

HIGH RELIABILITY HYBRID DC-DC CONVERTERS

DESCRIPTION

The DVHF series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVHF series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 450 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems.

These converters are designed and manufactured in a facility qualified to ISO9001, compliant to AS9000, and certified to MIL-PRF-38534 and MIL-STD-883.

FEATURES

- High Reliability
- Very Low Output Noise
- Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704
- Up to 20 Watts Output Power
- Radiation Immune Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Industry Standard Pinout
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Radiation Hardened Version Available
- Precision Projection Welded Hermetic Package
- High Power Density: > 37 W/in³
- Custom Versions Available
- Additional Environmental Screening Available
- Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMH28 EMI Filter
- Flanged and Non-flanged Versions Available.
- MIL-PRF-38534 Element Evaluated Components

Figure 1 – DVHF2800D / DVHF2800DF DC-DC Converter (Not To Scale)

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

+12°C Input Voltage (Continuous) $50 V_{DC}$ Junction Temperature Rise to Case Input Voltage (Transient, 1 second) -65°C to +150°C 80 Volts Storage Temperature

Output Power¹ 20 Watts Lead Solder Temperature (10 seconds) 270°C

Power Dissipation (Full Load, T_{CASE} = +125°C) 6 Watts 24 grams Weight

Parameter		Conditions	I	DVHF2805D			DVHF2812D		
Parameter		Conditions	Min	Тур	Max	Min	Тур	Max	Units
STATIC					-		-		_
INPUT		Continuous	15	28	50	15	28	50	V
Voltage⁴		Transient, 1 sec	-	-	80	1	-	80	V
Current		Inhibited	-	-	6	-	-	6	mA
Current		No Load	-	40	65	1	40	65	mA
Ripple Current		Full Load ⁵ , 20Hz to 20MHz	-	-	60	-	-	60	mA_{p-p}
Inhibit Pin Input⁴			0	-	1.5	0	-	1.5	V
Inhibit Pin Open Circuit Vo	oltage⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
UVLO Turn On			13.0	-	14.8	13.0	-	14.8	V
UVLO Turn Off⁴			11.0	-	14.5	11.0	-	14.5	V
	$+V_{OUT}$	T _{CASE} = 25°C	4.95	5.0	5.05	11.88	12.0	12.12	V
OUTPUT	$+V_{OUT}$	T_{CASE} = -55°C to +125°C	4.925	5.0	5.075	11.82	12.0	12.18	V
Voltage ⁵	$-V_{\text{OUT}}$	T _{CASE} = 25°C	4.925	5.0	5.075	11.82	12.0	12.18	V
	$-V_{\text{OUT}}$	T _{CASE} = -55°C to +125°C	4.90	5.0	5.10	11.76	12.0	12.24	V
Power ^{3,6}	Total		0	-	15	0	-	20	W
Power	$\pm V_{\text{OUT}}$	Either Output	0	-	10.5	0	-	14	W
Current ^{3,6}	±V _{OUT}	Either Output	0	-	2.1	0	-	1.17	Α
Ripple Voltage	$\pm V_{\text{OUT}}$	Full Load ⁵ , 20Hz to 20MHz	-	-	60	-	-	50	mV_{p-p}
Line Regulation	+V _{OUT}	V _{IN} = 16V to 40V	-	-	20	-	-	20	mV
Line Regulation	$-V_{\text{OUT}}$	V _{IN} = 16V to 40V	-	-	200	-	-	200	mV
Load Decidation	+V _{OUT}	No Load to Full Load ⁵	-	-	50	-	-	50	mV
Load Regulation	$-V_{OUT}$	No Load to Full Load ⁵	-	-	200	-	-	200	mV
Cross Regulation	-V _{OUT}	+V _{OUT} = 70%, -V _{OUT} = 30% +V _{OUT} = 30%, -V _{OUT} = 70%	-	-	500	-	-	500	mV
EFFICIENCY		Full Load⁵	73	-	-	78	-	-	%
LOAD FALL T DOWED DIGGS	DATION	Overload ⁴	-	-	8	-	-	8	W
LOAD FAULT POWER DISSI	PATION	Short Circuit	-	-	8	1	-	8	W
CAPACITIVE LOAD ⁴		Either Output	-	-	500	-	-	500	μF
SWITCHING FREQUENCY			350	450	500	350	450	500	kHz
ISOLATION		500 V _{DC} , T _{CASE} = 25°C	100	-	-	100	-	-	ΜΩ
THERMAL RESISTANCE		Case to Ambient (θCA)	-	25	-	-	25	-	°C/W
MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	427	-	-	427	-	kHrs

See notes next page.

