Index of /ds/FS/

FSB560.pdf
FSB560A.pdf
FSB619.pdf
FSB660.pdf
FSB660A.pdf
FSB6726.pdf
FSBCW30.pdf
FST16209.pdf
FST16210.pdf
FST16211.pdf
FST16212.pdf
FST16213.pdf
FST16232.pdf
FST16233.pdf
FST162861.pdf
FST16292.pdf
FST16861.pdf
FST3125.pdf
FST3126.pdf
FST3244.pdf
FST3245.pdf
FST3253.pdf
FST3257.pdf

22-Dec-99 00:08 208K
22-Dec-99 00:08 208K
22-Dec-99 00:08 27K
22-Dec-99 00:08 209K
22-Dec-99 00:08 209K
22-Dec-99 00:08 23K
22-Dec-99 00:08 43K
31-Dec-99 00:00 134K
31-Dec-99 00:00 110K
31-Dec-99 00:00 213K
31-Dec-99 00:00 155K
31-Dec-99 00:00 153K
31-Dec-99 00:00 98K
31-Dec-99 00:00 97K
09-Jan-00 00:00 163K
31-Dec-99 00:00 95K
09-Jan-00 00:00 88K
31-Dec-99 00:00 123K
31-Dec-99 00:00 121K
31-Dec-99 00:00 103K
31-Dec-99 00:00 110K
31-Dec-99 00:00 138K
31-Dec-99 00:00 96K
\square FST3383.pdf
FST3384.pdf FST3384A.pdf

FST6800.pdf j FSTD16211.pdf FSTU32160.pdf FSTU32160A.pdf FSTU3257.pdf FSTU3384.pdf [i) FSTU6800.pdf [) FSTU6800A.pdf

31-Dec-99 00:00 119K
22-Dec-99 00:08 50K
31-Dec-99 00:00 99K
22-Dec-99 00:08 90K
31-Dec-99 00:00 121K
21-Dec-99 00:00 227K
22-Dec-99 00:08 108K
22-Dec-99 00:08 108K
21-Dec-99 00:00 81K
31-Dec-99 00:00 99K
31-Dec-99 00:00 181K
31-Dec-99 00:00 182K

SuperSOT ${ }^{\text {TM }} \mathbf{- 3}$ (SOT-23)

NPN Low Saturation Transistor

These devices are designed with high current gain and low saturation voltage with collector currents up to 2 A continuous.

Absolute Maximum Ratings* $\quad T_{A=25^{\circ} \text { unness ontemisise noled }}$

Symbol	Parameter	FSB560/FSB560A	Units
$\mathrm{V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	60	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base Voltage	80	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage	5	V
I_{C}	Collector Current - Continuous	2	A
$\mathrm{~T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $\quad T_{A=25^{\circ} \text { unness onthemise noled }}$

Symbol	Characteristic	Max	Units
		FSB560/FSB560A	
P_{D}	Total Device Dissipation	500	mW
$\mathrm{R}_{\text {ӨJA }}$	Thermal Resistance, Junction to Ambient	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NPN Low Saturation Transistor (continued)					
Electrical Characteristics $\quad \mathrm{T}_{\mathrm{A}=25^{\circ} \mathrm{C} \text { unless othemise noted }}$					
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHARACTERISTICS					
BV ${ }_{\text {ceo }}$	Collector-Emitter Breakdown Voltage	$\mathrm{lc}=10 \mathrm{~mA}$	60		V
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{l} C=100 \mu \mathrm{~A}$	80		V
BV EbBO	Emitter-Base Breakdown Voltage	$\mathrm{IE}_{\mathrm{E}}=100 \mu \mathrm{~A}$	5		V
Icbo	Collector Cutoff Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \hline 100 \\ 10 \end{gathered}$	nA uA
Iebo	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}$		100	nA
ON CHARACTERISTICS*					
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \text { FSB560 }} \quad \text { FSB560A } \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \end{aligned}$	$\begin{gathered} 70 \\ 100 \\ 250 \\ 80 \\ 40 \end{gathered}$	$\begin{aligned} & 300 \\ & 550 \end{aligned}$	-
$\mathrm{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=1 A, I_{B}=100 \mathrm{~mA} & \\ I_{C}=2 A, I_{B}=200 \mathrm{~mA} & \text { FSB560 } \\ & \text { FSB560A } \end{array}$		$\begin{aligned} & 300 \\ & 350 \\ & 300 \end{aligned}$	mV
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		1.25	V
$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	Base-Emitter On Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$		1	V
SMALL SIGNAL CHARACTERISTICS					
Cobo	Output Capacitance	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$		30	pF
f_{T}	Transition Frequency	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	75		-
*Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$					

Typical Characteristics

Input/Output Capacitance vs. Reverse Bias Voltage

SuperSOT ${ }^{\text {TM }}$-3 Tape and Reel Data and Package Dimensions

SuperSOT ${ }^{\text {TM }}-3$ Tape and Reel Data and Package Dimensions, continued

SSOT-3 Embossed Carrier Tape
Configuration: Figure 3.0

Dimensions are in millimeter														
Pkg type	A0	во	w	Do	D1	E1	E2	F	P1	po	ко	T	Wc	тc
$\begin{gathered} \text { SSOT-3 } \\ (8 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \begin{array}{l} 3.15 \\ +1-0.10 \end{array} \end{aligned}$	$\begin{aligned} & 2.77 \\ & +0.0 .10 \end{aligned}$	$\begin{aligned} & 8.00 .3 \\ & ++0.0 \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 1.55 \\ +10.05 \end{array}\right) \end{aligned}$	$\begin{aligned} & 1.125 \\ & ++0.125 \end{aligned}$	$\begin{aligned} & 1.75 \\ & +-10.10 \end{aligned}$	$\begin{aligned} & 6.25 \\ & \min \end{aligned}$	$\begin{aligned} & 3.50 \\ & +0.05 \\ & +0.05 \end{aligned}$	$\underset{+}{4.0}$	$\underset{\substack{4.0 \\+-0.1}}{\text { ¢ }}$	$\begin{aligned} & \begin{array}{c} 1.30 \\ +10.10 \end{array} \end{aligned}$	${ }_{\substack{0.228 \\+-0.013}}$	$\underset{\substack{5.2 \\+-0.3}}{\text { ¢ }}$	$\xrightarrow{0.06}+1.02$

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).
 Component Rotation

Sketch B (Top View) Component Rotation
0.5 mm

Sketch C (Top View) Component lateral movement

SSOT-3 Reel Configuration: Figure 4.0

W1 Measured at Hub

7"Diameter Option

13" Diameter Option
W2 max Measured at Hub

DETAIL AA

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8 mm	7" Dia	$\begin{aligned} & 7.00 \\ & 177.8 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 2.165 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$
8 mm	13" Dia	$\begin{aligned} & 13.00 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$

SuperSOT ${ }^{\text {TM }} 3$ 3 Tape and Reel Data and Package Dimensions, continued

SuperSOTTм-3 (FS PKG Code 32)

Scale 1:1 on letter size paper
Dimensions shown below are in: inches [mil limeters]

Part Weight per unit (gram): 0.0097

LAND PATTERN RECOMMENDATION

NOTES : UNLESS OTHERWISE SPECIFIED
SUPER SOT, 3 LEADS

1. STANDARD LEAD FINISH TO BE 150 MICROINCHES / 3.81 MICROMETERS MNIMUM TIN/LEAD (SOLDER) ON COPPER.
2. NO JEDEC REGISTRATION AS OF DEC. 1995.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	UHC ${ }^{\text {™ }}$
CoolFET ${ }^{\text {m }}$	MICROWIRE ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {m }}$	РОРтм	
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {M }}$	PowerTrench ${ }^{\text {™ }}$	
FACT ${ }^{\text {т }}$	QS ${ }^{\text {™ }}$	
FACT Quiet Series ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
GTO $^{\text {™ }}$	SuperSOT ${ }^{\text {тм }}$-8	
$\mathrm{HiSeC}^{\text {² }}$ м	TinyLogic ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete Power \& Signal Technologies

July 1998

FSB619

B

$$
\text { SuperSOT }{ }^{T M}-3 \text { (SOT-23) }
$$

NPN Low Saturation Transistor

These devices are designed with high current gain and low saturation voltage with collector currents up to 3 A continuous.

Absolute Maximum Ratings* $\quad T_{A=25^{\circ} \mathrm{c} \text { unless onthemise noled }}$

Symbol	Parameter	FSB619	Units
$\mathrm{V}_{\text {CEO }}$	Collector-Emitter Voltage	50	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base Voltage	50	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage	5	V
I_{C}	Collector Current - Continuous	2	A
$\mathrm{~T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics
$T_{A=25^{\circ} \mathrm{C} \text { unless otherwise noted }}$

Symbol	Characteristic	Max	Units
		FSB619	
PD	Total Device Dissipation		
	Derate above $25^{\circ} \mathrm{C}$		

*Device mounted on FR-4 PCB 4.5" X 5"; mounting pad $0.02 \mathrm{in}^{2}$ of 2 z copper.

