19-1114; Rev 1; 8/96 # High Precision 10 Volt Reference ### General Description Maxim's MX581 is a three-terminal, temperature compensated, band-gap voltage reference which provides a precise '10.00V output from an unregulated input of 12.5V to 30V. Laser trimming is used to minimize initial error and temperature drift, to as low as 10mV and 15ppm/°C with the MX581. No external components are needed to acheive full accuracy over the operating temperature range. Total supply current to the device, including the internal output buffer amplifier, is typically 750µA. The MX581 is designed for use with 8 to 14 bit A/D and D/A converters as well as data-acquisition systems. The reference is available in a 3-pin TO-39 metal can and an 8- lead small-outline surface-mount package. ### Applications CMOS DAC Reference A/D Converter Reference Measurement Instrumentation Threshold Detectors Precision Analog Systems ### Features - ♦ ±10mV Tolerance (MX581K) - ◆ Low Tempco 15ppm/°C Max. (MX581K) - **♦ No External Components or Trims** - ♦ Short Circuit Proof - ♦ Output Sources and Sinks Current - + 10mA Output Current - ◆ Low Supply Current 1.0mA Max. - ♦ Three-Terminal Package ### Ordering Information | PART | TEMP. RANGE | PIN-PACKAGE | ERROR | |-----------|-----------------|-------------|-------| | MX581JH | 0°C to +70°C | 3 TO-39 Can | ±30mV | | MX581KH | 0°C to +70°C | 3 TO-39 Can | ±10mV | | MX581JCSA | 0°C to +70°C | 8 SO | ±30mV | | MX581KCSA | 0°C to +70°C | 8 SO | ±10mV | | MX581JESA | -40°C to +85°C | 8 SO | ±30mV | | MX581KESA | -40°C to +85°C | 8 SO | ±10mV | | MX581SH | -55°C to +125°C | 3 TO-39 Can | ±20mV | | MX581TH | -55°C to +125°C | 3 TO-39 Can | ±10mV | | MX581UH | -55°C to +125°C | 3 TO-39 Can | ±5mV | ### Typical Operating Circuit ### Pin Configurations MAXIM _______ Maxim Integrated Products 1 Call toll free 1-800-998-8800 for free samples or literature. ### **ABSOLUTE MAXIMUM RATINGS** | Input Voltage VIN to GND | 0.3V, +40V | | | |--|---------------|--|--| | Power Dissipation | | | | | TO-39 Can (derate 6.7mW/°C above +60°C | | | | | SO (derate 5.3mW/°C above +75°C) | 400mW | | | | Output Short-Circuit Duration (Note 1) | Indefinite | | | | Operating Temperature Range | | | | | Commercial (J, K) | .0°C to +70°C | | | | Extended (J, K) | 10°C to +85°C | | | | Military (S, T, U)55 | 5°C to +125°C | | | | Storage Temperature Range | 65°C to +175°C | |---|----------------| | Lead Temperature (soldering, 10sec) | +300°C | | Die Junction Temperature (Tj) | 55°C to +150°C | | Thermal Resistance, Junction to Ambient | | | TO-39 Can | 150°C/W | | SO | 170°C/W | Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **ELECTRICAL CHARACTERISTICS** $(V_{IN} = \pm 15V, T_A = +25^{\circ}C, unless otherwise noted.)$ | PAR | AMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | | | |--|-----------------|----------------------------|-----------------------------|------------------------|------------|--------------|----------------|-------------------|-------------|--| | | | 1 | 1 | MX581J/S | | | | ±30 | | | | Output Voltag | ge Tolerance | | IL = OmA | MX581K/T | | | | ±30 | mV | | | | | | | MX581U | | | | ±5 | | | | | | MX581JH/JCSA
MX581JES3A | | | | 13.5
(30) | mV
(ppm/°C) | | | | | | | | | | | | | 19.5
(30) | | | | | | | MX581KH/KCSA | | | | | 6.75
(15) | | | | Output Voltage Change with
Temperature. | | MX581KESA MX581S | | | | 13
(20) | | | | | | (Temperature Coefficient) | | | | | | | | 30
(30) | | | | | | | MX581T | | | - | | 15
(15) | | | | | ļ | MX581U | | | | 10
(10) | | | | | | Line Regulation | | | | +12.5V < VIN < | -15V | | | 0.005 | %/V
(mV) | | | | | | No load | +15V < VIN < +3 | ov | | | 0.002 | | | | Load Regula | tion | | I _L = 0mA to 5mA | | | 20
(220) | 50
(550) | ppm/mA
(µV/mA) | | | | Quiescent St | upply Current | lo. | IL = 0mA | | | | 750 | 1000 | μА | | | | ng Time to 0.1% | ton | | | | | 200 | | μѕ | | | Noise | | enp-p | 0.1Hz to 10Hz | | | 50 | | μ∨ _{р-р} | | | | Long-Term Stability | | | (Non-cumulative) | | | 25 | | ppm/kHrs | | | | Short-Circuit Current Isc | | lsc | | | | 30 | | mA | | | | Output
Current | Source | 10. | Vin > Vout +
