

Preliminary User's Manual

NB85E

32-Bit Microprocessor Core

Hardware

Document No. A13971EJ7V1UM00 (7th edition) Date Published January 2002 NS CP(N)

© NEC Corporation 1999 Printed in Japan [MEMO]

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics (France) S.A. Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

NEC Electronics (France) S.A. Representación en España Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

NEC Electronics Italiana S.R.L. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.12

Major Revisions in This Edition

Pages	Description
p. 28	Modification of 2.2.1 (3) VPWRITE
p. 30	Modification of 2.2.2 (12) VBSEQ2 to VBSEQ0
p. 32	Modification of 2.2.2 (17) VBDC
p. 33	Modification of 2.2.4 (1) IDMASTP
p. 34	Modification of 2.2.7 (1) IRAMA27 to IRAMA2
p. 43	Modification of 2.3 Recommended Connection of Unused Pins
p. 63	Modification of Figure 3-11 Peripheral I/O Area
p. 94	Addition of figure to Caution in 4.9.2 (6) Transfer status
p. 108	Addition of 4.9.5 (1) Bus priority
p. 131	Addition of Caution 2 to 6.2.1 Power save control register (PSC)
p. 134	Modification of 6.4 (2) (a) Cancellation by interrupt request
p. 136	Addition of Remark to 6.5 (1) Setting and operation status
p. 141	Modification of Figure 6-6 Hardware STOP Mode Set/Cancel Timing Example
p. 163	Modification of 7.8.4 Block transfer mode
p. 165	Modification of 7.9.2 Flyby transfer
p. 219	Modification of 8.7 Periods When Interrupts Cannot Be Acknowledged
p. 226	Modification of 9.4 (2) Test mode pins

The mark ***** shows major revised points.

PREFACE

- Target ReadersThis manual is intended for users who wish to understand the hardware functions of the NB85E,
which is the CPU core of a cell-based IC (CBIC), to design application systems using the NB85E.
- **Purpose** This manual is designed to help users understand the hardware functions of the NB85E outlined in Organization below.
- Organization This manual describes the hardware functions of the NB85E. For details about the architecture and instruction functions, refer to the "V850E1 User's Manual Architecture." The organization of each manual is as follows:

NB85E User's Manual Hardware (This manual)

V850E1 User's Manual Architecture

- Overview
 Overview
 Overview
 Overview
 Overview
 Overview
 Overview
 Instruction format and instruction set
- Peripheral I/O functions
 Interrupts and exceptions
- Test functions

Pipeline operation

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electricity, logic circuits, and microcontrollers.

To gain a general understanding of the hardware functions of the NB85E \rightarrow Read this manual according to the Contents.

To confirm details of a function, etc. when the name is known \rightarrow Refer to **APPENDIX B INDEX**.

To learn about the details of an instruction function

 \rightarrow Refer to the V850E1 User's Manual Architecture.

Conventions	Data significance:	Higher digits on the left and lower digits on the right
	Active low representation:	xxxZ (Z after pin or signal name)
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information
	Numerical representation:	Binary xxxx or xxxxB
		Decimal xxxx
		Hexadecimal xxxxH
	Prefix indicating the power	of 2 (address space, memory capacity):
		K (kilo) 2 ¹⁰ = 1024
		M (mega) 2 ²⁰ = 1024 ²
		G (giga) 2 ³⁰ = 1024 ³
	Data type:	Word 32 bits
		Halfword 16 bits
		Byte 8 bits

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- V850E1 User's Manual Architecture (U14559E)
- NB85ET User's Manual Hardware (A14342E)
- Memory Controller User's Manual NB85E, NB85ET (A14206E)
- Instruction Cache, Data Cache User's Manual NB85E, NB85ET (A14247E)
- NPB Peripheral Macro User's Manual NB85E, NB85ET (A14005E)
- CB-9 Family VX/VM Type Design Manual NB85E, NB85ET (A14335E)
- CB-9 Family VX/VM Type Core Library Design Manual CPU Core, Memory Controller (A13195E)

The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPTER 1 INTRODUCTION	17
1.1 Outline	17
1.2 Application System	18
1.3 Features	19
1.4 Symbol Diagram	21
1.5 Function Blocks	22
1.5.1 Internal block diagram	22
1.5.2 Internal units	23
CHAPTER 2 PIN FUNCTIONS	24
2.1 List of Pin Functions	24
2.2 Explanation of Pin Functions	28
2.2.1 NPB pins	
2.2.2 VSB pins	28
2.2.3 System control pins	32
2.2.4 DMAC pins	33
2.2.5 INTC pins	34
2.2.6 VFB pins	34
2.2.7 VDB pins	34
2.2.8 Instruction cache pins	35
2.2.9 Data cache pins	36
2.2.10 RCU pins	38
2.2.11 Peripheral evaluation chip mode pins	38
2.2.12 Operation mode setting pins	39
2.2.13 Test mode pins	42
2.3 Recommended Connection of Unused Pins	43
2.4 Pin Status	45
CHAPTER 3 CPU	48
3.1 Features	48
3.2 Registers	49
3.2.1 Program registers	50
3.2.2 System registers	52
3.3 Address Space	55
3.3.1 Program area	56
3.3.2 Data area	57
3.4 Areas	59
3.4.1 ROM area	59
3.4.2 RAM area	61
3.4.3 Peripheral I/O area	62
3.4.4 External memory area	64
3.5 Peripheral I/O Registers	64
3.5.1 NB85E control registers	65
3.5.2 Memory controller (MEMC) control registers	68
3.5.3 Instruction cache control registers	69
3.5.4 Data cache control registers	69

3.6	NB85E901 (RCU) Interface	. 70
3	6.1 Outline	70
3	6.2 On-chip debugging	70
CHA	PTER 4 BCU	. 71
4.1	Features	.71
	Memory Banks	
	Programmable Chip Select Function	
	Programmable Peripheral I/O Area Selection Function	
	Bus Size Setting Function	
	Endian Setting Function	
	6.1 Usage restrictions concerning big endian format with NEC development tools	
	Cache Configuration	
	BCU-Related Register Setting Examples	
	Data Transfer Using VSB	
	9.1 Data transfer example	
	9.2 Control signals	
	9.3 Read/write timing	
	9.4 Reset timing	
	9.5 Bus master transition	
4	9.6 Misalign access timing	112
	PTER 5 BBR	
	Programmable Peripheral I/O Area.	
	Wait Insertion Function	
	Retry Function	
5.4	NPB Read/Write Timing	122
СНА	PTER 6 STBC	129
	Power Save Function	
	Control Registers	
	2.1 Power save control register (PSC)	
	2.2 Command register (PRCMD)	
	HALT Mode	
	Software STOP Mode	
	Hardware STOP Mode	
	Clock Control in Software/Hardware STOP Mode	
CHA	PTER 7 DMAC	142
7.1	Features	142
7.2	Configuration	143
	Transfer Objects	
7.4	DMA Channel Priorities	144
7.5	Control Registers	145
7	5.1 DMA source address registers 0 to 3 (DSA0 to DSA3)	145
7	5.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)	147
7	5.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)	149
7	5.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)	150

7.5.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	152
7.5.6 DMA disable status register (DDIS)	153
7.5.7 DMA restart register (DRST)	153
7.6 Next Address Setting Function	
7.7 DMA Bus State	
7.7.1 Bus state types	
7.7.2 DMAC bus cycle state transitions	
7.8 Transfer Modes	
7.8.1 Single transfer mode	
7.8.2 Single-step transfer mode	
7.8.3 Line transfer mode	
7.8.4 Block transfer mode	
7.8.5 One-time transfer when executing single transfers using DMARQn signal	
7.9 Transfer Types	
7.9.1 Two-cycle transfer	
7.9.2 Flyby transfer	
7.10 DMA Transfer Start Factors	
7.11 Output When DMA Transfer Is Complete	
7.12 Forcible Interruption	
7.13 Forcible Termination	
7.14 DMA Transfer Timing Examples	
7.15 Precautions	
CHAPTER 8 INTC	
8.1 Features	
8.2 Non-Maskable Interrupts (NMI)	
8.2.1 Operation	
8.2.2 Restore	
8.3 Maskable Interrupts	
8.3.1 Operation	
8.3.2 Restore	
8.3.3 Maskable interrupt priorities	
8.3.4 Control registers	
8.3.5 Maskable interrupt status flag (ID)	
8.4 Software Exception	
8.4.1 Operation	
8.4.2 Restore	
8.5 Exception Trap	
8.5.1 Illegal opcode	
8.5.2 Operation	
8.5.3 Restore	
8.6 Interrupt Response Time	
8.7 Periods When Interrupts Cannot Be Acknowledged	
S. I Shous When interrupts during be Acknowledged international interrupts	213
CHAPTER 9 TEST FUNCTION	220
9.1 Test Pins	
9.1.1 Test bus pins (TBI39 to TBI0 and TBO34 to TBO0)	
9.1.2 BUNRI and TEST pins	000

9.2 List of Test Interface Signals	
9.3 Example of Connection of Peripheral Macro in Test Mode	
9.4 Handling of Each Pin in Test Mode	
CHAPTER 10 NB85E901	227
10.1 Overview	
10.1.1 Symbol diagram	
10.2 Pin Functions	
10.2.1 Pin function list	
10.2.2 Pin functions	
10.2.3 Recommended connection of unused pins	232
10.2.4 Pin status	
10.3 Dubug Function	
10.4 NB85E Connection Example	
10.5 N-Wire Type IE Connection	237
10.5.1 IE connector (target system side)	237
10.5.2 Example of recommended circuit when connecting NB85E901 and NB85E	239
APPENDIX A ROM/RAM ACCESS TIMING	240
APPENDIX B INDEX	
APPENDIX C REVISION HISTORY	

LIST OF FIGURES (1/3)

Figure No.	Title	Page
1-1	Application System Example	18
2-1	Acknowledgement of DCRESZ Signal	32
3-1	List of CPU Registers	49
3-2	Program Counter (PC)	51
3-3	Interrupt Source Register (ECR)	53
3-4	Program Status Word (PSW)	54
3-5	Address Space	55
3-6	Program Area	56
3-7	Data Area (64 MB Mode)	57
3-8	Data Area (256 MB Mode)	58
3-9	ROM Area	59
3-10	RAM Area	61
3-11	Peripheral I/O Area	63
3-12	Connection of NB85E and N-Wire Type In-Circuit Emulator via RCU	70
4-1	Chip Area Select Control Register 0 (CSC0)	74
4-2	Chip Area Select Control Register 1 (CSC1)	75
4-3	CSC0 and CSC1 Register Setting Example (64 MB Mode)	76
4-4	CSC0 and CSC1 Register Setting Example (256 MB Mode)	79
4-5	Peripheral I/O Area and Programmable Peripheral I/O Area	81
4-6	Peripheral I/O Area Select Control Register (BPC)	82
4-7	Bus Size Configuration Register (BSC)	83
4-8	Endian Configuration Register (BEC)	84
4-9	Word Data Little Endian Format Example	85
4-10	Word Data Big Endian Format Example	85
4-11	Cache Configuration Register (BHC)	87
4-12	BPC, BSC, BEC, BHC Register Setting Example	
4-13	Example of Data Transfer Using VSB	91
4-14	Read/Write Timing of Bus Slave Connected to VSB	95
4-15	Reset Timing	107
4-16	Bus Arbitration Timing (NB85E \rightarrow External Master Device)	109
4-17	Bus Arbitration Timing (External Master Device \rightarrow NB85E)	111
4-18	Misalign Access Timing	112
5-1	NPB Connection Overview	114
5-2	NB85E and Peripheral Macro Connection Example	115
5-3	Peripheral I/O Area and Programmable Peripheral I/O Area	116
5-4	Peripheral I/O Area Select Control Register (BPC)	117
5-5	BPC Register Setting Example	118
5-6	NPB Strobe Wait Control Register (VSWC)	119
5-7	Retry Function	121
5-8	Halfword Access Timing	122
5-9	Timing of Byte Access to Odd Address	123

LIST OF FIGURES (2/3)

Figure No.	Title	Page
5-10	Timing of Byte Access to Even Address	. 123
5-11	Read Modify Write Timing	. 124
5-12	Retry Timing (Write)	. 124
5-13	Retry Timing (Read)	. 125
5-14	Read/Write Timing of Bus Slave Connected to NPB	. 126
6-1	Power Save Function State Transition Diagram	. 129
6-2	Power Save Control Register (PSC)	. 130
6-3	Command Register (PRCMD)	. 132
6-4	Connection of NB85E and Clock Control Circuit	. 137
6-5	Software STOP Mode Set/Cancel Timing Example	. 139
6-6	Hardware STOP Mode Set/Cancel Timing Example	. 141
7-1	DMA Source Address Registers 0H to 3H (DSA0H to DSA3H)	. 145
7-2	DMA Source Address Registers 0L to 3L (DSA0L to DSA3L)	. 146
7-3	DMA Destination Address Registers 0H to 3H (DDA0H to DDA3H)	. 147
7-4	DMA Destination Address Registers 0L to 3L (DDA0L to DDA3L)	. 148
7-5	DMA Transfer Count Registers 0 to 3 (DBC0 to DBC3)	. 149
7-6	DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3)	. 150
7-7	DMA Channel Control Registers 0 to 3 (DCHC0 to DCHC3)	. 152
7-8	DMA Disable Status Register (DDIS)	. 153
7-9	DMA Restart Register (DRST)	. 153
7-10	Buffer Register Configuration	. 154
7-11	DMAC Bus Cycle State Transition Diagram	. 157
7-12	Single Transfer Example 1	. 158
7-13	Single Transfer Example 2	. 158
7-14	Single Transfer Example 3	. 159
7-15	Single Transfer Example 4	. 159
7-16	Single-Step Transfer Example 1	. 160
7-17	Single-Step Transfer Example 2	. 160
7-18	Line Transfer Example 1	. 161
7-19	Line Transfer Example 2	. 161
7-20	Line Transfer Example 3	. 162
7-21	Line Transfer Example 4	. 162
7-22	Block Transfer Example	. 163
7-23	One-Time Transfer When Executing Single Transfers Using DMARQn Signal	. 164
7-24	Timing Example of Terminal Count Signals (DMTCO3 to DMTCO0)	. 166
7-25	DMA Transfer Forcible Interruption Example	. 167
7-26	DMA Transfer Forcible Termination Example	. 168
7-27	Example of Two-Cycle Single Transfer Timing (Between External SRAMs Connected to NB85E500)	. 171
7-28	Example of Two-Cycle Single-Step Transfer Timing	
	(Between External SRAMs Connected to NB85E500)	. 173
7-29	Example of Two-Cycle Line Transfer Timing (Between External SRAMs Connected to NB85E500)	. 175
7-30	Example of Two-Cycle Block Transfer Timing (Between External SRAMs Connected to NB85E500).	. 177

LIST OF FIGURES (3/3)

Figure No.	Title	Page
7-31	Example of Two-Cycle Single Transfer Timing	
	(from RAM Connected to VDB to SDRAM Connected to NU85E502)	
7-32	Example of Two-Cycle Single Transfer Timing	
	(from SDRAM Connected to NU85E502 to RAM Connected to VDB)	
7-33	Example of Flyby Single Transfer Timing	
	(from External SRAM to External I/O Connected to NB85E500)	
7-34	Example of Flyby Single-Step Transfer Timing	
	(from External SRAM to External I/O Connected to NB85E500)	
7-35	Example of Flyby Single-Step Transfer Timing	
	(from External I/O to External SRAM Connected to NB85E500)	
7-36	Example of Flyby Line Transfer Timing	
	(from External SRAM to External I/O Connected to NB85E500)	
7-37	Example of Flyby Block Transfer Timing	
	(from External SRAM to External I/O Connected to NB85E500)	191
7-38	Example of Flyby Block Transfer Timing	
	(from External I/O to External SRAM Connected to NB85E500)	
8-1	Example of Non-Maskable Interrupt Request Acknowledgment Operation	
8-2	Non-Maskable Interrupt Processing Format	
8-3	RETI Instruction Processing Format	
8-4	Maskable Interrupt Processing Format	205
8-5	RETI Instruction Processing Format	
8-6	Processing Example in Which Another Interrupt Request Is Issued During Interrupt Servicing	
8-7	Processing Example for Simultaneously Issued Interrupt Requests	210
8-8	Interrupt Control Registers 0 to 63 (PIC0 to PIC63)	211
8-9	Interrupt Mask Registers 0 to 3 (IMR0 to IMR3)	212
8-10	In-Service Priority Register (ISPR)	213
8-11	Program Status Word (PSW)	214
8-12	Software Exception Processing Format	215
8-13	RETI Instruction Processing Format	216
8-14	Illegal Opcode	217
8-15	Exception Trap Processing Format	218
8-16	Example of Pipeline Operation When Interrupt Request Is Acknowledged (Outline)	219
9-1	Peripheral Macro Connection Example	223
9-2	User Logic Design Example	225
10-1	NB85E901 and NB85E Connection Example	236
10-2	N-Wire Type IE Connection	
10-3	IE Connector Pin Layout Diagram (Target System Side)	
10-4	Example of Recommended Circuit for IE Connection (NB85E + NB85E901)	
A-1	ROM Access Timing	240
A-2	RAM Access Timing	
	U	

LIST OF TABLES

Table No.	Title	Page
2-1	VBTTYP1 and VBTTYP0 Signals	29
2-2	VBBENZ3 to VBBENZ0 Signals	
2-3	VBSIZE1 and VBSIZE0 Signals	
2-4	VBCTYP2 to VBCTYP0 Signals	
2-5	VBSEQ2 to VBSEQ0 Signals	
2-6	IRAMWR3 to IRAMWR0 Signals	
2-7	IDDRRQ, IDDWRQ, IDSEQ4, and IDSEQ2 Signals	
2-8	IFIRA64, IFIRA32, and IFIRA16 Signals	
2-9	IFINSZ1 and IFINSZ0 Signals	
2-10	Pin Status in Each Operating Mode	45
3-1	List of Program Registers	50
3-2	List of System Registers	52
3-3	Interrupt/Exception Table	60
3-4	RAM Area Size Settings	61
4-1	VBTTYP1 and VBTTYP0 Signals	
4-2	VBCTYP2 to VBCTYP0 Signals	
4-3	VBBENZ3 to VBBENZ0 Signals	
4-4	VBSIZE1 and VBSIZE0 Signals	
4-5	VBSEQ2 to VBSEQ0 Signals	
4-6	VBWAIT, VBAHLD, and VBLAST Signals	
5-1	Setting of Setup Wait, VPSTB Wait Lengths at Each Operation Frequency	120
6-1	Operation After HALT Mode Is Canceled by Interrupt Request	133
6-2	Operation After Software STOP Mode Is Canceled by Interrupt Request	134
6-3	Operation After Setting Software STOP Mode in Interrupt Service Routine	135
6-4	Status After Cancellation of Hardware STOP Mode	136
7-1	Relationships Between Transfer Type and Transfer Object	
7-2	Relationships Between Wait Function and Transfer Object	144
8-1	Interrupt/Exception List	196
9-1	List of Test Mode Settings	220
10-1	Pin Status in Each Operating Mode	
10-2	IE Connector Pin Functions (Target System Side)	

CHAPTER 1 INTRODUCTION

The NB85E, which is a CPU core provided for incorporation in an ASIC, includes an on-chip NEC RISC 32-bit microprocessor "V850E1" CPU and various peripheral I/O functions such as a DMA controller and interrupt controller.

1.1 Outline

(1) "V850E1" CPU

The NB85E is equipped with the "V850E1", which is a RISC type CPU that utilizes a five-stage pipeline technique. Two-byte basic instructions and instructions for high-level language support increase the efficiency of object code generated by the C compiler and reduce the program size.

In addition, to increase the speed of multiplication processing, the NB85E contains an on-chip high-speed hardware multiplier capable of executing 32-bit $\times 32$ -bit operations.

(2) Bus interfaces

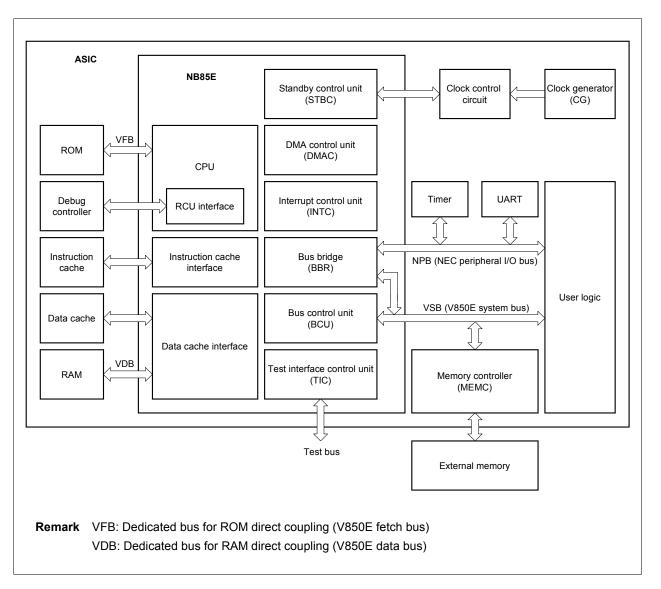
The NB85E provides the following two types of bus interface for connection with peripheral macros or user logic.

- V850E system bus (VSB)
- NEC peripheral I/O bus (NPB)

The VSB, which is synchronized with the CPU clock, is the bus to be used for connection with high-speed peripheral macros such as a memory controller (MEMC) or peripheral I/O equipped with an FIFO interface.

The NPB, which operates asynchronously with the CPU clock, is to be used for connection with relatively lowspeed peripheral macros such as a timer or asynchronous serial interface (UART).

A V850E fetch bus (VFB), which can be directly coupled with ROM, and a V850E data bus (VDB), which can be directly coupled with RAM, are also provided.


In addition, since the NB85E contains on-chip special purpose interfaces for the instruction cache, data cache, and run control unit (RCU), each macro can be directly coupled.

(3) On-chip peripheral I/O

The NB85E contains an on-chip DMA control unit (DMAC) for controlling DMA transfers, an on-chip interrupt control unit (INTC) for controlling interrupt requests, and an on-chip standby control unit (STBC) for controlling the power save function.

1.2 Application System

The NB85E is incorporated in an ASIC and connected to memory, user logic, and peripheral macros such as UART and timers.

Figure 1-1. Application System Example

Caution In this manual, representations related to the memory connected to the NB85E are unified as follows.

- RAM: NB85E direct-coupled RAM (connected to VDB)
- ROM: NB85E direct-coupled ROM (connected to VFB)
- External memory: RAM or ROM connected via the memory controller (MEMC) (connected via VSB)

1.3 Features

- Number of instructions 81
- General-purpose registers

32-bit × 32 registers

- Instruction set Upwardly compatible with V850 CPU Signed multiplication (32 bits × 32 bits → 64 bits) Saturated calculation instructions (with overflow/underflow detection function) 32-bit shift instructions: 1 clock Bit manipulation instructions Load/store instructions with long/short format Signed load instructions
 Memory space Program area: 64 MB linear address space Data area: 4 GB linear address space Memory bank division function: 2, 4, or 8 MB/bank
 External bus interface
 - VSB (V850E system bus)
 - Address/data separated bus (28-bit address/32-bit data bus)
 - 32-/16-/8-bit bus sizing function
 - Bus hold function
 - External wait function
 - Endian switching function

NPB (NEC peripheral I/O bus)

- Address/data separated bus (14-bit address/16-bit data bus)
- Programmable wait function
- Retry function
- Interrupt/exception control functions

Non-maskable interrupts: 3 sources

Maskable interrupts: 64 sources

Exceptions: 1 source

Eight levels of priorities can be set (maskable interrupts)

• DMA control function 4-channel configuration

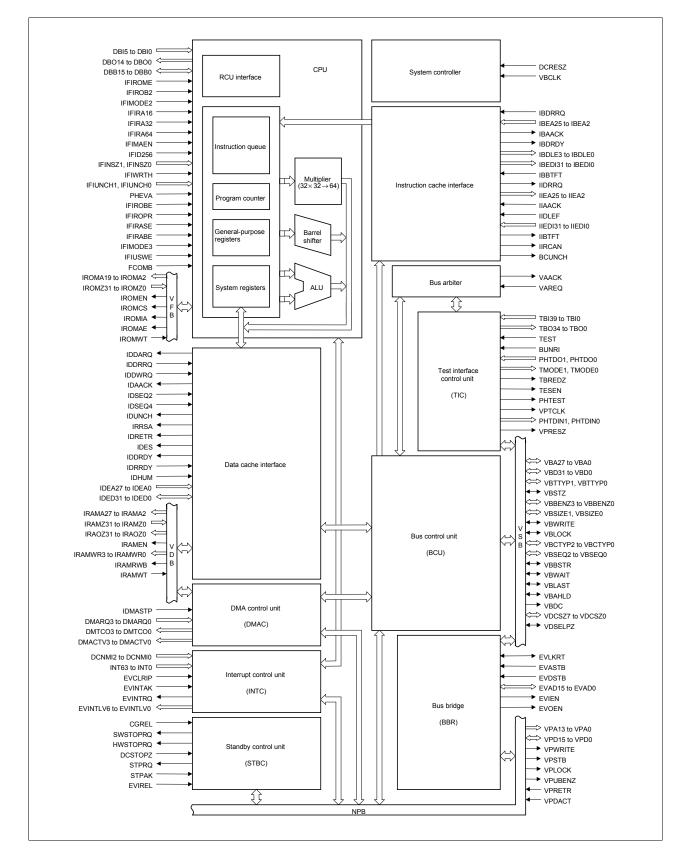
Transfer units: 8-bit, 16-bit, or 32-bit

Maximum transfer count: 65536 (2¹⁶)

Transfer types: Flyby (1-cycle) transfer or 2-cycle transfer

Transfer modes: Single transfer, single-step transfer, line transfer, or block transfer Terminal count output signals (DMTCO3 to DMTCO0)

 Power save function HALT mode Software STOP mode Hardware STOP mode • NB85E901 (RCU^{Note}) interface function


Note The Run Control Unit (RCU) communicates using JTAG and executes debug processing.

1.4 Symbol Diagram

in ——	DBI (5:0)											IBDRRQ] in
	. ,	0)											
out —	DBO (14:										1	BEA (25:2)	in .
in/out —	DBB (15:0											IBAACK	out
in ——	IFIROME											IBDRDY	out
in ——	IFIROB2											BDLE (3:0)	out
in ——	IFIMODE	2									IE	3EDI (31:0)	out
in ——	IFIRA16											IBBTFT	in
in ——	IFIRA32											IIDRRQ	out
in ——	IFIRA64											IIEA (25:2)	out
in ——	IFIMAEN											IIAACK	—— in
in ——	IFID256											IIDLEF	in
in —O	IFINSZ (1	:0)									1	IEDI (31:0)	in
in ——	IFIWRTH											IIBTFT	out
in ——	IFIUNCH											IIRCAN	- out
in ——	PHEVA	(1.0)										BCUNCH	out out
in ——	IFIROBE												out in
in ——	IFIROPR											VAREQ	in in/out
in ——	IFIRASE											VBA (27:0)	in/out
in ——	IFIRABE											VBD (31:0)	in/out
in ——	IFIMODE										VB	TTYP (1:0)	in/out
in ——	IFIUSWE											VBSTZ	⊖— in/out
in ——	FCOMB										VB	BENZ (3:0)	⊖— in/out
out ——	IDDARQ										VE	BSIZE (1:0)	in/out
in ——	IDDRRQ											VBWRITE	in/out
in ——	IDDWRQ											VBLOCK	in/out
out ——	IDAACK										VB	CTYP (2:0)	in/out
in ——	IDSEQ2											BSEQ (2:0)	in/out
in ——	IDSEQ4											VBBSTR	in/out
out	IDUNCH											VBWAIT	in/out
out —	IRRSA											VBLAST	in/out
out	IDRETR											VBAHLD	in/out
out ——	IDES											VBDC	out in (aut
out —	IDDRDY										VI	DCSZ (7:0)	0 in/out
in ——	IDRRDY											VDSELPZ	P— in/out
in ——	IDHUM											EVASTB	in
in ——	IDEA (27:	0)										EVDSTB	in
in/out —	IDED (31	:0)									E	VAD (15:0)	in/out
out —	IROMA (1	9:2)										EVIEN	out
in —O	IROMZ (3	1:0)										EVOEN	out
out ——	IROMEN											EVLKRT	—— in/out
out —	IROMCS											EVIREL	in
out —	IROMIA											EVCLRIP	in
out —	IROMAE											EVINTAK	in
in ——	IROMWT											EVINTRQ	out
											E\//		
out —	IRAMA (2											NTLV (6:0)	out
in —O	IRAMZ (3											VPA (13:0)	out
out —C	IRAOZ (3	1:0)									`	VPD (15:0)	in/out
out —	IRAMEN											VPWRITE	out
out —	IRAMWR											VPSTB	out
out —	IRAMRW	В										VPLOCK	out
in ——	IRAMWT											VPUBENZ	⊖— out
in —	DCNMI (2	2:0)										VPRETR	in
in —	INT (63:0	,										VPDACT	in
in ——	IDMASTF											CGREL	in
in ——	DMARQ (.91	NSTOPRQ	- out
out —	DMARQ (NSTOPRQ	out out
out —	DMACTV											DCSTOPZ	D— in
in —O	DCRESZ											STPRQ	out
in ——	VBCLK											STPAK	in
		TRA				THORE					DUTO		1
	TBI (30:0)	TBO (34:0)	TEST	BUND		TMODE	TRDENZ	TEREN	PHTEST		PHTDIN (1·0)		
	(39:0)	(34:0)	1531	BUNRI	(1:0)	(1:0)		I ESEN	FRIESI	VEIGLK	(1:0)	VPRESZ]
-							<u>ر</u>					<u>ү</u>	
		1			I in	I	0+			0+			
	in	out	in	in	in	out	out	out	out	out	out	out	

1.5 Function Blocks

1.5.1 Internal block diagram

1.5.2 Internal units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic and logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a hardware multiplier that enables high-speed processing of 32-bit \times 32-bit multiplication and a barrel shifter, help accelerate the processing of complex instructions.

In addition, the CPU has an on-chip RCU interface for connecting to the NB85E901 (RCU) (See **CHAPTER 3 CPU**).

(2) BCU

The bus control unit (BCU), which operates as a bus master on the VSB, controls the on-chip bus bridge (BBR), test interface control unit (TIC), and peripheral macros (bus slaves) such as the memory controller (MEMC) connected to the VSB (See **CHAPTER 4 BCU**).

(3) BBR

The bus bridge (BBR) converts signals for the VSB to signals for the NPB.

The BBR sets up the wait insertion function and retry function for peripheral macros connected to the NPB (See **CHAPTER 5 BBR**).

(4) STBC

The standby control unit (STBC) controls the external clock generator (CG) when the power save function (HALT mode, software STOP mode, or hardware STOP mode) is executed (See **CHAPTER 6 STBC**).

(5) DMAC

The DMA control unit (DMAC) is a four-channel control unit that controls data transfers between memory and peripheral macros or between memory and memory based on DMA transfer requests issued by means of the DMARQ3 to DMARQ0 pins or software triggers (See **CHAPTER 7 DMAC**).

(6) INTC

The interrupt control unit (INTC) processes various types of interrupt requests (See CHAPTER 8 INTC).

(7) TIC

The test interface control unit (TIC) is used for test function control. When the TIC is set to test mode, test control signals become effective (See **CHAPTER 9 TEST FUNCTION**).

(8) Bus arbiter

The bus arbiter receives bus control requests from multiple bus masters and arbitrates bus access rights.

CHAPTER 2 PIN FUNCTIONS

2.1 List of Pin Functions

	Pin Name	I/O	Function
NPB pins	VPA13 to VPA0	Output	Address output for peripheral macro connected to NPB
	VPD15 to VPD0 ^{Note}	I/O	Data input/output for peripheral macro connected to NPB
	VPWRITE	Output	Write access strobe output of VPD15 to VPD0 signals
	VPSTB	Output	Data strobe output of VPD15 to VPD0 signals
	VPLOCK	Output	Bus lock output
	VPUBENZ	Output	Upper byte enable output
	VPRETR ^{Note}	Input	Retry request input from peripheral macro connected to NPB
	VPDACT	Input	Retry function control input
VSB pins	VAREQ	Input	Bus access right request input
	VAACK	Output	Bus access right acknowledge output
	VBA27 to VBA0 ^{Note}	I/O	Address input/output for peripheral macro connected to VSB
	VBD31 to VBD0 ^{Note}	I/O	Data input/output for peripheral macro connected to VSB
	VBTTYP1, VBTTYP0 ^{Note}	I/O	Bus transfer type input/output
	VBSTZ ^{Note}	I/O	Transfer start input/output
	VBBENZ3 to VBBENZ0 ^{Note}	I/O	Byte enable input/output
	VBSIZE1, VBSIZE0 ^{Note}	I/O	Transfer size input/output
	VBWRITE ^{Note}	I/O	Read/write status input/output
	VBLOCK ^{Note}	I/O	Bus lock input/output
	VBCTYP2 to VBCTYP0 ^{Note}	I/O	Bus cycle status input/output
	VBSEQ2 to VBSEQ0 ^{Note}	I/O	Sequential status input/output
	VBBSTR ^{Note}	I/O	Burst read status input/output
	VBWAIT ^{Note}	I/O	Wait response input/output
	VBLAST ^{Note}	I/O	Last response input/output
	VBAHLD ^{Note}	I/O	Address hold response input/output
	VBDC	Output	Data bus direction control output
	VDCSZ7 to VDCSZ0 ^{Note}	I/O	Chip select input/output
	VDSELPZ ^{Note}	I/O	Peripheral I/O area access status input/output
System control	DCRESZ	Input	System reset input
pins	VBCLK	Input	Internal system clock input
	CGREL	Input	Clock generator release input
	SWSTOPRQ	Output	Software STOP mode request output to clock generator
	HWSTOPRQ	Output	Hardware STOP mode request output to clock generator
	DCSTOPZ	Input	Hardware STOP mode request input

Note Connected internally to bus holder.