SPECIFICATIONS ($T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = +28V \pm 5\%$, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Continuous) $50 V_{DC}$ Junction Temperature Rise to Case +12°C -65°C to +150°C Input Voltage (Transient, 1 second) 80 Volts Storage Temperature Output Power¹ 20 Watts Lead Solder Temperature (10 seconds) 270°C Power Dissipation (Full Load, $T_{CASE} = +125^{\circ}C$) 6 Watts Weight 24 grams

Parameter		Conditions	DVHF2805D			DVHF2812D			11-24-
		Min		Тур	Max	Min	Тур	Max	Units
DYNAMIC	DYNAMIC								
Load Step Output Transient	±V _{OUT}	Half Load to Full Load	-	-	400	-	-	400	mV_{PK}
Load Step Recovery ²		Hall Load to Full Load	-	-	500	-	-	500	μSec
Line Step Output Transient4	±V _{OUT}	V _{IN} = 16V to 40V	-	400	800	-	500	900	mV_{PK}
Line Step Recovery ^{2, 4}		V _{IN} = 16V to 40V	-	300	500	-	300	500	μSec
Turn On Delay	±V _{OUT}	\/ = 0\/ to 20\/	-	-	20	-	-	20	mSec
Turn On Overshoot ²		$V_{IN} = 0V \text{ to } 28V$	-	-	25	-	-	50	mV_{PK}

Notes: 1. Dependant on output voltage.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. Half load at $+V_{OUT}$ and half load at $-V_{OUT}$.

6. Up to 70% of the total power or current can be drawn from any one of the two outputs.

+12°C

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Continuous) $50\;V_{DC}$ Input Voltage (Transient, 1 second) 80 Volts Output Power¹ 20 Watts Power Dissipation (Full Load, T_{CASE} = +125°C) 6 Watts

Junction Temperature Rise to Case Storage Temperature

-65°C to +150°C Lead Solder Temperature (10 seconds) 270°C

24 grams Weight

Parameter		Conditions		VHF2815	D	Units
		Conditions	Min	Тур	Max	Units
STATIC					•	
INPUT		Continuous	15	28	50	V
Voltage ⁴		Transient, 1 sec	-	-	80	V
Current		Inhibited	-	-	6	mA
Current		No Load	-	40	65	mA
Ripple Current		Full Load ⁵ , 20Hz to 20MHz	-	-	60	mA _{p-p}
Inhibit Pin Input ⁴			0	-	1.5	V
Inhibit Pin Open Circuit \	/oltage⁴		9.0	11.0	13.0	V
UVLO Turn On			13.0	-	14.8	V
UVLO Turn Off⁴			11.0	-	14.5	V
	+V _{OUT}	T _{CASE} = 25°C	14.85	15.0	15.15	V
OUTPUT	$+V_{OUT}$	T _{CASE} = -55°C to +125°C	14.775	15.0	15.225	V
Voltage ⁵	$-V_{\text{OUT}}$	T _{CASE} = 25°C	14.775	15.0	15.225	V
	$-V_{\text{OUT}}$	T _{CASE} = -55°C to +125°C	14.7	15.0	15.30	V
Power ^{3,6}	Total		-	-	20	W
Power	$\pm V_{\text{OUT}}$	Either Output	-	-	14	W
Current ^{3,6}	±V _{OUT}	Either Output	-	-	0.93	Α
Ripple Voltage	±V _{OUT}	Full Load ⁵ , 20Hz to 20MHz	-	-	50	mV _{p-p}
Line Degulation	+V _{OUT}	V _{IN} = 16V to 40V	-	-	20	mV
Line Regulation	$-V_{OUT}$	V _{IN} = 16V to 40V	-	-	200	mV
Lord Domination	+V _{OUT}	No Load to Full Load⁵	-	-	50	mV
Load Regulation	$-V_{OUT}$	No Load to Full Load⁵	-	-	200	mV
Cross Regulation	-V _{OUT}	+V _{OUT} = 70%, -V _{OUT} = 30% +V _{OUT} = 30%, -V _{OUT} = 70%	-	-	500	mV
EFFICIENCY		Full Load ⁵	79	-	-	%
LOAD FALL T DOWED DIO	IDATION	Overload ⁴	-	-	8	W
LOAD FAULT POWER DISS	IPATION	Short Circuit	-	-	8	W
CAPACITIVE LOAD⁴		Either Output	-	-	500	μF
SWITCHING FREQUENCY			350	450	500	kHz
ISOLATION		500 V _{DC} , T _{CASE} = 25°C	100	-	-	ΜΩ
THERMAL RESISTANCE		Case to Ambient (θCA)	-	25	-	°C/W
MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	427	-	kHrs

