July 1997

ADVANCE INFORMATION

FDQ4006N

Dual Common Drain

N-Channel Enhancement Mode Field Effect Transistor

General Description

SOIC-14 N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices can be paralleled externally for use in high current DC-DC converters in notebook computer and other battery powered circuits where fast switching, very low in-line power loss, and resistance to transients are needed.

Features

- High density cell design for extremely low R_{DS(ON)}.
- Common drain connection for easy parallel operation.
- High power and current handling capability in industry standard SOIC-14 package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	FDQ4006N	Units
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1a)	13	A
	- Pulsed	35	
P _D	Power Dissipation for Single Operation (Note 1a)	2.5	w
	(Note 1b)	1.5	
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to 150	~
THERMA	L CHARACTERISTICS		•
R _{eJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)	50	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)	15	°C/W

©1997 Fairchild Semiconductor Corporation

FDQ4006N Rev.A

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
OFF CHA	RACTERISTICS	<u>.</u>					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		30			٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$				1	μΑ
			T _J = 55℃			10	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		1		3	٧
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 13 \text{A}$				0.0075	Ω
			T _J = 125℃			0.0135	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 11 \text{ A}$	•			0.011	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		35			Α
DRAIN-SC	URCE DIODE CHARACTERISTICS AND MA	AXIMUM RATINGS					
l _s	Maximum Continuous Drain-Source Diode Forward Current				·	2.1	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{co} = 0 V, I _o = 1.6 A (Note	V _{GS} = 0 V, I _S = 1.6 A (Note 2)			1.2	V

Notes

$$P_D(t) = \frac{T_J - T_A}{R_{\theta JA}(t)} = \frac{T_J - T_A}{R_{\theta JC} + R_{\theta CA}(t)}$$

Typical R_{8.8} for single device operation using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 50°C/W when mounted on a package size 2oz copper pad.

b. 83°C/W when mounted on a 2oz minimum copper pad.

 $Scale \ 1:1 \ on \ letter \ size \ paper$ 2. Pulse Test: Pulse Width $\leq 300 \mu s, \ Duty \ Cycle \leq 2.0\%.$

FDQ4006N Rev.A

^{1.} $R_{g,x}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,C}$ is guaranteed by design while $R_{g,C}$ is determined by the user's board design.