NPN Low Saturation Transistor

(continued)
Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

BV ${ }_{\text {ceo }}$	Collector-Emitter Breakdown Voltage	$\mathrm{l} C=10 \mathrm{~mA}$	50		V
BV ${ }_{\text {CBO }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	50		V
BV Ebo	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	5		V
Ісbo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}$		100	nA
Iebo	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}$		100	nA
Ices	Collector Emitter Cutoff Current	$\mathrm{V}_{\text {CES }}=40 \mathrm{~V}$		100	nA

ON CHARACTERISTICS*

$h_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & 200 \\ & 100 \end{aligned}$		-
$\mathrm{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 20 \\ 235 \\ 320 \end{gathered}$	mV
$\mathrm{V}_{\text {BE(sat) }}$	Base-Emitter Saturation Voltage	$\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{l}$ B $=50 \mathrm{~mA}$		1	V
$V_{\text {BE(on) }}$	Base-Emitter On Voltage	$\mathrm{IC}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$		1	V

SMALL SIGNAL CHARACTERISTICS

$\mathrm{C}_{\text {obo }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$		30	pF
f_{T}	Transition Frequency	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	100		-

*Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

July 1998

FSB660／FSB660A

SuperSOT ${ }^{T M}$－3（SOT－23）

PNP Low Saturation Transistor

These devices are designed with high current gain and low saturation voltage with collector currents up to 2 A continuous．

Absolute Maximum Ratings＊$T_{A=25^{\circ} \text { u uness onthemise noted }}$

Symbol	Parameter	FSB660／FSB660A	Units
$\mathrm{V}_{\mathrm{CEO}}$	Collector－Emitter Voltage	60	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector－Base Voltage	80	V
$\mathrm{~V}_{\text {EBO }}$	Emitter－Base Voltage	5	V
I_{C}	Collector Current－Continuous	2	A
$\mathrm{~T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

＊These ratings are limiting values above which the serviceability of any semiconductor device may be impaired．

NOTES：
1）These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$ ．
2）These are steady state limits．The factory should be consulted on applications involving pulsed or low duty cycle operations．

Thermal Characteristics $\quad T_{A=25^{\circ} \text { unness ontemisise noled }}$

Symbol	Characteristic	Max	
		FSB660／FSB660A	
P_{D}	Total Device Dissipation	500	mW
$R_{\text {ӨJA }}$	Thermal Resistance，Junction to Ambient	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PNP Low Saturation Transistor (continued)					
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHARACTERISTICS					
BV ${ }_{\text {ceo }}$	Collector-Emitter Breakdown Voltage	$\mathrm{lC}=10 \mathrm{~mA}$	60		V
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{IC}=100 \mu \mathrm{~A}$	80		V
BV Ebob	Emitter-Base Breakdown Voltage	$\mathrm{IE}=100 \mu \mathrm{~A}$	5		V
ICbo	Collector Cutoff Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 100 \\ 10 \end{gathered}$	nA uA
IEbo	Emitter Cutoff Current	$V_{E B}=4 \mathrm{~V}$		100	nA
ON CHARACTERISTICS*					
$h_{\text {FE }}$	DC Current Gain	$$	$\begin{gathered} 70 \\ 100 \\ 250 \\ 80 \\ 40 \end{gathered}$	$\begin{aligned} & 300 \\ & 550 \end{aligned}$	-
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=1 A, I_{B}=100 \mathrm{~mA} & \\ \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA} & \text { FSB660 } \\ & \text { FSB660A } \end{array}$		$\begin{aligned} & \hline 300 \\ & 350 \\ & 300 \end{aligned}$	mV
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		1.25	V
$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	Base-Emitter On Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$		1	V
SMALL SIGNAL CHARACTERISTICS					
$\mathrm{C}_{\text {obo }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$		30	pF
f_{T}	Transition Frequency	$\mathrm{IC}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	75		-
*Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$					

Typical Characteristics

Current Gain vs. Collector Current

SuperSOT ${ }^{\text {TM }}$-3 Tape and Reel Data and Package Dimensions

SuperSOT ${ }^{\text {TM }}-3$ Tape and Reel Data and Package Dimensions, continued

SSOT-3 Embossed Carrier Tape
Configuration: Figure 3.0

Dimensions are in millimeter														
Pkg type	A0	во	w	Do	D1	E1	E2	F	P1	po	ко	T	Wc	тc
$\begin{gathered} \text { SSOT-3 } \\ (8 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \begin{array}{l} 3.15 \\ +1-0.10 \end{array} \end{aligned}$	$\begin{aligned} & 2.77 \\ & +0.0 .10 \end{aligned}$	$\begin{aligned} & 8.00 .3 \\ & ++0.0 \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 1.55 \\ +10.05 \end{array}\right) \end{aligned}$	$\begin{aligned} & 1.125 \\ & ++0.125 \end{aligned}$	$\begin{aligned} & 1.75 \\ & +-10.10 \end{aligned}$	$\begin{aligned} & 6.25 \\ & \min \end{aligned}$	$\begin{aligned} & 3.50 \\ & +0.05 \\ & +0.05 \end{aligned}$	$\underset{+}{4.0}$	$\underset{\substack{4.0 \\+-0.1}}{\text { ¢ }}$	$\begin{aligned} & \begin{array}{c} 1.30 \\ +10.10 \end{array} \end{aligned}$	${ }_{\substack{0.228 \\+-0.013}}$	$\underset{\substack{5.2 \\+-0.3}}{\text { ¢ }}$	$\xrightarrow{0.06}+1.02$

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).
 Component Rotation

Sketch B (Top View) Component Rotation
0.5 mm

Sketch C (Top View) Component lateral movement

SSOT-3 Reel Configuration: Figure 4.0

W1 Measured at Hub

7"Diameter Option

13" Diameter Option
W2 max Measured at Hub

DETAIL AA

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8 mm	7" Dia	$\begin{aligned} & 7.00 \\ & 177.8 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 2.165 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$
8 mm	13" Dia	$\begin{aligned} & 13.00 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.331+0.059 /-0.000 \\ & 8.4+1.5 / 0 \end{aligned}$	$\begin{aligned} & 0.567 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.311-0.429 \\ & 7.9-10.9 \end{aligned}$

SuperSOT ${ }^{\text {TM }} 3$ 3 Tape and Reel Data and Package Dimensions, continued

SuperSOTTм-3 (FS PKG Code 32)

Scale 1:1 on letter size paper
Dimensions shown below are in: inches [mil limeters]

Part Weight per unit (gram): 0.0097

LAND PATTERN RECOMMENDATION

NOTES : UNLESS OTHERWISE SPECIFIED
SUPER SOT, 3 LEADS

1. STANDARD LEAD FINISH TO BE 150 MICROINCHES / 3.81 MICROMETERS MNIMUM TIN/LEAD (SOLDER) ON COPPER.
2. NO JEDEC REGISTRATION AS OF DEC. 1995.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	UHC ${ }^{\text {™ }}$
CoolFET ${ }^{\text {m }}$	MICROWIRE ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {m }}$	РОРтм	
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {M }}$	PowerTrench ${ }^{\text {™ }}$	
FACT ${ }^{\text {т }}$	QS ${ }^{\text {™ }}$	
FACT Quiet Series ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
GTO $^{\text {™ }}$	SuperSOT ${ }^{\text {тм }}$-8	
$\mathrm{HiSeC}^{\text {² }}$ м	TinyLogic ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

This device is designed for general purpose medium power amplifiers and switches requiring collector currents to 1.0 A. Sourced from Process 77.

