Philips Components-Signetics

Document No.	853-0136		
ECN No.	86487		
Date of issue	November 11, 1986		
Status	Product Specification		
Memory Products			

DESCRIPTION

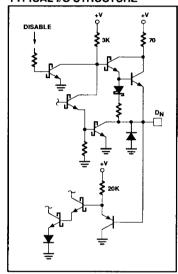
The organization of the 82S212 and 82S212A allow byte wide storage of data, including parity. Where parity is not required, the ninth bit can be used as a tag for each word stored. The 82S212 and 82S212A are ideal for scratch pads, push down stacks, buffer memories, and other internal memory applications in which space and performance requirements dictate a wide data path in favor of word depth.

Data inputs and outputs are common (common I/O) with separate output disable (OD) line that allows ease of Read/Write operations using a common bus.

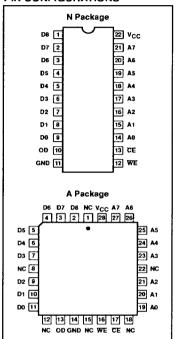
Ordering information can be found on the following page.

The 82S212 and 82S212A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Handbook.

FEATURES

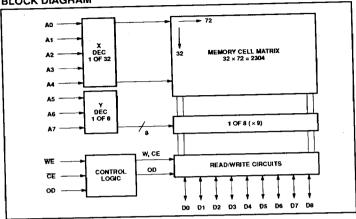

- Address access time:
 - N82S212: 45ns max
 - N82S212A: 35ns max
- Power dissipation: 0.3mW/bit typ
- Schottky clamped TTL
- One Chip Enable input
- Common I/O
 - Inputs: PNP Buffered
- Outputs: 3-State

82S212 82S212A 2304-bit TTL bipolar RAM


APPLICATIONS

- · Cache memory
- Buffer storage
- · Writable control store

TYPICAL I/O STRUCTURE



PIN CONFIGURATIONS

2304-bit TTL bipolar RAM (256 imes 9)

BLOCK DIAGRAM

ORDERING INFORMATION

ADEAING IN CHIMATION			
DESCRIPTION	ORDER CODE		
22-Pin Plastic Dual-In-Line 400mil-wide	N82S212 N, N82S212A N		
28-Pin Plastic Leaded Chip Carrier 450mil-square	N82S212 A, N82S212A A		

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage	+7.0	V _{DC}	
V _{IN}	Input voltage	+5.5	V _{DC}	
V _{OH}	Output voltage High	+5.5	V _{DC}	
-	Operating temperature range	0 to +75	°C	
T _{stq}	Storage temperature range	-65 to +150	°C	

2304-bit TTL bipolar RAM (256 \times 9)

82S212 / 82S212A

135

5

8

185

mΑ

ρF

pΕ

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_{amb} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

LIMITS SYMBOL **PARAMETER TEST CONDITIONS** UNIT TYP1 MIN MAX Input voltage² V_{IL} $V_{CC} = 4.75V$ ٧ V_{CC} = 5.25V V_{IH} High 2.0 ν V_{IC} Clamp3 V_{CC} = 4.75V, I_{IN} = -12mA -1.5 ٧ Output voltage2 ν V_{OH} $I_{OL} = -2mA$ 2.4 V_{CC} = 4.75V, I_{OL} = 8.0mA 0.5 ν VOL Low³ Input current Low $V_{IN} = 0.45V$ -100 μΑ liH Hiah $V_{IN} = 5.5V$ 25 uА Output current Hi-Z State CE = High or OD = High, Vout = 5.5V loz 40 μА CE = High or OD = High, V_{OUT} = 0.5V μА -100 Short circuit3, 4 CE = OD = Low, VOUT = 0V -15 -70 mΑ los Supply current⁵

 $V_{CC} = 5.25V$

 $V_{CC} = 5.0V$

 $V_{IN} = 2.0V$

 $V_{OUT} = 2.0V$

CIN COUT NOTES:

lcc

Capacitance

Input

Output

- 1. All typical values are at V_{CC} = 5V, T_{amb} = +25°C.
 2. All voltage values are with respect to network ground terminal.
 3. Measured on one pin at a time.
 4. Duration of I_{OS} test should not exceed one second.
 5. I_{CC} is measured with the Write Enable and Memory Enable inputs grounded, all other inputs at 0.45V, and the outputs open.