	Pin Name	I/O	Function
System control STPRQ		Output	Hardware/software STOP mode request output to MEMC
pins	STPAK	Input	Acknowledge input for STPRQ input of MEMC
DMAC pins	IDMASTP	Input	DMA transfer termination input
	DMARQ3 to DMARQ0	Input	DMA transfer request input
	DMTCO3 to DMTCO0	Output	Terminal count (DMA transfer completion) output
	DMACTV3 to DMACTV0	Output	DMA acknowledge output
INTC pins	DCNMI2 to DCNMI0	Input	Non-maskable interrupt request (NMI) input
	INT63 to INT0	Input	Maskable interrupt request input
VFB pins	IROMA19 to IROMA2	Output	ROM address output
	IROMZ31 to IROMZ0	Input	ROM data input
	IROMEN	Output	ROM access enable output
	IROMWT	Input	ROM wait input
	IROMCS	Output	NEC reserved pins (leave open)
	IROMIA	Output	
	IROMAE	Output	
VDB pins	IRAMA27 to IRAMA2	Output	RAM address output
	IRAMZ31 to IRAMZ0	Input	RAM data input
	IRAOZ31 to IRAOZ0	Output	RAM data output
	IRAMEN	Output	RAM access enable output
	IRAMWR3 to IRAMWR0	Output	RAM write enable output
	IRAMRWB	Output	RAM read/write status output
	IRAMWT	Input	RAM wait input
Instruction	IBDRRQ	Input	Fetch request input from instruction cache
cache pins	IBEA25 to IBEA2	Input	Fetch address input from instruction cache
	IBAACK	Output	Address acknowledge output to instruction cache
	IBDRDY	Output	Data ready output to instruction cache
	IBDLE3 to IBDLE0	Output	Data latch enable output to instruction cache
	IBEDI31 to IBEDI0	Output	Data output to instruction cache
	IIDRRQ	Output	Fetch request output to instruction cache
	IIEA25 to IIEA2	Output	Fetch address output to instruction cache
	IIAACK	Input	Address acknowledge input from instruction cache
	IIDLEF	Input	Data latch enable input from instruction cache
	IIEDI31 to IIEDI0	Input	Data input from instruction cache
	IIBTFT	Output	Branch target fetch status output to instruction cache
	IIRCAN	Output	Code cancel status output to instruction cache
	BCUNCH	Output	Uncache status output to instruction cache
	IBBTFT	Input	NEC reserved pin (input low level)

	Pin Name	I/O	Function
Data cache	IDDARQ	Output	Read/write access request output to data cache
pins	IDAACK	Output	Acknowledge output
	IDDRRQ	Input	VSB read operation request input to BCU
	IDDWRQ	Input	VSB write operation request input to BCU
	IDSEQ4	Input	Read/write operation type setting input
	IDSEQ2	Input	Read/write operation type setting input
	IRRSA	Output	VDB hold status output
	IDRETR	Output	Read retry request output
	IDUNCH	Output	Uncache status output
	IDDRDY	Output	Read data ready output
	IDRRDY	Input	Read data ready input from data cache
	IDHUM	Input	Hit under miss-hit read input
	IDEA27 to IDEA0	Input	Address input
	IDED31 to IDED0 ^{Note 1}	I/O	Data input/output
	IDES	Output	NEC reserved pin Note 2
RCU pins	DBI5 to DBI0	Input	Debug control input
	DBO14 to DBO0	Output	Debug control output
	DBB15 to DBB0 ^{Note 1}	I/O	Debug control input/output
Peripheral	EVASTB	Input	Address strobe input
evaluation chip	EVDSTB	Input	Data strobe input
mode pins	EVAD15 to EVAD0 ^{Note 1}	I/O	Address/data input/output
	EVIEN	Output	EVADn input enable output (n = 15 to 0)
	EVOEN	Output	EVADn output enable output (n = 15 to 0)
	EVLKRT ^{Note 1}	I/O	Lock/retry input/output
	EVIREL	Input	Standby release input
	EVCLRIP Input		ISPR clear input
	EVINTAK	Input	Interrupt acknowledge input
	EVINTRQ	Output	Interrupt request output
	EVINTLV6 to EVINTLV0	Output	Interrupt vector output
Operation mode	IFIROME	Input	ROM mapping enable input
setting pins	IFIROB2	Input	ROM area location setting input
	IFIRA64	Input	RAM area size selection input
	IFIRA32	Input	RAM area size selection input
	IFIRA16	Input	RAM area size selection input
	IFIMAEN	Input	Misalign access setting input
	IFID256	Input	Data area setting input

Notes 1. Connected internally to bus holder.

^{2.} When using the data cache, always connect this pin to the IDES pin of the data cache. Leave open when unused.

	Pin Name	I/O	(4/4 Function
Operation mode setting pins	IFINSZ1, IFINSZ0	Input	VSB data bus size (initial value) selection input
	IFIWRTH	Input	Data cache write-back/write-through mode selection input
	IFIUNCH1	Input	Data cache setting input
	IFIUNCH0	Input	Instruction cache setting input
	PHEVA	Input	Peripheral evaluation chip mode setting input
	IFIROBE	Input	NEC reserved pins (input low level)
	IFIROPR	Input	
	IFIRASE	Input	
	IFIRABE	Input	
	IFIMODE3	Input	
	IFIMODE2	Input	
	IFIUSWE	Input	
	FCOMB	Input	
Test mode pins	TBI39 to TBI0	Input	Input test bus
	TBO34 to TBO0	Output	Output test bus
	TEST	Input	Test bus control input
	BUNRI	Input	Normal/test mode selection input
	PHTDO1, PHTDO0 ^{Note}	Input	Peripheral macro test input
	TESEN	Output	Peripheral macro test enable output
	VPTCLK	Output	Peripheral macro test clock output
	PHTDIN1, PHTDIN0	Output	Peripheral macro test output
	VPRESZ	Output	Peripheral macro reset output
	PHTEST	Output	Peripheral test mode status output
	TMODE1	Output	Test mode selection output
	TMODE0	Output	NEC reserved pins (leave open)
	TBREDZ	Output	

Note Connected internally to bus holder.

2.2 Explanation of Pin Functions

2.2.1 NPB pins

(1) VPA13 to VPA0 (output)

These are pins from which addresses are output to peripheral macros connected to the NPB. They specify the lower 14 bits.

(2) VPD15 to VPD0 (input/output)

These are pins to/from which data is input to/output from peripheral macros connected to the NPB.

(3) VPWRITE (output)

This is the write access strobe output pin for the VPD15 to VPD0 signals.

During writing, a high level is output.

(4) VPSTB (output)

This is the data strobe output pin for the VPD15 to VPD0 signals.

(5) VPLOCK (output)

This is the bus lock output pin. If an interrupt request occurs while a read modify write access to the interrupt control register (PICn) is executed, this pin outputs a bus lock signal to avoid loss of the interrupt request. It outputs a high level during a read modify write access.

Even when an interrupt request occurs, transfer to the PIFn flag of the PICn register is not performed while this signal outputs a high level (n = 0 to 63).

(6) VPUBENZ (output)

This is the higher byte enable output pin. It outputs a low level during a halfword data access or a byte data access to an odd address.

It outputs a high level during a byte access to an even address.

(7) VPRETR (input)

This is the pin to which retry requests are input from peripheral macros connected to the NPB. If a high level is input to this pin and to the VPDACT pin at the falling edge of the VPSTB signal, the read/write operation is performed again.

(8) VPDACT (input)

This pin, which is an input pin for input from an external address decoder, is used to enable the retry function. When a high level is input, the retry function is enabled.

When a low level is input, any retry request by VPRETR input will be ignored.

2.2.2 VSB pins

(1) VAREQ (input)

This is the pin to which bus access right requests are input from an external bus master.

(2) VAACK (output)

This is an output pin for indicating that the bus access right request signal (VAREQ) from an external bus master has been acknowledged.

(3) VBA27 to VBA0 (input/output)

These pins constitute an address bus for peripheral macros connected to the VSB. The bus master having the bus access right outputs signals from these pins.

(4) VBD31 to VBD0 (input/output)

These pins constitute a data bus for peripheral macros connected to the VSB. During writing, the bus master having the bus access right outputs signals from these pins. During reading, the selected bus slave outputs signals from these pins.

(5) VBTTYP1, VBTTYP0 (input/output)

These pins indicate the bus transfer type. While the VBCLK signal is high level, the bus master having the bus access right outputs signals from these pins.

VBTTYP1	VBTTYP0	Transfer Type
L	L	Address-only transfer (transfer with no data processing)
н	L	Non-sequential transfer (single transfer or burst transfer)
н	Н	Sequential transfer (transfer in which the address that is currently being transferred is related to the address for the previous transfer)
L	Н	(Reserved for future function expansion)

Table 2-1. VBTTYP1 and VBTTYP0 Signals

Remark L: low-level

H: high-level

(6) VBSTZ (input/output)

This pin indicates the transfer start. The bus master having the bus access right outputs a signal from this pin.

(7) VBBENZ3 to VBBENZ0 (input/output)

These are low-level active pins that indicate the enabled byte data among the data bus pins (VBD31 to VBD0). The bus master having the bus access right outputs signals from these pins.

Active (Low-Level Output) Signal	Enabled Byte Data
VBBENZ0	VBD7 to VBD0
VBBENZ1	VBD15 to VBD8
VBBENZ2	VBD23 to VBD16
VBBENZ3	VBD31 to VBD24

(8) VBSIZE1, VBSIZE0 (input/output)

These pins indicate the transfer size. The bus master having the bus access right outputs signals from these pins.

VBSIZE1	VBSIZE0	Transfer Size
L	L	Byte (8 bits)
L	Н	Halfword (16 bits)
н	L	Word (32 bits)
Н	Н	(Reserved for future function expansion)

Table 2-3. VBSIZE1 and VBSIZE0 Signals

Remark L: low-level

H: high-level

(9) VBWRITE (input/output)

This pin indicates read or write. The bus master having the bus access right outputs a signal from this pin. During writing, a high level is output.

(10) VBLOCK (input/output)

This pin is used to retain the bus access right. The bus master having the bus access right outputs a signal from this pin.

This pin is used to inhibit interruption due to an access from another bus master between the current transfer and the next transfer.

(11) VBCTYP2 to VBCTYP0 (input/output)

These pins are used to indicate the current bus cycle status. The bus master having the bus access right outputs signals from these pins.

VBCTYP2	VBCTYP1	VBCTYP0	Bus Cycle Status
L	L	L	Opcode fetch
L	L	н	Data access
L	Н	L	Misalign access ^{Note}
L	н	Н	Read modify write access
н	L	L	Opcode fetch of jump address due to branch instruction
н	Н	L	DMA 2-cycle transfer
н	н	н	DMA flyby transfer
Н	L	Н	(Reserved for future function expansion)

Table 2-4. VBCTYP2 to VBCTYP0 Signals

Note Only output when a high level is input to the IFIMAEN pin (misalign access enabled).

Remark L: low-level H: high-level

(12) VBSEQ2 to VBSEQ0 (input/output)

These are sequential status pins. During a burst transfer, the bus master having the bus access right outputs signals from these pins to indicate the transfer size.

When a burst transfer starts, these pins indicate the "burst transfer length". During the burst transfer, they indicate "continuous". At the end of the burst transfer, they indicate "single transfer".

In the following cases, VSB is in the burst transfer mode and the sequential status is "continuous".

- When 16-/32-bit data is transferred with a VSB width of 8 bits.
- When 32-bit data is transferred with a VSB width of 16 bits.
- When a refill is being performed from the instruction/data cache.

• When 32-bit data is transferred to the peripheral macro connected to the NPB (16-bit data bus width).

VBSEQ2	VBSEQ1	VBSEQ0	Sequential Status
L	L	L	Single transfer
L	L	Н	Continuous (indicates that the next transfer address is related to the current transfer address) $^{\rm Note}$
L	н	L	Continuous 4 times (burst transfer length: 4)
L	Н	Н	Continuous 8 times (burst transfer length: 8)
н	L	L	Continuous 16 times (burst transfer length: 16)
Н	L	Н	Continuous 32 times (burst transfer length: 32)
н	н	L	Continuous 64 times (burst transfer length: 64)
н	Н	Н	Continuous 128 times (burst transfer length: 128)

Table 2-5. VBSEQ2 to VBSEQ0 Signals

Note This is output for continuous 2 times and throughout continuous 4, 8, 16, 32, 64, and 128 times.

Remark L: low-level

H: high-level

(13) VBBSTR (input/output)

This is the burst read status pin. When the connected ROM (accessed via VSB) is used as external memory, the bus master having the bus access right outputs a signal from this pin to indicate that the current transfer is an opcode fetch from external ROM. This pin operates with the same timing as the address bus.

(14) VBWAIT (input/output)

This is the wait response signal I/O pin. If further bus cycles are to be requested because the data is not yet ready, this signal is output from the selected bus slave to the bus master.

When this signal becomes high level, the bus cycle shifts to the wait state.

Note that when a memory controller (MEMC) is connected to the NB85E, because the access cycle will be at least two clocks, a high level will be output from the MEMC to the NB85E while the VSB cycle is being generated.

(15) VBLAST (input/output)

This is the last response signal I/O pin. This is used when the bus decoder needs decode cycles.

If there are multiple bus slaves connected externally and a decoder has been added for slave selection, decoding for bus slave selection is normally performed during non-sequential transfer.

For that reason, decode cycles for slave selection cannot be issued when trying to change a slave device during sequential transfer, such as during burst transfer.

In this case, the slave device outputs the last response and notifies the bus master that the slave signal will change. When there is a last response from the slave device, the bus master makes the next bus cycle a non-sequential transfer enabling decode cycle issuance.

(16) VBAHLD (input/output)

This is the address hold response signal I/O pin. To request further bus cycles when the selected bus slave has completed the preparations for data output, this signal is output to the bus master.

When this signal and the VBWAIT signal become high level, the bus cycle shifts to the address hold state.

In the address hold state, the circuit configuration can be simplified because no address latch is necessary since the address for the data does not change during its read/write cycle.

Note that when a memory controller (MEMC) is connected to the NB85E, a high level is output to the NB85E from the MEMC when an idle state is inserted.

(17) VBDC (output)

This is the data bus direction control output pin. During reading, a high level is output. This pin is connected to the 3-state buffer enable pin to control the data bus direction.

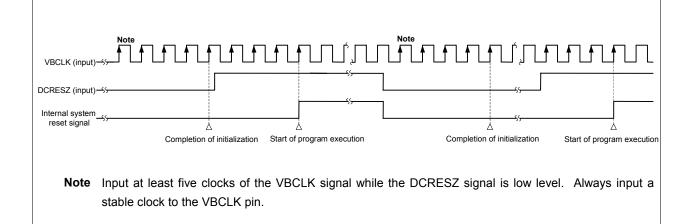
(18) VDCSZ7 to VDCSZ0 (input/output)

These are chip select pins. For details, see 4.3 Programmable Chip Select Function.

(19) VDSELPZ (input/output)

When the peripheral I/O area and programmable peripheral I/O area are accessed, the bus master outputs a low level from this pin.

2.2.3 System control pins


(1) DCRESZ (input)

This is the clock-synchronized system reset input pin.

When the stable input clock rising edge is detected five times after a low level was input to this pin, the pin statuses and internal signals are completely initialized. Also, when the input clock rising edge is detected four times after this signal has risen from low level to high level, the pipeline is cleared and program execution starts from memory address 0.

In addition to normal initialization and start operations, this pin is used to cancel the power save function.

Caution Be sure to input the DCRESZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

Figure 2-1. Acknowledgement of DCRESZ Signal

(2) VBCLK (input)

This is the external clock input pin for the internal system clock. A 50% duty stable clock is input from an external clock control circuit.

(3) CGREL (input)

This is the release input pin for the external clock generator (CG). An active level (high level) is input upon the start of VBCLK input at least one clock after STOP mode is canceled and the oscillation stabilization time has been ensured (it is not necessary to set CGREL input at the same time as VBCLK input).

(4) SWSTOPRQ (output)

This is the pin from which software STOP mode requests are output to the external clock generator (CG). When software STOP mode is set, this pin outputs a high-level signal.

VBCLK input from the CG is stopped by using this signal. When software STOP mode is canceled, this pin outputs a low-level signal.

(5) HWSTOPRQ (output)

This is the pin from which hardware STOP mode requests are output to the external clock generator (CG). When hardware STOP mode is set by DCSTOPZ input, this pin outputs a high-level signal.

VBCLK input from the CG is stopped by using this signal. When hardware STOP mode is canceled, this pin outputs a low-level signal.

(6) DCSTOPZ (input)

This is a hardware STOP mode request input pin. When a low-level signal is input, the NB85E is set to hardware STOP mode.

(7) STPRQ (output)

This is the pin from which hardware/software STOP mode requests are output to the memory controller (MEMC).

(8) STPAK (input)

This is the pin to which acknowledge signals are input from the memory controller (MEMC) acknowledging the STPRQ signal.

2.2.4 DMAC pins

(1) IDMASTP (input)

This is the DMA transfer forcible interrupt input pin. Input an active level (high level) of two clocks in synchronization with the rising edge of the VBCLK signal.

To restart transfer, set (1) the EN bit of the DRST register after inputting a low level to this pin.

(2) DMARQ3 to DMARQ0 (input)

These are the DMA transfer request input pins.

Input an active level (high level) in synchronization with the rising edge of the VBCLK signal, and continue inputting until the corresponding DMACTVn signal becomes high level (n = 3 to 0).

(3) DMTCO3 to DMTCO0 (output)

These are the terminal count (DMA transfer completion) output pins. A one-clock high level is output from these pins when the final DMA transfer is performed.

The high level is output in synchronization with the rising edge of the VBCLK signal.

(4) DMACTV3 to DMACTV0 (output)

These are the DMA acknowledge output pins. These pins become active (high-level output) during a 2-cycle transfer VSB read or VSB write cycle, or during a flyby transfer.

2.2.5 INTC pins

(1) DCNMI2 to DCNMI0 (input)

These are the non-maskable interrupt request (NMI) input pins. When a rising edge is input, a non-maskable interrupt is generated.

(2) INT63 to INT0 (input)

These are the maskable interrupt request input pins. When a rising edge is input, a maskable interrupt is generated.

2.2.6 VFB pins

(1) IROMA19 to IROMA2 (output)

These pins constitute a bus from which addresses are output to ROM.

(2) IROMZ31 to IROMZ0 (input)

These pins constitute a bus to which data is input from ROM.

(3) IROMEN (output)

This is the pin from which access enable signals are output to ROM. It changes in synchronization with the falling edge of the VBCLK signal.

(4) IROMWT (input)

This is the pin to which wait signals are input from ROM. A high level is input during the wait period.

(5) IROMCS, IROMIA, IROMAE (output)

These are NEC reserved pins. Leave them open.

2.2.7 VDB pins

(1) IRAMA27 to IRAMA2 (output)

These pins constitute a bus from which addresses are output to RAM. The IRAMA27 to IRAMA16 signals are output for the data cache. Therefore, they do not have to be decoded when RAM is connected.

(2) IRAMZ31 to IRAMZ0 (input)

These pins constitute a bus to which data is input from RAM.

(3) IRAOZ31 to IRAOZ0 (output)

These pins constitute a bus from which data is output to RAM.

(4) IRAMEN (output)

This is the pin from which access enable signals are output to RAM. It changes in synchronization with the falling edge of the VBCLK signal.

(5) IRAMWR3 to IRAMWR0 (output)

These are the pins from which write enable signals are output to RAM. They are high-level active pins that indicate the enabled byte data among the output data bus pins (IRAOZ31 to IRAOZ0).

Active Signal	Enabled Byte Data
IRAMWR0	IRAOZ7 to IRAOZ0
IRAMWR1	IRAOZ15 to IRAOZ8
IRAMWR2	IRAOZ23 to IRAOZ16
IRAMWR3	IRAOZ31 to IRAOZ24

Table 2-6. IRAMWR3 to IRAMWR0 Signals

(6) IRAMRWB (output)

This is the pin from which the read/write status is output to RAM. During reading, a high-level signal is output. During writing, a low-level signal is output.

(7) IRAMWT (input)

This is the pin to which wait signals are input from the data cache. A high level is input during the wait period.

2.2.8 Instruction cache pins

(1) IBDRRQ (input)

This is the pin to which fetch requests are input from the instruction cache. A request signal is input which fetches data from the external memory to the NB85E.

(2) IBEA25 to IBEA2 (input)

These pins constitute a bus to which fetch addresses are input from the instruction cache. Upon a miss-hit, the address to be read is input from the instruction cache.

(3) IBAACK (output)

This is the pin from which address acknowledgements are output to the instruction cache. This signal is output when the NB85E recognizes the IBEA25 to IBEA2 signals input from the instruction cache.

(4) IBDRDY (output)

This is the pin from which data ready signals are output to the instruction cache. Upon an instruction cache miss-hit, when the NB85E has finished fetching the data to be read from the external memory, this signal is output to indicate that a refill for the instruction cache is ready.

(5) IBDLE3 to IBDLE0 (output)

These are the pins from which data latch enable signals are output to the instruction cache.

(6) IBEDI31 to IBEDI0 (output)

These pins constitute a bus from which data is output to the instruction cache. Upon an instruction cache miss-hit, the data to be refilled is output to the instruction cache.

(7) IIDRRQ (output)

This is the pin from which fetch requests are output to the instruction cache.

(8) IIEA25 to IIEA2 (output)

These pins constitute a bus from which fetch addresses are output to the instruction cache. The address to be fetched is output from the external memory simultaneous with the fetch request (IIDRRQ).

(9) IIAACK (input)

This is the pin to which address acknowledgements are input from the instruction cache. This signal is input to the NB85E when the instruction cache recognizes the fetch address signals (IIEA25 to IIEA2) input from the NB85E.

(10) IIDLEF (input)

This is the pin to which data latch enable signals are input from the instruction cache.

(11) IIEDI31 to IIEDI0 (input)

These pins constitute a bus to which data is input from the instruction cache. The data to be read is input from the instruction cache.

(12) IIBTFT (output)

This is the pin from which the branch target fetch status is output to the instruction cache. A high level is output when a jump destination address is fetched due to a branch instruction.

(13) IIRCAN (output)

This is the pin from which the code cancel status is output to the instruction cache. This signal cancels previous requests when data becomes unwanted due to a branch or interrupt after the NB85E outputs a fetch request to the instruction cache.

(14) BCUNCH (output)

This is the pin from which the uncache status is output to the instruction cache. A low level is output when the area in which the instruction cache setting has been set to cache-enable using the cache configuration register (BHC) is accessed.

(15) IBBTFT (input)

This is an NEC reserved pin. Always input a low level. Note that the IBBTFT pin of the connected instruction cache should be left open when using the instruction cache.

2.2.9 Data cache pins

(1) IDDARQ (output)

This is the pin from which read/write access requests are output to the data cache.

(2) IDAACK (output)

This is the pin from which acknowledgements are output to the data cache. This signal is output when the NB85E recognizes the IDEA27 to IDEA0 signals input from the data cache.

(3) IDDRRQ, IDDWRQ, IDSEQ4, IDSEQ2 (input)

These are the pins to which the operation type settings are input from the data cache.

IDDRRQ	IDDWRQ	IDSEQ4	IDSEQ2	Operation Type
н	L	Н	L	4-word sequential read
н	L	L	Н	2-word sequential read
н	L	L	L	1-word read
L	Н	Н	L	4-word sequential write
L	Н	L	Н	2-word sequential write
L	Н	L	L	1-word write
н	Н	Н	н	1-word write
н	н	н	L	1-halfword write
н	Н	L	L	1-byte write
Other than	above			Setting prohibited

Table 2-7. IDDRRQ, IDDWRQ, IDSEQ4, and IDSEQ2 Signals

Remark L: low-level input

H: high-level input

(a) IDDRRQ (input)

This is the pin to which VSB read operation requests are input from the data cache.

(b) IDDWRQ (input)

This is the pin to which VSB write operation requests are input from the data cache.

(c) IDSEQ4, IDSEQ2 (input)

These are the pins to which the read/write operation type settings are input from the data cache.

(4) IRRSA (output)

This is the pin from which the VDB hold status is output to the data cache. An active level (high level) is output when the VDB is accessing RAM or is in the hold state.

(5) IDRETR (output)

This is the pin from which read retry requests are output to the data cache.

(6) IDUNCH (output)

This is the pin from which the uncache status is output to the data cache. A low level is output when the area in which the data cache setting has been set to cache-enable using the cache configuration register (BHC) is accessed.

(7) IDDRDY (output)

This is the pin from which read data ready signals are output to the data cache. Upon a data cache miss-hit, when the NB85E has finished fetching the data to be read from the external memory, this signal is output to indicate that a refill for the data cache is ready.

(8) IDRRDY (input)

This is the pin to which read data ready signals are input from the data cache.

(9) IDHUM (input)

This is the pin to which hit-under-miss-hit read signals are input from the data cache.

A high level is input in cases when a subsequent access is made to the data cache while the external memory is being accessed due to the generation of a miss-hit during a read operation, and the data that scored a hit on this subsequent access is input to the NB85E ahead of the data from the external memory (hit-under-miss-hit).

(10) IDEA27 to IDEA0 (input)

These pins constitute a bus to which addresses are input from the data cache. The address to be accessed is input to the NB85E upon a data cache miss-hit.

(11) IDED31 to IDED0 (input/output)

These pins constitute a data bus through which data is input/output from/to the data cache. Data for refilling the data cache and data written to the external memory in write back mode is exchanged.

(12) IDES (output)

This is an NEC reserved pin. When using the data cache, be sure to connect this pin to the IDES pin of the connected data cache. When not using the data cache, leave this pin open.

2.2.10 RCU pins

(1) DBI5 to DBI0 (input)

These are debug control input pins. They are connected to the DBI5 to DBI0 pins of the RCU.

(2) DBO14 to DBO0 (output)

These are debug control output pins. They are connected to the DBO14 to DBO0 pins of the RCU.

(3) DBB15 to DBB0 (input/output)

These are debug control I/O pins. They are connected to the DBB15 to DBB0 pins of the RCU.

2.2.11 Peripheral evaluation chip mode pins

If a high-level signal is input to the PHEVA pin, the NB85E is set to peripheral evaluation chip mode.

In peripheral evaluation chip mode, the ASIC in which the NB85E is incorporated is used as a peripheral emulation chip when the in-circuit emulator is used to perform debugging.

The peripheral evaluation chip mode pins constitute an interface with the evaluation chip within the in-circuit emulator, and various evaluation chip signals are converted to NPB signals via these pins.

(1) EVASTB (input)

This is the address strobe input pin. It is connected to the EPHASTB pin of the evaluation chip.

(2) EVDSTB (input)

This is the data strobe input pin. It is connected to the EPHDSTB pin of the evaluation chip.

(3) EVAD15 to EVAD0 (input/output)

These pins constitute an address/data bus. They are connected to the EPHADn pins of the evaluation chip (n = 15 to 0).

(4) EVIEN (output)

This pin outputs an input enable signal for controlling the direction of the I/O buffer on the EVADn bus (n = 15 to 0).

(5) EVOEN (output)

This pin outputs an output enable signal for controlling the direction of the I/O buffer on the EVADn bus (n = 15 to 0).

(6) EVLKRT (input/output)

This is the lock/retry input/output pin. It is connected to the EPHLKRT pin of the evaluation chip.

(7) EVIREL (input)

This is the standby release input pin.

(8) EVCLRIP (input)

This is the ISPR clear input pin. It is connected to the ECLRIP pin of the evaluation chip.

(9) EVINTAK (input)

This is the interrupt acknowledge input pin. It is connected to the EINTAK pin of the evaluation chip.

(10) EVINTRQ (output)

This is the interrupt request output pin. It is connected to the EINTRQ pin of the evaluation chip.

(11) EVINTLV6 to EVINTLV0 (output)

These are the interrupt vector output pins. They are connected to the EINTLV6 to EINTLV0 pins of the evaluation chip.

2.2.12 Operation mode setting pins

The following pins are used to specify the operation mode of the NB85E.

The input level to these pins should remain fixed during NB85E operation. Do not change the input level to these pins during operation.

(1) IFIROME (input)

This is the ROM area setting input pin. The setting is made according to the level input to the pin, as shown below.

- Low level: ROM connected as external memory (via VSB) is used
- High level: ROM connected to VFB is used

When a low level is input to this pin, instruction processing begins after branching to the reset entry address of the external memory, following the release of system reset. Instruction fetches and data access to the ROM connected to VFB cannot be performed.

If a high level is input to this pin and a low level is input to the IFIROB2 pin, instruction processing begins after branching to the reset entry address of the ROM connected to VFB, following the release of system reset. If a high level is input to the IFIROB2 pin, instruction processing begins after branching to the reset entry address of the external memory, following the release of system reset, however it is possible to access the area of ROM connected to VFB that is allocated to addresses 100000H and higher.

(2) IFIROB2 (input)

This is the ROM area relocation setting input pin. It specifies the range for locating the ROM area. The ROM area range is set as follows according to the input level to this pin.

- Low level: Addresses 000000H to 0FFFFH
- High level: Addresses 100000H to 1FFFFH

For details, see 3.4.1 (1) ROM relocation function.

(3) IFIRA64, IFIRA32, IFIRA16 (input)

These are RAM area size selection input pins. The RAM area size is set as follows according to the input level to these pins. For details, see **3.4.2 RAM area**.

Table 2-8. IFIRA64, IFIRA32, and IFIRA16 Signals

IFIRA64	IFIRA32	IFIRA16	RAM Area Size
L	L	L	4 KB
L	L	н	12 KB
L	Н	Arbitrary	28 KB
Н	Arbitrary	Arbitrary	60 KB

Remark L: low-level input

H: high-level input

(4) IFIMAEN (input)

This is the misalign access setting input pin. Misalign access is enabled or disabled as follows according to the input level to this pin.

- Low level: Misalign access disabled
- High level: Misalign access enabled

(5) IFID256 (input)

This is the data area setting input pin. It is used to set the data area size. Each mode is set as follows according to the input level to this pin. For details, see **3.3.2 Data area**.

- Low level: 64 MB mode
- High level: 256 MB mode

(6) IFINSZ1, IFINSZ0 (input)

These are the VSB data bus size (initial value) selection input pins. The VSB data bus size is set as follows according to the input level to these pins.

IFINSZ1	IFINSZ0	VSB Data Bus Size
L	L	32 bits
L	Н	16 bits
н	L	8 bits
Н	Н	Setting prohibited

Table 2-9. IFINSZ1 and IFINSZ0 Signals

Remark L: low-level input

H: high-level input

If the VSB data bus size is changed after reset through the bus size configuration register (BSC), the setting of the BSC register is valid regardless of the input level to these pins.

(7) IFIWRTH (input)

This is the data cache write-back or write-through mode selection input pin. When using the data cache, connect to the IFIWRTH pin of the data cache. Each mode is set as follows according to the input level to this pin.

- Low level: Write-back mode
- High level: Write-through mode

(8) IFIUNCH1 (input)

This is the data cache setting input pin.

When using the data cache, connect to the IFIUNCH1 pin of the data cache. The data cache is enabled or disabled as follows according to the input level to this pin.

- Low level: Data cache is enabled
- High level: Data cache is disabled

(9) IFIUNCH0 (input)

This is the instruction cache setting input pin.

The instruction cache is enabled or disabled as follows according to the input level to this pin.

- Low level: Instruction cache is enabled
- High level: Instruction cache is disabled

(10) PHEVA (input)

This is the peripheral evaluation chip mode setting input pin. A high level is input when the ASIC in which the NB85E has been incorporated is used as a peripheral evaluation chip.

(11) IFIROBE, IFIROPR, IFIRASE, IFIRABE, IFIMODE3, IFIMODE2, IFIUSWE, FCOMB (input)

These are NEC reserved pins. Always input low-level signals.

2.2.13 Test mode pins

For details about the TBI39 to TBI0, TBO34 to TBO0, TEST, and BUNRI pins, refer to the various cell-based IC family design manuals.

(1) TBI39 to TBI0 (input)

These pins constitute an input test bus.

(2) TBO34 to TBO0 (output)

These pins constitute an output test bus.

(3) TEST (input)

This is the test bus control input pin.

(4) BUNRI (input)

This is the input pin for selecting normal or test mode.

(5) PHTDO1, PHTDO0 (input)

These pins are the peripheral macro test input pins.

(6) TESEN (output)

This is the enable output pin for setting peripheral macros to test mode.

(7) VPTCLK (output)

This is the clock output pin for peripheral macro tests.

(8) PHTDIN1, PHTDIN0 (output)

These are the peripheral macro test output pins.

(9) VPRESZ (output)

This is the pin from which reset signals are output to the peripheral macros.

Caution The VPRESZ signal is the reset signal for the peripheral macros in normal operation mode as well as test mode.

(10) PHTEST (output)

This is the pin from which signals indicating the peripheral test mode status are output.

(11) TMODE1 (output)

This is the test mode selection output pin. When using the RCU, connect this pin to the TMODE1 pin of the RCU.

(12) TMODE0, TBREDZ (output)

These are NEC reserved pins. Leave them open.

2.3 Recommended Connection of Unused Pins

	Pin Name	I/O	Recommended Connection Method
NPB pins	VPA13 to VPA0, VPWRITE, VPSTB, VPLOCK, VPUBENZ	Output	Leave open.
	VPD15 to VPD0	I/O	Leave open.
	VPRETR	Input	Input low level.
	VPDACT	Input	Input high level.
VSB pins	VBWAIT, VBLAST, VBAHLD	I/O	Note
	VAREQ	Input	Input low level.
	VAACK, VBDC	Output	Leave open.
	VBA27 to VBA0, VBD31 to VBD0, VBTTYP1, VBTTYP0, VBSTZ, VBBENZ3 to VBBENZ0, VBSIZE1, VBSIZE0, VBWRITE, VBLOCK, VBCTYP2 to VBCTYP0, VBSEQ2 to VBSEQ0, VBBSTR, VDCSZ7 to VDCSZ0, VDSELPZ	Ι/Ο	Leave open.
System control	DCRESZ, VBCLK	Input	—
pins	CGREL	Input	Input low level.
	SWSTOPRQ, HWSTOPRQ, STPRQ	Output	Leave open.
	DCSTOPZ, STPAK	Input	Input high level.
DMAC pins	IDMASTP, DMARQ3 to DMARQ0	Input	Input low level.
	DMTCO3 to DMTCO0, DMACTV3 to DMACTV0	Output	Leave open.
INTC pins	DCNMI2 to DCNMI0, INT63 to INT0	Input	Input low level.
VFB pins	IROMA19 to IROMA2, IROMEN, IROMCS, IROMIA, IROMAE	Output	Leave open.
	IROMZ31 to IROMZ0	Input	Input high level.
	IROMWT	Input	Input low level.
VDB pins	IRAMA27 to IRAMA2, IRAOZ31 to IRAOZ0, IRAMEN, IRAMWR3 to IRAMWR0, IRAMRWB	Output	Leave open.
	IRAMZ31 to IRAMZ0	Input	Input high level.
	IRAMWT	Input	Input low level.
Instruction cache pins	IBDRRQ, IBEA25 to IBEA2, IIAACK, IIDLEF, IIEDI31 to IIEDI0, IBBTFT	Input	Input low level.
	IBAACK, IBDRDY, IBDLE3 to IBDLE0, IBEDI31 to IBEDI0, IIDRRQ, IIEA25 to IIEA2, IIBTFT, IIRCAN, BCUNCH	Output	Leave open.
Data cache pins	IDDARQ, IDAACK, IRRSA, IDRETR, IDUNCH, IDDRDY, IDES	Output	Leave open.
	IDDRRQ, IDDWRQ, IDSEQ4, IDSEQ2, IDRRDY, IDHUM, IDEA27 to IDEA0	Input	Input low level.
	IDED31 to IDED0	I/O	Leave open.

Note The recommended connections of the VBWAIT, VBLAST, and VBAHLD pins differ as follows.

- When none of above three pins are used: Leave open.
- When one or more of above three pins are used: Input a low level.