Absolute Maximum Ratings* $T_{A=25^{\circ} \text { c uness onthemise noled }}$

Symbol	Parameter	FSB660/FSB660A	Units
$\mathrm{V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	30	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base Voltage	40	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	5	V
I_{C}	Collector Current - Continuous	1.5	A
$\mathrm{~T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $\quad T_{A=25^{\circ} \text { Cuness ontemuse noted }}$

Symbol	Characteristic	Max	
		Units	
P_{D}	Total Device Dissipation	500	
$R_{\text {ӨJA }}$	Thermal Resistance, Junction to Ambient	250	mW

PNP General Purpose Amplifier (continued)					
Electrical Characteristics					
Symbo	Parameter	Test Conditions	Min	Max	Units
OFF CHARACTERISTICS					
BV ${ }_{\text {ceo }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	30		V
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage	$\mathrm{IC}=100 \mu \mathrm{~A}$	40		V
$\mathrm{BV}_{\text {Ebo }}$	Emitter-Base Breakdown Voltage	$\mathrm{IE}_{\mathrm{E}}=100 \mu \mathrm{~A}$	5		V
Icbo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}$		100	nA
lebo	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$		100	nA
ON CHARACTERISTICS*					
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	250	-
$\mathrm{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		500	mV
$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	Base-Emitter On Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$		1.2	V
SMALL SIGNAL CHARACTERISTICS					
C_{cb}	Collector-Base Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		30	pF
hfe	Small Signal Current Gain	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=20 \mathrm{MHz}$	2.5	25	-
*Pulse Test: Pulse Width ≤ 300 us, Duty Cycle $\leq 2.0 \%$					

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	UHC ${ }^{\text {™ }}$
CoolFET ${ }^{\text {m }}$	MICROWIRE ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {m }}$	РОРтм	
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {M }}$	PowerTrench ${ }^{\text {™ }}$	
FACT ${ }^{\text {т }}$	QS ${ }^{\text {™ }}$	
FACT Quiet Series ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
GTO $^{\text {™ }}$	SuperSOT ${ }^{\text {тм }}$-8	
$\mathrm{HiSeC}^{\text {² }}$ м	TinyLogic ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWE R \& Signal Technologies

FSBCW30

SuperSOT ${ }^{T M}$-3

PNP General Purpose Amplifier

This device is designed for general purpose medium power amplifiers and switches requiring collector currents to 300 mA . Sourced from Process 68. See BC857A for characteristics.

${ }^{*}$ These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T A=25^{\circ}$ U Unesss onemises noted

Symbol	Characteristic	Max	Units
P_{D}	Total Device Dissipation		
	Derate above $25^{\circ} \mathrm{C}$		

[^0]| PNP General Purpose Amplifier (continued) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Electrical Characteristics | | TA $=25^{\circ} \mathrm{C}$ unless otherwise noted | | | |
| Symbol | Parameter | Test Conditions | Min | Max | Units |

OFF CHARACTERISTICS

BV ceo	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	32		V
BV cbo	Collector-Base Breakdown Voltage	$\mathrm{I}_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	32		V
BVces	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	32		V
BVEbo	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5.0		V
Icbo	Collector-Cutoff Current	$\begin{aligned} & \mathrm{V}_{C B}=32 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=32 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=+100 \\ & { }^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 100 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
ON CHARACTERISTICS					
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$	215	500	
$\mathrm{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$		0.30	V
$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	Base-Emitter On Voltage	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$	0.60	0.75	V

SMALL SIGNAL CHARACTERISTICS

NF	Noise Figure	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A}$, $\mathrm{R}_{\mathrm{S}}=2.0 \mathrm{k}, \mathrm{f}=1.0 \mathrm{kHz}$, $\mathrm{B}_{\mathrm{w}}=200 \mathrm{~Hz}$		10	dB

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$
CoolFET ${ }^{\text {tm }}$	MICROWIRE ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {m }}$	РОРтм
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	PowerTrench ${ }^{\text {™ }}$
FACT ${ }^{\text {m }}$	QS ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {™ }}$
FAST ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-3
FASTr ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-6
GTO ${ }^{\text {™ }}$	SuperSOT™-8
$\mathrm{HiSeC}^{\text {тм }}$	TinyLogic ${ }^{\text {TM }}$

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Ordering Code:

Features

- 4Ω switch connection between two ports.
- Minimal propagation delay through the switch.
- Low $I_{\text {CC }}$.
- Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.

Order Number	Package Number	Package Description
FST16209MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
FST16209MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Logic Diagram

Truth Table

S2	S1	S0	A_{1}	A_{2}	Function
L	L	L	Z	Z	Disconnect
L	L	H	B_{1}	Z	$\mathrm{A}_{1}=\mathrm{B}_{1}$
L	H	L	B_{2}	Z	$\mathrm{A}_{1}=\mathrm{B}_{2}$
L	H	H	Z	B_{1}	$\mathrm{A}_{2}=\mathrm{B}_{1}$
H	L	L	Z	B_{2}	$\mathrm{A}_{2}=\mathrm{B}_{2}$
H	L	H	Z	Z	Disconnect
H	H	L	B_{1}	B_{2}	$\mathrm{A}_{1}=\mathrm{B}_{1}, \mathrm{~A}_{2}=\mathrm{B}_{2}$
H	H	H	B_{2}	B_{1}	$\mathrm{A}_{1}=\mathrm{B}_{2}, \mathrm{~A}_{2}=\mathrm{B}_{1}$

Connection Diagram

Pin Descriptions

Pin Name	Description
S2, S1, S0	Data-select inputs
$\mathrm{A}_{1}, \mathrm{~A}_{2}$	Bus A
$\mathrm{B}_{1}, \mathrm{~B}_{2}$	Bus B

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$)((${ }^{\text {ate }}$ 2)	-0.5 V to +7.0 V
DC Input Diode Current ($1_{1 /}$) $\mathrm{I}_{\mathbb{N}<}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC V $\mathrm{CC}^{\text {/GND }}$ Current ($\mathrm{l}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/- 100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		14	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{ICC}$	Increase in I_{CC} per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\text {PLH }}$	Prop Delay S to Bus	1.5	7.0		7.0	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time, S to A or B	1.5	7.5		8.0	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time S to A or B	1.0	8.5		9.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	10		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{S} 0, \mathrm{~S} 1$, and $\mathrm{S} 2=\mathrm{GND}$
Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.					

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS
notes:
A. CONFORMS TO JEOEC REGISTRATION MO-153 VARIATION AB

REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILIMETERS.
B. EIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND

DIMENSIONS AREEXCL
TIE EAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSIY Y $14.5 \mathrm{MM}, 1982$.

MTD48RevB1

DETAIL A
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD48

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage ($\mathrm{V}_{\text {cc }}$)	-0.5 V to +7.0 V
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage (VIV) (${ }_{\text {Note }}$ 2)	-0.5 V to +7.0 V
DC Input Diode Curent ($\left(11_{k}\right) \mathrm{V}_{1 \times 1}<0 \mathrm{~V}$	-50mA
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ((lcC/ $/ \mathrm{GND}$)	+/-100mA
Storage Temperature Range (STSG $^{\text {S }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The "Recommended Operating Conditions" table will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held high or low. They may not float

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
I_{CC}	Increase in I CC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }, \mathrm{t}_{\text {PLH }}}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1, Figure 2
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1, Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	7.0		7.2	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1, Figure 2

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	6	pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$	

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

DIMENSIONS ARE INMLLIMETERS
NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB

CIMENSIONS AEEIN
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND
C. DIMENSIONS AEE EXCL
D. DIMENSIONS AND TOLERANCES PER ANS $/$ Y $14.5 \mathrm{M}, 1982$.

MTD48RevB1
DETAILA
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384(FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current (1_{1}) $\mathrm{V}_{\mathbf{1} \times}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/-100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {CC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	7.0		7.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

MTOS5 (REy B)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{\mathbf{K}}$) $\mathrm{V}_{\mathrm{IN}<0 \mathrm{~V}}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
	+/- 100 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The "Recommended Operating Conditions" table will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held high or low. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		14	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 4: Typical values are at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL, }{ }^{\text {tPLH }}}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\overline{\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Prop Delay S to Bus	1.5	7.0		7.5	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\overline{t_{\text {PzH, }}, t_{\text {PzL }}}$	Output Enable Time, S to A or B	1.5	7.5		8.0	ns	$\begin{array}{\|l\|} \hline V_{1}=7 V \text { for } t_{\text {PZL }} \\ V_{1}=\text { OPEN for } t_{\text {PZH }} \end{array}$	Figure 1 Figure 2
$\overline{\text { tphz, tPLZ }}$	Output Disable Time S to A or B	1.0	8.5		9.0	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for tPLZ } \\ & \mathrm{V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance)
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{I \mathrm{~N}}$	Control pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	10		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~S} 0, \mathrm{~S} 1$, or S2 $=\mathrm{GND}$

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

Q	$0.13(M)$	A	$B(S)$	$C(S)$

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions (Note 3)
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V	Power Supply Operating (V_{CC}) 4.0V to 5.5 V
DC Input Voltage (V_{IN}) (Note 2)	-0.5 V to +7.0 V	Input Voltage ($\mathrm{V}_{\text {IN }}$) 0 V to 5.5 V
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$	Output Voltage ($\mathrm{V}_{\text {OUT }}$) 0 V to 5.5 V
DC Output (lout) Sink Current	128 mA	Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/-100mA	Switch Control Input OnS/V to 5nS/V
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O OnS/V to DC
		Free Air Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
		Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 3: Unused control inputs must be held high or low. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\overline{\mathrm{I}_{\mathrm{OZ}}}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance A to B or B to A (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
	Switch On Resistance A1 to A2 (Note 5)	4.5		10	14	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		10	14	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		16	22	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		22	30	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in ICC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.							

