

3.3 Electrical Specifications

3.3.1 Maximum Ratings

Storage temperature	-40 to +125° C
Operating free-air temperature range	0 to +70° C
Supply voltage applied to ground potential	-0.5 to +7.0 V
DC voltage applied to outputs for high output state	-0.5 to Vdd max.
DC input voltage	+4.75V to +5.25 V
Supply current	200mA typ / 300 max.
Analog output current	45mA
Reference current	-15mA

3.3.2 Electrical Characteristics

The following condition applies unless otherwise specified: $T(A) = 0 + 70^{\circ} \text{ Vdd} = 5.0 \text{ V} \pm 5\%$

DC Characteristics Over Operating Temperature							
Symbol	Parameter	I/O Cell	Condition	Min.	Тур.	Max.	Unit
		ΠL		2.0			
V _H	High Level Input Voltage	CMOS		3.5			l v
		CMOS Schmidt trigger		4.0			1
		TTL				0.8	
V _{IL}	Low Level Input Voltage	CMOS				1.5	V
		CMOS Schmidt trigger				1.0	1
I _H	High Level Output Current	Input buffer	V _{IN} =VCC	-10	1	10	uA
		Input buffer with pull- down		10		200	
1 _L	Low Level Output Current	Input buffer	V _{IN} =GND	-10		10	uA
		Input buffer with pull- up		-200		-10	
		BT2, BD2 TTL	I _{OH} =-2mA			1	·
		BT4, BT4 TTL	I _{OH} =-4mA	2.4	1		l
V _{OH}	High Level Output Voltage	BT8, BD8 TTL	I _{OH} =-8mA	1			V
		BTPCI, BDPCI TTL	I _{OH} =-2mA	2.4	1		1
		ALL TTL	I _{OH} =-1uA	VCC- 0.05			
		BT4, BD4 CMOS	I _{OH} =-4mA	3.5			1
		BT2, BD2 TTL	I _{OL} =2mA				<u> </u>
		BT4, BT4 TTL	I _{OL} =4mA	1		0.5	
Vol	Low Level Output Voltage	BT8, BD8 TTL	I _{OL} =8mA	1		ĺ	V
		BTPCI, BDPCI TTL	I _{OL} =6mA			0.55	1
		ALL TTL	I _{OL} =1uA		1	0.05	1
		BT4, BD4 CMOS	I _{OL} =4mA		1	1.5	1
		Output buffer		-10		10	
loz	High Impedance Leakage current	Output buffer with pull-	Vout=VCC or	-200		-10	uA
		up	GND				
		Output buffer with pull- down		10		200	
Vн	Schmidt Trigger Hysteresis Voltage				0.6		V

NOTE: The MDRAM outputs (see pins below) are specifically designed to work into 220Ω loads, to VDD and ground, with reduced swing and a 50 percent duty cycle to achieve the high data exchange rate. Different loads may affect performance.

MDRAM Outputs				
Pins Function				
MD1<15:0>, MD0<15:0>	input/output			
MM1<1:0>, MM0<1:0>	input to MDRAM			
CLK1, CLK0	input to MDRAM			

3.3.3 DAC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{REF}	Reference voltage		1.10	1.35	V
Vo (max)	Maximum output voltage	lo≤ 10mA		1.5	V
I _O (max)	Maximum output current	V _o ≤1V		21	mA
	Full scale error	note A, B		±5	%
	DAC to DAC correlation	note B		±2	%
	Integral linearity, 6-bit	note B		±0.5	LSB
	Integral linearity, 8-bit	note B		±1	LSB
	Full-scale settling time*, 6-bit	note C		28	ns
	Full-scale settling time*, 8-bit	note C		20	ns
	Rise time (10% to 90%)*	note C		6	ns
	Glitch energy*	note C		200	pVsec

^{*} Characterized values only

3.3.4 PLL Characteristics

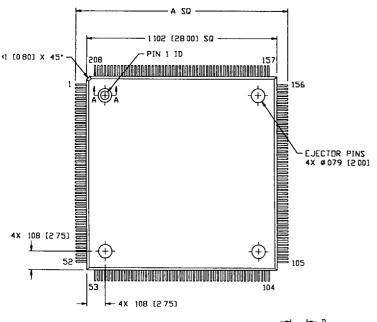
Symbol	Parameter	Conditions	Min.	Max.	Units
F _D	Frequency change of CLK0 and CLK1 over supply and temperature	With respect to typical frequency		0.05	%
fo	CLOCK0 operating range*		25	135	MHz
f ₁	CLOCK1 operating range*		25	135	MHz
dt	Duty cycle*		40/60	60/40	%
j _{1s}	Jitter, one sigma*			130ps	ps
jabs	Jitter, absolute*		-300ps	300ps	ps
f _{ref}	Input reference frequency	typically 14.318MHz	5	25	MHz

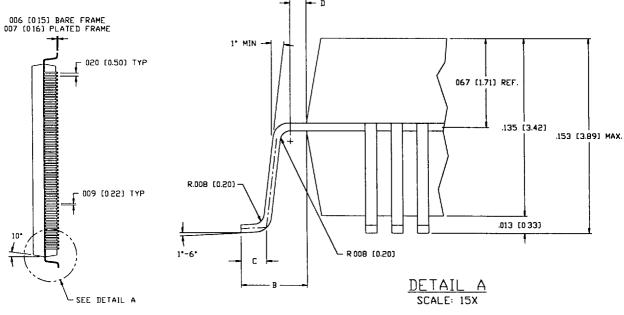
NOTES:

A. Full scale error is derived from design equation

$${[(F.S.I_{out})R_L - 2.1 (I_{REF})R_L]/[2.1(I_{REF})R_L]} 100\%$$

V_{BLACK LEVEL} = 0V F.S.I_{OUT} = Actual full scale measured output


B. R = 37.5
$$\Omega$$
, I_{REF} = -8.88mA, J_{REF} = V_{REF}/R_{SET}


C.
$$Z_1 = 37.5\Omega + 30pF$$
, $I_{REF} = -8.88mA$

Appendix C. Mechanical Specification

ET6000 208-pin Plastic Quad Flat Package