2.5V | T _A = +25°C | | 10 | | | | | | | | | | TMIN to TMAX | | 5 | | | | | | | | | | TMIN to TMAX | MX581J/K | 5 | | | mA | | | | Sink | | | | MX581S/T/U | 0.2 | | | | | | | 1 | | | -55°C to +85°C | MX581S/T/U | 5 | | | | | Note 1: Absolute maximum power dissipation must not be exceeded. | ^ | MAXIW | |---|-------| | 2 | | ### __ Detailed Description As shown in Figure 1, most applications of the MX581 require no external components. Connections are +Vs, VouT, and GND (GND is tied to the case in the To-5 package). Usually the desired accuracy is obtained by selecting the appropriate device grade. However, any part can be adjusted to a tighter tolerance, or to slightly different voltage, using the fine trim circuit in Figure 2. The table in Figure 2 lists the trim range for different values of R in the figure, and also shows the effect on temperature coefficient. ### Voltage Temperature Coefficient The temperature characteristic of the MX581 consistently follows an "S-curve" (see Typical Operating Characteristics). A five-point 100% test guarantees compliance with -55°C to +125°C specifications and a three-point 100% test guarantees 0°C to +70°C specifications. Figure 1. MX581 Basic Connection MIXKM 3 Figure 2. Optional Fine Trim Configuration The Voltage Change specifications in the Electrical Characteristics table state the maximum deviation over temperature from the reference's initial value at 25°C, as well as drift in ppm/°C. By adding the maximum deviation for a given device to its initial tolerance, the total error is quickly determined. #### **Output Current** The MX581 is unique in that it can sink as well as source current. The circuit is also protected for output shorts to either +Vs or GND. The output voltage versus current characteristic is shown in the Typical Operating Characteristics section. ### Dynamic Performance The turn-on characteristics and settling performance of the MX581 are shown in the Typical Operating Characteristics. Both coarse and fine transient response is shown. The reference typically settles to tmV within 180µs after power is applied. # Applications Precision High Current Reference A PNP power transistor, or Darlington, is easily connected to the MX581 to greatly increase its output current. The circuit of Figure 3 provides a +10V output at up to 4 Amps. If the load has a significant capacitive component, compensation capacitor, C1, should be added. If the load is purely resistive, high frequency supply rejection is improved without C1. ### Low Input Voitage Although line regulation is specified from 12.5V to 40V, the MX581 can operate with a +12V \pm 5% input by adding a resistor as shown in Figure 4. The resistor reduces the current that must be supplied from V_{OUT}. Note that the resistor cannot be used at higher input voltages since, as the supply increases, it sources more current than $\ensuremath{V_{OUT}}$ can sink. #### **Current Limiter** By adding a single resistor as shown in Figure 5, the MX581 is turned into a precision current limiter for applications where the driving voltage is 12.5V to 40V. The programmed current ranges from 0.75mA to 5mA. #### Negative 10V Reference Where a -10V reference is required, the MX581 can be connected as a two-terminal device and biased like a zener diode. The circuit is shown in Figure 6. +V_S and V_{OUT} are connected to the system's analog ground, and the MX581's GND pin is connected, through a resistor, to the negative supply. With 1mA flowing in the reference, the output voltage is typically 2mV greater than what is obtained with the conventional, positive, hook-up. Figure 3. High Current Precision Supply Figure 4. 12-Volt Supply Connection MIXKM Figure 5. A Two-Component Precision Current Limiter Figure 6. Two-Terminal -10 Volt Reference Figure 8. Negative 10V Reference for CMOS A/D Converter When using the 2-terminal connection, the load and the bias resistor must be selected so that the current flowing in the reference is maintained between 1mA and 5mA. The operating temperature range for this connection is limited to -55° to +85°C. ### Reference for CMOS DACs and ADCs The MX581 is well suited for use with a wide variety of D-to-A converters, especially CMOS DACs. Figure 7 shows a circuit in which an MX7533 10 bit DAC outputs 0 to -10V when using a +10V reference. For a positive DAC output, the MX581 is configured as a 2-terminal -10V reference (Figure 6) and connected to the DAC's V_{REF} input. In Figure 8, an MX7574 CMOS A/D converter uses an MX581 for its -10V reference input. The input range for the A/D converter is 0V to +10V. Figure 9. MX581 Microprocessor Interface MIXLM **HX581** TRANSISTOR COUNT: 72 SUBSTRATE CONNECTED TO GND MAXIM ### Package Information MAXIM _____