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{Cc}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }, \mathrm{t}_{\text {PLH }}}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay A1 to A2		0.5		0.5	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time, S to A or B	1.5	7.5		8.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\overline{t_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}}$	Output Disable Time S to A or B	1.0	8.5		9.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, S0 to A2 and B2	1.5	9.5		10.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\overline{t_{\text {PHZ }}}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time, S0 to A2 and B2	1.5	9.0		10.0	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{P L Z} \\ & V_{1}=\text { OPEN for } t_{P H Z} \end{aligned}$	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Control pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance	10		pF	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~S} 0, \mathrm{~S} 1, \text { or } \mathrm{S} 2=\mathrm{GND} \end{aligned}$

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide Package Number MS56A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum Ratings(Note 1)
Supply Voltage (V_{CC})
DC Switch Voltage (V_{S})
DC Input Voltage (V_{IN}) (Note 2)
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathrm{IN}^{\prime}}<0 \mathrm{~V}$
DC Output (IOUT) Sink Current
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA $+/-100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IOFF	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, I ${ }_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I_{CC} per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150		150		MHz	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay CLK to B or A	2.0	6.3		6.0	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time CLK to $A=B_{1}=B_{2}$	1.7	8.5		9.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
	Output Enable Time CLK to A or B_{1} or B_{2}	2.0	6.5		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time CLK to A or B	1.0	8.5		9.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2
t_{s}	Setup Time $\mathrm{S}_{1}, \mathrm{~S}_{0}$ before CLK \uparrow	2.5		2.8		ns		Figure 1 Figure 2
	Setup Time $\overline{\text { CLKEN }}$ before CLK \uparrow	1.8		2.0				
t_{H}	Hold Time $\mathrm{S}_{1}, \mathrm{~S}_{0}$ after CLK \uparrow	1.0		1.0		ns		Figure 1 Figure 2
	Hold Time $\overline{\text { CLKEN }}$ after CLK \uparrow	1.5		1.5				
$t_{\text {w }}$	Pulse Width	3.1		3.1		ns	Clock HIGH or LOW	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	7		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~S}_{0}, \mathrm{~S}_{1}=0 \mathrm{~V}$

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum Ratings（Note 1）
Supply Voltage（ V_{CC} ）
DC Switch Voltage（ V_{S} ）
DC Input Voltage（ V_{IN} ）（Note 2）
DC Input Diode Current（ $\left.\mathrm{I}_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}^{\prime}}<0 \mathrm{~V}$
DC Output（IOUT）Sink Current
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current（ $\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$ ）
Storage Temperature Range（ $\mathrm{T}_{\mathrm{STG}}$ ）
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA

+ ／－ 100 mA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions（Note 3）

Power Supply Operating（ V_{CC} ）	4.0 V to 5.5 V
Input Voltage（V	0 V to 5.5 V
Output Voltage（V） $\mathrm{V}_{\text {OUT }}$ ）	0 V to 5.5 V
Input Rise and Fall Time（ $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ ）	
Switch Control Input	OnS／V to 5nS／V
Switch I／O	OnS／V to DC
Free Air Operating Temperature（ T_{A} ）	$-40^{\circ} \mathrm{C}$ to +85
Note 1：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating	
The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．	
Note 2：The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed．	
Note 3：Unused control inputs must be held H float．	LOW．They may not

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 4）	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			－1．2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4．0－5．5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4．0－5．5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IOFF	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance （Note 5）	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND
Note 5：Measured by the voltage drop between A and B pins at the indicated current through the switch．On resistance is determined by the lower of th voltages on the two（A or B）pins．							

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {cC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	A or B, to B or A (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	SEL to A	1.5	6.1		6.8	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, SEL or TEST to B	1.0	6.5		7.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time, SEL or TEST to B	1.5	7.8		8.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Switch OFF

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A
TYPICAL MTD56 (REV B)

$$
\text { 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, } 6.1 \mathrm{~mm} \text { Wide }
$$ Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Preliminary

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S}) (Note 2)	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\mathbf{I N}}$) (Note 3)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\mathbf{I N}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Current	128 mA
DC $\mathrm{V}_{\text {CC }} / \mathrm{GND}$ Current ($\mathrm{ICC}^{\text {/ }}$ G ${ }_{\text {GND }}$)	+/- 100 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 4)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| \quad Switch Control Input | $0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$ |
| Switch I/O | $0 \mathrm{nS} / \mathrm{V}$ to DC |

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating.
The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_{S} is the voltage observed/applied at either the A or B Port across the switch.
Note 3: The input and output negative voltage ratings may be exceeded if
the input and output diode current ratings are observed.
Note 4: Unused control inputs must be held high or low. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\overline{\mathrm{I}} \mathrm{OZ}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch ON Resistance (Note 6)	4.5	20	26	38	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5	20	28	40	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5	20	35	48	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		TBD	TBD	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\triangle_{\text {CC }}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 7)		1.25		1.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1, Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1, Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1, Figure 2

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance)
Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance "OFF State"	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
	Input/Output Capacitance "ON State"	12		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \overline{\mathrm{OE}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384(FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuity and specifications.

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be rea-

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($1_{1 K}$) $\mathrm{V}_{\mathbf{1} \times}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC V $\mathrm{CC}^{\text {/GND }}$ Current ($\mathrm{l}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/- 100 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Switch I/O	$0 \mathrm{~ns} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
Characteristics tables are not guaranteed at the absolute maximum rating.
The R. for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 3) } \end{aligned}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZ }}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 4)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		14	20	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {Cc }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	Prop Delay Bus to Bus (Note 5)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay S0 to A_{1}	1.5	7.0		7.4	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time S0 to B_{1} or B_{2}	1.0	6.7		7.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time S0 to B_{1} or B_{2}	1.0	7.5		7.8	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Note 5: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 6)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	10		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{SO}=\mathrm{GND}$

Note 6: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A
TYPICAL
MTDS6 (REV B)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Preliminary

Absolute Maximum Ratings(Note 1)	
Supply Voltage ($\mathrm{V}_{\text {cc }}$)	0.5 V to
DC Switch Voltage ($\mathrm{V}_{\text {S }}$ ((Note 2)	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 3)	-0.5 V to +7.0 V
DC Input Diode Current ($(1 / K) \mathrm{V}_{1 / 1}<0 \mathrm{~V}$	-50mA
DC Output (lout) Current	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ((lcCl/gno	+/ 100mA
Storage Temperature Range ($\mathrm{T}_{\text {ST }}$	$5^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 4)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| \quad Switch Control Input | $0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$ |
| Switch I/O | $0 \mathrm{nS} / \mathrm{V}$ to DC |

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating.
The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.
Note 3: The input and output negative voltage ratings may be exceeded if
the input and output diode current ratings are observed.
Note 4: Unused control inputs must be held high or low. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\overline{\mathrm{I}} \mathrm{OZ}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 6)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\triangle_{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus-to-Bus (Note 7)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1, Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1, Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1, Figure 2

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other that
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance "OFF State"	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
	Input/Output Capacitance "ON State"	12		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \overline{\mathrm{OE}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384(FST3384) bus switch product.
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Votage ($\mathrm{V}_{\text {cc }}$)	-0.5 V to +7.0
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage (VIN) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($(1 \mathrm{~K}) \mathrm{V}_{1 \mathrm{I}}<0 \mathrm{~V}$	mA
DC Output (lout) Sink Current	mA
DC $\mathrm{V}_{\text {c/ }} /$ GND Current (lcc/land	+/ 100mA
Storage Temperature Range (T STG $^{\text {) }}$	$5^{\circ} \mathrm{C}$ to +150

Recommended Operating Conditions (Note 3)

ing (V_{CC})	4.0 V to 5.5 V
put Voltage (V	0 V to 5.5 V
Output Voltage ($\mathrm{V}_{\text {OUT }}$)	0 V to 5.5 V
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	
Switch Control Input	Ons/V to 5ns/V
Switch I/O	Ons/V to DC
Free Air Operating Temperature (T_{A})	C
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical	
Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.	
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.	
te	w. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
	(Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
$\Delta_{\text {l }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V . Other inputs at V_{CC} or GND

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {cC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }, \mathrm{t}_{\text {PLH }}}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	5.0		5.5	ns	$\begin{aligned} & V_{I}=7 \mathrm{~V} \text { for } t_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	5.3		5.6	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions	
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5	pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$		
Note $7: \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.						

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0v
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\mathbb{1}}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\mathbb{1}<}<0 \mathrm{~V}$	mA
DC Output (lout) Sink Current	mA
	+/ 100mA
Storage Temperature Range (TSTG)	$5^{\circ} \mathrm{C}$ to +150

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0 V to 5.5 V
Input Voltage (V_{IN})	0 V to 5.5 V
Output Voltage ($\mathrm{V}_{\text {OUT }}$)	0 V to 5.5 V
Input Rise and Fall Tim	
Switch Control Input	OnS/V to 5nS/V
Switch I/O	OnS/V to DC
Free Air Operating Temperature (T_{A})	0
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.	
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.	
Note 3: Unused control inputs must be held high	v. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$
$\overline{\Delta l}_{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V . Other inputs at V_{CC} or GND

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	4.5		5.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	5.7		6.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{OE}=0 \mathrm{~V}$
Note $7: \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ Capacitance is characterized but not tested.					