			(2)
	Pin Name	I/O	Recommended Connection Method
RCU pins	DBI5, DBI1		Input high level.
	DBI4 to DBI2, DBI0	Input	Input low level.
	DBO14 to DBO0	Output	Leave open.
	DBB15 to DBB0	I/O	Leave open.
Peripheral evaluation chip	EVASTB, EVDSTB, EVIREL, EVCLRIP, EVINTAK	Input	Input low level.
mode pins	EVAD15 to EVAD0, EVLKRT	I/O	Leave open.
	EVIEN, EVOEN, EVINTRQ, EVINTLV6 to EVINTLV0	Output	Leave open.
Operation mode setting pins	IFIROME, IFIRA64, IFIRA32, IFIRA16, IFIMAEN, IFID256, IFINSZ1, IFINSZ0	Input	_
	IFIUNCH1	Input	Input high level.
	IFIROB2, IFIWRTH, IFIUNCH0	Input	Input low level or high level.
	PHEVA, IFIROBE, IFIROPR, IFIRASE, IFIRABE, IFIMODE3, IFIMODE2, IFIUSWE, FCOMB	Input	Input low level.
Test mode pins	TBI39 to TBI0	Input	Refer to the design editions of the various cell-
	TBO34 to TBO0	Output	based IC family user's manuals.
	TEST, BUNRI	Input	_
	PHTDO1, PHTDO0	Input	Input low level.
	TESEN, VPTCLK, PHTDIN1, PHTDIN0, VPRESZ, PHTEST, TMODE1, TMODE0, TBREDZ	Output	Leave open.

2.4 Pin Status

The following table shows the status in each operating mode of the pins that have output functions.

Pi	n Name			Pin S	Status		
		Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
NPB pins	VPA13 to VPA0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPWRITE	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPSTB	L	L	L	Operates	Undefined	Operates
	VPLOCK	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPUBENZ	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPD15 to VPD0	Undefined	Retained	Retained	Operates	Undefined	Operates
VSB pins	VAACK	L	Retained	Retained	Operates	Undefined	Operates
	VBDC	L	L	L	Operates	Undefined	Operates
	VBA27 to VBA0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VBD31 to VBD0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VBTTYP1, VBTTYP0	L	Retained	Retained	Operates	Undefined	Operates
	VBSTZ	н	Retained	Retained	Operates	Undefined	Operates
	VBBENZ3 to VBBENZ0	Н	Retained	Retained	Operates	Undefined	Operates
	VBSIZE1, VBSIZE0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VBWRITE	L	Retained	Retained	Operates	Undefined	Operates
	VBLOCK	L	Retained	Retained	Operates	Undefined	Operates
	VBCTYP2 to VBCTYP0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VBSEQ2 to VBSEQ0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VBBSTR	L	Retained	Retained	Operates	Undefined	Operates
	VBWAIT	L	Retained	Retained	Operates	Undefined	Operates
	VBLAST	L	Retained	Retained	Operates	Undefined	Operates
	VBAHLD	L	Retained	Retained	Operates	Undefined	Operates
	VDCSZ7 to VDCSZ0	Н	Retained	Retained	Operates	Undefined	Operates
	VDSELPZ	Н	Retained	Retained	Operates	Undefined	Operates

Table 2-10. Pin Status in Each Operating Mode (1/3)

Note When a low level is input to the DCRESZ pin and an external clock is input to the VBCLK pin.

Remark L: Low-level output

H: High-level output

Retained: Retains status in external bus cycle immediately before

Pir	Name			Pin S	Status		
		Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
System	SWSTOPRQ	L	Н	L	L	Undefined	Undefined
control pins	HWSTOPRQ	L	L	н	L	Undefined	Undefined
	STPRQ	L	Н	н	L	Undefined	Undefined
DMAC pins	DMTCO3 to DMTCO0	L	L	L	Operates	Undefined	Undefined
	DMACTV3 to DMACTV0	L	L	L	Operates	Undefined	Undefined
VFB pins	IROMA19 to IROMA2	Undefined	Retained	Retained	Retained	Undefined	Operates
	IROMEN	L	L	L	L	Undefined	Operates
	IROMCS	L	L	L	L	Undefined	Operates
	IROMIA	Н	Undefined	Undefined	Undefined	Undefined	Operates
	IROMAE	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
VDB pins	IRAMA27 to IRAMA2	Undefined	Undefined	Undefined	Operates	Undefined	Operates
	IRAOZ31 to IRAOZ0	Undefined	Undefined	Undefined	Operates	Undefined	Operates
	IRAMEN	L	L	L	Operates	Undefined	Operates
	IRAMWR3 to IRAMWR0	L	L	L	Operates	Undefined	Operates
	IRAMRWB	Undefined	Undefined	Undefined	Operates	Undefined	Operates
Instruction	IBAACK	L	L	L	L	Undefined	Operates
cache pins	IBDRDY	L	L	L	L	Undefined	Operates
	IBDLE3 to IBDLE0	L	L	L	L	Undefined	Operates
	IBEDI31 to IBEDI0	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IIDRRQ	L	L	L	L	Undefined	Operates
	IIEA25 to IIEA2	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IIBTFT	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IIRCAN	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	BCUNCH	L	L	L	L	Undefined	Operates
Data cache	IDDARQ	L	L	L	L	Undefined	Operates
pins	IDAACK	L	L	L	L	Undefined	Operates

Table 2-10. Pin Status in Each Operating Mode (2/3)

Note When a low level is input to the DCRESZ pin and an external clock is input to the VBCLK pin.

Remark L: Low-level output

H: High-level output

Retained: Retains status in external bus cycle immediately before

Pir	n Name			Pin S	Status		
		Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
Data cache	IRRSA	L	Undefined	Undefined	Undefined	Undefined	Operates
pins	IDRETR	L	L	L	L	Undefined	Operates
	IDUNCH	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IDDRDY	L	L	L	L	Undefined	Operates
	IDED31 to IDED0	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IDES	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
RCU pins	DBO14	Н	L	L	L	Undefined	Undefined
	DBO13	L	L	L	L	Undefined	Undefined
	DBO12 to DBO5	Retained	Retained	Retained	Retained	Undefined	Undefined
	DBO4	L	L	L	Н	Undefined	Undefined
	DBO3 to DBO1	L	L	L	L	Undefined	Undefined
	DBO0	L	Retained	Retained	Retained	Undefined	Undefined
	DBB15 to DBB0	Undefined	Retained	Retained	Retained	Undefined	Undefined
Peripheral	EVIEN	Undefined	L	L	L	Undefined	Undefined
evaluation chip mode	EVOEN	Undefined	L	L	L	Undefined	Undefined
pins	EVINTRQ	L	Retained	Retained	Operates	Undefined	Undefined
	EVINTLV6 to EVINTLV0	Undefined	Retained	Retained	Operates	Undefined	Undefined
	EVAD15 to EVAD0	Undefined	Retained	Retained	Undefined	Undefined	Undefined
	EVLKRT	Undefined	Retained	Retained	Undefined	Undefined	Undefined
Test mode	TBO34 to TBO0	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Operates
pins	TESEN	L	L	L	L	L	Operates
	VPTCLK	L	L	L	L	L	Operates
	PHTDIN1, PHTDIN0	L	L	L	L	L	Operates
	VPRESZ	L	н	н	н	Undefined	Undefined
	PHTEST	L	L	L	L	L	Operates
	TMODE1, TMODE0	L	L	L	L	L	Operates
	TBREDZ	Н	н	н	н	н	Operates

Table 2-10. Pin Status in Each Operating Mode (3/3)

Note When a low level is input to the DCRESZ pin and an external clock is input to the VBCLK pin.

Remark L: Low-level output

H: High-level output

Retained: Retains status in external bus cycle immediately before

Hi-Z: High-impedance

CHAPTER 3 CPU

The CPU of the NB85E, which is based on a RISC architecture, executes almost all instructions in one clock cycle due to its five-stage pipeline control.

3.1 Features

- Advanced 32-bit architecture for embedded control
 - Number of instructions: 81
 - Number of 32-bit general-purpose registers: 32
 - Load/store instructions having long/short format
 - · Three-operand instructions
 - Five-stage pipeline structure with one-clock pitch
 - · Register/flag hazard interlock supported by hardware
 - Memory space
 Program area: 64 MB linear address space
 Data area: 4 GB linear address space
- Instruction set suited to various application fields
 - Saturated calculation instructions
 - Bit manipulation instructions (set, clear, not, test)
 - Multiplication can be performed in 1 or 2 clocks due to on-chip hardware multiplier 16 bits \times 16 bits \rightarrow 32 bits
 - 32 bits \times 32 bits \rightarrow 32 bits or 64 bits
- NB85E901 (RCU) interface function

3.2 Registers

The CPU registers can be classified into program registers, which are used by programs, and system registers, which are used to control the execution environment. All registers are 32-bit registers.

(a) Program registers	(b) System registers
r0 (Zero register)	EIPC (Register for saving status when interrupt occurs)
r1 (Assembler-reserved register)	EIPSW (Register for saving status when interrupt occurs)
r2	
r3 (Stack pointer (SP))	FEPC (Register for saving status when NMI occurs)
r4 (Global pointer (GP))	FEPSW (Register for saving status when NMI occurs)
r5 (Text pointer (TP))	ECR (Interrupt source register)
r6	
r7	PSW (Program status word)
r8	
r9	CTPC (Register for saving status when CALLT is execute
r10	CTPSW (Register for saving status when CALLT is execu
r11	DBPC (Register for saving status when exception is trapp
r12	DBPSW (Register for saving status when exception is trap
r13	
r14	CTBP (CALLT base pointer)
r15	
16	
17	
18	
r19	
r20	
r21	
r22	
r23	
r24	
r25	
r26	
r27	
r28	
r29	
r30 (Element pointer (EP))	
r31 (Link pointer (LP))	
PC (Program counter)	

Figure 3-1. List of CPU Registers

3.2.1 Program registers

The program registers include the general-purpose registers (r0 to r31) and the program counter (PC).

Program Register	Name	Function
General-purpose	r0	Zero register (always holds zero)
register	r1	Assembler-reserved register (used as a working register for address generation)
	r2	Address/data variable register (when this register is not used by the real-time OS)
	r3	Stack pointer (used to generate a stack frame when a function is called)
	r4	Global pointer (used to access a global variable of the data area)
	r5	Text pointer (used as the register indicating the beginning of the text area (area for locating program code))
	r6 to r29	Registers for address/data variables
	r30	Element pointer (used as the base pointer for address generation when accessing memory)
	r31	Link pointer (used when the compiler calls a function)
Program counter	PC	Holds instruction address during program execution

Table 3-1. List of Program Registers

Remark For detailed explanations of r1, r3 to r5, and r31, which are used by the assembler or C compiler, refer to the C Compiler Package (CA850) User's Manual.

(1) General-purpose registers

The 32 registers r0 to r31 are provided as general-purpose registers. All of these registers can be used for data variables or address variables.

However, take note of the following points when using the r0 to r5, r30, and r31 registers.

(a) r0, r30

These registers are implicitly used by instructions.

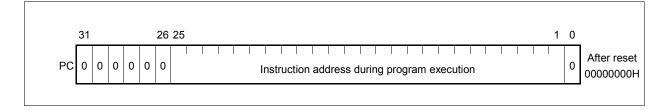
r0, which is a register that always holds 0, is used by operations that use 0, or in 0-offset addressing.

r30 is used as a base pointer when accessing memory by the SLD and SST instructions.

(b) r1, r3 to r5, r31

These registers are implicitly used by the assembler and C compiler. The contents of these registers must be saved before they are used so that the contents are not destroyed, and the original contents must be returned after use.

(c) r2


This register may be used by the real-time OS.

When not being used by the real-time OS, r2 can be used as an address variable or data variable register.

(2) Program counter

This register holds the instruction address during program execution. The lower 26 bits are valid, and bits 31 to 26 are reserved for future function expansion (fixed at 0). If a carry from bit 25 to bit 26 occurs, it is ignored. Also, bit 0 is fixed at 0, and no branching to an odd address can be performed.

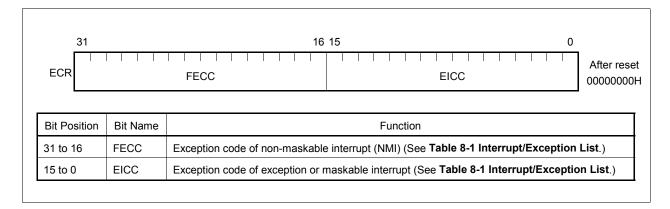
Figure 3-2. Program Counter (PC)

3.2.2 System registers

System registers control the status of the CPU and hold interrupt information.

To read from or write to these system registers, specify the system register number (see **Table 3-2**) indicated by the system register load or store instruction (LDSR or STSR instruction).

Register No.		Name	Operation	Whether or Not Operand Can be Specified	
				LDSR Instruction	STSR Instruction
0	EIPC	Register for saving status	This register saves the value of the PC when a software exception or interrupt occurs.	Yes	Yes
1	EIPSW	when interrupt occurs ^{Note}	This register saves the value of the PSW when a software exception or interrupt occurs.	Yes	Yes
2	FEPC	Register for saving status	This register saves the value of the PC when a non- maskable interrupt (NMI) occurs.	Yes	Yes
3	FEPSW	when NMI occurs	This register saves the value of the PSW when a non- maskable interrupt (NMI) occurs.	Yes	Yes
4	ECR	Interrupt source register	This register holds information about the source when an exception or interrupt occurs. The exception code of a non-maskable interrupt (NMI) is set in the higher 16 bits of this register (FECC). The exception code of an exception or maskable interrupt is set in the lower 16 bits (EICC) (See Figure 3-3).	No	Yes
5	PSW	Program status word	This is a collection of flags indicating the program status (instruction execution result) or CPU status (See Figure 3-4).	Yes	Yes
16	CTPC	Register for saving status	This register saves the value of the PC when a CALLT instruction is executed.	Yes	Yes
17	CTPSW	when CALLT is executed	This register saves the value of the PSW when a CALLT instruction is executed.	Yes	Yes
18	DBPC	Register for saving status when exception	This register saves the value of the PC when an exception trap is generated due to the detection of an illegal instruction code.	No	Yes
19	DBPSW	is trapped	This register saves the value of the PSW when an exception trap is generated due to the detection of an illegal instruction code.	No	Yes
20	СТВР	CALLT base pointer	This is used to specify the table address or generate the target address.	Yes	Yes
6 to 15, 21 to 31	Reserved guarantee		unction expansion (if these are accessed, operation is not	No	No


Table 3-2. List of System Registers

Note Since there is only one set of these registers, their contents must be saved by the program when multiple interrupts are permitted.

Remark Yes: Access enabled

No: Access disabled

Caution When interrupt servicing is performed and control is returned by the RETI instruction after bit 0 of the EIPC, FEPC, or CTPC had been set (1) by the LDSR instruction, bit 0 is ignored (because bit 0 of the PC is fixed at 0). When setting a value in EIPC, FEPC, or CTPC, set an even value (bit 0 = 0) as long as there is no specific reason not to.

Figure 3-3. Interrupt Source Register (ECR)

Figure 3-4. Program Status Word (PSW)

PSW 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit Position	Bit Name	Function
7	NP	Indicates that non-maskable interrupt servicing is in progress. When the non-maskable interrupt is acknowledged, this flag is set (1) to disable multiple interrupts.
		0: Non-maskable interrupt servicing is not in progress 1: Non-maskable interrupt servicing is in progress
6	EP	Indicates that exception processing is in progress. This flag is set (1) when an exception is generated. Interrupt requests are acknowledged even if this bit is set.
		0: Exception processing is not in progress 1: Exception processing is in progress
5	ID	Indicates whether or not maskable interrupt requests can be acknowledged.
		0: Interrupts are enabled 1: Interrupts are disabled
4	SAT	Indicates that the calculation result of a saturated calculation processing instruction overflowed and the calculation result is saturated. This flag, which is called the saturation flag, is set (1) when the calculation result of a saturated calculation instruction is saturated, and it is not cleared (0) even if the calculation results of subsequent instructions are not saturated. When this flag is cleared (0), data is loaded in the PSW. This bit is neither set (1) nor cleared (0) by a general arithmetic calculation.
		0: It is not saturated 1: It is saturated
3	CY	Indicates whether or not a carry or borrow occurred in the calculation result.
		0: No carry or borrow occurred 1: A carry or borrow occurred
2	ov	Indicates whether or not an overflow occurred during the calculation.
		0: No overflow occurred 1: An overflow occurred
1	S	Indicates whether or not the calculation result is negative.
		0: The calculation result is positive or zero 1: The calculation result is negative
0	Z	Indicates whether or not the calculation result is zero.
		0: The calculation result is not zero 1: The calculation result is zero

3.3 Address Space

The CPU of the NB85E supports a linear address space with a maximum size of 4 GB. Memory and I/O are located in this address space (memory mapped I/O method).

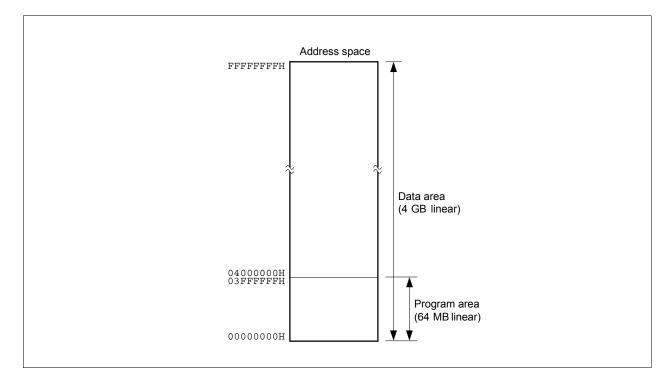
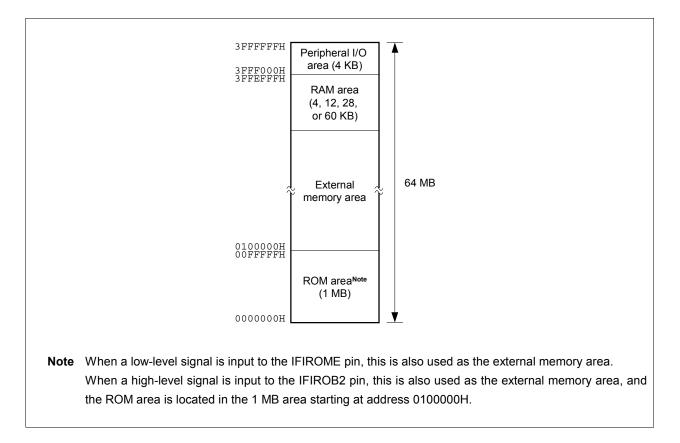



Figure 3-5. Address Space

3.3.1 Program area

For instruction addressing, the CPU of the NB85E supports a linear address space (program area) with a maximum size of 64 MB.

3.3.2 Data area

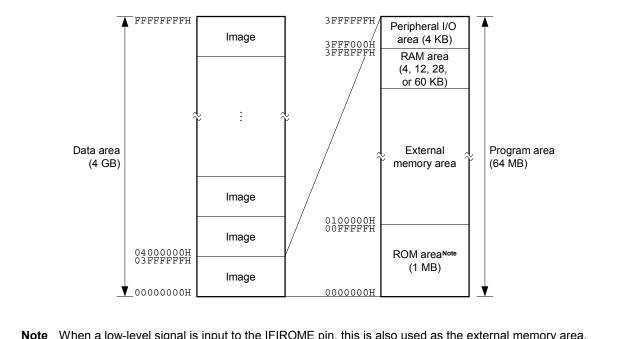
For operand addressing (data access), the CPU of the NB85E supports a linear address space (data area) with a maximum size of 4 GB.

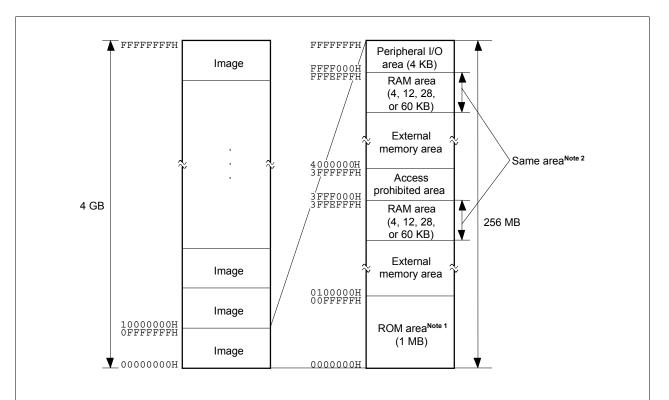
The ROM, RAM, and peripheral I/O areas are each located in 64 MB or 256 MB address spaces. The size setting is selected according to the input level to the IFID256 pin.

(1) 64 MB mode

When a low-level signal is input to the IFID256 pin, the data area is set to 64 MB mode.

In this mode, the 64 MB physical address space can be viewed as 64 images in the 4 GB address space. That is, the same 64 MB physical address space is accessed regardless of the values of bits 31 to 26 of the CPU address.




Figure 3-7. Data Area (64 MB Mode)

Note When a low-level signal is input to the IFIROME pin, this is also used as the external memory area. When a high-level signal is input to the IFIROB2 pin, this is also used as the external memory area, and the ROM area is located in the 1 MB area starting at address 0100000H.

(2) 256 MB mode

When a high-level signal is input to the IFID256 pin, the data area is set to 256 MB mode.

In this mode, the 256 MB physical address space can be viewed as 16 images in the 4 GB address space. That is, the same 256 MB physical address space is accessed regardless of the values of bits 31 to 28 of the CPU address.

- **Notes 1.** When a low-level signal is input to the IFIROME pin, this is also used as the external memory area. When a high-level signal is input to the IFIROB2 pin, this is also used as the external memory area, and the ROM area is located in the 1 MB area starting at address 0100000H.
 - 2. When data is written to the RAM area at address FFFEFFFH and below in 256 MB mode, data having the same contents is also written to the area at address 3FFEFFFH and below, which is indicated by "Same area" in the figure. The contents of these areas are linked (a memory access is performed from the RAM area at address 3FFEFFFH and below).
- Caution Addresses 3FFF000H to 3FFFFFH are an access prohibited area. The operation is not guaranteed when that area is accessed.

3.4 Areas

3.4.1 ROM area

If a high level is input to the IFIROME pin, the area of ROM that can be accessed when ROM is connected to VFB is set.

(1) ROM relocation function

A 1 MB area at addresses 00000000H to 000FFFFFH or addresses 00100000H to 001FFFFFH is reserved as the ROM area.

The area where it is to be located is selected according to the input level to the IFIROB2 pin.

(2) Interrupt/exception table

The NB85E increases the interrupt response speed by assigning fixed jump destination addresses corresponding to interrupts or exceptions.

This set of jump destination addresses is called the interrupt/exception table and is located at address 00000000H and following. When an interrupt/exception request is acknowledged, processing jumps to the jump destination address and the program that is written in memory beginning at that address is executed.

Remark When address 00000000H is set in the external memory area, prepare the jump destination address for jumping to the reset routine at address 00000000H of the external memory.

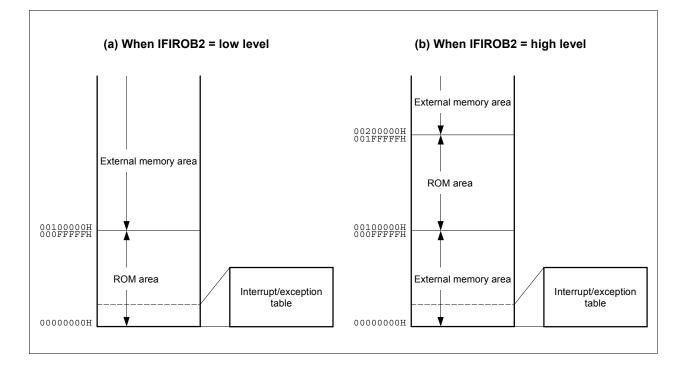


Figure 3-9. ROM Area

Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source
0000000H	RESET	00000190H	INT17	00000310H	INT41
00000010H	NMI0	000001A0H	INT18	00000320H	INT42
00000020H	NMI1	000001B0H	INT19	00000330H	INT43
0000030H	NMI2	000001C0H	INT20	00000340H	INT44
00000040H	TRAP0n (n = 0 to FH)	000001D0H	INT21	00000350H	INT45
00000050H	TRAP1n (n = 0 to FH)	000001E0H	INT22	00000360H	INT46
0000060H	ILGOP	000001F0H	INT23	00000370H	INT47
0000080H	INT0	00000200H	INT24	00000380H	INT48
00000090H	INT1	00000210H	INT25	00000390H	INT49
000000A0H	INT2	00000220H	INT26	000003A0H	INT50
000000B0H	INT3	00000230H	INT27	000003B0H	INT51
000000C0H	INT4	00000240H	INT28	000003C0H	INT52
000000D0H	INT5	00000250H	INT29	000003D0H	INT53
000000E0H	INT6	00000260H	INT30	000003E0H	INT54
000000F0H	INT7	00000270H	INT31	000003F0H	INT55
00000100H	INT8	00000280H	INT32	00000400H	INT56
00000110H	INT9	00000290H	INT33	00000410H	INT57
00000120H	INT10	000002A0H	INT34	00000420H	INT58
00000130H	INT11	000002B0H	INT35	00000430H	INT59
00000140H	INT12	000002C0H	INT36	00000440H	INT60
00000150H	INT13	000002D0H	INT37	00000450H	INT61
00000160H	INT14	000002E0H	INT38	00000460H	INT62
00000170H	INT15	000002F0H	INT39	00000470H	INT63
00000180H	INT16	00000300H	INT40	_	—

Table 3-3. Interrupt/Exception Table

Remark For the sources of interrupts or exceptions, see Table 8-1 Interrupt/Exception List.

3.4.2 RAM area

In 64 MB mode, the area at address 3FFEFFFH and below is reserved as the area for RAM connected to the VDB. In 256 MB mode, the address at FFFEFFFH and below is reserved.

The size of the RAM area, which can be selected from among 4 KB, 12 KB, 28 KB, and 60 KB, is set according to the input levels to the IFRA64, IFRA32, and IFRA16 pins.

Table 3-4. RAM Area Size Settings

IFIRA64	IFIRA32	IFIRA16	RAM Area Size
L	L	L	4 KB
L	L	н	12 KB
L	Н	Arbitrary	28 KB
Н	Arbitrary	Arbitrary	60 KB

Remark L: low-level input

H: high-level input

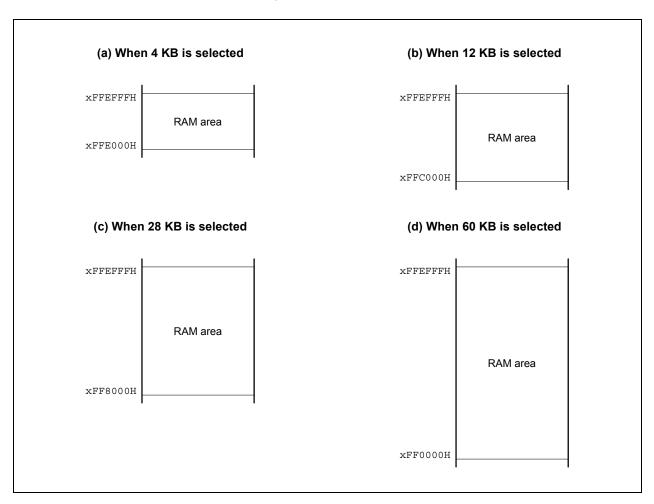


Figure 3-10. RAM Area

Set as follows if the size of the RAM area to be used is other than 4 KB, 12 KB, 28 KB, or 60 KB.

(a) RAM area size = 0 KB (RAM-less)

Set the RAM area size to 4 KB and handle the VDB pins as indicated in **2.3 Recommended Connection of Unused Pins**.

(b) 0 KB < RAM area size < 4 KB

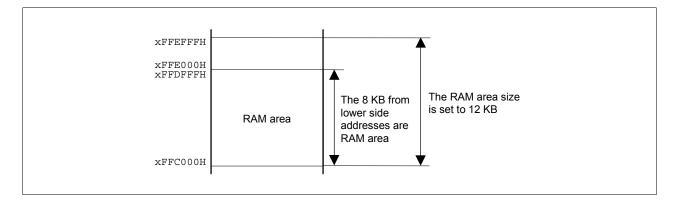
Set the RAM area size to 4 KB and use from the lower side addresses as RAM area.

(c) 4 KB < RAM area size < 12 KB

Set the RAM area size to 12 KB and use from the lower side addresses as RAM area.

(d) 12 KB < RAM area size < 28 KB

Set the RAM area size to 28 KB and use from the lower side addresses as RAM area.


(e) 28 KB < RAM area size < 60 KB

Set the RAM area size to 60 KB and use from the lower side addresses as RAM area.

(f) 60 KB < RAM area size

A RAM area size exceeding 60 KB cannot be set.

Example Memory map when 8 KB RAM is used.

3.4.3 Peripheral I/O area

In 64 MB mode, the area at address 3FFFFFH and below is reserved as a peripheral I/O area. In 256 MB mode, the address at FFFFFFH and below is reserved.

Peripheral I/O registers to which functions have been assigned such as status monitoring or specification of the operating mode of the NB85E, memory controller (MEMC), or instruction/data cache are located in this area.

For information about assigned registers, see 3.5 Peripheral I/O Registers.

Caution User-defined addresses must be assigned to the following areas only (user-usable area); all other addresses are reserved and cannot therefore be used.

- xFFF200H to xFFF47FH
- xFFF520H to xFFF7BFH
- xFFF800H to xFFFFFH

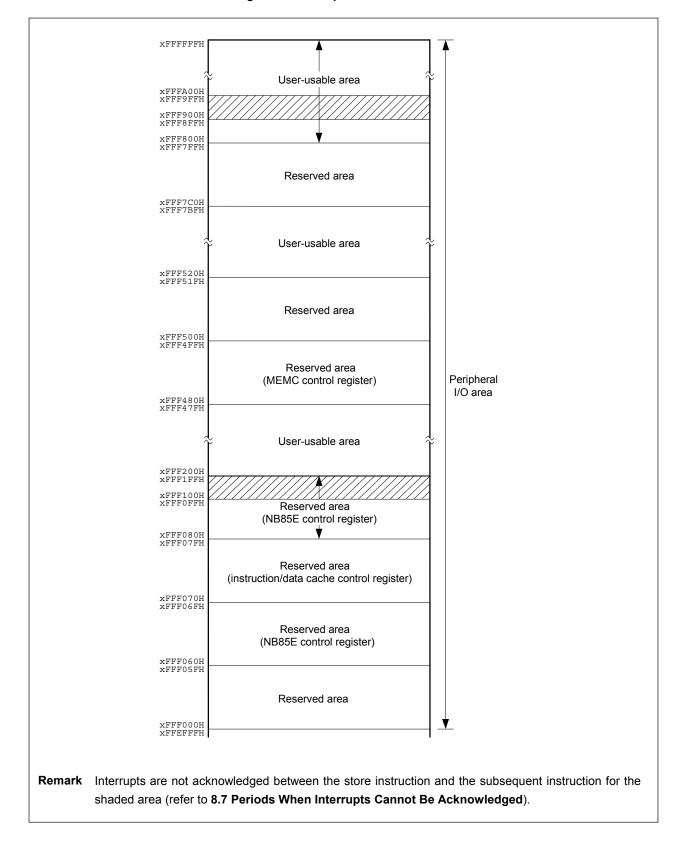


Figure 3-11. Peripheral I/O Area

*

3.4.4 External memory area

Access to the external memory area is made using the VDCSZ7 to VDCSZ0 signals assigned to each bank (see **4.2 Memory Banks**).

The "programmable peripheral I/O area", which is independent of the peripheral I/O area, is also assigned to this area (see **4.4 Programmable Peripheral I/O Area Selection Function**).

Caution ROM, RAM, and peripheral I/O areas cannot be accessed as external memory areas.

3.5 Peripheral I/O Registers

- (1) Only the lower 12 bits of a 32-bit address are used for register address decoding, after being allocated to the 4 KB area of xxxxx000H to xxxxxFFFH.
- (2) The lowest bit of the address is not decoded. Therefore, when the register of an odd address (2n + 1 address) is byte-accessed, the register of an even address (2n) will be accessed.
- (3) Although word-accessible registers do not exist in the NB85E, halfword access using the lower and higher bits (in that order and ignoring the lowest 2) of a word area can be made twice to enable word access.
- (4) When byte-accessible registers are halfword-accessed, the higher 8 bits become undefined in a read operation, and the lower 8 bits of data are written to a register in a write operation.
- (5) Registers other than those that control the NB85E are incorporated in each macro (MEMC, instruction/data cache).