See notes next page.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	50 V _{DC}	Junction Temperature Rise to Case	+12°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	20 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	6 Watts	Weight	24 grams

Parameter		Conditions	ı	Units		
		Conditions	Min	Тур	Max	Units
DYNAMIC						
Load Step Output Transient	$\pm V_{\text{OUT}}$	Half Load to Full Load	-	-	400	mV_{PK}
Load Step Recovery ²	Load Step Recovery ²		-	-	500	μSec
Line Step Output Transient4	±V _{OUT}	\/ = 16\/ to 40\/	-	500	900	mV_{PK}
Line Step Recovery ^{2, 4}		V _{IN} = 16V to 40V	-	300	500	μSec
Turn On Delay	urn On Delay ±V _{OUT}		-	-	20	mSec
Turn On Overshoot ²		V_{IN} = 0V to 28V	-	-	50	mV_{PK}

Notes: 1. Dependant on output voltage.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

Verified by qualification testing.
 Half load at +V_{OUT} and half load at -V_{OUT}.
 Up to 70% of the total power or current can be drawn from any one of the two outputs.

BLOCK DIAGRAM

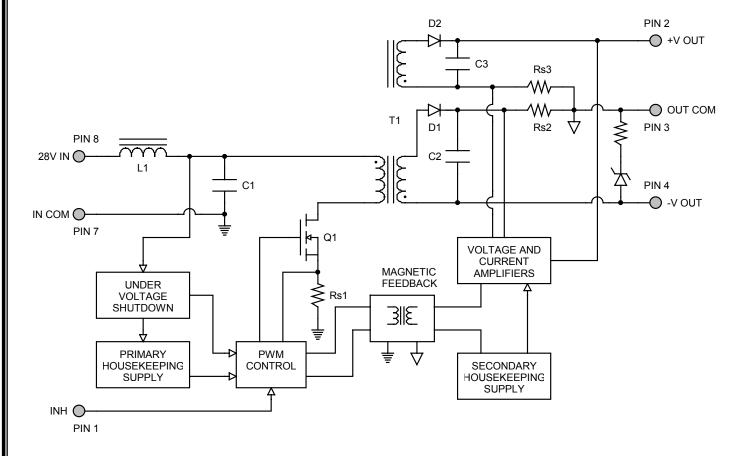


Figure 2

CONNECTION DIAGRAM

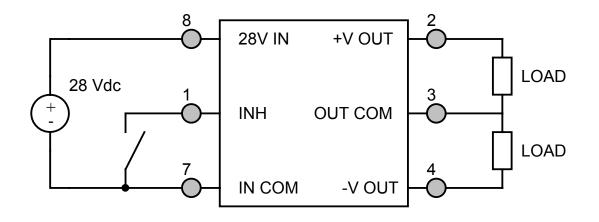
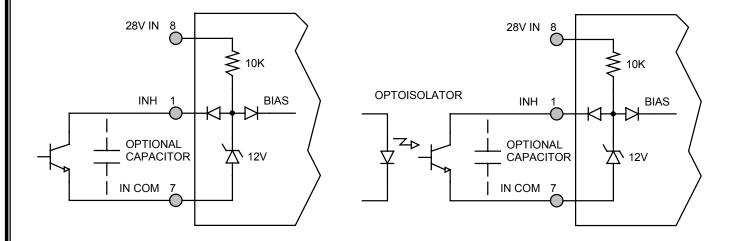