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input $P R R=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\mathbb{I} \times}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\text {CC }} / \mathrm{GND}$ Current ($\mathrm{ICC}^{\text {/ }} \mathrm{l}_{\mathrm{GND}}$)	+/-100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating.
The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	4.0-5.5			0.8	V	
II	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{I_{C C}}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\square^{\text {I }} \mathrm{CC}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {cc }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	Prop Delay Bus to Bus(Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	5.6		6.1	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.0	6.2		5.6	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5	pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$	
Note $7: \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.					

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{nS}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{ICC}^{\text {/ }} \mathrm{l}_{\mathrm{GND}}$)	+/-100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 3)| Power Supply Operating (V_{CC}) | 4.0 V to 5.5 V |
| :---: | :---: |
| Input Voltage (V_{IN}) | 0 V to 5.5 V |
| Output Voltage (V) $\mathrm{V}_{\text {OUT }}$) | 0 V to 5.5 V |
| Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$) | |
| Switch Control Input | OnS/V to 5nS/V |
| Switch I/O | OnS/V to DC |

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The "Recommended Operating Conditions" table will define the conditions for actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{I_{C C}}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 4: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No．
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus（Note 6）		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	5.9		6.4	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.0		5.7	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Capacitance（Note 7）

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input／Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Note 7： $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ ，Capacitance is characterized but not tested．

AC Loading and Waveforms

Note：Input driven by 50Ω source terminated in 50Ω
Note： C_{L} includes load and stray capacitance
Note：Input PRR $=1.0 \mathrm{MHz} \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1．AC Test Circuit

FIGURE 2．AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y $14.5 \mathrm{M}, 1982$

MTC20RevD1

DETAIL A

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC2O

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathbf{I N}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
DC V $\mathrm{CC}^{\text {/GND }}$ Current ($\mathrm{lcC}^{\text {/ }} \mathrm{l}_{\mathrm{GND}}$)	+/- 100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Switch I/O	$0 \mathrm{~ns} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40{ }^{\circ} \mathrm{C}$ to $-85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{Oz}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or GND

Note 4: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{\mathrm{I}}=$ OPEN	Figure 1 Figure 2
	Prop Delay, Select to Bus A	1.0	5.3		6.3			
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, Select to Bus B	1.0	5.3		6.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
	Output Enable Time, $\mathrm{I}_{\text {OE }}$ to Bus A, B	1.0	5.3		6.2			
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time., Select to Bus B	1.0	5.8		6.2	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\text {PLZ }} \\ & V_{1}=\text { OPEN for } t_{\text {PHZ }} \end{aligned}$	Figure 1 Figure 2
	Output Disable Time, $\mathrm{I}_{\text {OE }}$ to Bus A, B	1.0	5.5		6.2			

resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).
Capacitance (Note 7)

Symbol		Parameter	Typ	Max	Units	Conditions
C_{IN}		Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	A Port	Input/Output Capacitance	B Port		13	
			pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$		

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(${ }_{\text {No }}$	
Supply Voltage (V_{CC})	-0.5
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\mathbb{1}}$) (Note 2)	-0.5
DC Input Diode Current ($(1 / K)^{1} \mathrm{~V}_{1 \times 1}<0 \mathrm{~V}$	
DC Output (lout) Sink Curent	
DC $\mathrm{V}_{\mathrm{CC}} /$ GND Curent (${ }^{\text {cc/ }}$ / ${ }_{\text {GND }}$)	
torage Temperature Range (STse $^{\text {St }}$	

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0 V to 5.5 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)	0 V to 5.5 V
Output Voltage (V $\mathrm{V}_{\text {OUT }}$)	0 V to 5.5 V
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	
Switch Control Input	OnS/V to 5nS/V
Switch I/O	OnS/V to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
II	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{Oz}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

[^1] voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {cC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
	Prop Delay, Select to Bus A	1.0	4.7		5.2			
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, Select to Bus B	1.0	5.2		5.7	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } t_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
	Output Enable Time, $\overline{\mathrm{OE}}$ to Bus A, B	1.0	5.1		5.6			
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Output Disable Time, Select to Bus B	1.0	5.2		5.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2
	Output Disable Time, Output Enable Time, $\overline{\mathrm{OE}}$ to Bus A, B	1.5	5.5		5.5			

Capacitance (Note 7)

Symbol		Parameter	Typ	Max	Units	Conditions
$\overline{\mathrm{C}_{\text {IN }}}$		Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{1 / \mathrm{O}}$	$\begin{array}{\|l\|} \hline \text { A Port } \\ \hline \text { B Port } \\ \hline \end{array}$	Input/Output Capacitance	7		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{cc})	-0.5 V to +7.0 d
DC Switch Voltage (Vs)	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IV }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\left(1 / \mathrm{K}^{1} \mathrm{~V} \mathrm{~V}_{1 \times}<0 \mathrm{~V}\right.$	mA
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\text {c/ }} / \mathrm{GND}$ Current ((lcc/land	+/-100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$5^{\circ} \mathrm{C}$ to +150

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0 V to 5.5 V
Input Voltage (V_{IN})	0 V to 5.5 V
Output Voltage ($\mathrm{V}_{\text {OUT }}$)	0 V to 5.5 V
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	
Switch Control Input	$0 n S / V$ to 5nS/V
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.	
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.	
te 3: Unused control inputs must be held HIG	LOW. They may not

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{Cc}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 4: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$t_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	6.5		7.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.0	8.0		8.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{OE}=0 \mathrm{~V}$

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz} \mathrm{t}_{\mathrm{w}}=500 \mathrm{nS}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982

MTC20RevD1

DETAIL A

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage (V_{1}) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current (I_{N}) with $\mathrm{V}_{\mathrm{I}}<0$	
	-20 mA
DC Output (10) Sink Current	120 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	0.5W

Recommended Operating Conditions

Supply Voltage (V_{CC})
4.0 V to 5.5 V

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical operated at these limits. The parametric values defined in the Electrical The "Recommended Operating Conditions" table will define the conditions or actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if he input and output diode current ratings are observed.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min		Max		
$\mathrm{V}_{\text {IK }}$	Maximum Clamp Diode Voltage	4.75			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Minimum High Level Input Voltage	4.75-5.25	2.0			V	
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	4.75-5.25			0.8	V	
IN	Maximum Input Leakage Current	0			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.25 \mathrm{~V}$
		5.25			± 1		
I_{OZ}	Maximum 3-STATE I/O Leakage	5.25			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
l OS	Short Circuit Current	4.75	100			mA	$\mathrm{V}_{1}(\mathrm{~A}), \mathrm{V}_{1}(\mathrm{~B})=0 \mathrm{~V}, \mathrm{~V}_{1}(\mathrm{~B}), \mathrm{V}_{1}(\mathrm{~A})=4.75 \mathrm{~V}$
R_{ON}	Switch On Resistance (Note 4)	4.75		5	7	Ω	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA}$
				10	15	Ω	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA}$
I_{CC}	Maximum Quiescent Supply Current	5.25		0.2	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0$
$\mathrm{II}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input (Note 5)	5.25			2.5	mA	$\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$, Per Control Input

Note 4: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 5: Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}$, control inputs only). A and B pins do not contribute to I_{CC}.

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			Units
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Data Propagation Delay A_{n} to C_{n}, D_{n} or B_{n} to D_{n}, C_{n} (Note 7)	4.75			0.25	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Switch Exchange Time $B X$ to $A_{n}, B_{n}, C_{n}, D_{n}$	4.75	1.5		6.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Switch Enable Time $\overline{B E}$ to A_{n}, B_{n}, C_{n} or D_{n}	4.75	1.5		6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Switch Disable Time $\overline{B E}$ to A_{n}, B_{n}, C_{n}, or D_{n}	4.75	1.5		5.5	ns

Note 7: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On resistance of the switch and the load capacitance. The time constant for the switch and alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Input Capacitance	4	6	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ (OFF)	Input/Output Capacitance	9	13	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 8: Capacitance is characterized but not tested.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC24

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5V to +7.0v
DC Switch Voltage (V_{s})	-0.5 V to +7.0 V
DC Input Voltage ($\mathrm{V}_{\mathbb{1}}$) ((ote 2)	-0.5V
	$-50 \mathrm{~m}$
DC Output (lout) Sink Current	
$V_{C C} /$ GND Current ($\mathrm{ICCO}^{\text {c }}$ GND)	
Storage Temperature Range ($\mathrm{T}_{\text {STC }}$	

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})	4.0 V to 5.5 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)	0 V to 5.5 V
Output Voltage (V $\mathrm{V}_{\text {OUT }}$)	0 V to 5.5 V
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	
Switch Control Input	OnS/V to 5nS/V
Switch I/O	OnS/V to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical
Characteristics" table are not guaranteed at the absolute maximum ratings.
The "Recommended Operating Conditions" table will define the conditions for actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may no float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Condition
			Min	Typ (Note 4)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
II	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
SICC	Increase in ICC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$

Note 4: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 5: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {CC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}_{\mathrm{A}}, \overline{\mathrm{OE}}_{\mathrm{B}}$ to An, Bn	1.0	5.7		6.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}_{\mathrm{A}}, \overline{\mathrm{OE}}_{\mathrm{B}}$ to An, Bn	1.5	5.2		5.5	ns	$\begin{aligned} & I_{1}=7 V \text { for } t_{P L Z} \\ & V_{I}=\text { OPEN for } t_{P H Z} \end{aligned}$	Figure 1 Figure 2

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Input Capacitance	3	6	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}(\mathrm{OFF})$	Input/Output Capacitance	5	13	pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$
Note 7: Capacitance is characterized but not tested.					