3.5.1 NB85E control registers

Address	Register Name	Symbol	R/W	Bit Unit	After Reset		
				1 Bit	8 Bits	16 Bits	
FFFFF060H	Chip area select control register 0	CSC0	R/W			\checkmark	2C11H
FFFFF062H	Chip area select control register 1	CSC1	R/W				2C11H
FFFFF064H	Peripheral I/O area select control register	BPC	R/W			\checkmark	0000H
FFFF066H	Bus size configuration register	BSC	R/W			V	0000H/ 5555H/ AAAAH
FFFFF068H	Endian configuration register	BEC	R/W			\checkmark	0000H
FFFFF06AH	Cache configuration register	BHC	R/W				0000H
FFFFF06EH	NPB strobe wait control register	VSWC	R/W	\checkmark			77H
FFFFF080H	DMA source address register 0L	DSA0L	R/W				Undefined
FFFFF082H	DMA source address register 0H	DSA0H	R/W				Undefined
FFFFF084H	DMA destination address register 0L	DDA0L	R/W				Undefined
FFFFF086H	DMA destination address register 0H	DDA0H	R/W				Undefined
FFFFF088H	DMA source address register 1L	DSA1L	R/W				Undefined
FFFFF08AH	DMA source address register 1H	DSA1H	R/W				Undefined
FFFFF08CH	DMA destination address register 1L	DDA1L	R/W				Undefined
FFFFF08EH	DMA destination address register 1H	DDA1H	R/W			\checkmark	Undefined
FFFFF090H	DMA source address register 2L	DSA2L	R/W				Undefined
FFFFF092H	DMA source address register 2H	DSA2H	R/W				Undefined
FFFFF094H	DMA destination address register 2L	DDA2L	R/W				Undefined
FFFFF096H	DMA destination address register 2H	DDA2H	R/W			\checkmark	Undefined
FFFFF098H	DMA source address register 3L	DSA3L	R/W			\checkmark	Undefined
FFFFF09AH	DMA source address register 3H	DSA3H	R/W			\checkmark	Undefined
FFFFF09CH	DMA destination address register 3L	DDA3L	R/W			\checkmark	Undefined
FFFFF09EH	DMA destination address register 3H	DDA3H	R/W			\checkmark	Undefined
FFFFF0C0H	DMA transfer count register 0	DBC0	R/W			\checkmark	Undefined
FFFFF0C2H	DMA transfer count register 1	DBC1	R/W			\checkmark	Undefined
FFFFF0C4H	DMA transfer count register 2	DBC2	R/W			\checkmark	Undefined
FFFFF0C6H	DMA transfer count register 3	DBC3	R/W			\checkmark	Undefined
FFFFF0D0H	DMA addressing control register 0	DADC0	R/W			\checkmark	0000H
FFFFF0D2H	DMA addressing control register 1	DADC1	R/W			\checkmark	0000H
FFFFF0D4H	DMA addressing control register 2	DADC2	R/W			\checkmark	0000H
FFFFF0D6H	DMA addressing control register 3	DADC3	R/W			\checkmark	0000H
FFFFF0E0H	DMA channel control register 0	DCHC0	R/W	\checkmark	\checkmark		00H
FFFF6E2H	DMA channel control register 1	DCHC1	R/W	\checkmark	\checkmark		00H
FFFFF0E4H	DMA channel control register 2	DCHC2	R/W	\checkmark	\checkmark		00H
FFFFF0E6H	DMA channel control register 3	DCHC3	R/W	\checkmark	\checkmark		00H
FFFFF0F0H	DMA disable status register	DDIS	R	\checkmark	\checkmark		00H

Addı	ress	Register Name		R/W	Bit Unit	s for Man	ipulation	After Reset
					1 Bit	8 Bits	16 Bits	
FFFFF	OF2H	DMA restart register	DRST	R/W	\checkmark	\checkmark		00H
FFFFF	100H	Interrupt mask register 0	IMR0	R/W			\checkmark	FFFFH
FFF	FF100H	Interrupt mask register 0L	IMR0L	R/W	\checkmark	\checkmark		FFH
FFF	FF101H	Interrupt mask register 0H	IMR0H	R/W	\checkmark	\checkmark		FFH
FFFFF	102H	Interrupt mask register 1	IMR1	R/W			\checkmark	FFFFH
FFF	FF102H	Interrupt mask register 1L	IMR1L	R/W	\checkmark	\checkmark		FFH
FFF	FF103H	Interrupt mask register 1H	IMR1H	R/W	\checkmark	\checkmark		FFH
FFFFF	104H	Interrupt mask register 2	IMR2	R/W			\checkmark	FFFFH
FFF	FF104H	Interrupt mask register 2L	IMR2L	R/W	\checkmark	\checkmark		FFH
FFF	FF105H	Interrupt mask register 2H	IMR2H	R/W	\checkmark	\checkmark		FFH
FFFFF	106H	Interrupt mask register 3	IMR3	R/W			\checkmark	FFFFH
FFF	FF106H	Interrupt mask register 3L	IMR3L	R/W	\checkmark	\checkmark		FFH
FFF	FF107H	Interrupt mask register 3H	IMR3H	R/W		\checkmark		FFH
FFFFF	110H	Interrupt control register 0	PIC0	R/W		\checkmark		47H
FFFFF	112H	Interrupt control register 1	PIC1	R/W		\checkmark		47H
FFFFF	114H	Interrupt control register 2	PIC2	R/W		\checkmark		47H
FFFFF	116H	Interrupt control register 3	PIC3	R/W	\checkmark	\checkmark		47H
FFFFF	118H	Interrupt control register 4	PIC4	R/W		\checkmark		47H
FFFFF	11AH	Interrupt control register 5	PIC5	R/W		\checkmark		47H
FFFFF	11CH	Interrupt control register 6	PIC6	R/W	\checkmark	\checkmark		47H
FFFFF	11EH	Interrupt control register 7	PIC7	R/W	\checkmark	\checkmark		47H
FFFFF	120H	Interrupt control register 8	PIC8	R/W		\checkmark		47H
FFFFF	122H	Interrupt control register 9	PIC9	R/W		\checkmark		47H
FFFFF	124H	Interrupt control register 10	PIC10	R/W		\checkmark		47H
FFFFF	126H	Interrupt control register 11	PIC11	R/W		\checkmark		47H
FFFFF	128H	Interrupt control register 12	PIC12	R/W		\checkmark		47H
FFFFF	12AH	Interrupt control register 13	PIC13	R/W	\checkmark	\checkmark		47H
FFFFF	12CH	Interrupt control register 14	PIC14	R/W		\checkmark		47H
FFFFF	12EH	Interrupt control register 15	PIC15	R/W		\checkmark		47H
FFFFF	130H	Interrupt control register 16	PIC16	R/W	\checkmark	\checkmark		47H
FFFFF	132H	Interrupt control register 17	PIC17	R/W	\checkmark	\checkmark		47H
FFFFF	134H	Interrupt control register 18	PIC18	R/W	\checkmark	\checkmark		47H
FFFFF	136H	Interrupt control register 19	PIC19	R/W	\checkmark	\checkmark		47H
FFFFF	138H	Interrupt control register 20	PIC20	R/W	\checkmark	\checkmark		47H
FFFFF	13AH	Interrupt control register 21	PIC21	R/W	\checkmark	\checkmark		47H
FFFFF	13CH	Interrupt control register 22	PIC22	R/W	\checkmark	\checkmark		47H
FFFFF	13EH	Interrupt control register 23	PIC23	R/W		\checkmark		47H
FFFFF	140H	Interrupt control register 24	PIC24	R/W				47H

Address	Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF142H	Interrupt control register 25	PIC25	R/W		\checkmark		47H
FFFFF144H	Interrupt control register 26	PIC26	R/W		\checkmark		47H
FFFFF146H	Interrupt control register 27	PIC27	R/W		\checkmark		47H
FFFFF148H	Interrupt control register 28	PIC28	R/W		\checkmark		47H
FFFFF14AH	Interrupt control register 29	PIC29	R/W		\checkmark		47H
FFFFF14CH	Interrupt control register 30	PIC30	R/W		\checkmark		47H
FFFFF14EH	Interrupt control register 31	PIC31	R/W		\checkmark		47H
FFFFF150H	Interrupt control register 32	PIC32	R/W		\checkmark		47H
FFFFF152H	Interrupt control register 33	PIC33	R/W		\checkmark		47H
FFFFF154H	Interrupt control register 34	PIC34	R/W		\checkmark		47H
FFFFF156H	Interrupt control register 35	PIC35	R/W		\checkmark		47H
FFFFF158H	Interrupt control register 36	PIC36	R/W	\checkmark	\checkmark		47H
FFFFF15AH	Interrupt control register 37	PIC37	R/W	\checkmark	\checkmark		47H
FFFFF15CH	Interrupt control register 38	PIC38	R/W		\checkmark		47H
FFFFF15EH	Interrupt control register 39	PIC39	R/W		\checkmark		47H
FFFFF160H	Interrupt control register 40	PIC40	R/W		\checkmark		47H
FFFFF162H	Interrupt control register 41	PIC41	R/W		\checkmark		47H
FFFFF164H	Interrupt control register 42	PIC42	R/W		\checkmark		47H
FFFFF166H	Interrupt control register 43	PIC43	R/W		\checkmark		47H
FFFFF168H	Interrupt control register 44	PIC44	R/W		\checkmark		47H
FFFFF16AH	Interrupt control register 45	PIC45	R/W		\checkmark		47H
FFFFF16CH	Interrupt control register 46	PIC46	R/W		\checkmark		47H
FFFFF16EH	Interrupt control register 47	PIC47	R/W	\checkmark	\checkmark		47H
FFFFF170H	Interrupt control register 48	PIC48	R/W		\checkmark		47H
FFFFF172H	Interrupt control register 49	PIC49	R/W		\checkmark		47H
FFFFF174H	Interrupt control register 50	PIC50	R/W		\checkmark		47H
FFFFF176H	Interrupt control register 51	PIC51	R/W		\checkmark		47H
FFFFF178H	Interrupt control register 52	PIC52	R/W		\checkmark		47H
FFFFF17AH	Interrupt control register 53	PIC53	R/W	\checkmark	\checkmark		47H
FFFFF17CH	Interrupt control register 54	PIC54	R/W	\checkmark	\checkmark		47H
FFFFF17EH	Interrupt control register 55	PIC55	R/W	\checkmark	\checkmark		47H
FFFFF180H	Interrupt control register 56	PIC56	R/W	\checkmark	\checkmark		47H
FFFFF182H	Interrupt control register 57	PIC57	R/W	\checkmark	\checkmark		47H
FFFFF184H	Interrupt control register 58	PIC58	R/W	\checkmark	\checkmark		47H
FFFFF186H	Interrupt control register 59	PIC59	R/W	\checkmark	\checkmark		47H
FFFFF188H	Interrupt control register 60	PIC60	R/W	\checkmark	\checkmark		47H
FFFFF18AH	Interrupt control register 61	PIC61	R/W	\checkmark	\checkmark		47H
FFFFF18CH	Interrupt control register 62	PIC62	R/W	\checkmark	\checkmark		47H

							(4/4)
Address	Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF18EH	Interrupt control register 63	PIC63	R/W	\checkmark	\checkmark		47H
FFFFF1FAH	In-service priority register	ISPR	R	\checkmark	\checkmark		00H
FFFFF1FCH	Command register	PRCMD	W		\checkmark		Undefined
FFFFF1FEH	Power save control register	PSC	R/W	\checkmark	\checkmark		00H

3.5.2 Memory controller (MEMC) control registers

Address	Register Name	Symbol	R/W	Bit Unit	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF480H	Bus cycle type configuration register 0	BCT0	R/W			\checkmark	Note 1
FFFFF482H	Bus cycle type configuration register 1	BCT1	R/W			\checkmark	Note 1
FFFFF484H	Data wait control register 0	DWC0	R/W			\checkmark	7777H
FFFFF486H	Data wait control register 1	DWC1	R/W			\checkmark	7777H
FFFFF488H	Bus cycle control register	BCC	R/W			\checkmark	FFFFH
FFFFF48AH	Address setting wait control register	ASC	R/W			\checkmark	FFFFH
FFFFF48CH	Bus cycle period control register	BCP	R/W		\checkmark		Note 2
FFFFF49AH	Page ROM configuration register	PRC	R/W			\checkmark	7000H
FFFFF4A0H	SDRAM configuration register 0	SCR0	R/W			\checkmark	0000H
FFFFF4A2H	SDRAM refresh control register 0	RFS0	R/W			\checkmark	0000H
FFFFF4A4H	SDRAM configuration register 1	SCR1	R/W			\checkmark	0000H
FFFFF4A6H	SDRAM refresh control register 1	RFS1	R/W			\checkmark	0000H
FFFFF4A8H	SDRAM configuration register 2	SCR2	R/W			\checkmark	0000H
FFFFF4AAH	SDRAM refresh control register 2	RFS2	R/W			\checkmark	0000H
FFFFF4ACH	SDRAM configuration register 3	SCR3	R/W			\checkmark	0000H
FFFFF4AEH	SDRAM refresh control register 3	RFS3	R/W			\checkmark	0000H
FFFFF4B0H	SDRAM configuration register 4	SCR4	R/W			\checkmark	0000H
FFFFF4B2H	SDRAM refresh control register 4	RFS4	R/W			\checkmark	0000H
FFFFF4B4H	SDRAM configuration register 5	SCR5	R/W			\checkmark	0000H
FFFFF4B6H	SDRAM refresh control register 5	RFS5	R/W			\checkmark	0000H
FFFFF4B8H	SDRAM configuration register 6	SCR6	R/W			\checkmark	0000H
FFFFF4BAH	SDRAM refresh control register 6	RFS6	R/W			\checkmark	0000H
FFFFF4BCH	SDRAM configuration register 7	SCR7	R/W			\checkmark	0000H
FFFFF4BEH	SDRAM refresh control register 7	RFS7	R/W			\checkmark	0000H

Notes 1. The value differs as follows, depending on the level input to the MCE pin of the MEMC (NB85E500/ NU85E500).

High level input to MCE: 8888H

Low level input to MCE: 0000H

2. The value differs as follows, depending on the level input to the BCPEN pin of the MEMC (NB85E500/ NU85E500).

High level input to BCPEN: 80H

Low level input to BCPEN: 00H

3.5.3 Instruction cache control registers

	Address	Register Name	Symbol	R/W	Bit Units for Manipulation		After Reset	
					1 Bit	8 Bits	16 Bits	
F	FFFF070H	Instruction cache control register	ICC	R/W			\checkmark	0003H ^{Note 1}
	FFFFF070H	Instruction cache control register L	ICCL	R/W	\checkmark	\checkmark		03H ^{Note 2}
	FFFFF071H	Instruction cache control register H	ICCH	R/W	\checkmark	\checkmark		00H
F	FFFF074H	Instruction cache data configuration register	ICD	R/W			\checkmark	Undefined

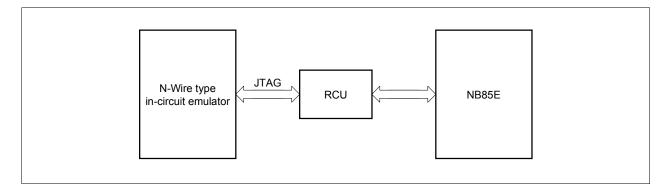
Notes 1. This value becomes 0003H when the reset signal is active, and tag initialization starts automatically. The value changes to 0000H upon the completion of tag initialization.

2. This value becomes 03H when the reset signal is active, and tag initialization starts automatically. The value changes to 00H upon the completion of tag initialization.

3.5.4 Data cache control registers

Address	Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF078H	Data cache control register	DCC	R/W			\checkmark	0003H ^{Note}
FFFFF07CH	Data cache data configuration register	DCD	R/W			\checkmark	Undefined

Note This value becomes 0003H when the reset signal is active, and tag initialization starts automatically. The value changes to 0000H upon the completion of tag initialization.


3.6 NB85E901 (RCU) Interface

3.6.1 Outline

The RCU interface is a bus interface for connecting the NB85E to the run control unit (RCU).

The RCU communicates with an N-Wire type in-circuit emulator by using JTAG and executes debug processing.

Figure 3-12. Connection of NB85E and N-Wire Type In-Circuit Emulator via RCU

3.6.2 On-chip debugging

By connecting the RCU to the NB85E, on-chip debugging (an on-board debug function) can be realized. The CPU of the NB85E is equipped with a breakpoint function, which can detect breakpoints based on the execution address, access address, access data, range (address mask), or 2-stage sequential execution, as well as a break interrupt function operable by external port input. Connection of the RCU to the NB85E allows not only debugging using these functions, but also makes possible the employment of a background monitor JTAG system ROM emulator and an N-Wire type in-circuit emulator.

For details, refer to CHAPTER 10 NB85E901.

Remark The NB85ET has an on-chip debug control unit (DCU) that is equipped with an RCU, TRCU (trace control unit), and TEU (trigger event unit). This DCU enables all of the break functions of the CPU to be used in addition to PC trace (branch trace) and data access trace functions and event detection functions that can detect events according to the execution address, access address, access data, range (size comparison), or four-stage sequential execution.

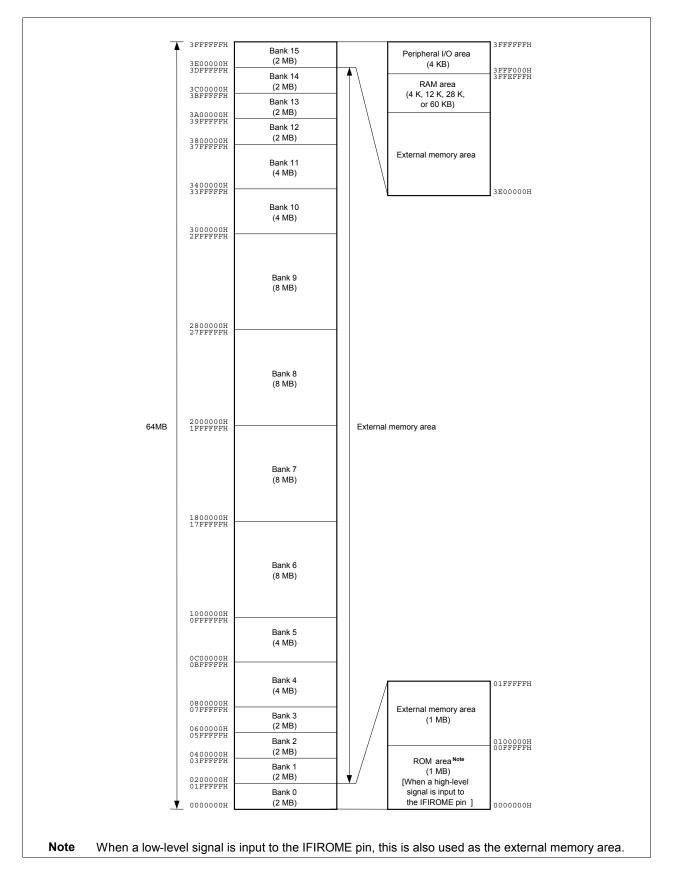
CHAPTER 4 BCU

The bus control unit (BCU), which operates as a bus master on the VSB, controls the on-chip bus bridge (BBR), test interface control unit (TIC), and peripheral macros (bus slaves) such as the external memory controller (MEMC) connected to the VSB.

4.1 Features

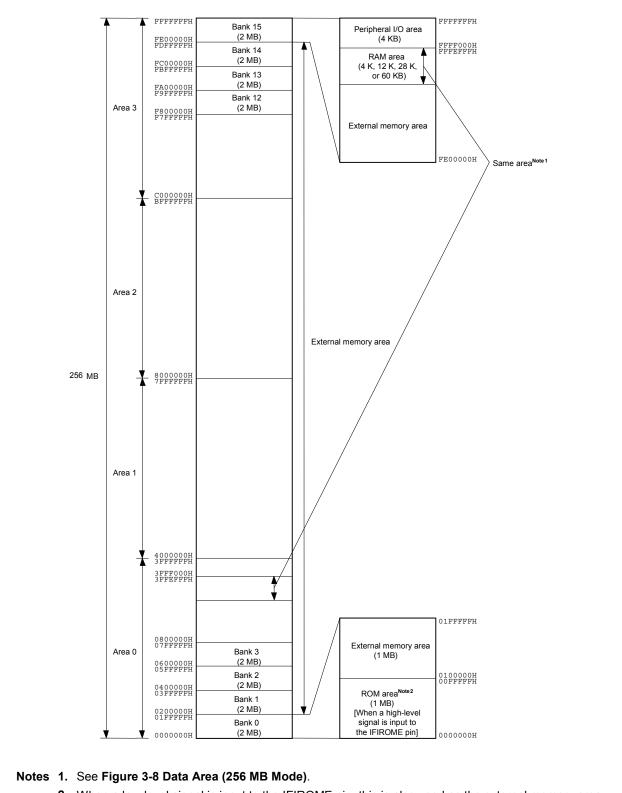
- 32-bit independent bi-directional data bus
- One bus clock transfer between consecutive clock falling edges
- Data transfer in 8-bit, 16-bit, or 32-bit units on a 32-bit bus by means of the bus size function
- Bus arbitration for a multi-master system
- Programmable chip select function
- Programmable peripheral I/O area select function
- Endian setting function

4.2 Memory Banks


The data area is subdivided into multiple units called banks.

The BCU makes bus size, endian, and cache settings in terms of units called "CSn area", which are arbitrary combinations of banks.

"CSn area" settings are made based on the VDCSZn signals corresponding to each bank (n = 7 to 0).


(1) Memory banks for 64 MB mode

The 64 MB data area is subdivided into memory banks with sizes of 2 MB, 4 MB, and 8 MB.

(2) Memory banks for 256 MB mode

The 256 MB data area is subdivided into four areas (area 0 to area 3), each of which contain memory banks of size 2 MB.

2. When a low-level signal is input to the IFIROME pin, this is also used as the external memory area.

4.3 Programmable Chip Select Function

The VDCSZn signals corresponding to each bank of memory are set and the data area is subdivided into multiple CSn areas according to the chip area select control registers (CSC0 and CSC1) (n = 7 to 0). The CSC0 and CSC1 registers can be read or written in 16-bit units.

When the VDCSZn signals for the same bank overlap due to the CSC0 and CSC1 register settings, the signal prioritization is as follows.

• VDCSZ0 > VDCSZ2 > VDCSZ1 > VDCSZ3

VDCSZ7 > VDCSZ5 > VDCSZ6 > VDCSZ4

Figure 4-1.	Chip Area Select Control Register 0 (CSC0)	
-------------	--	--

			13	12	11	-	9	1					3	2	1	0	1	
CSC0	CS 33	CS 32	CS 31	CS 30	CS 23	CS 22	CS 21	CS 20	CS 13	CS 12	CS 11	CS 10	CS 03	CS 02	CS 01	CS 00	Address FFFF060H	After res 2C11F
	33	32	31	30	23	22	21	20	13	12	11	10	03	02	01	00	FFFFUOUN	2011
Bit po	sition	Bit	name									Funct	ion					
15 to (CS	n3 to	W	hen e	ach b	it is se	et (1) i	he VI	0087	n sian	al bec	omes	active	e if the	cond	ition within	
10 10 1		CSI			arenthe					002	roigin		011100	aoure		oona		
					Bit na	me				VD	CSZr	signa	al that	becor	nes a	ctive		
									64 M	B mo	de					256 N	1B mode	
					CS00)	VDCSZ0 (when accessing bank 0)											
					CS01	1	VDCSZ0 (when accessing bank 1)											
					CS02	2	VDCS	Z0 (w	hen a	ccessi	ing ba	nk 2)						
					CS03	3	VDCS	Z0 (w	hen a	ccessi	ing ba	nk 3)						
					CS10	CS10 VDCSZ1 (when accessing bank 0 or 1) VDCSZ1 (when accessing area 0)										-		
					CS11	1	VDCS	Z1 (w	hen a	ccessi	ing ba	nk 2 c	or 3)	(Sam	e whe	n eac	h bit is cleared	(0))
					CS12	2	VDCS	Z1 (w	hen a	ccessi	ing ba	nk 4)						
					CS13	3	VDCS	Z1 (w	hen a	ccessi	ing ba	nk 5)						
					CS20)	VDCS	Z2 (w	hen a	ccessi	ing ba	nk 0)						
					CS21	1	VDCS	Z2 (w	hen a	ccessi	ing ba	nk 1)						
		CS22 VDCSZ2 (when accessing bank 2)																
					CS23	3	VDCS	Z2 (w	hen a	ccessi	ing ba	nk 3)						
					CS30		VDCS 2, or 3	•	hen a	ccessi	ing ba	nk 0,			•		accessing area h bit is cleared	<i>'</i>
					CS31	1	VDCS	Z3 (w	hen a	ccessi	ing ba	nk 4 c	or 5)					
					CS32	2	VDCS	Z3 (w	hen a	ccessi	ing ba	nk 6)						
					CS33	3	VDCS	Z3 (w	hen a	ccessi	ing ba	nk 7)						

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	1	
CSC1	CS 43	CS 42	CS 41	CS 40	CS 53	CS 52	CS 51	CS 50	CS 63	CS 62	CS 61	CS 60	CS 73	CS 72	CS 71	CS 70	Address FFFFF062H	After rese 2C11H
Bit po	sition	Bit	name									Funct	ion					
15 to ()	CS CS	n3 to n0		'hen ea arenthe			et (1),	the VI	DCSZr	n signa	al bec	omes	active	e if the	cond	ition within	
					Bit na	me				VD	CSZr	i signa	al that	becor	nes a	ctive		
									64 ME	3 mod	е				2	256 M	B mode	
					CS40		VDCS 13, 14			ccessi	ing ba	nk 12					cessing area 2 bit is cleared (0	
					CS41		VDCS 11)	Z4 (w	hen a	ccessi	ing ba	nk 10	or					
					CS42	2	VDCS	Z4 (w	hen a	ccessi	ing ba	nk 9)						
					CS43 VDCSZ4 (when accessing bank 8)													
					CS50)	VDCS	Z5 (w	hen a	ccessi	ing ba	nk 15)					
					CS51		VDCS	Z5 (w	hen a	ccessi	ing ba	nk 14)					
					CS52	2	VDCS	Z5 (w	hen a	ccessi	ing ba	nk 13)					
					CS53	3	VDCS	Z5 (w	hen a	ccessi	ing ba	nk 12)					
					CS60		VDCS 15)	Z6 (w	hen a	ccessi	ing ba	nk 14					cessing area 3 bit is cleared (0	
					CS61		VDCS 13)	Z6 (w	hen a	ccessi	ing ba	nk 12	or					
					CS62	2	VDCS	Z6 (w	hen a	ccessi	ing ba	nk 11)					
		CS63						Z6 (w	hen a	ccessi	ing ba	nk 10)					
					CS70)	VDCS	Z7 (w	hen a	ccessi	ing ba	nk 15)					
					CS71		VDCS	Z7 (w	hen a	ccessi	ing ba	nk 14)					
					CS72	2	VDCS	Z7 (w	hen a	ccessi	ing ba	nk 13)					
					CS73	3	VDCS	Z7 (w	hen a	ccessi	ing ba	nk 12)					

Figure 4-2. Chip Area Select Control Register 1 (CSC1)

Examples 1. The following figure shows an example of CSC0 and CSC1 register settings for 64 MB mode and the memory map after the settings are made.

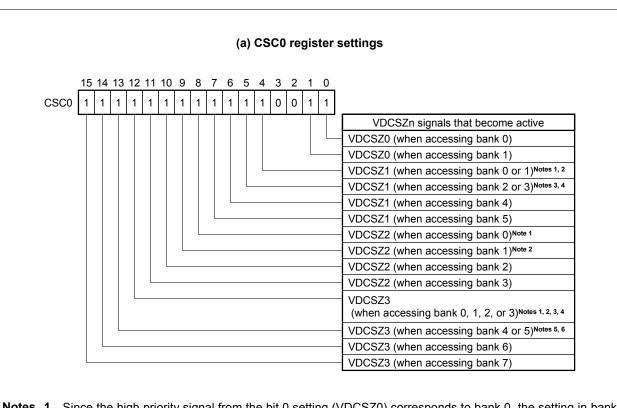
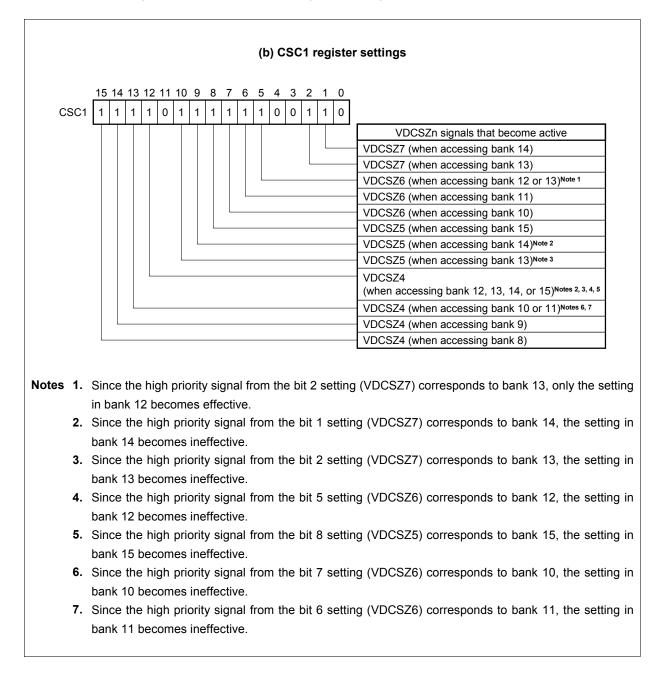
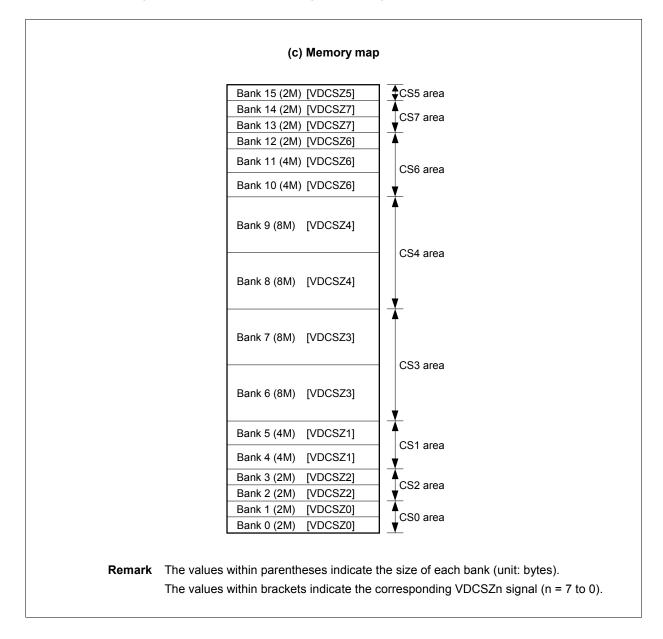




Figure 4-3. CSC0 and CSC1 Register Setting Example (64 MB Mode) (1/3)

- **Notes 1.** Since the high priority signal from the bit 0 setting (VDCSZ0) corresponds to bank 0, the setting in bank 0 becomes ineffective.
 - **2.** Since the high priority signal from the bit 1 setting (VDCSZ0) corresponds to bank 1, the setting in bank 1 becomes ineffective.
 - **3.** Since the high priority signal from the bit 10 setting (VDCSZ2) corresponds to bank 2, the setting in bank 2 becomes ineffective.
 - **4.** Since the high priority signal from the bit 11 setting (VDCSZ2) corresponds to bank 3, the setting in bank 3 becomes ineffective.
 - **5.** Since the high priority signal from the bit 6 setting (VDCSZ1) corresponds to bank 4, the setting in bank 4 becomes ineffective.
 - **6.** Since the high priority signal from the bit 7 setting (VDCSZ1) corresponds to bank 5, the setting in bank 5 becomes ineffective.

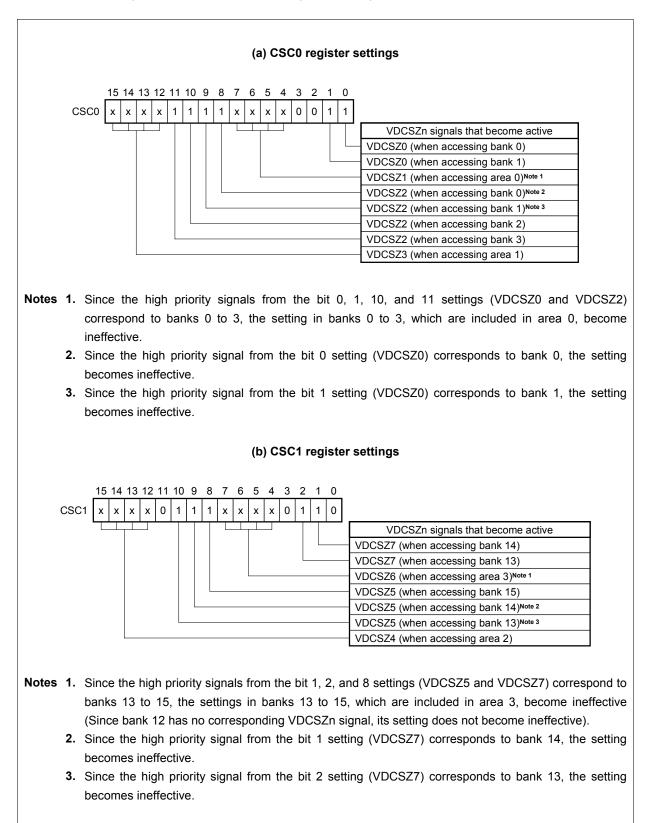
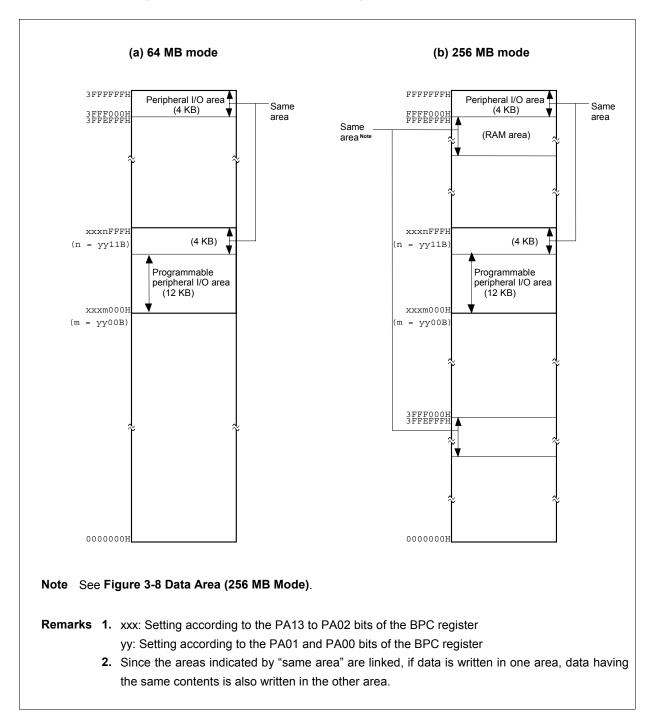


Figure 4-3. CSC0 and CSC1 Register Setting Example (64 MB Mode) (2/3)



Examples 2. The following figure shows an example of CSC0 and CSC1 register settings for 256 MB mode and the memory map after the settings are made.

Figure 4-4. CSC0 and CSC1 Register Setting Example (256 MB Mode) (1/2)



4.4 Programmable Peripheral I/O Area Selection Function

The NB85E has a 4 KB peripheral I/O area that is allocated in advance in the address space and a 12 KB programmable peripheral I/O area that can be allocated at arbitrary addresses according to register settings.

Registers for peripheral macros connected to the NPB or user logic can be freely located in the programmable peripheral I/O area.

Caution Be sure to allocate the programmable peripheral I/O area to a CSn area in which both little endian and instruction/data cache-prohibited settings have been made (n = 7 to 0).

The programmable peripheral I/O area can be used by specifying the higher 14 bits (bit 27 to bit 14) of the starting address in the PA00 to PA13 bits of the peripheral I/O area select control register (BPC) and setting (1) the PA15 bit. The BPC register can be read or written in 16-bit units.

The prioritization of the various CSn areas selected by the VDCSZn signals and the programmable peripheral I/O area is as follows (n = 7 to 0).

Programmable peripheral I/O area > Various CSn areas selected by VDCSZn signals

- Cautions 1. In 64 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes invalid.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - 2. In 256 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes invalid.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (See Figure 3-8 Data Area (256 MB Mode))
 - 3. If there are no peripheral macros connected to the NPB or user logic, no programmable peripheral I/O area need be set (Set the BPC register to its after-reset value).
 - 4. When accessing the programmable peripheral I/O area, the VDCSZn signals are all output as inactive (high level) (n = 7 to 0).
 - 5. Programmable peripheral I/O area address setting is enabled only once. Do not change address in the middle of a program.

	-		-				9	-		-	-		-			-	1	
BPC	PA	0	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	Address	After rese
ыс	15	0	13	12	11	10	09	08	07	06	05	04	03	02	01	00	FFFFF064H	0000H
Bit pos	sition	Bit	name									Functi	on					
15		PA15 Sets whether or not the programmable peripheral I/O area can be accessed.																
				0	: It ca	nnot b	e acc	essec	1									
				1	: It ca	n be a	iccess	sed										
13 to 0)	PA13 to Specifies bit 27 to bit 14 of the starting address of the programmable peripheral I/O area.																
		PA00 (The other bits are fixed at zero.)																

Figure 4-6. Peripheral I/O Area Select Control Register (BPC)

4.5 Bus Size Setting Function

The bus size setting function uses the bus size configuration register (BSC) to set the VSB data bus size for each CSn area selected by the chip select signals (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0).

The BSC register can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	I	
BSC	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	Address	After rese
	71									Note								
Bit po	sition	Bit	name									Funct	ion					
15 to () BSn1, BSn0			Sp siz		s the _l	periph	eral m	nacro	on the	VSB	that w	vas lo	cated	in the	CSn	area and the da	ata bus
				[BS	n1	В	Sn0					VSI	3 data	bus s	size		
					0		0		81	oits								
					0		1		16	bits								
					1 0 32 bits													
					1		1		Se	etting	orohib	ited						
Rema Note		n = 7 to 0 he after-reset va		t valu	ue diff			ows a	ccord					s to t	he IF			
			ISZ1			IFIN	SZ0		VSB data bus size				After-reset value			e		
	-	/ level				level			32 bit						_	4AAH		
	Low	/ level			High	level			16 bit	ts					55	555H		
	Hia	h leve	I		Low	level			8 bits						00	000H		

Figure 4-7. Bus Size Configuration Register (BSC)

Example In a CSn area, when the boot ROM is 16-bit width and memories in other areas are 32-bit width, start up using 16-bit width in the initial state (input a low level to the IFINSZ1 pin and a high level to the IFINSZ0 pin) and then switch to 32-bit width via the BSC register.

