
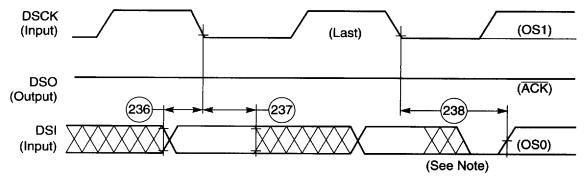



Figure 2-28 OnCE Acknowledge Timing

OnCE Port Timing

Note: High Impedance, external pull-down resistor

AA0501

Figure 2-29 OnCE Data I/O To Status Timing

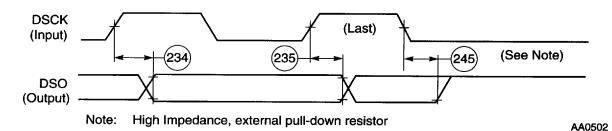


Figure 2-30 OnCE Read Timing

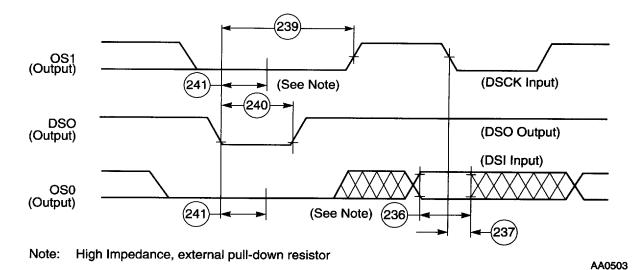
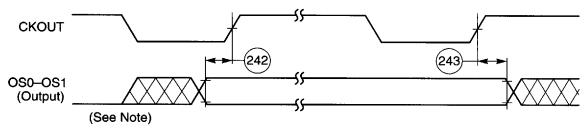



Figure 2-31 OnCE Data I/O To Status Timing

Note: High Impedance, external pull-down resistor

Figure 2-32 OnCE CKOUT To Status Timing

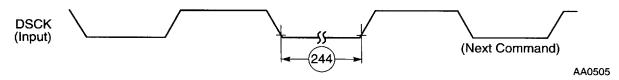


Figure 2-33 OnCE Read Register to Next Command Timing

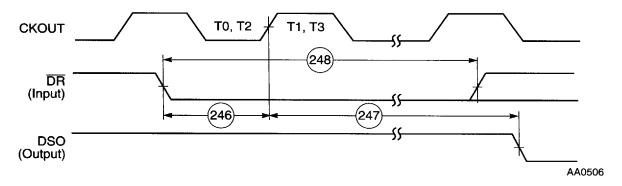


Figure 2-34 Synchronous Recovery from Wait State

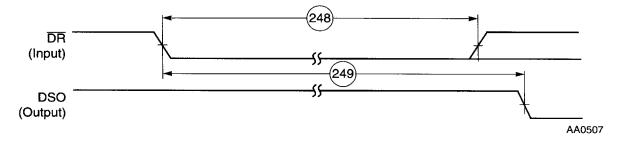


Figure 2-35 Asynchronous Recovery from Wait State

Specifications

OnCE Port Timing

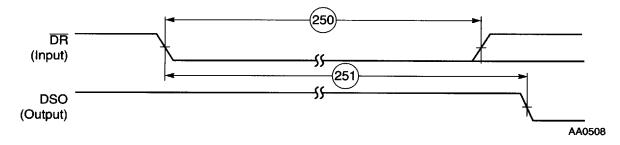


Figure 2-36 Asynchronous Recovery from Stop State

TIMER TIMING

 $C_L = 50 \text{ pF} + 2 \text{ TTL loads}$

Table 2-16 Timer Timing

Num	Characteristics	Min	Max	Unit
260	TIO Low	2T _C + 7		ns
261	TIO High	2T _C + 7	_	ns
262	Synchronous Timer Setup Time from TIO (input) Assertion to CKOUT Rising Edge	10	T _C	ns
263	Synchronous Timer Delay Time from CKOUT Rising Edge to the External Memory Access Address Out Valid Caused by First Interrupt Instruction Execution	5T _C + T _H	_	ns
264	CKOUT Rising Edge to TIO (output) Assertion	0	8	ns
265	CKOUT Rising Edge to TIO (output) Deassertion	0	8	ns
266	CKOUT Rising Edge to TIO (General Purpose Output)	0	8	ns

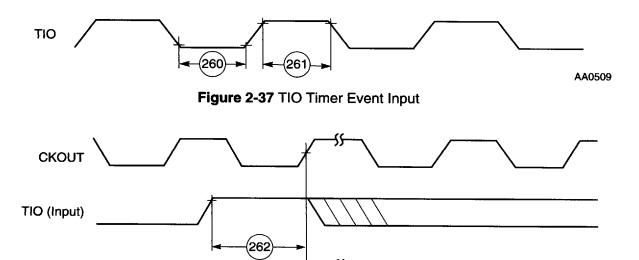


Figure 2-38 Timer Interrupt Generation

First Interrupt Instruction Execution

ADDRESS

Timer Timing

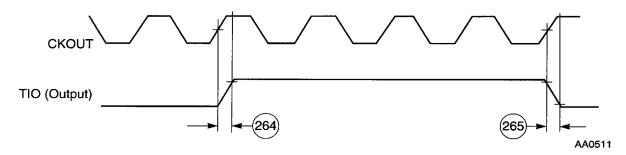


Figure 2-39 External Pulse Generation

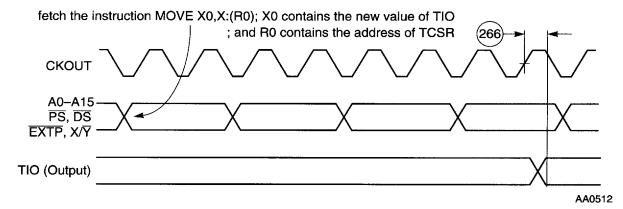


Figure 2-40 GPIO Output Timing