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{nS}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC24

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Pin Descriptions

Pin Names	Description
$\overline{B E} A, \overline{B E} B$	Bus Switch Enable
$A_{0}-A_{9}$	Bus A
$B_{0}-B_{9}$	Bus B

Truth Table

$\overline{\mathbf{B E}} \mathbf{A}$	$\overline{\mathbf{B E}} \mathbf{B}$	$\mathbf{B}_{\mathbf{0}}-\mathbf{B}_{\mathbf{4}}$	$\mathbf{B}_{\mathbf{5}}-\mathbf{B}_{\mathbf{9}}$	Function
L	L	$\mathrm{A}_{0}-\mathrm{A}_{4}$	$\mathrm{~A}_{5}-\mathrm{A}_{9}$	Connect
L	H	$\mathrm{A}_{0}-\mathrm{A}_{4}$	$\mathrm{HIGH}-Z$ State	Connect
H	L	$\mathrm{HIGH}-Z$ State	$\mathrm{A}_{5}-\mathrm{A}_{9}$	Connect
H	H	HIGH-Z State	$\mathrm{HIGH}-Z$ State	Disconnect

Absolute Maximum Ratings (Note 1)
Supply Voltage (V_{CC})
DC Switch Voltage (V_{S})
DC Input Input Voltage (V_{I}) (Note 2)
DC Input Diode Current with ($\mathrm{V}_{1}<0$)
DC Output (IO) Sink Current
-0.5 V to +7.0 V
-0.5 to +7.0 V
-0.5 to +7.0 V

-20 mA

120 mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation 0.5 W

Recommended Operating Conditions

Supply Voltage (V_{Cc})
4.0 V to 5.5 V

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be op erated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max		
V_{IK}	Maximum Clamp Diode Voltage	4.75			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{IH}	Minimum High Level Input Voltage	4.75-5.25	2.0			V	
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	4.75-5.25			0.8		
I_{IN}	Maximum Input Leakage Current	0			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.25 \mathrm{~V}$
		5.25			± 1		
l_{Oz}	Maximum 3-STATE I/O Leakage	5.25			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
Ios	Short Circuit Current	4.75	100			mA	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}(\mathrm{~A}), \mathrm{V}_{\mathrm{l}}(\mathrm{~B})=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{l}}(\mathrm{~B}), \mathrm{V}_{\mathrm{l}}(\mathrm{~A})=4.75 \mathrm{~V} \end{aligned}$
Ron	Switch On	4.75		6	12	Ω	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA}$
	Resistance (Note 3)			15	25	Ω	$\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{I}_{\text {ON }}=15 \mathrm{~mA}$
I_{Cc}	Maximum Quiescent Supply Current	5.25		0.2	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$
$\Delta \mathrm{l}_{\text {cc }}$	Increase in I_{CC} per Input (Note 4)	5.25			2.5	mA	$\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ Per Control Input

Note 3: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 4: Per TTL driven Input $\left(\mathrm{V}_{\mathrm{IN}}=3.15 \mathrm{~V}\right.$, control inputs only). A and B pins do not contribute to I_{CC}.
Note 5: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			Units
			Min	Typ (Note 6)	Max	
$\mathrm{t}_{\mathrm{PLH}}$ $t_{\text {PHL }}$	Data Propagation Delay A_{n} to B_{n} or B_{n} to A_{n} (Note 7)	4.75			0.50	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Switch Enable Time $\overline{B E} A, \overline{B E} B$ to A_{n}, B_{n}	4.75	1.5		6.8	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Switch Disable Time $\overline{B E} A, \overline{B E} B$ to A_{n}, B_{n}	4.75	1.5		6.0	ns

Note 6: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 7: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On resistance of the switch and the load capacitance. The time constant for the switch and alone is of the order of 0.5 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Input Capacitance	4	6	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$ (OFF)	Input/Output Capacitance	9	13	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 8: Capacitance is characterized but not tested.

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead ($0.150^{\prime \prime}$ Wide) Shrink Small Outline Package, JEDEC (QSC)
(also known as QSOP)
Package Number MQA24

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center Tel: 1-888-522-5372 www.fairchildsemi.com	```Fairchild Semiconductor Europe Fax: +49 (0) 1 80-530 8586 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 8 141-35-0 English Tel: +44 (0) 1793-85-68-56 Italy Tel: +39 (0) 2575631```	Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
Bias \vee Voltage Range	-0.5 V to +6.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\mathrm{IN}<0 \mathrm{~V}}$	$-50 \mathrm{~mA}$
DC Output (lout) Sink Current	128 mA
	+/-100mA
Storage Temperature Range ($T_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 3)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Precharge Supply (BiasV) | 1.5 V to V_{CC} |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time ($\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| \quad Switch Control Input | $0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$ |
| \quad Switch I/O | $0 \mathrm{nS} / \mathrm{V}$ to DC |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{0}	Output Current	4.5	0.25			mA	BiasV $=2.4 \mathrm{~V}, \mathrm{~B}=0$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in ICC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND

Note 4: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC24

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Preliminary

Preliminary

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S}) (Note 2)	-0.5 V to +7.0 V
DC Input Control Pin Voltage ($\mathrm{V}_{\mathbf{1}}$) (Note 3)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{IIK}_{\text {I }} \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output (lout)	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	+/-100mA
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 4)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| \quadSwitch Control Input | $0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$ |
| Switch I/O | $0 \mathrm{nS} / \mathrm{V}$ to DC |

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating
The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_{S} is the voltage observed/applied at either A or B Ports across the switch.
Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 5)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
V_{OH}	HIGH Level	4.0-5.5	See Figure 3			V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 6)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		35	50	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		TBD	TBD	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			1.5	mA	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
					10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
$\overline{\Delta I}^{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or GND

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 7)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	10.0		11.0	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{P Z L} \\ & V_{1}=\text { OPEN for } t_{\text {PZH }} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	9.0		10.0	ns	$\begin{aligned} & V_{I}=7 V \text { for } t_{\text {PLZ }} \\ & V_{I}=\text { OPEN for } t_{\text {PHZ }} \end{aligned}$	Figure 1 Figure 2

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical ON resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {IO }}$	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Note 8: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω Note: CL includes load and stray capacitance Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{W}}=500 \mathrm{~ns}$

FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Preliminary
FSTD16211

Physical Dimensions inches (millimeters) unless otherwise noted

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum RatingS(Note 1)	
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	-0.5 V to +7.0 V
DC Switch Voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$ (Note 2)	-2.0 V to +7.0 V
BiasV Voltage Range	-0.5 V to +7.0 V
DC Input Control Pin Voltage	
$\left(\mathrm{V}_{\mathrm{IN}}\right)$ (Note 3)	-0.5 V to +7.0 V
DC Input Diode Current $\left(\mathrm{l}_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-50 mA
DC Output Current $\left(l_{\mathrm{OUT}}\right)$	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current $\left(\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}\right)$	$+/-100 \mathrm{~mA}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{STG}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 4)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Precharge Supply (BiasV)	1.5 to V_{CC}
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to 5.5 V
Input Rise and Fall Time ($\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
\quad Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.
Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 5)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
I_{0}	Output Current	4.5	0.25			mA	$\begin{aligned} & \mathrm{BiasV}=2.4 \mathrm{~V}, \mathrm{SEL}_{\mathrm{X}}=2.0 \mathrm{~V} \\ & \mathrm{~B}_{\mathrm{X}}=0 \end{aligned}$
$\overline{\mathrm{I}_{\text {OZH }}, \mathrm{I}_{\text {OZL }}}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{A}, \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{~V} \\ & \operatorname{Bias}_{1}=\text { Bias }_{2}=5.5 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{I}_{\text {OZH }}, \mathrm{I}_{\text {OZL }}}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{B}, \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{~V} \\ & \operatorname{Bias}_{1}=\operatorname{Bias}_{2}=\mathrm{FLOATING} \end{aligned}$
R_{ON}	Switch On Resistance (Note 6)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	14	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in ICC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or $G N D$
$\overline{\mathrm{I}_{\text {BIAS }}}$	Bias Pin Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{SEL}_{1}, \mathrm{SEL}_{2}=0 \mathrm{~V} \\ & \mathrm{~B}_{\mathrm{X}}=0 \mathrm{~V}, \operatorname{Bias}_{\mathrm{X}}=5.5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{IKU}}$	Voltage Undershoot	5.5			-2.0	V	$\begin{aligned} & 0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA} \\ & \mathrm{SEL}_{1}, \mathrm{SEL}_{2}=5.5 \mathrm{~V} \end{aligned}$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	A or B, to B or A (Note 7)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 2 Figure 3
$\overline{t_{\text {PZH }}}$	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{OPEN} \text { for } \mathrm{t}_{\mathrm{PZH}} \\ & \text { BiasV }=\mathrm{GND} \end{aligned}$	Figure 2 Figure 3
$\mathrm{t}_{\text {PZL }}$	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \text { Bias } \mathrm{V}=3 \mathrm{~V} \end{aligned}$	Figure 2 Figure 3
$\overline{t_{\text {PHZ }}}$	Output Disable Time, SEL to A, B	1.0	6.9		7.3	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{OPEN} \text { for } \mathrm{t}_{\mathrm{PHZ}} \\ & \operatorname{BiasV}=\mathrm{GND} \end{aligned}$	Figure 2 Figure 3
$\overline{t_{P L Z}}$	Output Disable Time, SEL to A, B	1.0	7.7		7.7	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}}, \\ & \text { Bias } \mathrm{V}=3 \mathrm{~V} \end{aligned}$	Figure 2 Figure 3

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O} \text { OFF }}$	Input/Output Capacitance "OFF State"	8	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Switch OFF	
Note 8: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.					

Undershoot Characteristic (Note 9)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {OUTU }}$	Output Voltage During Undershoot	2.5	$\mathrm{~V}_{\mathrm{OH}}-0.3$		V	Figure 1

Note 9: This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.

FIGURE 1.

Device Test Conditions

Parameter	Value	Units
$\mathrm{V}_{\text {IN }}$	see Waveform	V
$\mathrm{R}_{1}=\mathrm{R}_{2}$	100 K	Ω
$\mathrm{~V}_{\mathrm{TRI}}$	11.0	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V

Transient Input Voltage (V_{IN}) Waveform

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance, $C_{L}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 2. AC Test Circuit

FIGURE 3. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum RatingS（Note 1）	
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	-0.5 V to +7.0 V
DC Switch Voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$（Note 2）	-2.0 V to +7.0 V
BiasV Voltage Range	-0.5 V to +7.0 V
DC Input Control Pin Voltage	
$\left(\mathrm{V}_{\mathrm{IN}}\right)$（Note 3）	-0.5 V to +7.0 V
DC Input Diode Current $\left(\mathrm{l}_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-50 mA
DC Output Current $\left(l_{\mathrm{OUT}}\right)$	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current $\left(\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}\right)$	$+/-100 \mathrm{~mA}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{STG}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Symbol	Parameter	V_{CC} （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 5）	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			－1．2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4．0－5．5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4．0－5．5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
I_{0}	Output Current	4.5	0.25			mA	$\begin{aligned} & \text { BiasV }=2.4 \mathrm{~V} \\ & \mathrm{~B}_{\mathrm{X}}=0 \end{aligned}$
$\overline{\mathrm{I}_{\mathrm{OZH}}, \mathrm{I}_{\mathrm{OZL}}}$	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{A} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{~V} \\ & \operatorname{Bias}_{1}=\operatorname{Bias}_{2}=5.5 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{I}_{\mathrm{OZH}}, \mathrm{I}_{\text {OZL }}}$	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{~V} \\ & \text { Bias }_{1}=\text { Bias }_{2}=\text { Floating } \end{aligned}$
R_{ON}	Switch On Resistance （Note 6）	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	14	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC Per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND
$\overline{\mathrm{I}_{\text {BIAS }}}$	Bias Pin Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{SEL}_{1}, \mathrm{SEL}_{2}=0 \mathrm{~V} \\ & \mathrm{~B}_{\mathrm{X}}=0 \mathrm{~V}, \operatorname{Bias}_{\mathrm{X}}=5.5 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\text {IKU }}}$	Voltage Undershoot	5.5			－2．0	V	$\begin{aligned} & 0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA} \\ & \mathrm{SEL}_{1}, \mathrm{SEL}_{2}=5.5 \mathrm{~V} \end{aligned}$

Note 6：Measured by the voltage drop between A and B pins at the indicated current through the switch．On resistance is determined by the lower of the voltages on the two（A or B）pins．

Physical Dimensions inches (millimeters) unless otherwise noted

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
S	Select Input
A	Bus A
$\mathrm{B}_{1}-\mathrm{B}_{2}$	Bus B

Connection Diagram

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnect
L	L	$A=B_{1}$
H	L	$A=B_{2}$

Absolute Maximum Ratings(Note 1)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions (Note 4)
DC Switch Voltage (V_{S}) (Note 2)	-2.0 V to +7.0 V	Power Supply Operating (V_{CC}) 4.0V to 5.5V
DC Input Control Pin Voltage ($\mathrm{V}_{\text {IN }}$) (Note 3)	-0.5 V to +7.0 V	Input Voltage ($\mathrm{V}_{\text {IN }}$) 0 V to 5.5 V
DC Input Diode Current ($\mathrm{I}_{1 K}$) $\mathrm{V}_{\mathrm{IN}<0 \mathrm{~V}}$	-50mA	Output Voltage (V) $\mathrm{V}_{\text {OUT }}$) 0 V to 5.5 V
DC Output (lout)	128 mA	Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
DC V $\mathrm{CCO}^{\text {/GND Current }}$ ($\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$)	+/-100mA	Switch Control Input OnS/V to 5nS/V
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O OnS/V to DC
		Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
		Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.
		Note 2: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.
		Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 5)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 6)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\text {CC }}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND
$\overline{\mathrm{V}_{\text {IKU }}}$	Voltage Undershoot	5.5			-2.0	V	$\begin{aligned} & 0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA} \\ & \overline{\mathrm{OE}}=5.5 \mathrm{~V} \end{aligned}$

Note 5: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 7)		0.25		0.25	ns	$V_{1}=$ OPEN	Figure 2 Figure 3
	Prop Delay, Select to Bus A	7.0	30.0		35.0			
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, Select to Bus B	7.0	30.0		35.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 2 Figure 3
	Output Enable Time, $\overline{\mathrm{OE}}$ to Bus A, B	7.0	30.0		35.0			
$t_{\text {PHZ }}, t_{\text {PLZ }}$	Output Disable Time, Select to Bus B	1.5	8.4		9.8	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figure 2 Figure 3
	Output Disable Time, Output Enable Time, $\overline{\mathrm{OE}}$ to Bus A, B	1.5	8.8		9.8			

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 8)

Symbol		Parameter	Typ	Max	Units
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	A Port	Input/Output Capacitance	7.5		pF
	B Port		$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$		
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ ON State	Input/Output Capacitance ON State (A or B Port)	5.5		pF	

Note 8: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

Undershoot Characteristic (Note 9)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\mathrm{OUTU}}$	Output Voltage During Undershoot	2.5	$\mathrm{~V}_{\mathrm{OH}}-0.3$		V	Figure 1
Note 9: This is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.						

FIGURE 1.

Device Test Conditions

Parameter	Value	Units
V_{IN}	See Waveform	V
$\mathrm{R}_{1}-\mathrm{R}_{2}$	100 K	Ω
$\mathrm{~V}_{\text {TRI }}$	11.0	V
$\mathrm{~V}_{\mathrm{CC}}$	5.5	V

Transient Input Voltage ($\mathrm{V}_{\text {IN }}$) Waveform

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{nS}$
FIGURE 2. AC Test Circuit

FIGURE 3. AC Waveforms

 Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

FSTU3384

10-Bit Bus Switch with -2V Undershoot Hardened Circuit (UHC ${ }^{\text {TM }}$) Protection

General Description

The Fairchild Switch FSTU3384 provides 10 bits of highspeed CMOS TTL-compatible bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay generating additional ground bounce noise. Both the A Ports and the B Ports are "undershoot hardened" with UHC ${ }^{\text {TM }}$ protection to support an extended input range to 2.0 V below ground. Fairchild's integrated Undershoot Hardened Circuit, UHC senses undershoot at the I / Os, and responds by preventing voltage differentials from developing and turning on the switch. The device is organized as two 5 -bit switches with separate bus enable ($\overline{\mathrm{OE}})$ signals. When $\overline{\mathrm{OE}}$ is LOW, the switch is ON and Port A is connected to Port B. When OE is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Features

- 4Ω switch connection between two ports

■ Undershoot Hardened to -2.0 V .