4.6 Endian Setting Function

The endian setting function uses the endian configuration register (BEC) to set the endian format of word data within memory for each CSn area selected by the chip select signals (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0).

The BEC register can be read or written in 16-bit units.

- Cautions 1. Set the CSn area specified as the programmable peripheral I/O area in the little endian format (n = 7 to 0).
 - 2. Each of the following areas is fixed at little endian format. Any setting of the big endian format for these areas according to the BEC register is invalid.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (for 256 MB mode) (See Figure 3-8 Data Area (256 MB Mode))
 - External memory fetch area (when VBBSTR signal is active)

Figure 4-8. Endian Configuration Register (BEC)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
BEC	0	BE 70	0	BE 60	0	BE 50	0	BE 40	0	BE 30	0	BE 20	0	ВЕ 10	0	BE 00	Address FFFFF068H	After reset 0000H
Bit pos	sition	Bit	name	•								Functi	ion					
14, 12, 8, 6, 4,	-	BEI	n0	Se	Sets the endian format of word data in the CSn area.													
					BE	n0						En	dian	format				
					0		Little	e endia	an for	mat (s	ee Fi	gure 4	-9)					
					1		Big	endiar	n form	at (see	e Figu	ure 4-1	10)					

Remark n = 7 to 0

Caution Always set bits 15, 13, 11, 9, 7, 5, 3, and 1 to 0. If they are set to 1, operation is not guaranteed.

31 24	23 16	15 8	7 (
(000BH)	(000AH)	(0009H)	(0008H)
(0007H)	(0006H)	(0005H)	(0004H)
(0003H)	(0002H)	(0001H)	(0000H)

Figure 4-9. Word Data Little Endian Format Example

Figure 4-10. Word Data Big Endian Format Example

31 2	4 23 16	15 8	7 0
(0008H)	(0009H)	(000AH)	(000BH)
(0004H)	(0005H)	(0006H)	(0007H)
(0000H)	(0001H)	(0002H)	(0003H)

4.6.1 Usage restrictions concerning big endian format with NEC development tools

(1) When using the debugger (ID850)Only the memory window display supports the big endian format.

(2) When using the compiler (CA850)

(a) C language restrictions

- (i) The following restrictions are attached to variables configured in a big endian space.
 - <1> unions cannot be used.
 - <2> bitfields cannot be used.
 - <3> Accesses based on the cast (changed access size) cannot be used.
 - <4> Variables with initial values cannot be used.
- (ii) Because the access size may change due to optimization, it is necessary to specify the following optimization suppression options.
 - For global optimization sections (opt850).....-Wo, -XTb
 - For model-based optimization sections (impr850).....-Wi, +arg_reg_opt=OFF, +stld_trans_opt=OFF

However, it is unnecessary to specify the above optimization suppression options when not using "cast" or "mask/shift" access^{Note}.

Note The condition is that patterns causing the following optimization are not used. It is extremely difficult to perform a perfect check on the user side in a state such as where all the patterns (especially in the model-based optimization section) are mixed together. The above optimization suppression options are therefore recommended.

<1> For global optimization section

- 1 bit set using bit or int i; i ^= 1;
- 1 bit clear using bit and i &= ~1;
- 1 bit not using bit xor i ^= 1;
- 1 bit test using bit and if(i & 1);

<2> For model-based optimization section

Usage whereby identical variables are accessed in different sizes

- Cast
- Mask
- Shift

```
Example int i, *ip;

char c;

:

c=*((char*)ip);

:

c = 0xff & i;

:

i = (i << 24) >> 24;
```

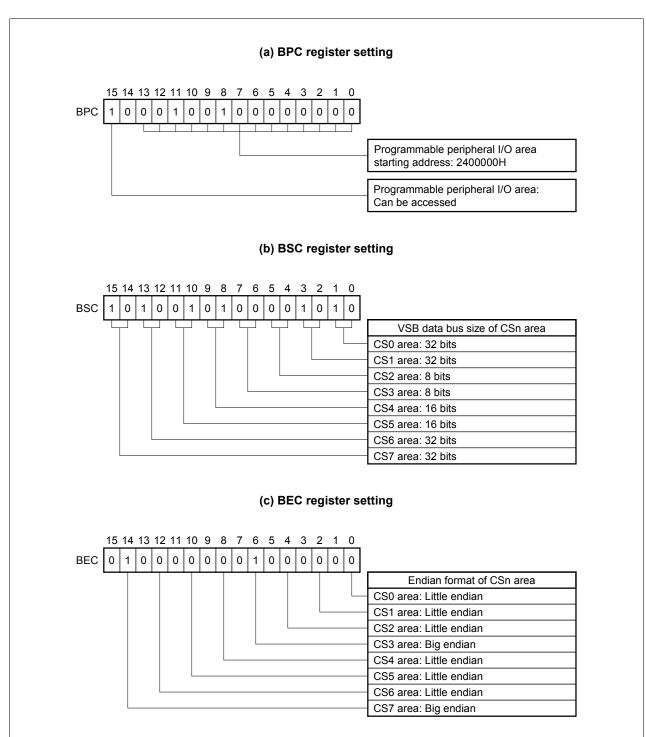
(b) Assembly language restrictions

Area-securing dummy instructions that are not byte size (.hword, .word, .float, .shword) cannot be used for variables configured in the big endian space.

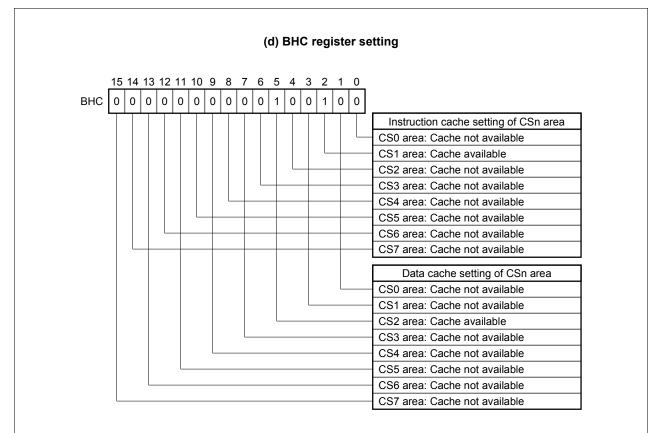
4.7 Cache Configuration

The cache configuration register (BHC) is used to set the cache memory configuration for each CSn area selected by the chip select signals (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0).

The BHC register can be read or written in 16-bit units.


- Cautions 1. Be sure to disable the cache for big endian format CSn area and CSn areas set as the following areas (n = 7 to 0).
 - ROM area
 - RAM area
 - Peripheral I/O area
 - Programmable peripheral I/O area
 - 2. The instruction/data cache enabled setting (BHn0/BHn1 bit = 1 (set)) is only valid when a low level is being input (cache enabled) to the IFIUNCH0 or IFIUNCH1 pin (n = 7 to 0).
 - 3. When using the data cache, set this register after setting the data cache's data cache control register (DCC).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
внс	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	Address	After rese
Brio	71	70	61	60	51	50	41	40	31	30	21	20	11	10	01	00	FFFF66AH	0000H
Bit pos	sition	Bit	name									Funct	on					
15, 13 9, 7, 5		BHi	า1	Se	ets wh	ether	or not	the d	ata ca	che lo	cated	in the	CSn	area	can be	e usec	I.	
					BH	n1						Data	cache	e setti	ng			
					0		Cacl	ne dis	abled									
					1		Cacl	ne ena	abled									
14, 12 8, 6, 4		BHi	า0	Se	ets wh	ether	or not	the in	struct	ion ca	che lo	ocated	in the	e CSn	area	can be	e used.	
					BH	n0					In	structi	on ca	che se	etting			
					0		Cacl	ne dis	abled									
					1		Cacl	ne ena	abled									
Rema	-																	


Figure 4-11. Cache Configuration Register (BHC)

4.8 BCU-Related Register Setting Examples

Figure 4-12 shows a BPC, BSC, BEC, and BHC register setting example, the corresponding settings for each CSn area, and the memory map when the data area has been set according to the contents of the example shown in **Figure 4-3 CSC0 and CSC1 Register Setting Example (64 MB Mode)** (n = 7 to 0).

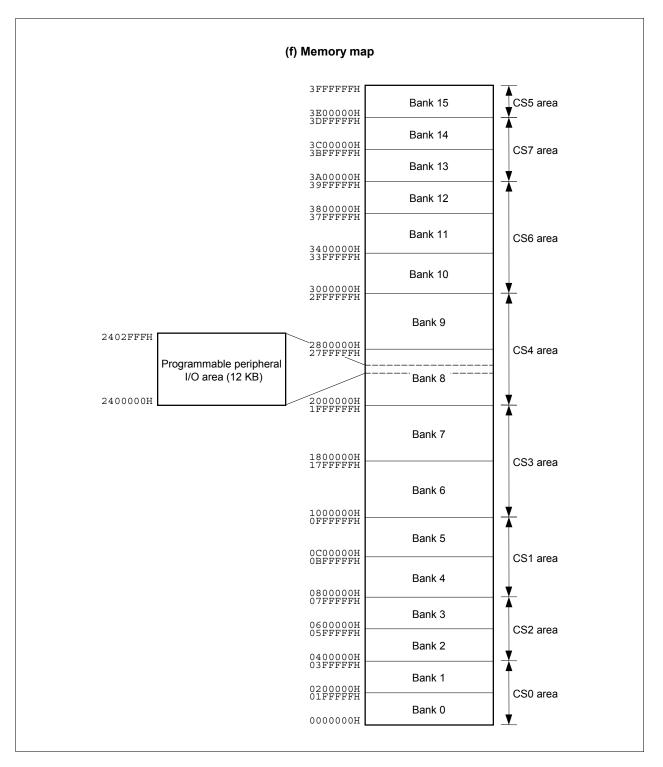
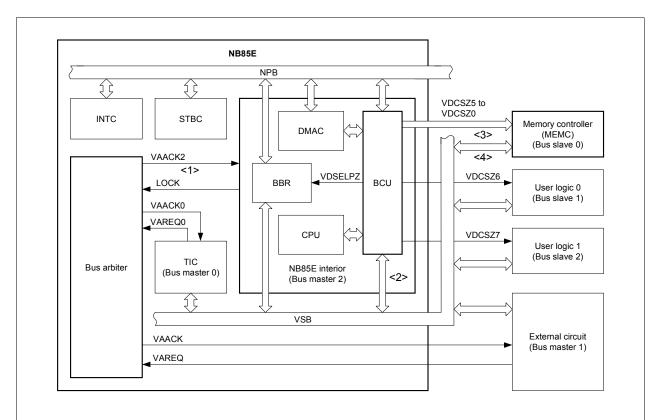


Figure 4-12. BPC, BSC, BEC, BHC Register Setting Example (2/3)

(e) Settings of each CSn area

CSn area	Addresses	Banks	VDCSZn signal	VSB data bus	Endian format	Cache	setting
				size (Bits)		Instruction	Data
0	0000000H to 03FFFFFH	0, 1	VDCSZ0	32	Little endian	No	No
1	0800000H to 0FFFFFFH	4, 5	VDCSZ1	32	Little endian	Yes	No
2	0400000H to 07FFFFFH	2, 3	VDCSZ2	8	Little endian	No	Yes
3	1000000H to 1FFFFFFH	6, 7	VDCSZ3	8	Big endian	No	No
4	2000000H to 2FFFFFFH	8, 9	VDCSZ4	16	Little endian	No	No
5	3E00000H to 3FFFFFFH	15	VDCSZ5	16	Little endian	No	No
6	3000000H to 39FFFFFH	10 to 12	VDCSZ6	32	Little endian	No	No
7	3A00000H to 3DFFFFFH	13, 14	VDCSZ7	32	Big endian	No	No



4.9 Data Transfer Using VSB

4.9.1 Data transfer example

This section uses the circuit shown in Figure 4-13 to explain the procedure for transferring data between bus masters and bus slaves connected to the VSB.

Figure 4-13. Example of Data Transfer Using VSB

<1> The NB85E grants bus control (bus access right) to only one bus master according to the on-chip bus arbiter (Refer to **4.9.5 Bus master transition** for detail). The bus arbiter arbitrates the bus access right according to the following prioritization.

TIC (bus master 0) > External circuit (bus master 1) > NB85E interior (bus master 2)

For example, if a bus access right request (VAREQ) is generated from the TIC or an external circuit when the NB85E interior is operating as the bus master, the NB85E interior releases the bus.

In the figure shown above, the NB85E interior (bus master 2) receives an acknowledge signal (VAACK2: internal signal) from the bus arbiter and has the bus access right (A bus access right request signal is always being output from the NB85E interior to the bus arbiter).

- <2> Bus master 2, which has the bus access right, begins the data transfer to the VSB.
- <3> The BCU selects the bus slave by generating a chip select signal (VDCSZn) corresponding to each bank of the data area according to the programmable chip select function (n = 7 to 0). In the figure shown above, MEMC (bus slave 0) is selected by the VDCSZ5 to VDCSZ0 signals.
- <4> The selected bus slave 0 returns a transfer response to bus master 2, and the data transfer begins.

4.9.2 Control signals

The bus master that has the bus access right outputs the following types of control signals to indicate the contents of the transfer that is currently being executed.

(1) Transfer type

When the transfer begins, the bus master outputs the VBTTYP1 and VBTTYP0 signals to indicate the transfer type.

VBTTYP1	VBTTYP0	Transfer Type
L	L	Address-only transfer (transfer in which no data processing is performed)
н	L	Non-sequential transfer (single transfer or burst transfer)
Н	Н	Sequential transfer (transfer in which the address that is currently being transferred is related to the address for the previous transfer)
L	Н	(Reserved for future function expansion)

Table 4-1.	VBTTYP1 and VBTTYP0 Signals
------------	-----------------------------

Remark L: low-level H: high-level

(2) Bus cycle type

The bus master indicates the current bus cycle status according to the VBCTYP2 to VBCTYP0 signals.

VBCTYP2	VBCTYP1	VBCTYP0	Bus Cycle Status
L	L	L	Opcode fetch
L	L	Н	Data access
L	Н	L	Misalign access ^{Note}
L	Н	Н	Read modify write access
Н	L	L	Opcode fetch of jump address due to branch instruction
Н	н	L	DMA 2-cycle transfer
Н	н	н	DMA flyby transfer
Н	L	н	(Reserved for future function expansion)

Table 4-2. VBCTYP2 to VBCTYP0 Signals

Note Only output when a high level is input to the IFIMAEN pin (misalign access enabled).

Remark L: low-level H: high-level

(3) Byte enable

The bus master uses the VBBENZ3 to VBBENZ0 signals to indicate the byte data among the data obtained by quartering the data bus (VBD31 to VBD0) into byte units.

Active (Low-Level Output) Signal	Enabled Byte Data
VBBENZ0	VBD7 to VBD0
VBBENZ1	VBD15 to VBD8
VBBENZ2	VBD23 to VBD16
VBBENZ3	VBD31 to VBD24

Table 4-3. VBBENZ3 to VBBENZ0 Signals

(4) Transfer size

The bus master uses the VBSIZE1 and VBSIZE0 signals to indicate the transfer size.

VBSIZE1	VBSIZE0	Explanation
L	L	Byte (8 bits)
L	Н	Halfword (16 bits)
Н	L	Word (32 bits)
н	Н	(Reserved for future function expansion)

Table 4-4. VBSIZE1 and VBSIZE0 Signals

Remark L: low-level H: high-level

(5) Sequential status

The bus master uses the VBSEQ2 to VBSEQ0 signals to indicate the "burst transfer length" when a burst transfer starts, to indicate "continuous" during a burst transfer, and to indicate "single transfer" at the end of the burst transfer.

Table 4-5.	VBSEQ2 to VBSEQ0 Signals
------------	--------------------------

VBSEQ2	VBSEQ1	VBSEQ0	Sequential Status
L	L	L	Single transfer
L	L	Н	Continuous (indicates that the next transfer address is related to the current transfer address) $^{\rm Note}$
L	н	L	Continuous 4 times (burst transfer length: 4)
L	Н	Н	Continuous 8 times (burst transfer length: 8)
Н	L	L	Continuous 16 times (burst transfer length: 16)
н	L	н	Continuous 32 times (burst transfer length: 32)
н	н	L	Continuous 64 times (burst transfer length: 64)
н	н	н	Continuous 128 times (burst transfer length: 128)

Note This is output for continuous 2 times and throughout continuous 4, 8, 16, 32, 64, and 128 times.

Remark L: low-level H: high-level

(6) Transfer status

The transfer status is indicated by the VBWAIT, VBAHLD, and VBLAST signals, which are output from the bus slave. These signals become effective only while the VBCLK signal is low level.

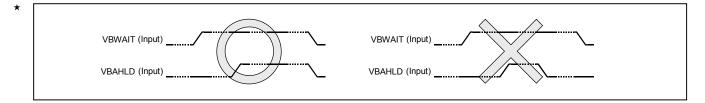

VBWAIT	VBAHLD	VBLAST	Explanation
L	L	L	Status when the current transfer is completed (ready status)
L	L	н	Last response (burst transfer last response status)
н	L	L	Wait response (wait status)
н	н	L	Maintains address and control signal (address hold status)
Other than the above			(Reserved for future function expansion)

Table 4-6. VBWAIT, VBAHLD, and VBLAST Signals

Remark L: low-level H: high-level

Caution Once the VBAHLD signal becomes active (H), hold the active level until the VBWAIT signal becomes inactive (L).

It is not possible to return to the wait state from the address hold state during a bus cycle.

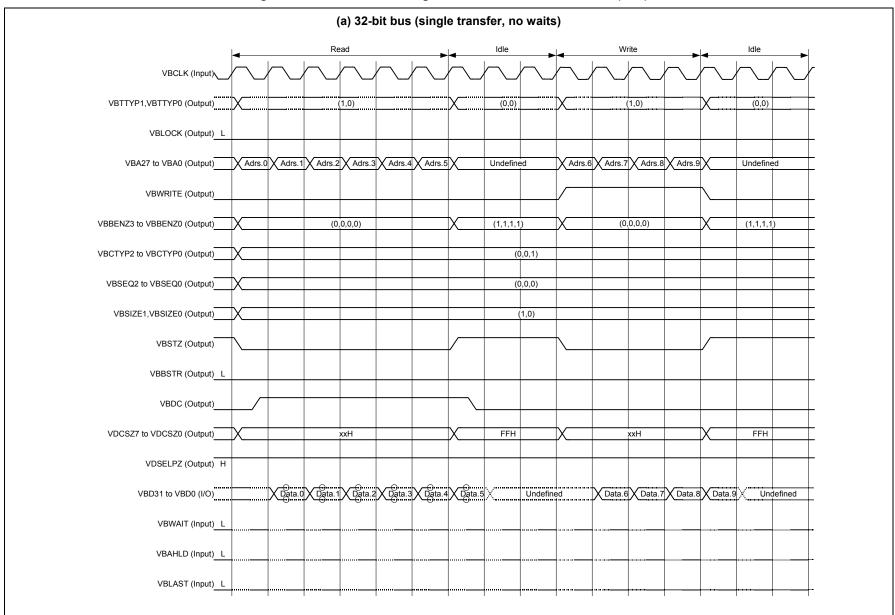
(7) Transfer direction

The bus master uses the VBWRITE signal to indicate the transfer direction. This signal is high level when writing.

4.9.3 Read/write timing

(1) Read timing

Read data is output from the bus slave side in synchronization with the rising edge of the VBCLK signal immediately after the end of address output to the bus slave. Following this, the bus master fetches (samples) the data in synchronization with the next falling edge of the VBCLK signal.

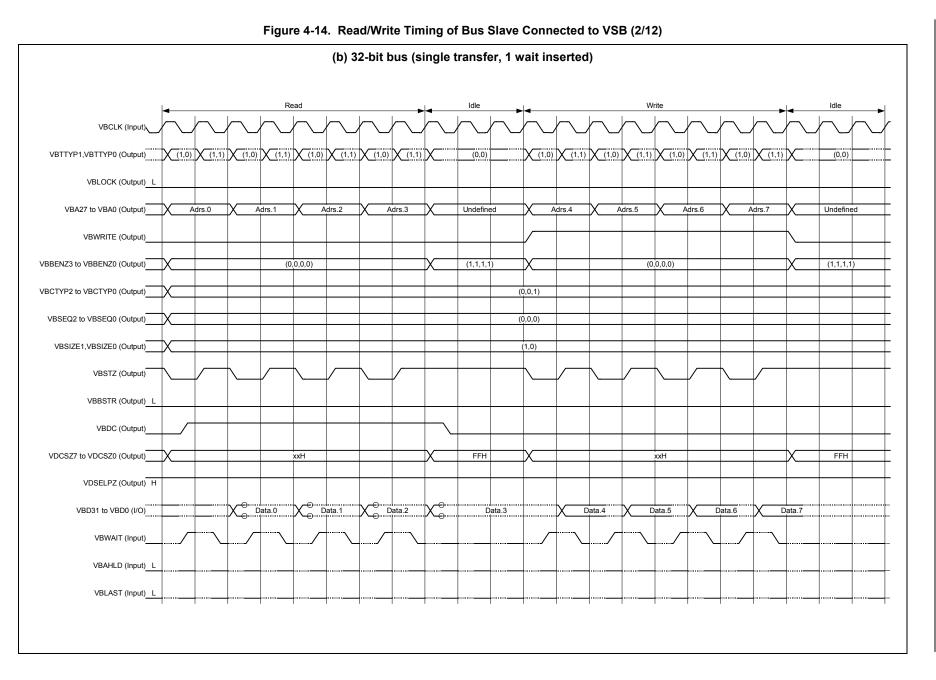

However, if the VBAHLD signal has been input at an active level (high level), the bus slave outputs data in synchronization with the rising edge of the VBCLK signal immediately after the active-level VBAHLD was input, and the bus master fetches (samples) the data in synchronization with the next falling edge of the VBCLK signal.

(2) Write timing

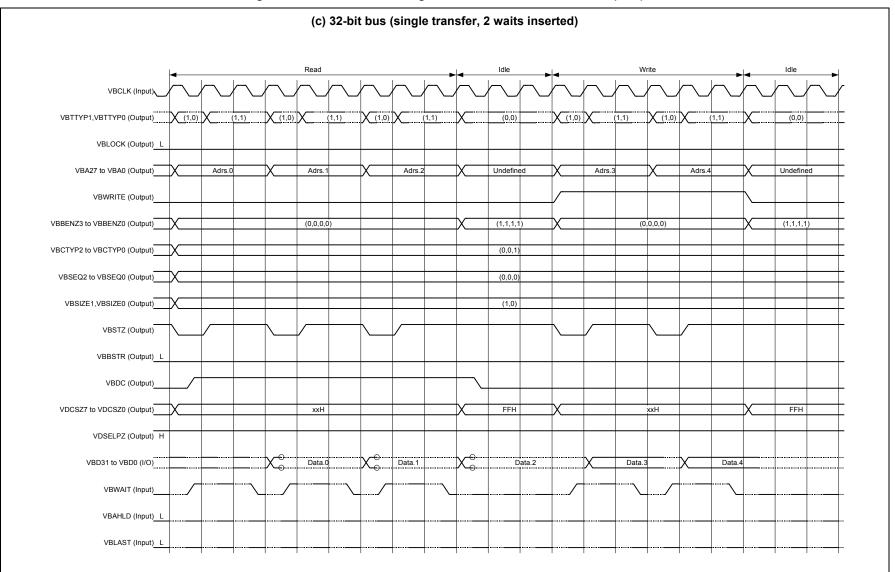
Write data is output from the bus master in synchronization with the rising edge of the VBCLK signal one clock after the address is output to the bus slave.

The following pages show the read/write timing of the bus master and slaves connected to the VSB. The diagrams show the timing seen from the NB85E side when the NB85E has bus mastership.

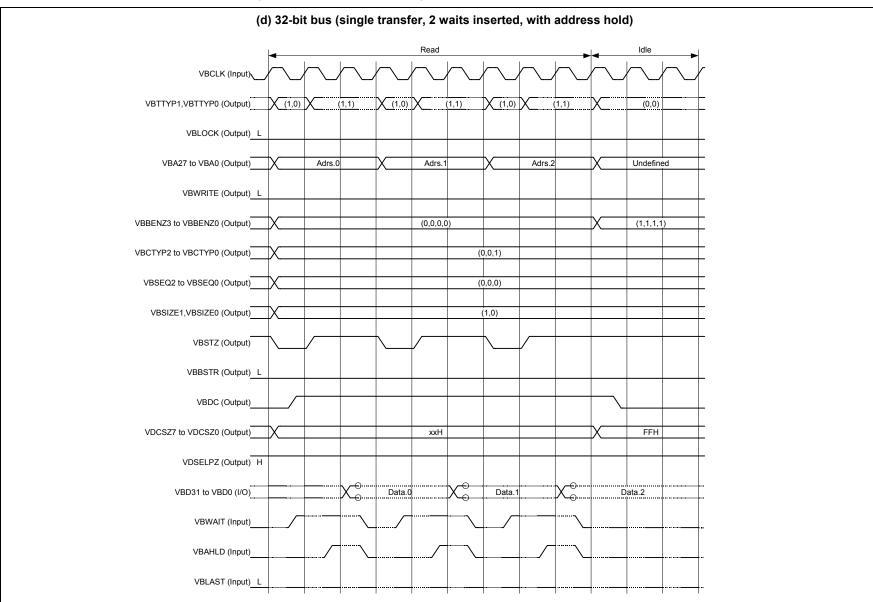
- **Remarks 1.** The levels of the broken-line portions indicate the undefined state (Weak unknown) entered when the NB85E internal bus holder is driving.
 - 2. The O marks indicate the sampling timing.
 - **3.** Adrs.n: Arbitrary address output from the VBA27 to VBA0 pins Data.n: Data output to Adrs.n



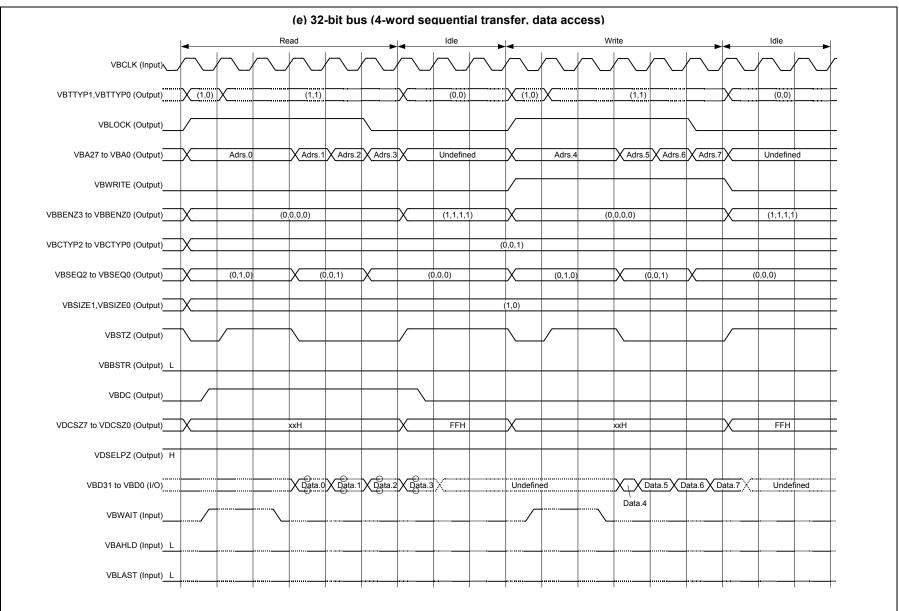
CHAPTER 4 BCU


Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (1/12)

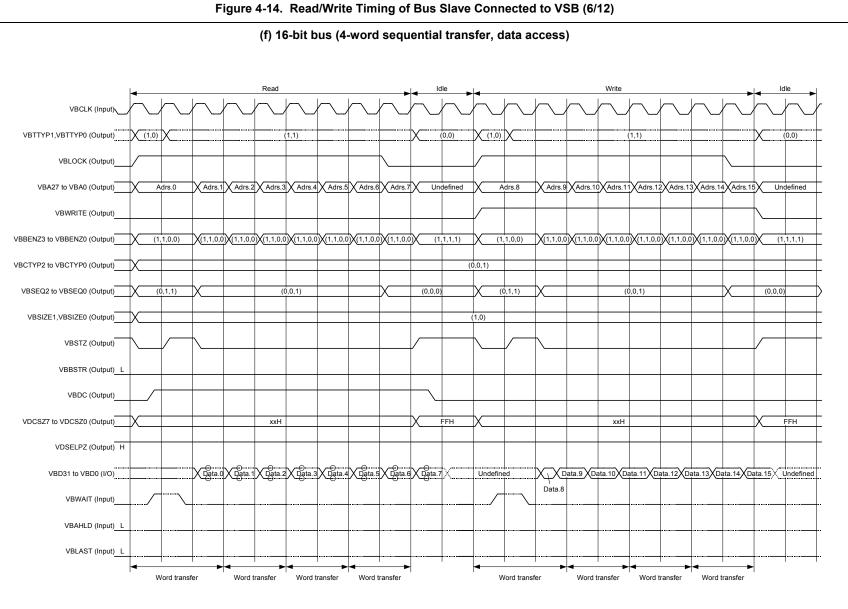
95


CHAPTER 4 BCU

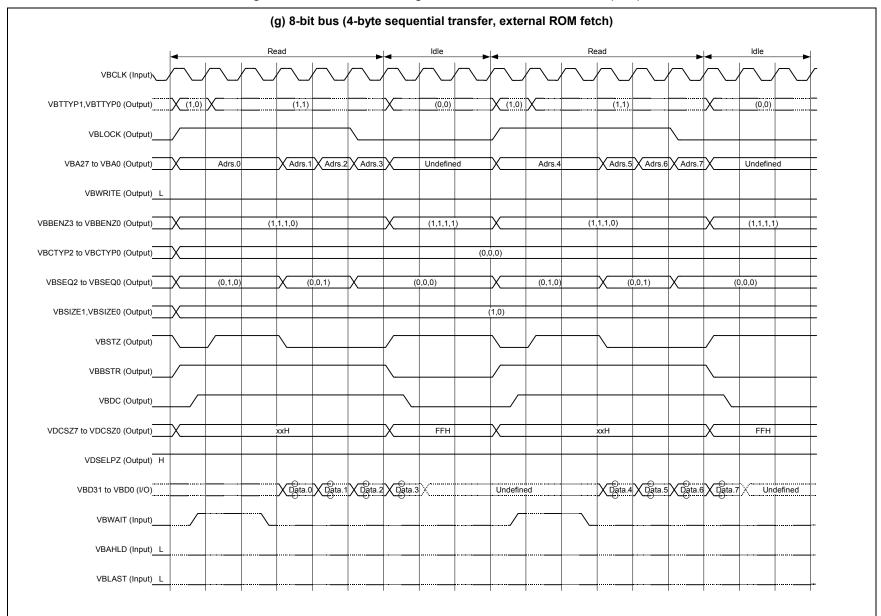
CHAPTER 4 BCU


Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (3/12)

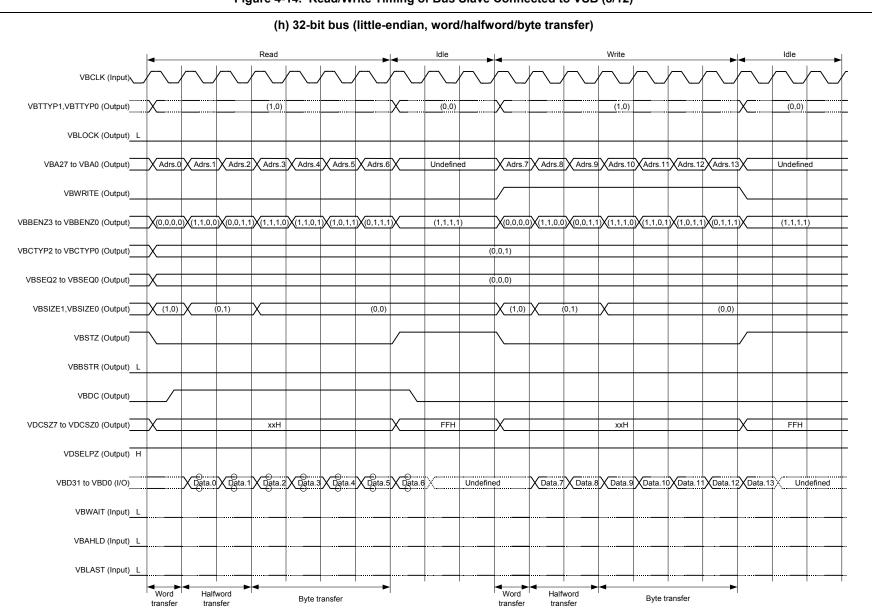
97

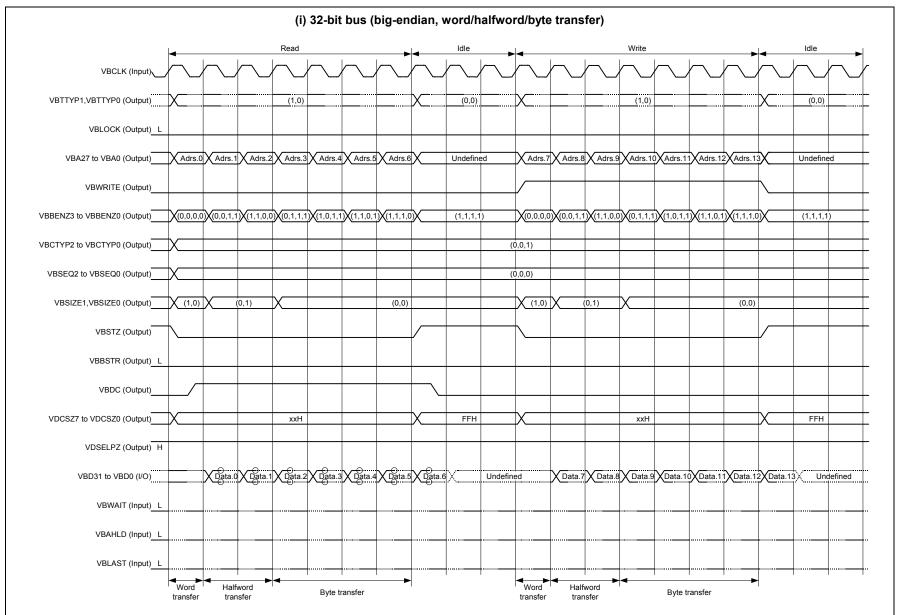

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (4/12)