Figure 3

INHIBIT DRIVE CONNECTION DIAGRAMS

Figure 4 – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay)

Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay)

EMI FILTER HOOKUP DIAGRAM

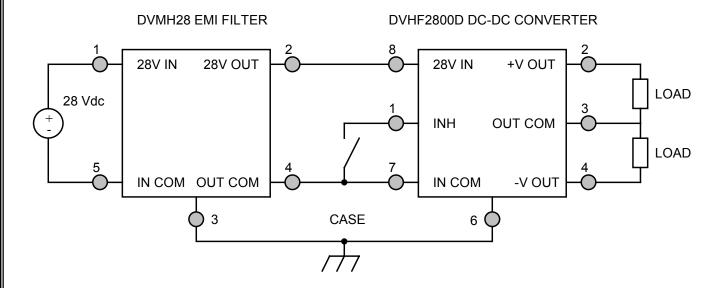
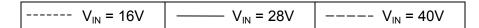
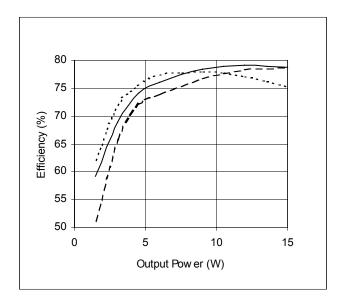




Figure 6 – Converter with EMI Filter

EFFICIENCY PERFORMANCE CURVES (T_{CASE} = 25°C, Full Load, Unless Otherwise Specified)

85 80 75 75 60 60 55 0 5 10 15 20 Output Pow er (W)

Figure 7 – DVHF2805D Efficiency (%) vs. Output Power (W)

Figure 8 – DVHF2812D Efficiency (%) vs. Output Power (W)

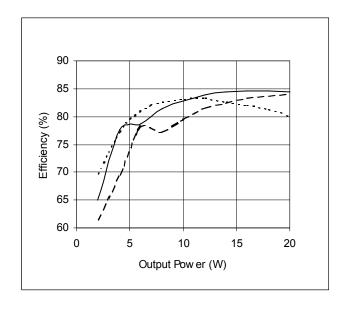


Figure 9 – DVHF2815D Efficiency (%) vs. Output Power (W)

EMI PERFORMANCE CURVES

 $(T_{CASE} = 25^{\circ}C, V_{IN} = +28V \pm 5\%, Full Load, Unless Otherwise Specified)$

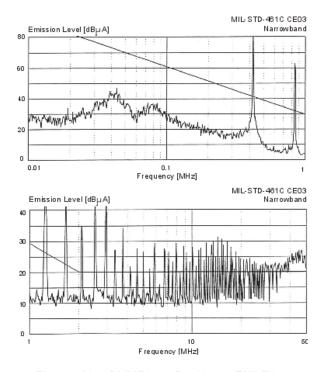
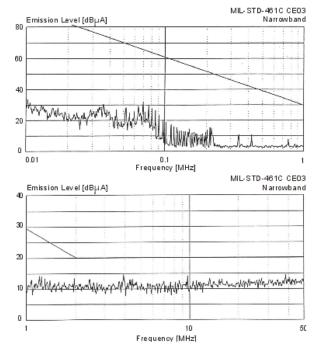
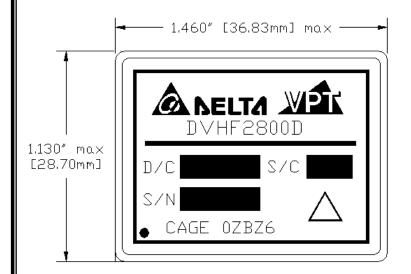
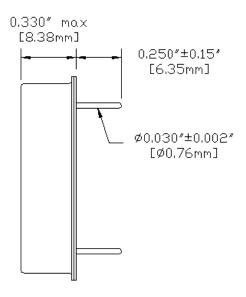
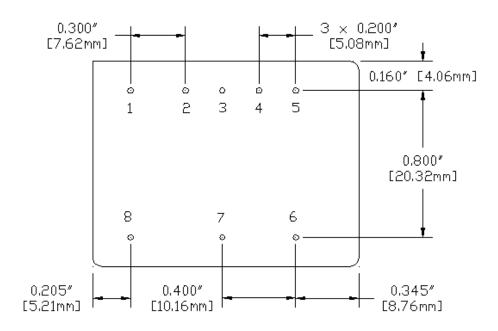


