ECN3021 is a single chip three-phase bridge inverter IC which has 6 IGBTs in the circuit. Especially, it is very suitable for controlling the speed of 3-phase DC brushless motors to which converted AC200~230V power supplies are applied. Fig. 1 shows the internal block diagram.

Functions

* Integrated charge pump circuit
* Integrated free wheel diodes
* Integrated PWM circuit
* Integrated FG circuit
* Integrated over current protection circuit
* Integrated rotating direction monitor circuit

Features

* Speed control for a 3-phase DC brushless motor is available with an external microprocessor.
* Bottom arm circuits can be operated in 20 kHz chopping frequency of PWM.

Fig. 1 Block diagram

ECN3021

1. General
(1) Type
(2) Application
(3) Structure

ECN3021
(4) Package

3-phase DC Brushless Motor
Monolithic IC
2. Maximum Allowable Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

No.	Items	Symbols	Terminal	Ratings	Unit	Condition
1	Output Device Breakdown Voltage	VSM	VS1,VS2 MU,MV,MW	500	V	
2	Supply Voltage	VCC	VCC	18	V	
3	Input Voltage	VIN	VSP,RS HU,HV,HW	$-0.5 \sim$ VB+0.5	V	
4	Output Current	IMDC	MU,MV,MW	0.7	A	
5	Peak Output Current	IMP	MU,MV,MW	1.0	A	Note 1
6	Output Current in Start Up and Accelerating	IOM	MU,MV,MW	1.0	A	Note 1
7	Operating Junction Temperature	Tjop		$-20 \sim+135$	${ }^{\circ} \mathrm{C}$	Note 2
8	Storage Temperature	Tstg		$-40 \sim+150$	${ }^{\circ} \mathrm{C}$	

Note 1. Please note that acumulated duty of a period exceeding 0.7 A has to be less than 5% of total current flowing period.
Note 2. Thermal Resistance

$$
\begin{aligned}
& \mathrm{Rj}-\mathrm{c}=4^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{Rj}-\mathrm{a}=40^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

3. Recommended Operating Conditions

No.	Items	Symbols	Terminal	MIN	TYP	MAX	Unit	Condition
1	Supply Voltage	VS	VS1,2	50	325	370	V	
2		VCC	VCC	13.5	15	16.5	V	

Note. Recommended Safe Operating Area(SOA)
It is recommended that this IC should be used within the SOA as shown below, where IM and VM are the current and the voltage at the terminals connected to motor coils when the phase is changed (turned off).

1.0	
IM (A)	Safe Operating Area
0	
	370
	VM (V)

ECN3021

4. Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Unless otherwise specified, VCC $=15 \mathrm{~V}, \mathrm{VS}=325 \mathrm{~V} \quad$ Suffix T; Top arm \quad B; Bottom arm

Note 1. Pull Up Resistance and Pull Down Resistance are typically $200 \mathrm{k} \Omega$.
Note 2. Please see Note 2 in item 6 for determining the frequency of SAW wave.
Note 3. The amplitude of SAW(VSAWW) is determined by the following equation,
VSAWW=VSAWH-VSAWL (V)
Note 4. The equivalent circuit around FG and DM terminal is shown in Fig. 2
Note 5. LVSD: Low Voltage Shut Down

Fig. 2 Equivalent circuit around FG or DM

ECN3021

5. Function
5.1 Truth Table

Input			MU		MV		MW	
HU	HV	HW	Top	Bottom	Top	Bottom	Top	Bottom
H	L	H	OFF	ON	ON	OFF	OFF	OFF
H	L	L	OFF	ON	OFF	OFF	ON	OFF
H	H	L	OFF	OFF	OFF	ON	ON	OFF
L	H	L	ON	OFF	OFF	ON	OFF	OFF
L	H	H	ON	OFF	OFF	OFF	OFF	ON
L	L	H	OFF	OFF	ON	OFF	OFF	ON
L	L	L	OFF	OFF	OFF	OFF	OFF	OFF
H	H	H	OFF	OFF	OFF	OFF	OFF	OFF

5.2 Timing Chart

5.3 PWM Operation

The PWM signal is produced by comparing the input voltage at VSP terminal with the voltage from the internal SAW wave. The duty of the PWM signal can be changed by the triangular wave amplitude level, from the minimum point of VSAWL to the maximum point of VSAWH, and when the level is under VSAWL, the duty becomes 0%, and when the level is over VSAWH, the duty becomes 100%. In addition, chopping with the PWM signal is operated in the bottom arm circuit.
5.4 Over Current Limiting Operation

This IC detects over current by checking the voltage drop at the external resistance RS. When the input voltage at RS terminal exceeds the internal reference voltage(Vref), this IC turns off the output of the bottom arm circuit. After over current detection, reset operation is done at every period of the inner clock signal (VTR terminal).
5.5 Rotating Direction Sense Operation

The rotation direction of the motor is detected by the signal at DM terminal. Table 1 shows the output signal for the rotation direction.

Table 1. Output signal for the rotation direction

Rotating Direction	Output (DM terminal)
U-V-W	L
U-W-V	H

5.6 Vcc under voltrage Detection

When Vcc supply voltage becomes below $\operatorname{LVSDON}(11.5 \mathrm{~V}$ typ), all of the IGBTs shut off. This condition is recovered when Vcc supply voltage becomes greater than LVSDOFF(12.0V typ).

ECN3021

6. Standard Application

Component	Recommended Value	Usage	Remark
C0	More than $0.22 \mu \mathrm{~F}$	for inner power supply(VB).	stress voltage is VB
C1,C2	$0.5 \mu \mathrm{~F} \pm 20 \%$	for charge pump	stress voltage is VCC
D1,D2	Hitachi DFG1C6(glass mold) Hitachi DFM1F6(resin mold) or equivalent parts	for charge pump	$600 \mathrm{~V} / 1.0 \mathrm{~A}$ trr $\leq 100 \mathrm{~ns}$
Rs	Note 1.	for current limiting	
CTR	$1800 \mathrm{pF} \pm 5 \%$	for PWM	Note 2.
RTR	$22 \mathrm{k} \Omega \pm 5 \%$	for PWM	Note 2.

Note 1. Start up current is limited by the following equation.
IO = Vref / Rs
(A)

Note 2. PWM frequency is approximately determined by the following equation.
$\mathrm{fPWM}=-1 /(2 \mathrm{C} * \mathrm{R} * \operatorname{Ln}(1-3.5 / 5.5)) \quad ; \mathrm{Ln}$ is natural logarithm

$$
=0.494 /(\mathrm{C} * \mathrm{R}) \quad(\mathrm{Hz})
$$

Note 3. It is recommended that RU,RV,RW should be $5.6 \mathrm{k} \Omega \pm 5 \%$.

Fig 3. Block diagram and external elements

ECN3021

7. Terminal

Fig. 4 Pin Connection
8. Package Outline

ECN3021

8. Package Dimensions
(1) ECN3021SP

ECN3021

(3) ECN3021SPR