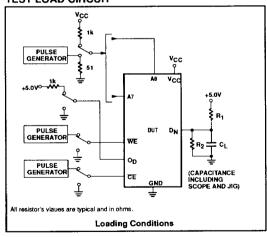
TRUTH TABLE

MODE	WE	ÇE	OD	D _N IN/OUT
Disable output	×	Х	1	Hi-Z
Disable R/W	×	1	×	Hi-Z
Write	0	0	1	Data in
Read	1	0	0	Data out

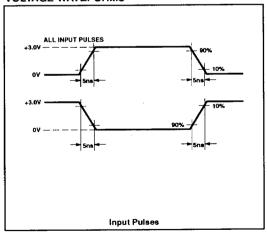
X = Don't care

82S212 / 82S212A

AC ELECTRICAL CHARACTERISTICS


 $R_1 = 600\Omega$, $R_2 = 900\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_{amb} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

SYMBOL	PARAMETER ¹	TO FROM		N82S21	2	N82S212A			UNIT	
			-	MIN	TYP2	MAX	MIN	TYP ²	MAX	
Access time	e									
taa	Address	Output	Address			45			35	ns
Enable time	9									
t _{OD}	Output	Output	OD	5		25			25	ns
t _{CE}	Output	Output	Chip Enable		<u> </u>	25		İ	25	ns
Disable tim	e ³									
top	Output	Output	OD	1		25			25	ns
t CD	Output	Output	Chip Enable			25		<u> </u>	25	ns
Pulse width	1									
t _{WP} ⁴	Write			25			25	1	l	ns
Setup and	hold time								_	
twsc	Setup time	Write	Chip Enable	5			5			ns
twec	Hold time	Chip Enable	Write	5			5	<u> </u>		ns
twsp	Setup time	Write	Data	25			25			ns
twHD	Hold time	Data	Write	5		<u> </u>	5		ļ	ns
twsa ⁵	Setup time	Write	Address	5		1	5			ns
twhA	Hold time	Address	Write	5	<u> </u>	L	5	<u> </u>		ns
tso	Setup time (from disabled state)	Chip Enable	OD	5	1		5			ns
t _{HO}	Hold time	OD	Chip Enable	5	l	1	5	I	l	ns


NOTES:

- 1. The operating ambient tempeature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warmup.
- warmup. 2. All typical values are at V_{CC} = 5V, T_{amb} = +25°C. 3. Measured at a delta of 0.5V from Logic level with R_1 = 750 Ω , R_2 = 750 Ω and C_L = 5pF.
- Measured with minimum twsa.
- 5. Measured with minimum two

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

265

2304-bit TTL bipolar RAM (256 \times 9)

TIMING DIAGRAMS OD * top* **toF** tco. VOH VALID DATA OUT VOL NOTE: Assumes tAA from address to valid data W = High. Enable/Disable +3.07 DOUT Read Mode +3.0V tuci +3.0V CE 0**V** ₽WHC WSC* +3.07 1.5V twsa. Vон Hi-Z Hi-Z VALID DATA IN VOL twHD +3.0V 1.5V ٥V Data Bus conflict can occur with $\overline{\text{CE}}$ = 0, apply data source after t_{OD} (max) and remove data source before tOE (min). Write Mode

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
t _{AA}	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
t _{OE}	Delay between beginning of Output Disable Low (with Address valid) and when Data Output becomes valid.
t _{CE}	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
t _{OD}	Delay between when Output Disable becomes High and Data Output is in Off-State.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in Off-State.
t _{WP}	Width of Write Enable pulse.
twsc	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
t _{WSD}	Required delay between beginning of valid Data Input and end of Write Enable pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
lwsa	Required delay between beginning of valid Address and beginning of Write Enable pulse.
twhA	Required delay between end of Write Enable pulse and end of valid Address.
t _{so}	Set-up time between OD going High and CE going Low.
t _{HO}	Hold time for OD after CE goes High.