Preliminary User's Manual A13971EJ7V0UM

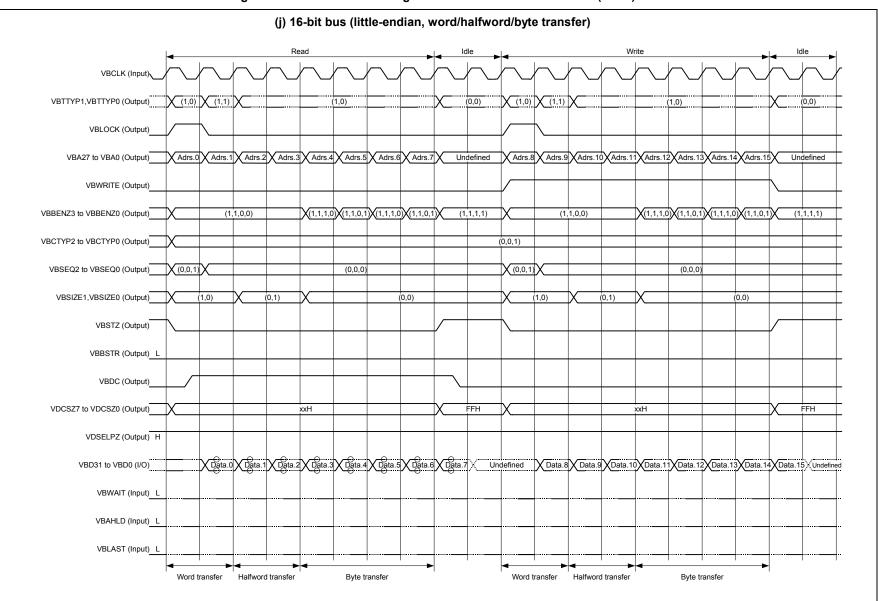


CHAPTER 4 BCU

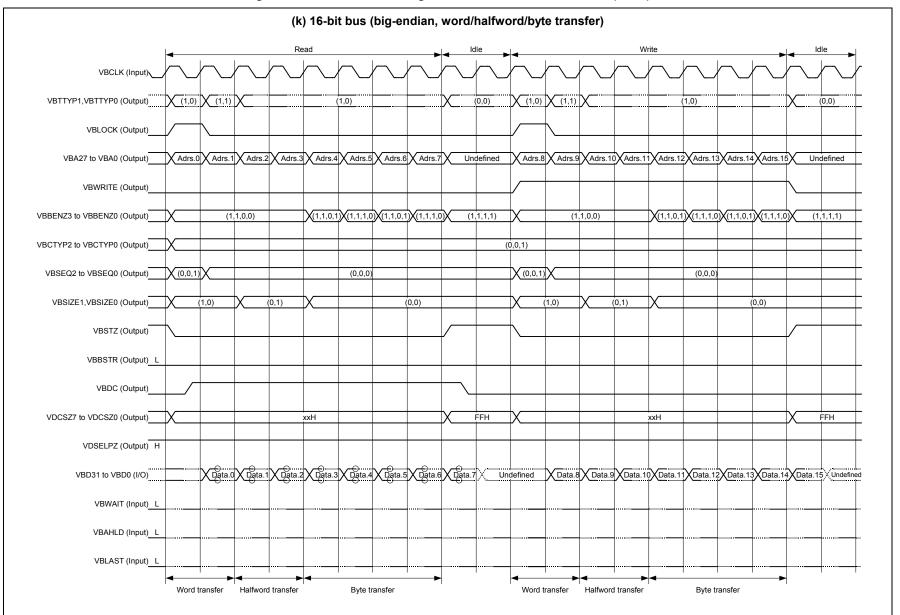



Preliminary User's Manual A13971EJ7V0UM

CHAPTER 4 BCU

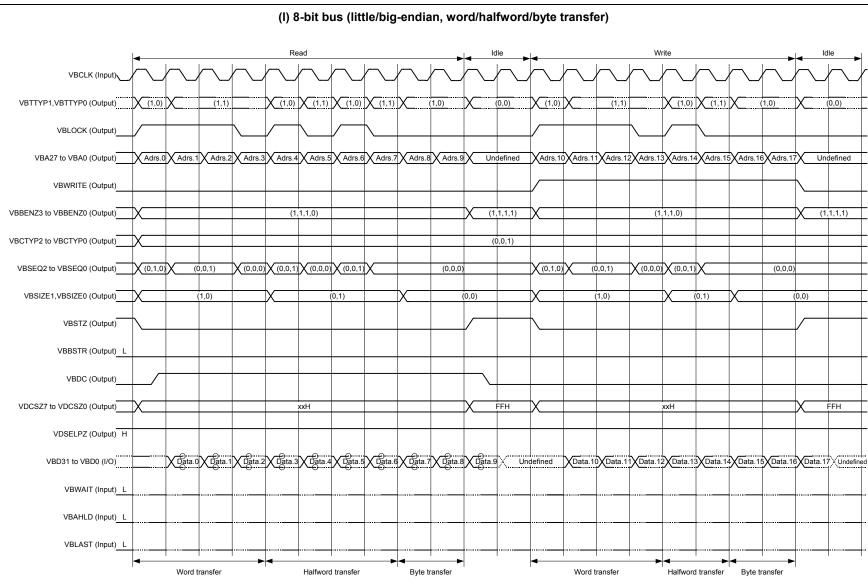

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (8/12)

CHAPTER 4 BCU


Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (9/12)

103

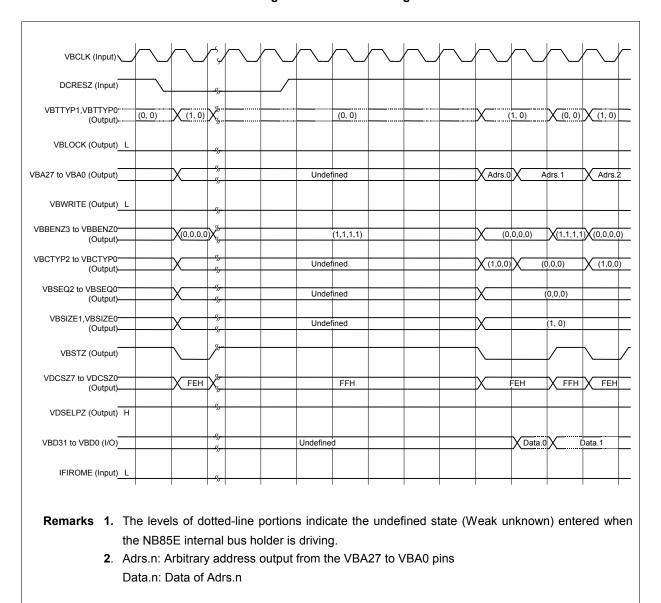
Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (10/12)


CHAPTER 4 BCU

CHAPTER 4 BCU

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (11/12)

105



Preliminary User's Manual A13971EJ7V0UM

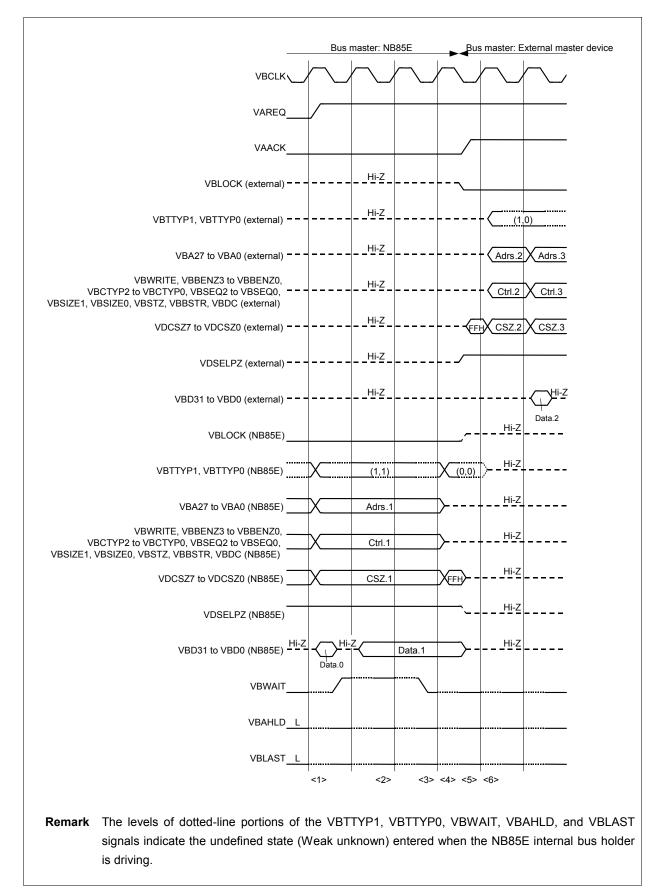
4.9.4 Reset timing

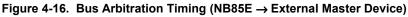
The reset timing of when a low level is input to the IFIROME pin (the connected ROM is used as external memory (via the VSB)) is shown below.

Caution Be sure to input the VBCLK signal continuously during the reset period (the period when DCRESZ is low level).

4.9.5 Bus master transition

* (1) Bus priority

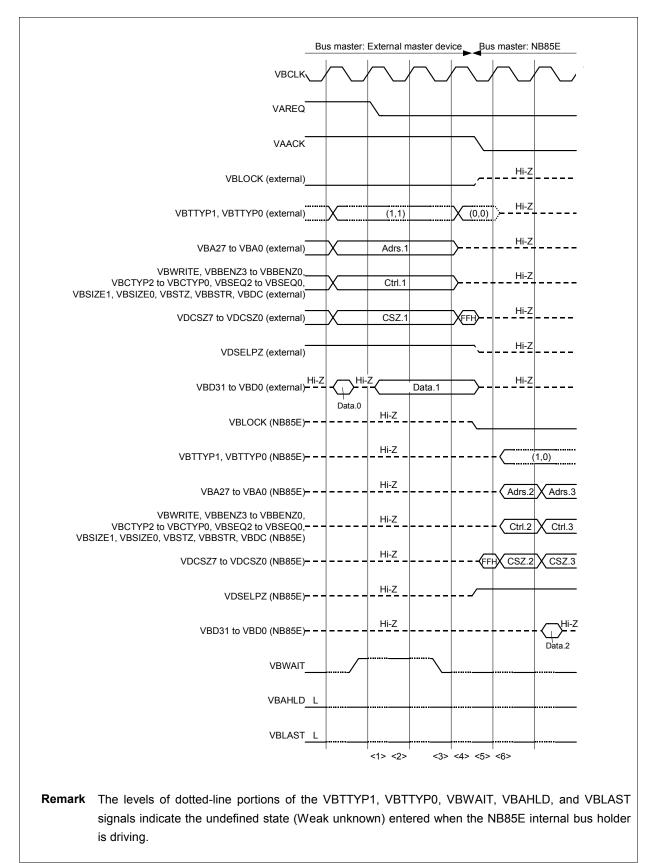

There are five kinds of external bus cycles as shown below. Bus hold has the highest priority, followed by refresh cycle, DMA cycle, operand data access, and instruction fetch in that order.

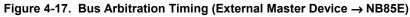

Priority	External Bus Cycle	Bus Master
High	Bus hold	External device
\uparrow	Refresh cycle	SDRAM controller
	DMA cycle	DMA controller
\downarrow	Operand data access	CPU
Low	Instruction fetch	CPU

(2) NB85E \rightarrow external master device

- <1> A VSB access right request signal (VAREQ) is input to the NB85E from the external master device.
- <2> The NB85E internal bus arbiter enters a state whereby it is waiting for a ready response from the slave device.
- <3> When execution of the current transfer is complete, the slave device sends the ready response.
- <4> The VBTTYP1 and VBTTYP0 signals of the NB85E indicate an address-only transfer, and the NB85E's VBLOCK, VDCSZ7 to VDCSZ0, and VDSELPZ signals are consequently ignored.
- <5> The NB85E sends an acknowledge signal for the VAREQ signal (VAACK) and a ready response to the external master device. The external master device inactivates the VBLOCK, VDCSZn (n = 7 to 0), and VDSELPZ signals.
- <6> The external bus master starts transferring data via the VSB.

Remark The ready response is when the VBWAIT, VBAHLD, and VBLAST signals are all in a low-level state.





(3) External bus master \rightarrow NB85E

- <1> The external master device inactivates the VSB access right request signal (VAREQ).
- <2> The bus arbiter enters a state whereby it is waiting for a ready response form the slave device.
- <3> When execution of the current transfer is complete, the slave device sends the ready response.
- <4> The VBTTYP1 and VBTTYP0 signals of the external master device indicate an address-only transfer, and the external master device's VBLOCK, VDCSZ7 to VDCSZ0, and VDSELPZ signals are consequently ignored.
- <5> The NB85E inactivates the acknowledge signal for the VAREQ signal (VAACK) and sends a ready response. The NB85E also inactivates the VBLOCK, VDCSZn (n = 7 to 0), and VDSELPZ signals.
- <6> The NB85E starts transferring data via the VSB.

Remark The ready response is when the VBWAIT, VBAHLD, and VBLAST signals are all in a low-level state.

4.9.6 Misalign access timing

The VSB access timing when misalign access is enabled (when a high level is input to the IFIMAEN pin) is shown below.

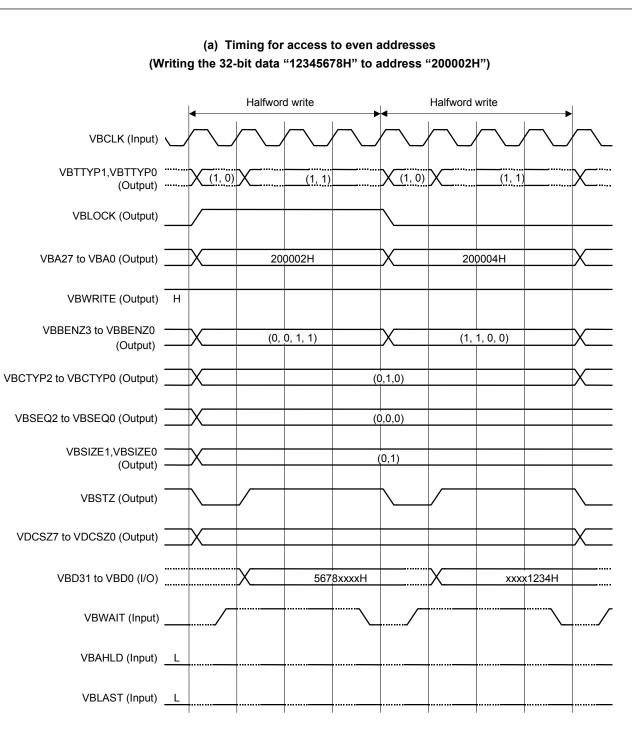


Figure 4-18. Misalign Access Timing (1/2)

Remark The levels of the broken-line portions indicate the undefined state (Weak unknown) entered when the NB85E internal bus holder is driving.

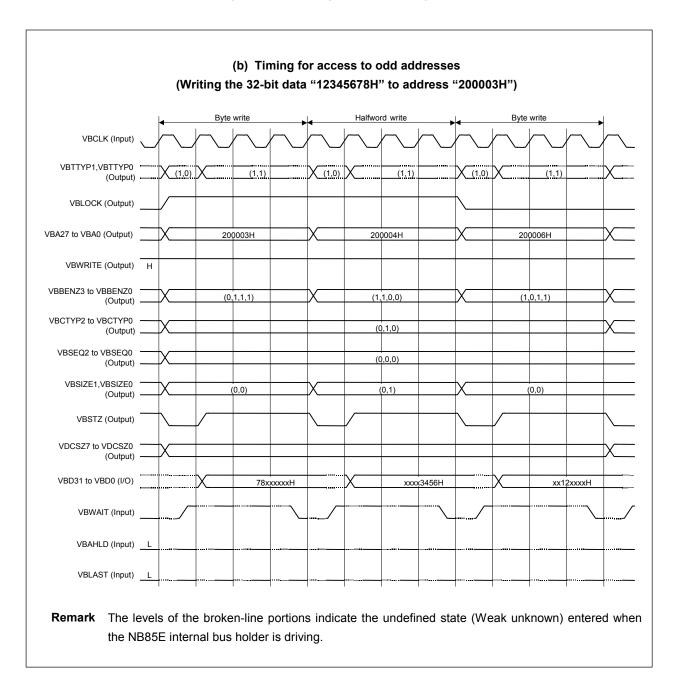


Figure 4-18. Misalign Access Timing (2/2)

CHAPTER 5 BBR

The bus bridge (BBR) converts signals that are passed between the VSB and NPB. The BBR sets up the following functions for peripheral macros that are connected to the NPB.

- Wait insertion function
- Retry function

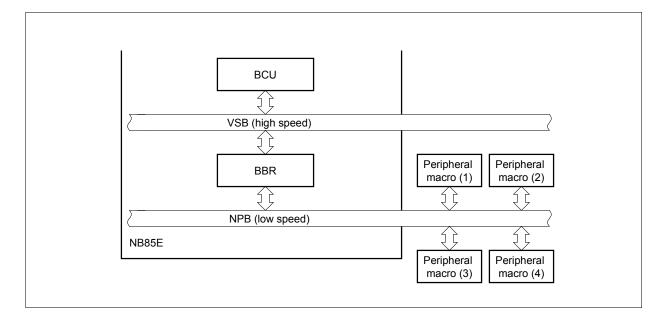


Figure 5-1. NPB Connection Overview

The following figure shows a connection example connecting the NB85E and peripheral macros that are connected to the NPB.

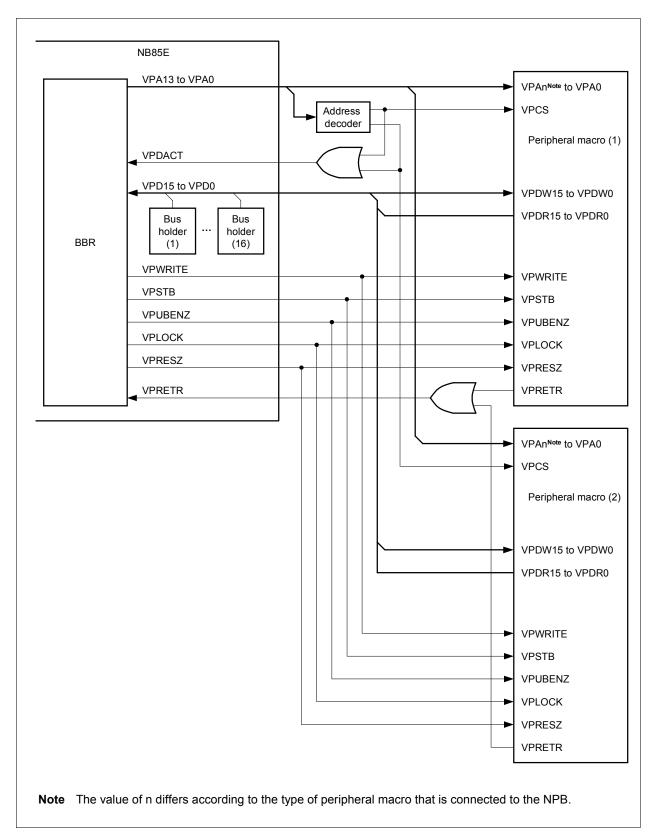


Figure 5-2. NB85E and Peripheral Macro Connection Example

5.1 Programmable Peripheral I/O Area

The NB85E has a 4 KB peripheral I/O area that is allocated in advance in the address space and a 12 KB programmable peripheral I/O area that can be allocated at arbitrary addresses according to register settings (See 4.4 **Programmable Peripheral I/O Area Selection Function**).

If the peripheral I/O area or programmable peripheral I/O area in the memory map shown in Figure 5-3 is accessed, the NPB becomes active.

The programmable peripheral I/O area is set by the peripheral I/O area select control register (BPC).

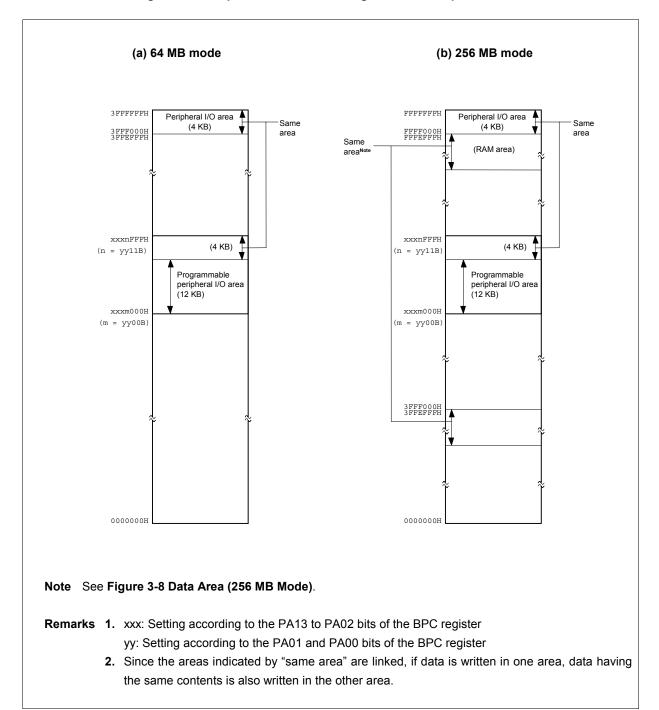


Figure 5-3. Peripheral I/O Area and Programmable Peripheral I/O Area

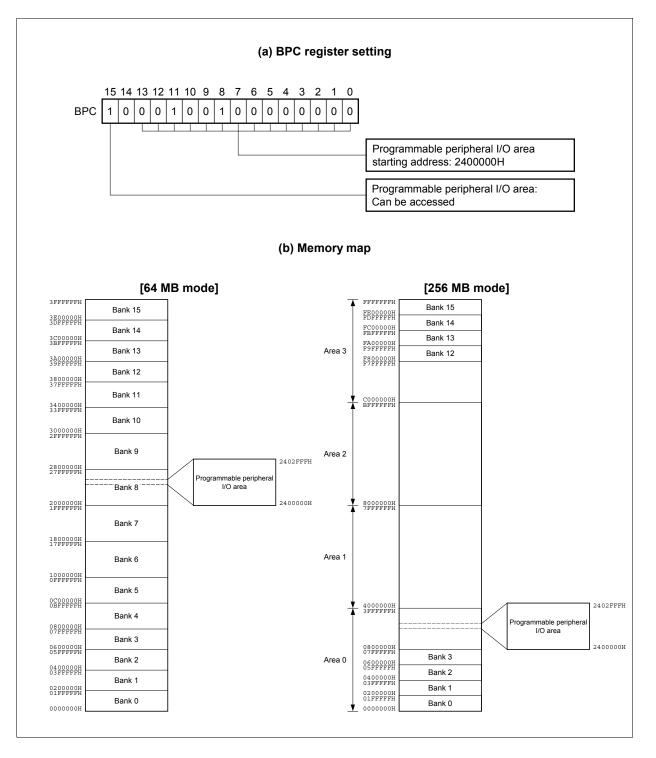

	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
BPC	PA	0	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	Address	After res
BPC	15	0	13	12	11	10	09	08	07	06	05	04	03	02	01	00	FFFFF064H	0000H
Bit pos	sition	Bit	name		Function													
15		PA	15	Se	ts wh	ether	or not	the p	rogran	nmabl	e peri	phera	l I/O a	rea ca	an be	acces	sed.	
				0: It cannot be accessed														
				1	: It ca	n be a	access	sed										
13 to 0)	PA	13 to	Sp	ecifie	s bit 2	7 to b	it 14 c	of the s	startin	g add	ress o	f the p	orogra	immal	ole pe	ripheral I/O are	ea.
PA00 (The other bits are fixed at zero.)																		

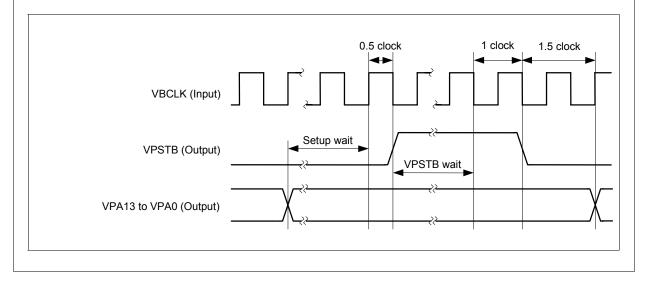
Figure 5-4. Peripheral I/O Area Select Control Register (BPC)

- Cautions 1. In 64 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes ineffective.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - 2. In 256 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes ineffective.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (See Figure 3-8 Data Area (256 MB Mode))
 - 3. If no peripheral macros are connected to the NPB, no programmable peripheral I/O area need be set (Set the BPC register to its after-reset value).
 - 4. The Programmable peripheral I/O area address setting is enabled only once. Do not change addresses in the middle of a program.

Figure 5-5 shows a BPC register setting example and the memory map after the setting is made.

5.2 Wait Insertion Function

The BBR is equipped with a wait insertion function for connection with low-speed peripheral macros that are connected to the NPB. The NPB strobe wait control register (VSWC) is used to set up this function.


The VSWC register sets the setup wait length and VPSTB wait length (see **Figure 5-6**). The number of waits can be set in the range from 0 to 7 clocks based on the internal system clock (VBCLK).

	7		6		5	4	3	2	1	0	A status a s	A 64
/SWC	0		SUWL	.2 SL	JWL1	SUWL0	0	VSWL2	VSWL1	VSWL0	Address FFFFF06EH	After res 77H
Bit pos	sition	Bit	name					Funct	ion			
6 to 4			NL2 to NL0	Sets th	ie setu	p wait leng	th.					
				SU	WL2	SUWL1	SUWL0		Setu	p wait length	ı	
				0		0	0	0 (no waits)				
				0		0	1	1×tськ				
				0		1	0	2×tськ				
				0		1	1	3×tс∟к				
				1		0	0	4×tськ				
				1		0	1	5×tc∟ĸ				
				1		1	0	6×tськ				
				1		1	1	7×tc∟ĸ				
				Re	mark	tclk: Inte	ernal syste	em clock (VE	BCLK) cycl	е		

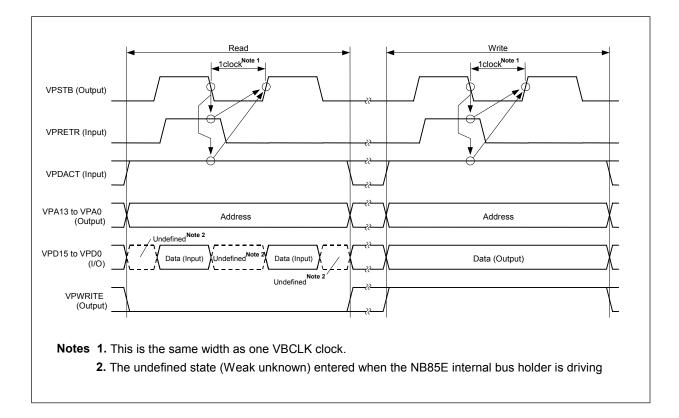
Figure 5-6. NPB Strobe Wait Control Register (VSWC) (1/2)

Bit position	Bit name				Function				
2 to 0	VSWL2 to VSWL0	Sets the VPS	ets the VPSTB wait length.						
		VSWL2	VSWL1	VSWL0	VPSTB wait length				
		0	0	0	0 (no waits)				
		0	0	1	1×tclк				
		0	1	0	2×tclk				
		0	1	1	3×tclk				
		1	0	0	4×tclk				
		1	0	1	5×tclk				
		1	1	0	6×tclk				
		1	1	1	7×tськ				

Figure 5-6. NPB Strobe Wait Control Register (VSWC) (2/2)

Be sure to set values for the setup wait and VPSTB wait lengths at each operation frequency that are the same as or greater than the number of waits shown in Table 5-1 below.

Table 5-1. Setting of Setup Wait, VPSTB Wait Lengths at Each Operation Frequency


Wait Length		Operation Frequency				
	To 25 MHz	To 33 MHz	To 50 MHz	To 66 MHz		
Setup wait length (set using bits SUWL2 to SUWL0)	1	1	1	1		
VPSTB wait length (set using bits VSWL2 to VSWL0)	1	2	4	5		

Caution These setting values are not guaranteed, so be sure to set the number of waits appropriate to the system after verifying operation.

5.3 Retry Function

The retry function, which repeats read or write processing according to a retry request signal (VPRETR) from a peripheral macro on the NPB, is used in situations such as when the data setup time is insufficient.

If a high-level signal is being input to the VPRETR and VPDACT pins at the falling edge of the VPSTB signal, the VPSTB signal rises again and the read or write operation is repeated.

Figure 5-7. Retry Function

5.4 NPB Read/Write Timing

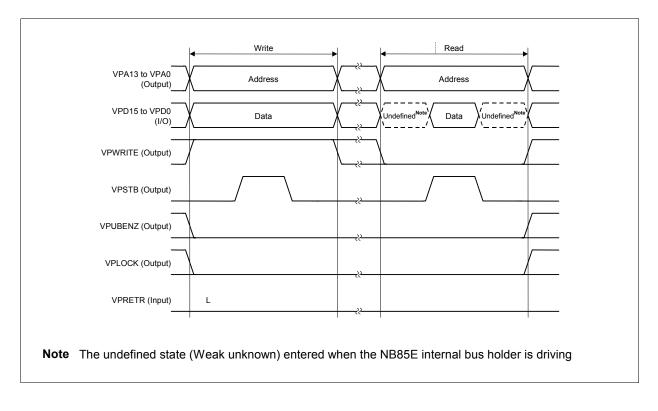


Figure 5-8. Halfword Access Timing

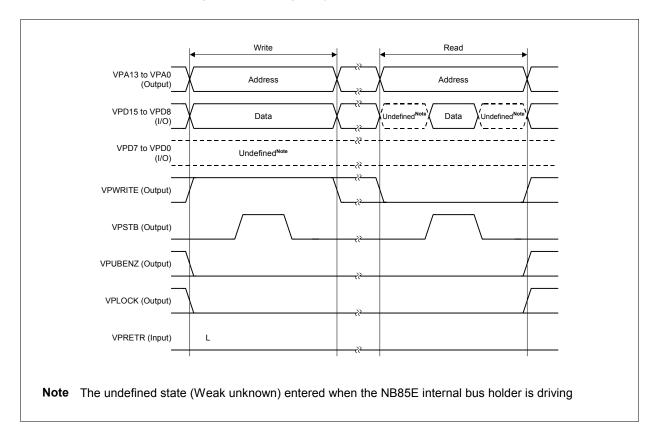
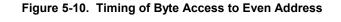
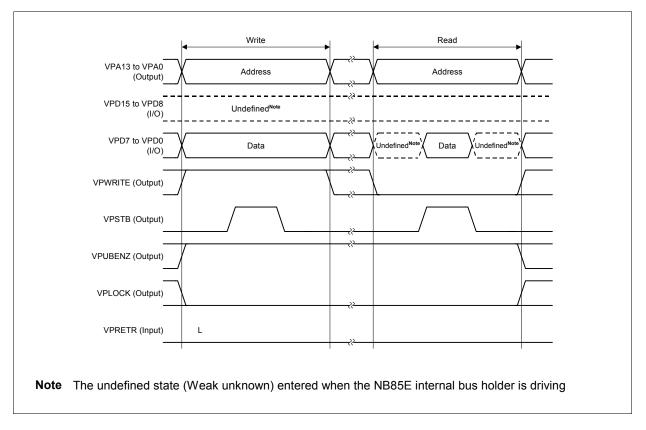




Figure 5-9. Timing of Byte Access to Odd Address

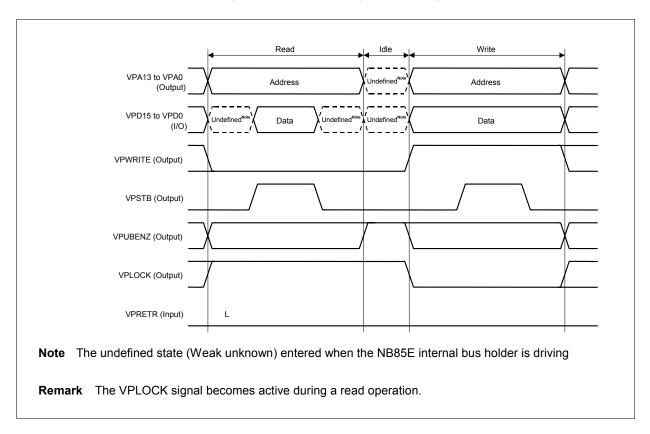


Figure 5-11. Read Modify Write Timing

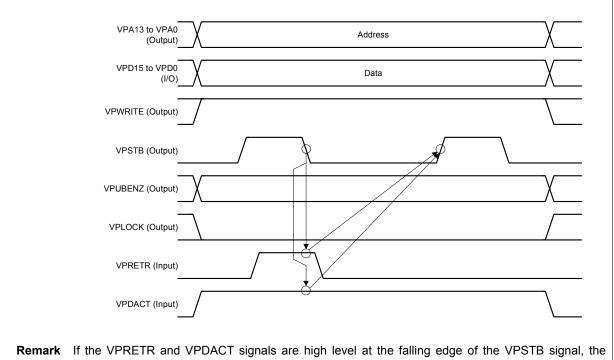
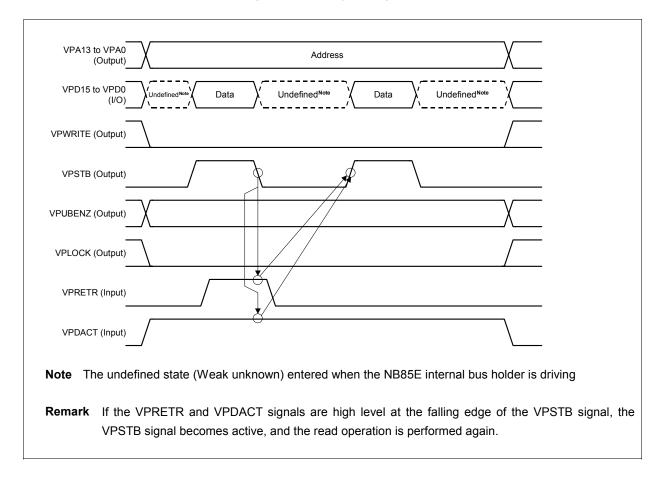
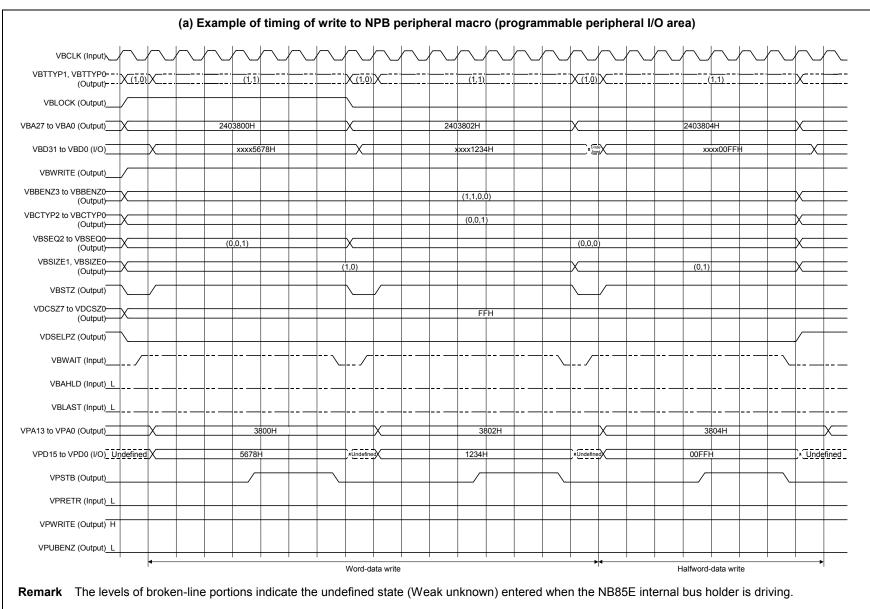




Figure 5-12. Retry Timing (Write)

VPSTB signal becomes active, and the write operation is performed again.