Figure 10 - DVHF2800D without EMI Filter

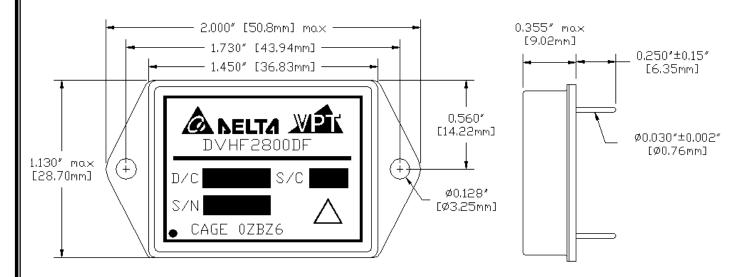




Figure 11 - DVHF2800D with EMI Filter

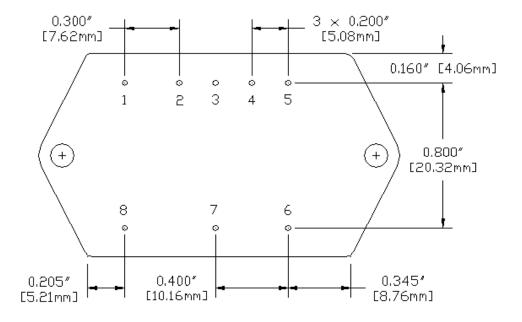

PACKAGE SPECIFICATIONS (NON-FLANGED)

TOP VIEW

SIDE VIEW


PIN	FUNCTION
1	INHIBIT
2	+V OUT
3	OUT COM
4	-V OUT
5	N/C
6	CASE
7	IN COM
8	28V IN

BOTTOM VIEW


Figure 12 – Non-Flanged Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE SPECIFICATIONS (FLANGED)

TOP VIEW SIDE VIEW

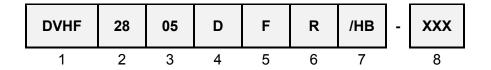
PIN	FUNCTION
1	INHIBIT
2	+V OUT
3	OUT COM
4	-V OUT
5	N/C
6	CASE
7	IN COM
8	28V IN

BOTTOM VIEW

Figure 13 – Flanged Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common (PIN 7) causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.
2	+V OUT	Positive Output Voltage Connection
3	OUT COM	Output Common Connection
4	-V OUT	Negative Output Voltage Connection
5	N/C	No Connection
6	CASE	Case Connection
7	IN COM	Input Common Connection
8	28V IN	Positive Input Voltage Connection


ENVIRONMENTAL SCREENING (Per MIL-STD-883 as referenced to MIL-PRF-38534, Class H)

Screening	MIL-STD-883	Standard (No Suffix)	Extended /ES	HB /HB
Pre-Cap Inspection	Method 2017, 2032 Internal Procedure	•	•	•
Temperature Cycling	Method 1010, Condition C Method 1010, -55°C to 125°C		•	•
Constant Acceleration	Method 2001, Condition A Method 2001, 500g		•	•
Burn-In	Method 1015, 160 hours at +125°C 96 hours at +125°C 24 hours at +125°C	•	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1 x 10 ⁻³)	•	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•	•
Final Inspection	Method 2009	•	•	•

Note: 1. 100% R&R testing at -55°C, +25°C, and +125°C with all test data included in product shipment.

ORDERING INFORMATION

(1) (2) (3)

Product Series	Nominal Input Voltage Number		Output Voltage				Number o	of Outputs	
DVHF	28	28 Volts	05 12 15	± 5 Volts ± 12 Volts ± 15 Volts	D	Dual			

(5) (6) (7)

Packa	ge Option	Rad-Har	Rad-Hard Option		ng Code	Additional Screening Code
None F	Non-Flanged Flanged	None R	Standard 100 kRad	None /ES /HB	Standard Extended HB	Contact Sales

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

CONTACT INFORMATION

To request a quotation or place an order please contact your sales representative or the VPT Inc. Sales Department at:

Phone: (425) 487-4850 Fax: (425) 487-4802 E-mail: sales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.