- Minimal propagation delay through the switch
- Low I_{CC}.
- Zero ground bounce in flow-through mode
- Control inputs compatible with TTL level
- See Applications Note AN-5008 for details

Ordering Code:

Order Number	Package Number	Package Description
FSTU3384WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MO-153 4.4mm Wide
FSTU3384QSC	MQA24	24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
FSTU3384MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Logic Diagram

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE} A, \overline{\mathrm{OE}} \mathrm{B}}$	Bus Switch Enable
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Bus A
$\mathrm{B}_{0}-\mathrm{B}_{9}$	Bus B

[^2]
Connection Diagram

Truth Table

$\overline{\mathbf{O E A}}$	$\overline{\mathbf{O E}} \mathbf{B}$	$\mathbf{B}_{\mathbf{0}}-\mathbf{B}_{\mathbf{4}}$	$\mathbf{B}_{5}-\mathbf{B}_{9}$	Function
L	L	$\mathrm{A}_{0}-\mathrm{A}_{4}$	$\mathrm{~A}_{5}-\mathrm{A}_{9}$	Connect
L	H	$\mathrm{A}_{0}-\mathrm{A}_{4}$	$\mathrm{HIGH}-Z$ State	Connect
H	L	HIGH-Z State	$\mathrm{A}_{5}-\mathrm{A}_{9}$	Connect
H	H	HIGH-Z State	HIGH-Z State	Disconnect

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-2.0 V to +7.0
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)	-0.5 V to +7.0
DC Input Diode Current (I_{K}) $\mathrm{V}_{\mathbb{1}}<0 \mathrm{~V}$	-50
DC Output (lout) Sink Current	
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$)	+/-10
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to +1

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I/O	$0 \mathrm{nS} / \mathrm{V}$ to DC

Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the "Electrical
Characteristics" table are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the conditions or actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Condition
			Min	Typ (Note 5)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
1	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
l_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
R_{ON}	Switch On Resistance (Note 4)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\text {CC }}$	Increase in I_{CC} per Input	5.5			2.5	mA	$\overline{\mathrm{OE}}$ input at 3.4 V Other inputs at V_{CC} or GND
$\mathrm{I}_{\text {BIAS }}$	Bias Pin Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~B}=0 \mathrm{~V}, \mathrm{Bias} \mathrm{V}=5.5 \mathrm{~V}$
lozu	Switch Undershoot Current	5.5			100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{IN}}=-20 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {IKU }}$	Voltage Undershoot	5.5			-2.0	V	$0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}$
Note 4: Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages the two (A or B) pins. Note 5: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.							

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {CC }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1, Figure 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}_{\mathrm{A}}, \overline{\mathrm{OE}}_{\mathrm{B}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	1.0	5.7		6.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figure 1, Figure 2
$t_{\text {PHZ }}, t_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}_{\mathrm{A}}, \overline{\mathrm{OE}}_{\mathrm{B}}$ to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	1.5	5.2		5.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1, Figure 2

Note 6: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}(\mathrm{OFF})$	Input/Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Note 7: Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in $50 \Omega, \mathrm{RU}=\mathrm{RD}=500 \Omega$
Note: C_{L} includes load and stray capacitance, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{nS}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and

 Fairchild reserves the right at any time without notice to change said circuitry and specifications.LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Logic Diagram

Pin Descriptions

Connection Diagram

Truth Table

[^3]| Absolute Maximum Ratings(Note 1) | |
| :---: | :---: |
| Supply Voltage (V_{CC}) | -0.5 V to +7.0 V |
| DC Switch Voltage (V_{S}) | -2.0 V to +7.0 V |
| Bias \vee Voltage Range | -0.5 V to +7.0 V |
| DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2) | -0.5 V to +7.0 V |
| DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\mathbb{I N}}<0 \mathrm{OV}$ | -50mA |
| DC Output (lout) Sink Current | 128 mA |
| DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\text {CC }} / \mathrm{l}_{\mathrm{GND}}$) | +/-100mA |
| Storage Temperature Range ($\mathrm{T}_{\text {STG }}$) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Precharge Supply (Bias $)$	1.5 V to V_{CC}
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch I / O	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 5)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
1	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
I_{0}	Output Current	4.5	0.25			mA	BiasV $=2.4 \mathrm{~V}, \mathrm{~B}=0$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$
R_{ON}	Switch On Resistance (Note 4)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	$\overline{\mathrm{OE}}$ input at 3.4 V Other inputs at V_{CC} or GND
$\mathrm{I}_{\text {BIAS }}$	Bias Pin Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~B}=0 \mathrm{~V}, \mathrm{BiasV}=5.5 \mathrm{~V}$
lozu	Switch Undershoot Current	5.5			100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{IN}}=-20 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {IKU }}$	Voltage Undershoot	5.5			-2.0	V	$0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 5: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

AC Electrical Characteristics								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	7.0	30.0		35.0	ns	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{OPEN} \\ & \text { BiasV = GND } \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\mathrm{PZL}}$		7.0	30.0		35.0	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ & \operatorname{Bias} \mathrm{~V}=3 \mathrm{~V} \end{aligned}$	
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time	1.0	6.1		6.5	ns	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{OPEN} \\ & \text { BiasV = GND } \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PLZ }}$		1.0	7.3		6.8	ns	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ \text { Bias } \mathrm{V}=3 \mathrm{~V} \end{array}$	

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$
N $7 \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ Capacitance is characterized but not tested					

Note 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in $50 \Omega, \mathrm{RU}=\mathrm{RD}=500 \Omega$
Note: C_{L} includes load and stray capacitance, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{nS}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Connection Diagram

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
A	Bus A
B	Bus B
BiasV	Bus B Voltage Bias

Truth Table

$\overline{\mathbf{O E}}$	$\mathbf{B}_{\mathbf{0}}-\mathbf{B}_{\mathbf{9}}$	Function
L	$\mathrm{A}_{0}-\mathrm{A}_{9}$	Connect
H	BiasV	Precharge

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
DC Switch Voltage (V_{S})
Bias V Voltage Range
DC Input Voltage (V_{IN}) (Note 2)
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathrm{IN}^{\prime}}<0 \mathrm{~V}$
DC Output (IOUT) Sink Current
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
-0.5 V to +7.0 V
-2.0 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA
$+/-100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Precharge Supply (BiasV)	1.5 V to V_{CC}
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage (VOUT)	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch $/ / \mathrm{O}$	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	v	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	v	
1	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
Io	Output Current	4.5	0.25			mA	Bias $\mathrm{V}=2.4 \mathrm{~V}, \mathrm{~B}=0$
loz	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$
R_{ON}	Switch On Resistance (Note 4)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	15	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}^{\prime}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$
I_{cc}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I_{CC} per Input	5.5			2.5	mA	$\overline{\mathrm{OE}}$ input at 3.4 V Other inputs at V_{CC} or GND
$\mathrm{I}_{\text {BIAS }}$	Bias Pin Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~B}=0 \mathrm{~V}, \mathrm{BiasV}=5.5 \mathrm{~V}$
Iozu	Switch Undershoot Current	5.5			100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{I}}=-20 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}_{\text {IH }}$
$\mathrm{V}_{\text {IKU }}$	Voltage Undershoot	5.5			-2.0	V	$0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{N}} \geq-50 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 5: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\overline{t_{\text {PHL }},} \mathrm{t}_{\text {PLH }}$	Prop Delay Bus to Bus (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	1.0	6.2		6.5	ns	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{OPEN} \\ & \text { BiasV = GND } \end{aligned}$	Figure 1
$\overline{t_{\text {PZL }}}$		1.0	6.2		6.5	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ & \operatorname{Bias} \mathrm{~V}=3 \mathrm{~V} \end{aligned}$	Figure 2
$\overline{t_{\text {PHZ }}}$	Output Disable Time	1.0	6.1		6.5	ns	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{OPEN} \\ & \text { BiasV = GND } \end{aligned}$	Figure 1
$\mathrm{t}_{\text {PLZ }}$		1.0	7.3		6.8	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ & \operatorname{BiasV}=3 \mathrm{~V} \end{aligned}$	Figure 2

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {IO }}$	Input/Output Capacitance	5		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

Noe 7: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is cha

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in $50 \Omega, \mathrm{RU}=\mathrm{RD}=500 \Omega$
Note: C_{L} includes load and stray capacitance, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms
Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MO-153 4.4mm Wide
Package Number M24B

24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
Package Number MQA24

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC24

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: *Device mounted on FR-4 PCB 4.5" $\times 5$ "; mounting pad 0.02 in ${ }^{2}$ of $20 z$ copper

[^1]: Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the

[^2]: UHCTM ${ }^{\text {TM }}$ is a trademark of Fairchild Semiconductor Corporation.

[^3]: $U^{2} C^{\text {TM }}$ is a trademark of Fairchild Semiconductor Corporation.