Figure 5-13. Retry Timing (Read)

Figure 5-14. Read/Write Timing of Bus Slave Connected to NPB (1/3)

CHAPTER 5 BBR

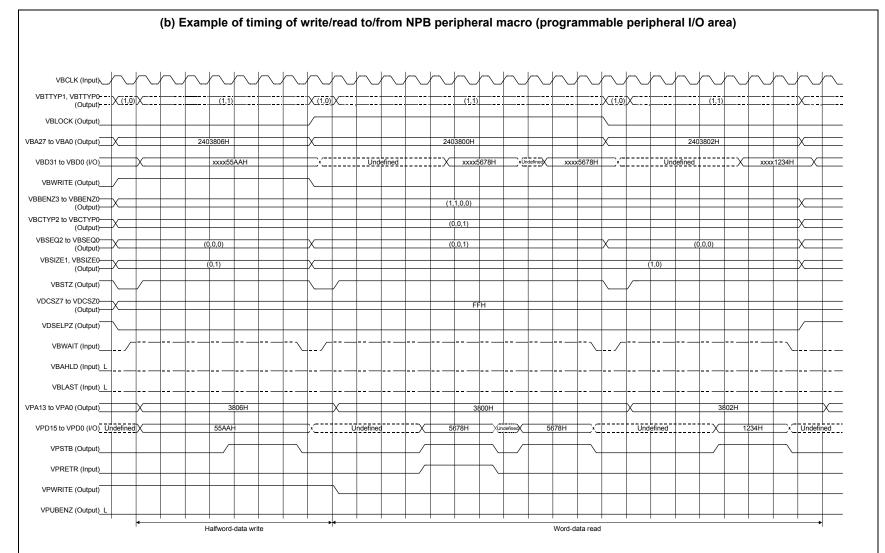
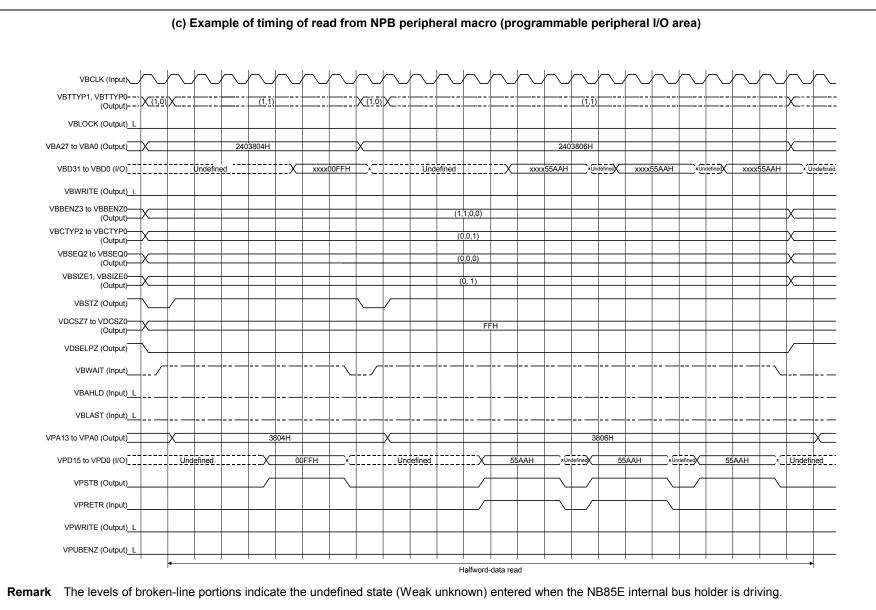



Figure 5-14. Read/Write Timing of Bus Slave Connected to NPB (2/3)

Remark The levels of broken-line portions indicate the undefined state (Weak unknown) entered when the NB85E internal bus holder is driving.

Preliminary User's Manual

A13971EJ7V0UM

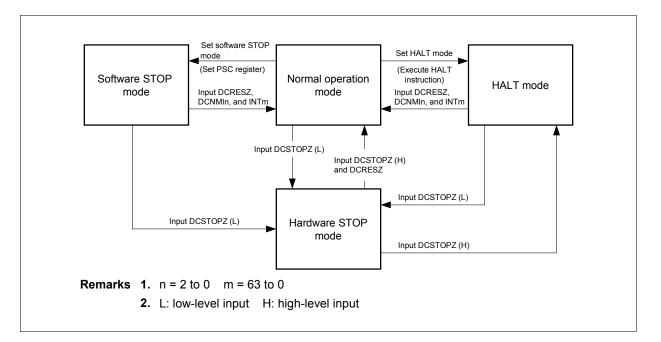
CHAPTER 6 STBC

The standby control unit (STBC) implements the various power save functions of the NB85E by controlling the external clock generator (CG).

6.1 Power Save Function

The power save function has the following three modes.

(1) HALT mode


This mode, which stops the supply of clocks only to the CPU, is set by executing a special-purpose instruction (HALT instruction). Since the supply of clocks to internal units other than the CPU continues, operation of the NB85E internal peripheral I/O that do not depend on the CPU instruction processing continues. The power consumption of the overall system can be reduced by intermittent operation that is achieved due to a combination of HALT mode and normal operation mode.

(2) Software STOP mode

This mode, which stops the overall system by stopping the external clock generator, is set by means of a PSC register setting. The system enters an ultra-low power consumption state in which only leak current is lost.

(3) Hardware STOP mode

This mode, which stops the overall system by stopping the external clock generator, is set by inputting the DCSTOPZ signal. The system enters an ultra-low power consumption state in which only leak current is lost.

Figure 6-1. Power Save Function State Transition Diagram

6.2 Control Registers

6.2.1 Power save control register (PSC)

The PSC is an 8-bit register that controls the power save function.

If interrupts are permitted according to the NMI2M to NMI0M and INTM bit settings, software STOP mode can be canceled by an interrupt request (except when interrupt servicing is prohibited by the interrupt mask register (IMR0 to IMR3)).

Software STOP mode is specified by setting the STP bit.

This register can only be written by using a specific procedure so that its settings are not mistakenly overwritten due to erroneous program execution.

This register can be read or written in 8-bit or 1-bit units.

Caution Do not set the PSC register by transferring data using the DMAC. To set this register, always use a store instruction (ST or SST) or a bit manipulation instruction (SET1, CLR1, or NOT1 instruction).

	7	6	5	4	3	2	1	0		
PSC	NMI2M	NMI1M	NMIOM	INTM	0	0	STP	0	Address FFFFF1FEH	After reset 00H

Figure 6-2. Power Save Control Register (PSC)

Bit position	Bit name	Function
7	NMI2M	Masks non-maskable interrupt requests (NMI2) from the DCNMI2 pin. Note
		0: Permits NMI2 requests
		1: Prohibits NMI2 requests
6	NMI1M	Masks non-maskable interrupt requests (NMI1) from the DCNMI1 pin. ^{Note}
		0: Permits NMI1 requests
		1: Prohibits NMI1 requests
5	NMIOM	Masks non-maskable interrupt requests (NMI0) from the DCNMI0 pin. ^{Note}
		0: Permits NMI0 requests
		1: Prohibits NMI0 requests
4	INTM	Masks maskable interrupt requests (INT63 to INT0) from the INT63 to INT0 pins. Note
		0: Permits INT63 to INT0 requests
		1: Prohibits INT63 to INT0 requests
1	STP	Specifies software STOP mode.
		When this bit is set (1), software STOP mode is set. When software STOP mode is canceled, this bit is automatically cleared (0).
Note The	setting is va	this bit is automatically cleared (0). alid in software STOP mode only.

- Cautions 1. If the NMI2M to NMI0M and INTM bits are set (1) at the same time as the STP bit, the settings of the NMI2M to NMI0M and INTM bits are invalid. Therefore, if there are unmasked interrupt requests pending when software STOP mode is entered, be sure to set (1) those interrupt request bits (NMI2M to NMI0M and INTM) before setting (1) the STP bit.
 - 2. Because an interrupt request that occurs while the NMI2M to NMI0M and INTM bits are set (1) is invalid (it is not held pending), software STOP mode cannot be canceled.

Use the procedure shown below to set data in the PSC register.

*

- <1> Write the data that is to be set in the PSC register to an arbitrary general-purpose register (see **3.2.1 Program registers**).
- <2> Use the store instruction (ST or SST instruction) to write the contents of the general-purpose register, which had been prepared in step <1>, to the command register (PRCMD).
- <3> Use the following instructions to write the contents of the general-purpose register, which had been prepared in step <1>, to the PSC register (Do this immediately after writing the contents of the general-purpose register in the PRCMD register).
 - Store instruction (ST or SST instruction)
 - Bit manipulation instruction (SET1, CLR1, or NOT1 instruction)
- <4> If the NB85E switches to software STOP mode, insert NOP instructions (five or more instructions).

Examples	1.	<2> <3>	mov movea st.b st.b nop nop nop nop	r11, PRCMD[r20]	; base_address = FFFF000H ; PRCMD = 01FCH ; PSC = 01FEH
	2.	<2> <3>	mov movea	0x02, r11 0xF1FCH, r0, r20 0xF1FEH, r0, r21 r11, 0x0[r20] r11, 0x0[r21]	; r20 = FFFFF1FCH (= PRCMD) ; r21 = FFFFF1FEH (= PSC)
			nop nop		

No special procedure is required to read the contents of the PSC register.

- **Remarks** 1. Interrupts are not acknowledged for store instructions for the PRCMD register.
 - **2.** Steps <2> and <3> above are assumed to occur consecutively. If another instruction is placed between the instructions described in steps <2> and <3>, then when the interrupt is acknowledged for that instruction, the setting may not be established, causing abnormal operation.
 - 3. Although the data written in the PRCMD register is dummy data, use the same value (data) as the value of the general-purpose register used for setting data in a specific register (step <3> in the examples above) even when writing to the PRCMD register (step <2> in the examples above). This is similar to using a general-purpose register for addressing.

6.2.2 Command register (PRCMD)

The command register (PRCMD) is used to set protection for write operations to the PSC register so that the application system is not halted unexpectedly due to erroneous program execution.

Only the first write operation to the PSC register is valid after a registration code (arbitrary 8-bit data) is written to the PRCMD register. Since the register value can be rewritten only by a predetermined procedure, illegal write operations to the PSC register are rejected.

Data can be written in the PRCMD register only in 8-bit units. During reading, the value is undefined.

Caution Do not set the PRCMD register by transferring data using the DMAC. To set this register, always use a store instruction (ST or SST).

	7		6	5	4	3	2	1	0		
PRCMD	REC	G7	REG6	REG5	REG4	REG3	REG2	REG1	REG0		er rese define
Bit position Bit name				Function							
7 to 0 REG7 to REG0			This is the registration code (arbitrary 8-bit data) used when write accessing the PSC register.								

Figure 6-3. Command Register (PRCMD)

6.3 HALT Mode

In HALT mode, the operation clock of the CPU is stopped. Since the supply of clocks to internal units other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by setting the NB85E to HALT mode while the CPU is idle.

(1) Setting and operation status

The NB85E is switched to HALT mode by the HALT instruction.

Although program execution stops in HALT mode, the contents of all registers and of RAM immediately before HALT mode began are maintained. Also, operation continues for all NB85E-internal peripheral I/O that does not depend on CPU instruction processing.

Caution Insert at least five NOP instructions after the HALT instruction.

(2) Cancellation of HALT mode

HALT mode is canceled by a non-maskable interrupt request, an unmasked maskable interrupt request, or the input of the DCRESZ signal.

(a) Cancellation by interrupt request

HALT mode is canceled by a non-maskable interrupt request or by an unmasked maskable interrupt request regardless of the priority. The following table shows the operation performed after HALT mode is canceled.

Table 6-1. Operation After HALT Mode Is Canceled by Interrupt Request

Cancellation Source	Interrupt Enabled (EI) State	Interrupt Disabled (DI) State
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execution of next instruction	Execution of next instruction

The operation differs as follows if HALT mode was set within the interrupt service routine.

<1> When a low priority interrupt request is generated

Only HALT mode is canceled. The interrupt request is not acknowledged (pending).

<2> When a high priority interrupt request (including a non-maskable interrupt request) is generated

HALT mode is canceled and the interrupt request is acknowledged.

(b) Cancellation by DCRESZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the DCRESZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.4 Software STOP Mode

In software STOP mode, the CPU operation clock and the clock generator are stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leak current is lost.

(1) Setting and operation status

stopped.

The NB85E is switched to software STOP mode by using a store instruction (ST or SST instruction) or bit manipulation instruction (SET1, CLR1, or NOT1 instruction) to set the PSC register. Although program execution stops in software STOP mode, the contents of all registers and of RAM immediately before software STOP mode began are maintained. The operation of all NB85E-internal peripheral I/O is also

(2) Cancellation of software STOP mode

Software STOP mode is canceled by a non-maskable interrupt request, an unmasked maskable interrupt request, or the input of a DCRESZ signal.

(a) Cancellation by interrupt request

Software STOP mode is canceled by a non-maskable interrupt request not masked by the PSC register or by an unmasked maskable interrupt request regardless of the priority. The following table shows the operation performed after software STOP mode is canceled.

Caution An interrupt request that occurs while the NMI2M to NMI0M and INTM bits of the power save control register (PSC) are set (interrupt disabled), is invalid (software STOP mode is not canceled).

Table 6-2. C	Depration After S	oftware STOP	Mode Is Canceled	by Interrupt Request
	Sporation Altor O			sy monapt noquoot

Cancellation Source	Interrupt Enabled (EI) State	Interrupt Disabled (DI) State
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execution of next instruction	Execution of next instruction

The operation shown in Table 6-3 is performed if software STOP mode was set within the interrupt service routine.

Interrupt Service Routine Type When Software STOP Mode Is Set	Cancel	lation Source Priority ^{Note 1}	Operation
Maskable interrupt	Maskable interrupt request	Low Same High (ID = 1) ^{Note 2}	Software STOP mode is canceled and the interrupt request is not acknowledged (pending).
	Non-maskable interrupt request	High (ID = 0) ^{Note 3} –	Software STOP mode is canceled and the interrupt request is acknowledged.
Non-maskable interrupt	Maskable interrupt request	_	Software STOP mode is canceled and the interrupt request is not acknowledged (pending).
	Non-maskable	Low	
	interrupt	Same	
	request	High	Software STOP mode is canceled and the interrupt request is acknowledged.

Table 6-3. Operation After Setting Software STOP Mode in Interrupt Service Routine

- **Notes 1.** The priority order of the interrupts when software STOP mode is set (interrupts that were under servicing).
 - 2. When the ID bit of the PSW is 1 (interrupt acknowledgement disabled)
 - 3. When the ID bit of the PSW is 0 (interrupt acknowledgement enabled)

(b) Cancellation by DCRESZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the DCRESZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.5 Hardware STOP Mode

In hardware STOP mode, the CPU operation clock and the clock generator are stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leak current is lost.

(1) Setting and operation status

The NB85E is switched to hardware STOP mode by inputting a low-level signal to the DCSTOPZ pin. The NB85E is switched to hardware STOP mode even if a low-level signal is input to the DCSTOPZ pin when the NB85E is in HALT mode or software STOP mode.

Although program execution stops in hardware STOP mode, the contents of all registers and of RAM immediately before hardware STOP mode began are maintained. The operation of all NB85E-internal peripheral I/O is also stopped.

* Remark The NB85E may not switch to hardware STOP mode correctly if the DCSTOPZ input becomes active (low level) due to a read modify write, misalign access, etc. while the VBLOCK signal is locked. If the DCSTOPZ input becomes low level in the bus lock state, an internal CPU of the NB85E is stopped, but the HWSTOPRQ signal, which controls the external clock generator, does not become active because the slave device connected to the locked bus may require clock supply. Consequently, clock is not stopped and the NB85E will not switch to hardware STOP mode.

If the system must be switched to hardware STOP mode when the DCSTOPZ input is low level, mask the DCSTOPZ input by the VBLOCK signal to avoid switching to hardware STOP mode while the bus is locked.

(2) Cancellation of hardware STOP mode

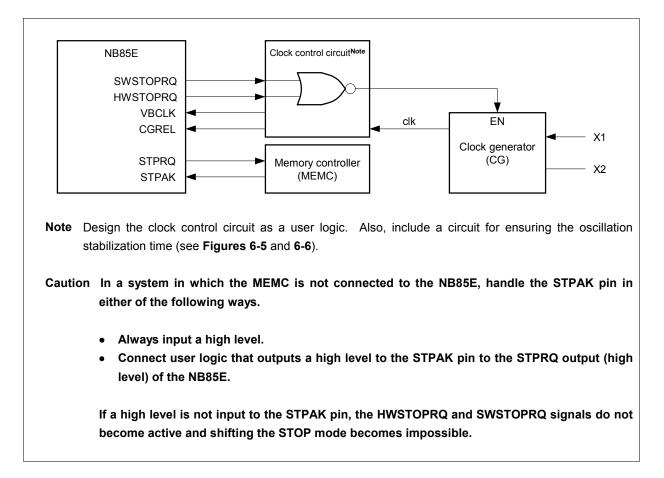
Hardware STOP mode is canceled by inputting the DCSTOPZ or DCRESZ signal.

(a) Cancellation by DCSTOPZ signal input

Hardware STOP mode is canceled when the input to the DCSTOPZ pin goes from low level to high level. The mode to which the NB85E switches after hardware STOP mode is canceled differs as follows according to the status in effect before hardware STOP mode was set.

Before Hardware STOP Mode Was Set	After Hardware STOP Mode Was Canceled
Normal operation mode	Normal operation mode
Software STOP mode	Normal operation mode
HALT mode	HALT mode

Table 6-4. Status After Cancellation of Hardware STOP Mode


(b) Cancellation by DCRESZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the DCRESZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.6 Clock Control in Software/Hardware STOP Mode

The NB85E and clock control circuit are connected as follows.

Figure 6-4. Connection of NB85E and Clock Control Circuit

(1) Clock control when setting or canceling software STOP mode

- (a) When setting software STOP mode (after software STOP mode is set by setting the STP bit of the PSC register)
 - <1> Set the STOP mode request signal (STPRQ) to active (high level) and output it to the memory controller.
 - <2> Input the active level (high level) of the acknowledge signal (STPAK) from the memory controller that received the STPRQ signal.
 - <3> Set the software STOP mode request signal (SWSTOPRQ) to active (high level) and output it to the clock control circuit (Use this SWSTOPRQ signal to stop the VBCLK output from the clock control circuit).

(b) When canceling software STOP mode

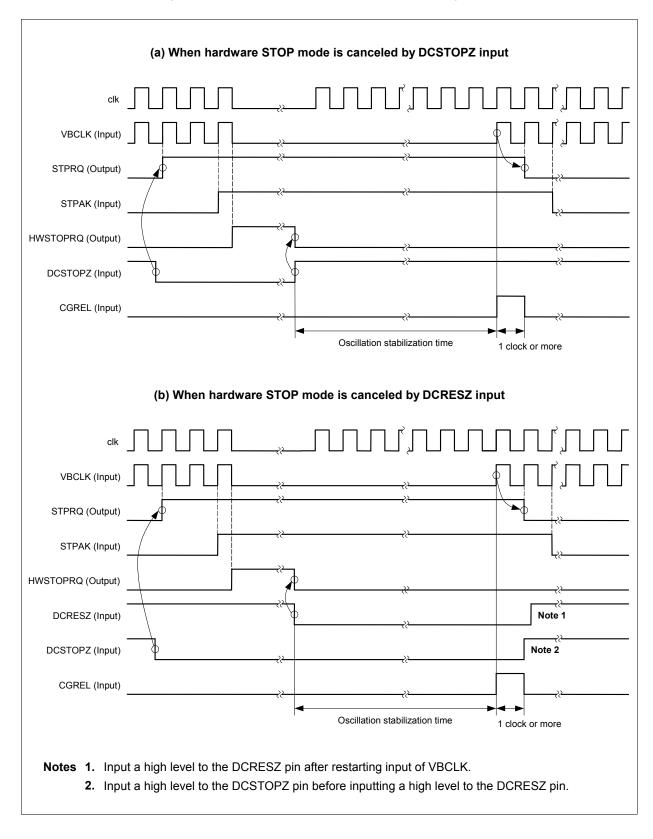
<1> Input a non-maskable interrupt request (DCNMIm), unmasked maskable interrupt request (INTn), or the DCRESZ signal (m = 2 to 0, n = 63 to 0).

- <2> Set the software STOP mode request signal (SWSTOPRQ) to inactive (low level) and output it to the clock control circuit (clock generator starts operation).
- <3> After the oscillation stabilization time, input the active level (high level) of the CGREL signal from the clock control circuit simultaneous with the VBCLK signal (The input of the VBCLK signal returns the STPRQ and STPAK outputs to low level).
- Cautions 1. Be sure to input the stable clock to the VBCLK pin.
 - 2. Input an active level (high level) to the CGREL pin for one clock or more. When setting the software STOP mode again, be sure to input an inactive level (low level) to the CGREL pin before setting.

Figure 6-5. Software STOP Mode Set/Cancel Timing Example

(2) Clock control when setting or canceling hardware STOP mode

(a) When setting hardware STOP mode

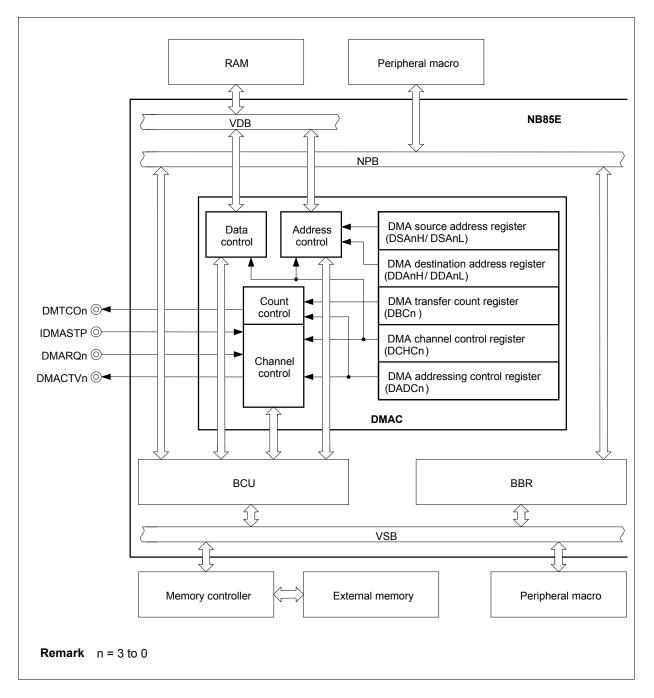

- <1> Input the active level (low level) of the DCSTOPZ signal.
- <2> Set the STOP mode request signal (STPRQ) to active (high level) and output it to the memory controller.
- <3> Input the active level (high level) of the acknowledge signal (STPAK) from the memory controller that received the STPRQ signal.
- <4> Set the hardware STOP mode request signal (HWSTOPRQ) to active (high level) and output it to the clock control circuit (Use this HWSTOPRQ signal to stop the VBCLK output from the clock control circuit).

(b) When canceling hardware STOP mode

- <1> Input the DCRESZ signal or the inactive level (high level) of the DCSTOPZ signal.
- <2> Set the hardware STOP mode request signal (HWSTOPRQ) to inactive (low level) and output it to the clock control circuit (clock generator starts operation).
- <3> After the oscillation stabilization time, input the active level (high level) of the CGREL signal from the clock control circuits simultaneous with the VBCLK signal (The input of the VBCLK signal returns the STPRQ and STPAK outputs to low level).

Cautions 1. Be sure to input a stable clock to the VBCLK pin.

2. Input an active level (high level) to the CGREL pin for one clock or more. When setting the hardware STOP mode again, be sure to input an inactive level (low level) to the CGREL pin before setting.


CHAPTER 7 DMAC

The DMA control unit (DMAC) controls data transfers between memory and peripheral macros or between memory and memory based on DMA transfer requests issued according to the DMARQ3 to DMARQ0 pins or software triggers (memory means RAM or external memory).

7.1 Features

- Four independent DMA channels
- Transfer units: 8 bits, 16 bits, or 32 bits
- Maximum transfer count: 65536 (2¹⁶)
- Two transfer types
 Flyby (one-cycle) transfer
 Two-cycle transfer
- Four transfer modes Single transfer mode
 - Single-step transfer mode
 - Line transfer mode (four bus cycle transfer mode)
 - (in two-cycle transfer, the operation from read to write is repeated four times)
- Block transfer mode
- Transfer requests Requests by DMARQ3 to DMARQ0 pin input Requests by software
- Transfer objects
 Between RAM and peripheral macros
 Between RAM and external memory
 Between RAM and RAM
 Between external memory and peripheral macros
 Between external memory and external memory (Transfer between little endian area and big endian area is possible)
- Terminal count output signals (DMTCO3 to DMTCO0)
- Next address setting function

7.2 Configuration

7.3 Transfer Objects

(1) Transfer types

Table 7-1 shows the relationships between transfer types and transfer objects.

Caution Operation is not guaranteed when a transfer is performed using a combination of transfer source and transfer destination marked by an "No" in Table 7-1.

Table 7-1. Relationships Between Transfer Type and Transfer Object

		Transfer Destination					
		Two-cycle Transfer		Flyby Transfer			
		VSB	NPB	RAM	VSB	NPB	RAM
Transfer Source	VSB	Yes	Yes	Yes	Yes ^{Note}	No	No
	NPB	Yes	Yes	Yes	No	No	No
	RAM	Yes	Yes	Yes	No	No	No

Note The transfer can be performed only when using the MEMC (NB85E500/NU85E500) associated with the flyby transfer.

Remark Yes: Transfer enabled

No: Transfer disabled

VSB: External memory or peripheral macro on the VSB

NPB: Peripheral macro on the NPB

(2) Wait function

Table 7-2 shows the relationships between the wait function and transfer objects.

Table 7-2. Relationships Between Wait Function and Transfer Object

Transfer Object	Wait Function
VSB	Set by MEMC (NB85E500/NU85E500, NU85E502)
NPB	Set by VSWC register
RAM	No wait

7.4 DMA Channel Priorities

DMA channel prioritization is fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

This prioritization is only valid in the TI state. During a block transfer, the channel used for transfer is never switched.

During a single-step transfer, if a higher priority DMA transfer request is generated during the period when the bus is released (TI), the higher priority DMA transfer is performed.

7.5 Control Registers

7.5.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA transfer source addresses (28 bits each) for DMA channels n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL, respectively.

Since they are two-stage FIFO-configuration buffer registers, the transfer source address of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

When a flyby transfer is set according to the TTYP bit of the DMA addressing control registers n (DADCn), the external memory addresses are set by the DSAn registers. At this time, any settings of the DMA destination address registers n (DDAn) are ignored.

(1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SA0H	IR	0	0	0	SA 27	SA 26	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	Address FFFFF082H	After rese Undefine
					1	1		1		1	1		1				1	
SA1H	IR	0	0	0	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After rese
JOA III	IIX	0	U	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF08AH	Undefine
I																	1	
SA2H	IR	0	0	0	SA 27	SA 26	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	Address FFFFF092H	After res Undefine
I						20	20		20			20	10	10		10	1111100211	Chaoline
)SA3H	IR	0	0	0	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After res
лала	IK	0	U	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF09AH	Undefine
Bit po	sition	Bit	name									Functi	ion					
15		IR		Sp	Specifies the DMA transfer source.													
			0: External memory or peripheral macro															
				1	: RAM	1												
11 to 0		SA: SA	27 to 16	tra		sourc					•		,	0			nsfer, the next memory addre	

(2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
DSA0L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DSAUL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF080H	Undefined
																	_	
DSA1L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DSAIL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF088H	Undefined
DSA2L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DSAZL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF090H	Undefined
																	_	
DSA3L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DSASL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF098H	Undefined
Bit pos	sition	Bit	name									Functi	ion					
15 to 0)	SA	15 to	Se	ets the	DMA	trans	fer so	urce a	ddres	s (A1	5 to A	0). Di	uring a	a DMA	trans	fer, the next D	MA
		SA	0	tra	Insfer	sourc	e add	ress is	s main	itaineo	d. For	a flyb	y tran	sfer, t	he ex	ternal	memory addre	ess is
				ma	aintair	ned.												

Figure 7-2. DMA Source Address Registers 0L to 3L (DSA0L to DSA3L)

7.5.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA transfer destination addresses (28 bits each) for DMA channels n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL, respectively.

Since they are two-stage FIFO-configuration buffer registers, the transfer destination address of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

When a flyby transfer is set according to the TTYP bit of the DMA addressing control registers n (DADCn), any setting of these registers are ignored.

(1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DDA0H	IR	0	0	0	DA 27	DA 26	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	Address FFFFF086H	After rese Undefine
																	-	
DDA1H	IR	0	0	0	DA 27	DA 26	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	Address FFFFF08EH	After rese Undefine
					1		1	1										
DDA2H	IR	0	0	0	DA 27	DA 26	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA 16	Address FFFFF096H	After rese Undefine
					1		1	1										
DDA3H	IR	0	0	0	DA 27	DA 26	DA 25	DA 24	DA 23	DA 22	DA 21	DA 20	DA 19	DA 18	DA 17	DA	Address FFFFF09EH	After reso Undefine
					21	20	20	24	23	22	21	20	19	10	17	16	FFFFF09EN	Undenne
Bit pos	sition	Bit	name									Functi	on					
15		IR		Specifies the DMA transfer destination.														
			C	: Exte	rnal n	nemor	y or p	eriphe	ral ma	acro								
				1	: RAN	1												
11 to 0		DA: DA	27 to		Sets the DMA transfer destination address (A27 to A16). During a DMA transfer, the next DMA transfer destination address is maintained. For a flyby transfer, this is ignored.											lext		

Figure 7-3. DMA Destination Address Registers 0H to 3H (DDA0H to DDA3H)

(2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
DDA0L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAUL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF084H	Undefined
																	-	
DDA1L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDATE	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF08CH	Undefined
																	_	
DDA2L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAZL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF094H	Undefined
																	_	
DDA3L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAJL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF09CH	Undefined
Bit po	sition	Bit	name									Functi	ion					
15 to 0)	DA	15 to	Se	ets the	DMA	trans	fer de	stinati	on ad	dress	(A15	to A0)	. Dur	ing a l	DMA t	ransfer, the ne	ext DMA
		DA	0	tra	ansfer	destir	ation	addre	ss is r	nainta	ained.	For a	ı flyby	trans	fer, thi	is is ig	nored.	

Figure 7-4. DMA Destination Address Registers 0L to 3L (DDA0L to DDA3L)

7.5.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the transfer counts for DMA channels n (n = 0 to 3). These registers maintain the remaining transfer count during a DMA transfer.

Since they are two-stage FIFO-configuration buffer registers, the transfer count of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

These registers are decremented by 1 for each transfer that is performed. Transfer ends when a borrow occurs.

These registers can be read or written in 16-bit units.

Note that in the case of line transfers, when the DBCn register is 0003H (4 transfers) this becomes one line transfer. For a setting in which the transfer count cannot be divided by 4, the sections that can be line transferred are (line) transferred first, then the remaining indivisible section is transferred as single transfers.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DBC0	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	After res
5000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C0H	Undefine
		1	1		1	1	1	1	1	1				1			1	
DBC1	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	After res
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C2H	Undefine
	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	A ft an an a
BC2	вс 15	вс 14	ВС 13	вс 12	вс 11	вс 10	9 BC	8 8	вс 7	вс 6	вс 5	вс 4	вс 3	вс 2	BC 1	0 BC	Address FFFFF0C4H	After res
	15	14	13	12		10	9	0	1	0	5	4	3	2	I	0	FFFFF0C4N	Undenne
	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	After res
DBC3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C6H	
	2	•	•					•		•								
Bit po	sition	Bit	name	•								Funct	ion					
15 to ()	BC	15 to	Se	ets the	trans	fer co	unt. [During	a DM	A trar	nsfer, t	the re	mainir	ng trar	nsfer o	count is mainta	ined.
		BC	0	_														
					DB	Cn							Stat	us				
					0000	Н	Tran	nsfer 1	or rei	mainir	ng trar	nsfer c	ount					
					0001	Н	Tran	sfer 2	or re	mainir	ng trar	nsfer c	ount					
					:		:											
					FFFF	ΞH	Tran	sfer 6	5536	(2 ¹⁶) c	or rem	aining	trans	fer co	unt			

Figure 7-5. DMA Transfer Count Registers 0 to 3 (DBC0 to DBC3)

7.5.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

These 16-bit registers are used to control the DMA transfer operation mode for DMA channels n (n = 0 to 3). These registers can be read or written in 16-bit units.

Caution These registers cannot be accessed during a DMA transfer.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	I	
DADC0	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	TM0	TTYF	TDIR	Address FFFFF0D0H	After rese 0000H
									1	1	1	1	1	1	1	1	I	
DADC1	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	тмо	TTYF	TDIR	Address FFFFF0D2H	After rese 0000H
					1					1	1	1	1	1	1	1	1	
DADC2	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	тмо	TTYF	TDIR	Address FFFFF0D4H	After rese 0000H
DADC3	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	тмо	TTYF	TDIR	Address FFFFF0D6H	After rese 0000H
-		1																
Bit po	sition	Bit	name									Funct	ion					
15, 14	ļ	DS DS		S	ets the	trans	fer dat	a siz	e for a	a DMA	trans	fer.						
					DS1		DS0					Т	ransf	er Dat	a Size)		
					0		0	8 k	oits									
					0		1	16	bits									
					1		0	32	bits									
					1		1	Se	etting p	orohib	ited							
		SAI SAI	,	Se	ets the	coun	t direct	ion c	of the t	ransfe	er sou	rce ad	ldress	es for	DMA	chanr	nels n (n = 0 to	3).
7, 6					SAD	1 :	SAD0						Cour	t Dire	ction			
7, 6					0		0	Inc	creme	nt								
7, 6								-										
7,6					0		1	De	ecreme	ent								
7, 6					0		1 0		ecreme ked	ent								

Figure 7-6. DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3) (1/2)

Bit position	Bit name			Function						
5, 4	DAD1, DAD0	Sets the co	unt directi	ion of the transfer destination addresses for DMA channels n (n = 0 to 3).						
		DAD1	DAD0	Count Direction						
		0	0	Increment						
		0	1	Decrement						
		1	0	Fixed						
		1	1	Setting prohibited						
3, 2	ТМ1, ТМ0	Sets the tra	ansfer moo	de used for DMA transfers.						
		TM1	TM0	Transfer Mode						
		0	0	Single transfer mode						
		0	1	Single-step transfer mode						
		1	0	Line transfer mode						
		1	1	Block transfer mode						
1	TTYP	Sets the DI	MA transfe	er type.						
		0: Two-cy								
		1: Flyby transfer ^{Note}								
0	TDIR	Sets the transfer direction used for transfers between peripheral macros and external memory								
		The setting	is valid or	nly for flyby transfers and is ignored for two-cycle transfers.						
		0: Externa	I memory	to peripheral macro (read)						
		1: Periphe	eral macro	to external memory (write)						

Figure 7-6. DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3) (2/2)

Г

Note Valid only when using the MEMC associated with the flyby transfer.

7.5.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operation mode for DMA channels n (n = 0 to 3). These registers can be read or written in 8-bit or 1-bit units (However, bit 7 can only be read and bits 2 and 1 can only be written. If bits 2 and 1 are read, the value 0 is read).

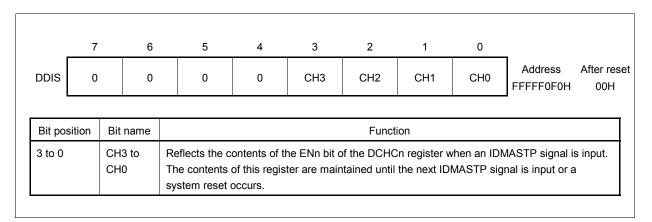

	7		6	5	4	3	2	1	0		
DCHC0	тс	:0	0	0	0	MLE0	INIT0	STG0	EN0	Address FFFFF0E0H	After rese 00H
DCHC1	тс	:1	0	0	0	MLE1	INIT1	STG1	EN1	Address FFFFF0E2H	After rese 00H
DCHC2	тс	2	0	0	0	MLE2	INIT2	STG2	EN2	Address FFFFF0E4H	After rese 00H
DCHC3	снсз тсз		0	0	0	MLE3	INIT3	STG3	EN3	Address FFFFF0E6H	After rese 00H
Bit po	sition	Bit	name				Funct	ion			
Bit position 7		TCn	า	This is a statu	e hit that in	diantan who	1 4 a a a a a a 4 T	NAA transfo	r haa anda	d for DMA char	nol n
			-		nly be read. sfer has not	This bit is				It is cleared (0)	
3		MLE		This bit can or is read. 0: DMA trans 1: DMA trans If this bit is se status in which acknowledged If this bit is cle	nly be read. sfer has not sfer has end t (1) when a h DMA tran d even if the eared (0) wh	This bit is a ended ded a terminal co sfer is perm e TCn bit is r men a termin	set (1) wher punt is outpu itted continu not read. al count is c	ut, the ENn l us. Also, the Entre	bit is not clunche next DM		when it he est is the
			Ēn	This bit can or is read. 0: DMA trans 1: DMA trans If this bit is se status in which acknowledged If this bit is cle status in which made, if the T	nly be read. sfer has not sfer has end t (1) when a h DMA tran d even if the eared (0) wh h DMA tran Cn bit is rea	This bit is ended ded a terminal co sfer is perm e TCn bit is r nen a termin sfer is prohil ad, the ENn	set (1) wher bunt is outpu itted continu not read. al count is o bited occurs bit must be	ut, the ENn I ut, the ENn I ues. Also, the putput, the E s. When the set (1).	bit is not clunche next DM	It is cleared (0) eared (0), and t IA transfer requ leared (0), and	when it he est is the
3 2 1		MLE INIT STO	Ēn	This bit can or is read. 0: DMA trans 1: DMA trans If this bit is se status in which acknowledged If this bit is cle status in which made, if the T If this bit is se If this bit is se	afer has not afer has end t (1) when a h DMA tran d even if the eared (0) wh h DMA tran Cn bit is rea t (1), the DI t (1) during	This bit is ended ded a terminal co sfer is perm e TCn bit is r nen a termin sfer is prohil ad, the ENn MA transfer the status ir	set (1) wher bunt is output itted continu- not read. al count is of bited occurs bit must be is forcibly te	ut, the ENn l ues. Also, the butput, the E when the set (1). rrminated.	fer ends. I bit is not clo he next DM ENn bit is cl	It is cleared (0) eared (0), and t IA transfer requ leared (0), and	when it he est is the st is
2		INIT	Ēn Īn Đn	This bit can or is read. 0: DMA trans 1: DMA trans If this bit is se status in which acknowledged If this bit is cle status in which made, if the T If this bit is se 1), the DMA tr Sets whether	afer has not afer has end t (1) when a h DMA tran d even if the eared (0) wh h DMA tran Cn bit is rea t (1), the DI t (1) during ransfer begi DMA transfe	This bit is ended ded a terminal co sfer is perm e TCn bit is r nen a termin sfer is prohil ad, the ENn MA transfer the status ir ins. er is permitt er is complet	set (1) wher bunt is outpu- itted continu- not read. al count is of bited occurs bit must be is forcibly te is forcibly te n which DM/ ed or prohib- ted. It is als	a DMA trans	fer ends. I bit is not cla he next DM ENn bit is cl e next DMA permitted A channel i)) when an	It is cleared (0) eared (0), and t IA transfer requ leared (0), and t transfer reques	when it he est is the st is Vn bit = eared

Figure 7-7. DMA Channel Control Registers 0 to 3 (DCHC0 to DCHC3)

7.5.6 DMA disable status register (DDIS)

This register maintains the contents of the ENn bit of the DCHCn register when an IDMASTP signal is input (n = 0 to 3).

This register is read-only in 8-bit or 1-bit units.

Figure 7-8. DMA Disable Status Register (DDIS)

7.5.7 DMA restart register (DRST)

This register is used to restart a DMA transfer that was forcibly interrupted by inputting an IDMASTP signal. The ENn bits of this register are linked respectively with the ENn bits of the DCHCn registers (n = 0 to 3). After a DMA transfer was forcibly interrupted by inputting the IDMASTP signal, the DMA channel for which the transfer was interrupted is confirmed from the contents of the DDIS register, and the DMA transfer can be restarted by setting (1) the ENn bit of the corresponding DMA channel.

This register can be read or written in 8-bit or 1-bit units.

	7		6	5	4	3	2	1	0	_	
DRST (0	0	0	EN3	EN2	EN1	EN0	Address FFFFF0F2H	After rese 00H
Bit position 3 to 0		Bit r	name				Funct	ion			
3 to 0		EN3				•	•			n. This bit is cle	
3 to 0		EN3 EN0	() vi ti	0) when the [OMA transfe ASTP signa of the DCHC	er ends due I is input or Cn register	to the outpu	it of a termi	nal count. I	n. This bit is cle t is also cleared inated by settin	d (0) t

7.6 Next Address Setting Function

The DMA source address registers (DSAnH and DSAnL), DMA destination address registers (DDAnH and DDAnL), and DMA transfer count registers (DBCn) are two-stage FIFO-configuration buffer registers (n = 0 to 3).

When a terminal count signal (DMTCOn) is output, these registers are automatically rewritten with the values that had just been set before the signal is output.

Therefore, if a new DMA transfer is set for these registers during a DMA transfer, the transfer can begin only when the ENn bit of the DCHCn register is set (1).

Figure 7-10 shows the buffer register configuration.

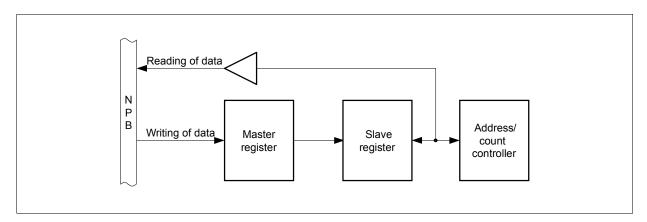


Figure 7-10. Buffer Register Configuration

7.7 DMA Bus State

7.7.1 Bus state types

DMAC bus cycles consist of the 13 states shown below.

(1) TI state

This is an idle state in which there is no access request. The DMARQ3 to DMARQ0 signals are sampled at the rising edge of the VBCLK signal.

(2) T0 state

This is a DMA transfer ready state (There is a DMA transfer request, and the bus access right has been acquired for the first DMA transfer).

(3) T1R state

This is the state to which the DMAC moves first for a two-cycle transfer read. Address driving begins. After the T1R state, the DMAC always transitions to the T2R state.

(4) T1RI state

This is a state in which the DMAC is awaiting an acknowledge signal for an external memory read request. After the last T1RI state, the DMAC always transitions to the T2R state.

(5) T2R state

This is a wait state or the last state of a two-cycle transfer read. In the last T2R state, read data is sampled. After the read data is sampled, the DMAC always transitions to the T1W state.

(6) T2RI state

This is a DMA transfer ready state for a DMA transfer to RAM (The bus access right has been acquired for a DMA transfer to RAM).

After the last T2RI state, the DMAC always transitions to the T1W state.

(7) T1W state

This is the state to which the DMAC moves first for a two-cycle transfer write. Address driving begins. After the T1W state, the DMAC always transitions to the T2W state.

(8) T1WI state

This is a state in which the DMAC is awaiting an acknowledge signal for an external memory write request. After the last T1WI state, the DMAC always transitions to the T2W state.

(9) T2W state

This is a wait state or the last state of a two-cycle transfer write. In the last T2W state, the write strobe signal is made inactive.

(10) T1FH state

This is the basic state of a flyby transfer and is the execution cycle of that transfer. After the T1FH state, the DMAC transitions to the T2FH state.

(11) T1FHI state

This is the last state of a flyby transfer, and the DMAC is awaiting the end of the transfer. After the T1FHI state, the bus is released, and the DMAC transitions to the TE state.

(12) T2FH state

This is the state in which the DMAC judges whether or not to continue flyby transfers. If the next transfer is executed in block transfer mode, the DMAC moves to the T1FH state after the T2FH state. In other modes, if a wait has occurred, the DMAC transitions to the T1FHI state. If no wait has occurred, the bus is released, and the DMAC transitions to the TE state.

(13) TE state

This is the state in which the DMA transfer is completed. The DMAC generates a terminal count signal (DMTCOn) and initializes other types of internal signals (n = 3 to 0). After the TE state, the DMAC always transitions to the TI state.

7.7.2 DMAC bus cycle state transitions

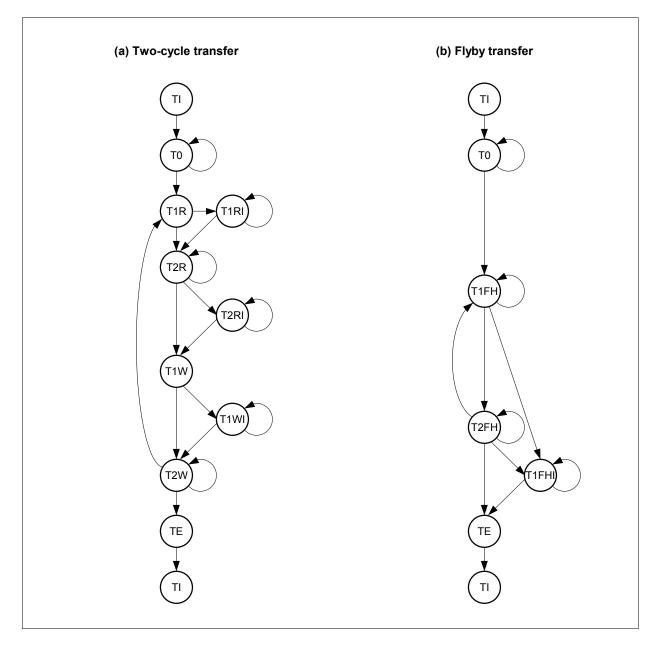


Figure 7-11. DMAC Bus Cycle State Transition Diagram

7.8 Transfer Modes

7.8.1 Single transfer mode

In single transfer mode, the DMAC releases the bus after each byte, halfword, or word transfer. If there is a subsequent DMA transfer request, a single transfer is performed again. This operation continues until a terminal count occurs.

If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence. However, if a lower priority DMA transfer request is generated within one clock after the end of a single transfer, even if the previous higher priority DMA transfer request signal stays active, this request is not prioritized, and the next DMA transfer after the bus is released for the CPU is a transfer based on the newly generated, lower priority DMA transfer request.

Figures 7-12 to 7-15 show examples for single transfer.

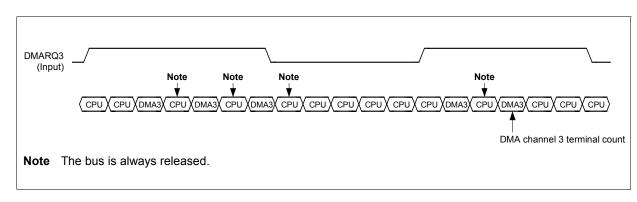


Figure 7-13 shows a single transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 to 2 are used for a block transfer, and channel 3 is used for a single transfer.

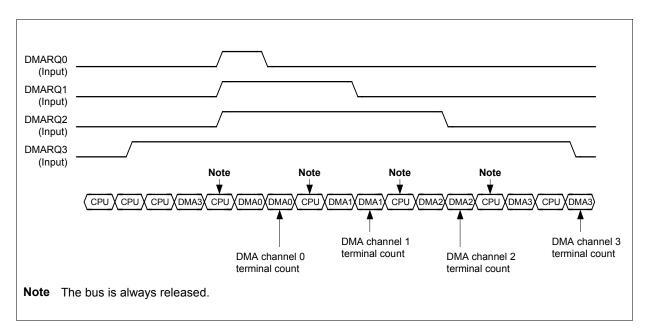
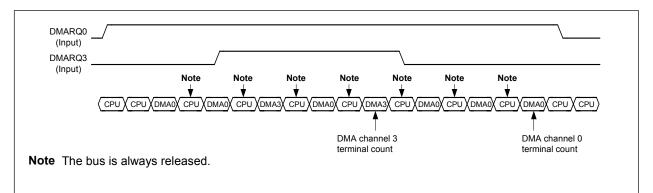



Figure 7-13. Single Transfer Example 2

Figure 7-14 shows a single transfer mode example in which a lower priority DMA transfer request is generated within one clock after the end of a single transfer. DMA channels 0, 3 are used for a single transfer. When two DMA transfer request signals are activated at the same time, the two DMA transfers are performed alternately.

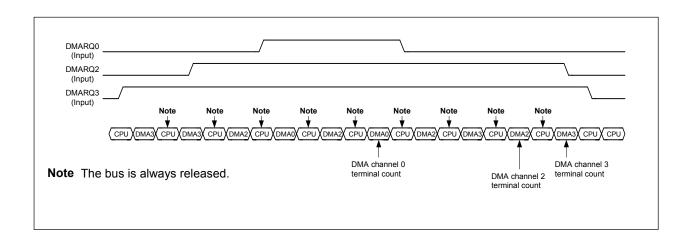
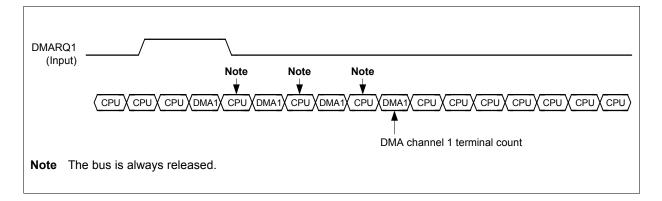
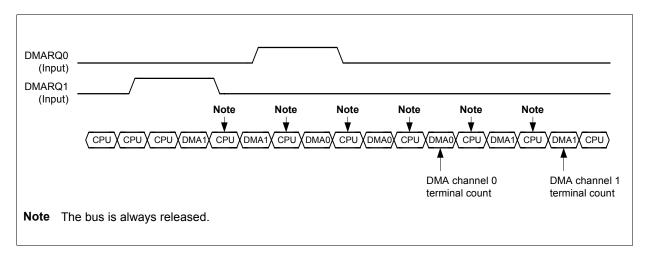



Figure 7-15 shows a single transfer mode example in which two or more lower priority DMA transfer requests are generated within one clock after the end of a single transfer. DMA channels 0, 2, and 3 are used for a single transfer. When three or more DMA transfer request signals are activated at the same time, always the two highest priority DMA transfers are performed alternately.



7.8.2 Single-step transfer mode

In single-step transfer mode, the DMAC releases the bus after each byte, halfword, or word transfer. Once a DMA transfer request signal (DMARQ3 to DMARQ0) is received, this operation continues until a terminal count occurs.


If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence.

Figures 7-16 and 7-17 show single-step transfer mode examples.

7.8.3 Line transfer mode

In line transfer mode, the DMAC releases the bus after every four byte, halfword, or word transfers. If there is a subsequent DMA transfer request, four transfers are performed again. This operation continues until a terminal count occurs. In two-cycle transfer, the operation from read to write is repeated four times.

If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence. However, if a lower priority DMA transfer request is generated within one clock after the end of a line transfer, even if the previous higher priority DMA transfer request signal stays active, this request is not prioritized, and the next DMA transfer after the bus is released for the CPU is a transfer based on the newly generated, lower priority DMA transfer request.

Figures 7-18 to 7-21 show examples for line transfer.

Figure 7-18. Line Transfer Example 1

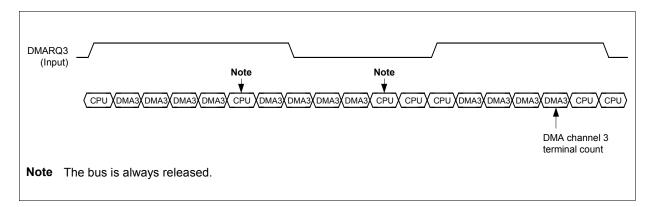


Figure 7-19 shows a line transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 to 2 are used for a block transfer, and channel 3 is used for a line transfer.

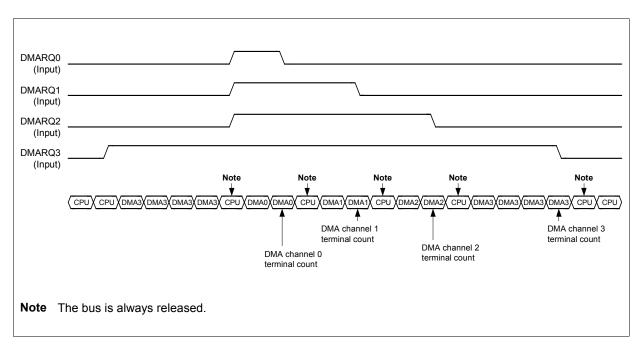
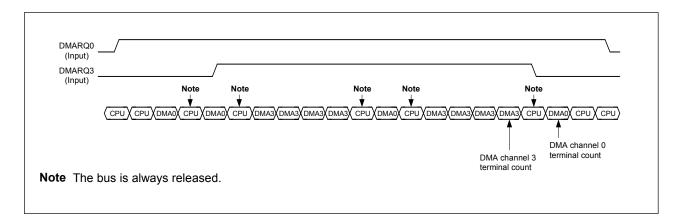
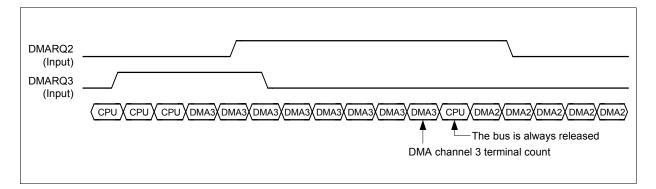


Figure 7-19. Line Transfer Example 2


Figures 7-20 and 7-21 show line transfer mode examples in which a lower priority DMA transfer request is generated within one clock after the end of a line transfer. When two DMA transfer request signals are activated at the same time, the two DMA transfers are performed alternately.

DMA channels 0 and 3 in Figure 7-20 are used for line transfer.

DMA channel 0 in Figure 7-21 is used for a single transfer, and channel 3 is used for a line transfer.


7.8.4 Block transfer mode

In block transfer mode, once transfer begins, the transfers continue without releasing the bus until a terminal count occurs. No other DMA transfer requests are acknowledged during a block transfer.

After the block transfer ends and the DMAC has released the bus, another DMA transfer can be acknowledged. Although it is prohibited to insert a CPU bus cycle during a block transfer, bus mastership can be transferred even during a block transfer in response to a request by the external bus master (including SDRAM refresh).

Figure 7-22 shows a block transfer mode example. It is a block transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 2 and 3 are used for a block transfer.

7.8.5 One-time transfer when executing single transfers using DMARQn signal

When executing single transfers to the external memory using the DMARQn signal input, in order to perform the transfer only once, it is necessary to make the DMARQn signal inactive within 2 clocks of the end of the write cycle of a 2-cycle single transfer (exceeding 2 clocks makes the transfer continuous) (n = 3 to 0).

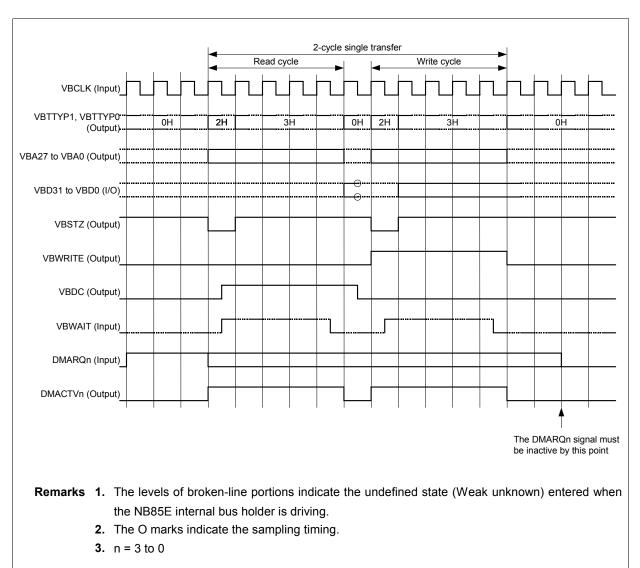


Figure 7-23. One-Time Transfer When Executing Single Transfers Using DMARQn Signal

7.9 Transfer Types

7.9.1 Two-cycle transfer

In a 2-cycle transfer, data is transferred in 2 cycles: a read cycle (transfer source to DMAC) and a write cycle (DMAC to transfer destination).

In the first cycle, the transfer source address is output to read data from the transfer source to the DMAC. In the second cycle, the transfer destination address is output to write data from the DMAC to the transfer destination.

Caution A one-clock idle period is always inserted between a read cycle and a write cycle.

7.9.2 Flyby transfer

A flyby transfer can be executed only when the MEMC supports flyby transfers.

Since a flyby transfer transfers data in a single cycle, a memory address is always output regardless of whether it is the transfer source or transfer destination, and the memory or WRZ/IORDZ or RDZ/IOWRZ singal of the external I/O is made active at the same time. The external I/O is selected according to the DMACTV3 to DMACTV0 signals.

Caution Flyby transfer between SDRAM that use an SDRAM controller (NU85E502) is disabled.

7.10 DMA Transfer Start Factors

DMA transfer can be started by the following two factors.

(1) Request by external pin (DMARQn)

If the ENn bit of the DCHCn register is set to 1 and the TCn bit is set to 0, the DMARQn signal becomes active in TI state. If the DMARQn signal becomes active in TI state, the DMAC moves to T0 state and DMA transfer begins.

(2) Request by software

If the STGn, ENn, and TCn bits of the DCHCn register are set as follows, DMA transfer begins (n = 0 to 3).

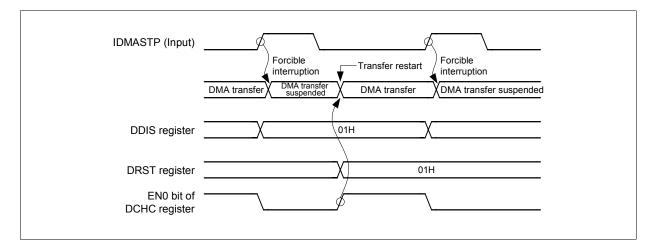
- STGn bit = 1
- ENn bit = 1
- TCn bit = 0

7.11 Output When DMA Transfer Is Complete

The terminal count signal (DMTCOn) becomes active for only one clock in the final DMA transfer cycle (n = 3 to 0). For details of the timing that outputs the DMTCOn signal, refer to Figure 7-27.

	IARQn (Input)
	CPUX CPUX CPUXDMAnXDMAnXDMAnXCPU DMA channel n terminal count
Remark n = 3 to 0	

7.12 Forcible Interruption


DMA transfer can be forcibly interrupted by inputting the IDMASTP signal during the DMA transfer.

At this time, the DMAC clears (0) the ENn bit of the DCHCn register of all channels to set the state in which DMA transfer is prohibited, completes the DMA transfer that was being executed when the IDMASTP signal was input, and the bus releases to the CPU (n = 0 to 3).

For single-step transfer mode, block transfer mode, or line transfer mode, the DMA transfer request is maintained in the DMAC. When the ENn bit is set (1), the DMA transfer is restarted from the point at which the DMA transfer was interrupted.

For single transfer mode, when the ENn bit is set (1), the next DMA transfer request is acknowledged and DMA transfer begins.

Caution To forcibly interrupt DMA transfer and stop the next transfer from occurring, the IDMASTP signal must be made active before the end of the DMA transfer currently under execution. Moreover, although it is possible to restart DMA transfer following an interruption, this transfer cannot be executed under new settings (new conditions). Execute DMA transfer under new settings either after the end of the current transfer or after transfer has been forcibly terminated by setting the INITn bit of the DCHCn register (n = 0 to 3).

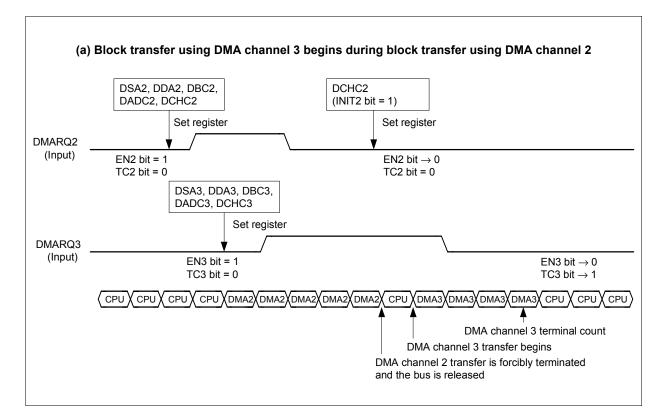
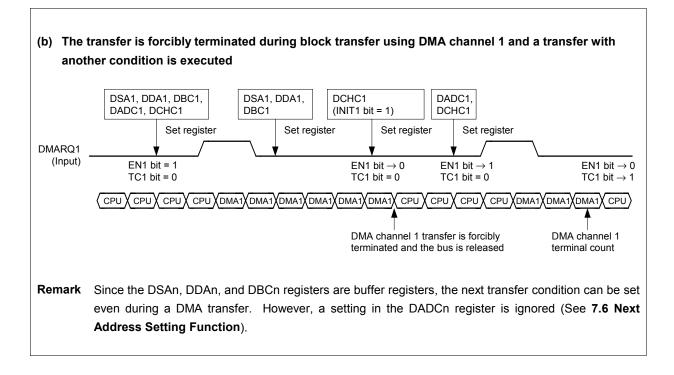


Figure 7-25. DMA Transfer Forcible Interruption Example


7.13 Forcible Termination

By setting (1) the INITn bit of the DCHCn register during a DMA transfer, it is possible to forcibly terminate the DMA transfer under execution. The following is an example of the operation of a forcible termination (n = 0 to 3).

Caution The setting (1) of the INITn bit is performed when the VSB has been released to the CPU (n = 0 to 3). Therefore, because the VSB is locked until the DMA transfer has completely finished in a block transfer using the VSB, it is not possible to exercise a forcible termination during this transfer.

Figure 7-26. DMA Transfer Forcible Termination Example (2/2)

7.14 DMA Transfer Timing Examples

Examples of the DMA transfer timing in each transfer mode are shown in the following pages.

The NB85E500, the NU85E500, and the NU85E502 are provided as MEMCs for the NB85E. This section gives examples in the case that the NB85E500 and the NU85E502 are used.

(1) Two-cycle transfer

Figures 7-27 to 7-30 show examples of the timing of two-cycle transfers between external SRAMs connected to the MEMC (NB85E500). Figures 7-31 and 7-32 show examples of the timing of two-cycle transfers between RAM connected to the VDB and SDRAM connected to the MEMC (NU85E502).

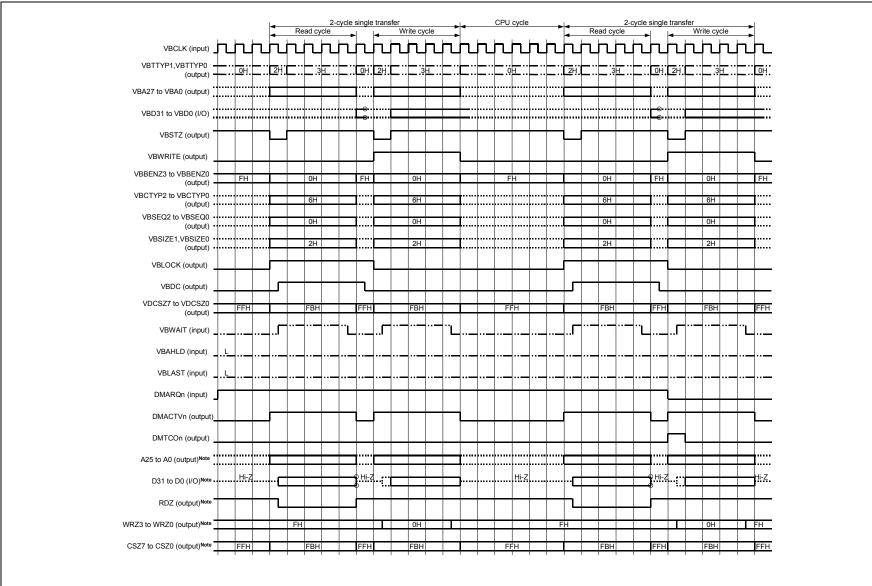

- **Remarks 1.** The levels of the broken-line portions of the VBTTYP1, VBTTYP0, VBA27 to VBA0, VBD31 to VBD0, VBCTYP2 to VBCTYP0, VBSEQ2 to VBSEQ0, VBSIZE1, VBSIZE0, VBWAIT, VBAHLD, and VBLAST signals indicate the undefined state (Weak unknown) entered when the NB85E internal bus holder is driving. The levels of the broken-line portions of the A25 to A0 and D31 to D0 signals are undefined (except those portions indicating Hi-Z).
 - 2. The O marks indicate the sampling timing.
 - **3.** n = 3 to 0

Figure 7-27 shows an example of the timing of a two-cycle single transfer (between external SRAMs connected to the NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

Note An NB85E500 register.

Figure 7-27. Example of Two-Cycle Single Transfer Timing (Between External SRAMs Connected to NB85E500)

Preliminary User's Manual A13971EJ7V0UM

Note These are NB85E500 signals.

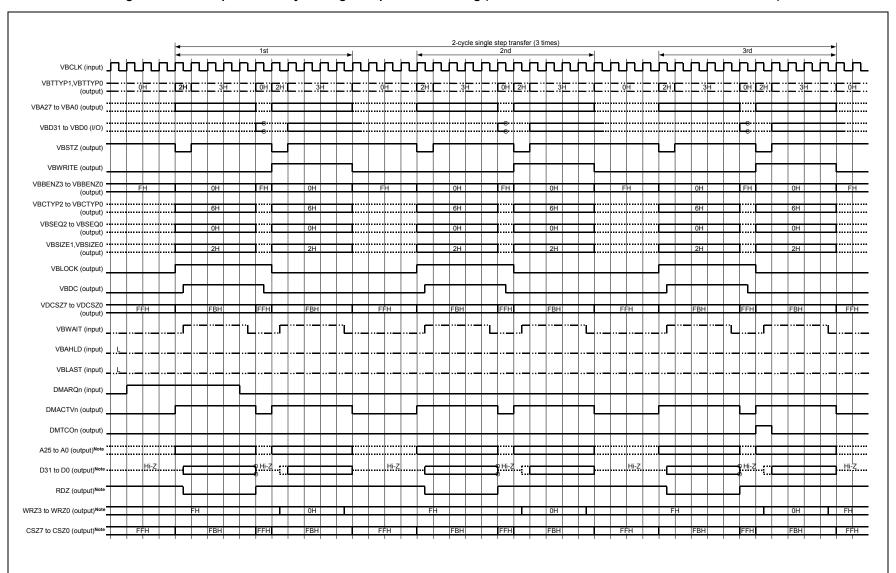

171

Figure 7-28 shows an example of the timing of a two-cycle single-step transfer (between external SRAMs connected to the NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0002H (3 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

Note An NB85E500 register.

Note These are NB85E500 signals.

Figure 7-29 shows an example of the timing of a two-cycle line transfer (between the external SRAMs connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7077H (No CS2 wait states)

Note An NB85E500 register.

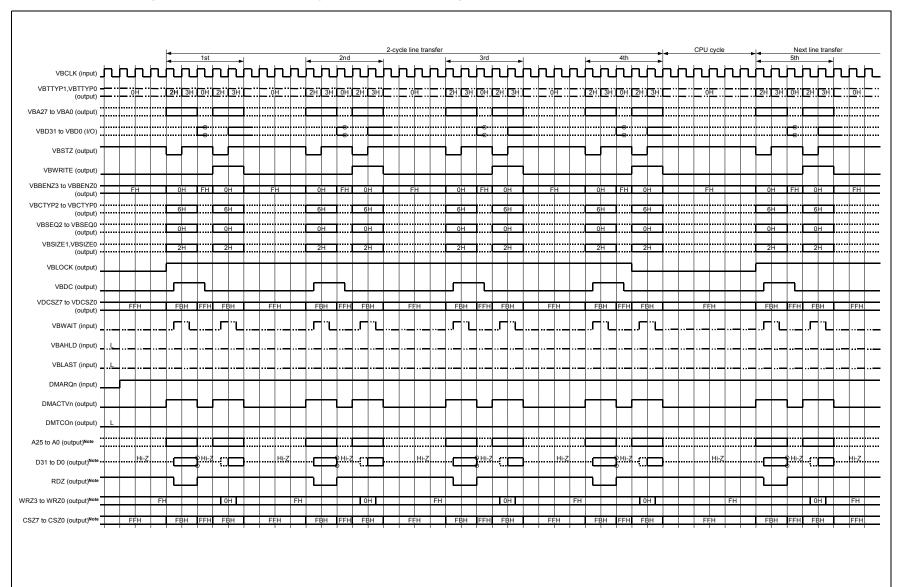


Figure 7-29. Example of Two-Cycle Line Transfer Timing (Between External SRAMs Connected to NB85E500)

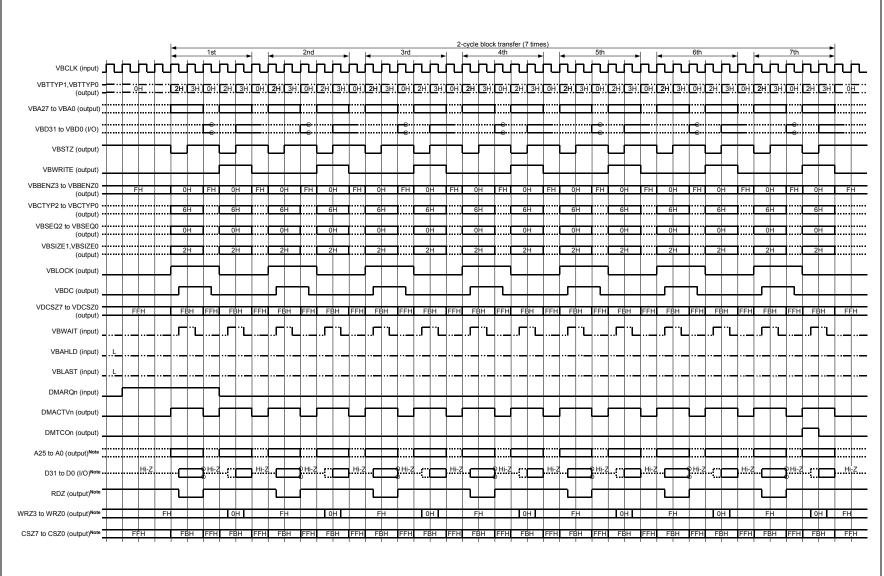

Preliminary User's Manual A13971EJ7V0UM

Figure 7-30 shows an example of the timing of a two-cycle block transfer (between the external SRAMs connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

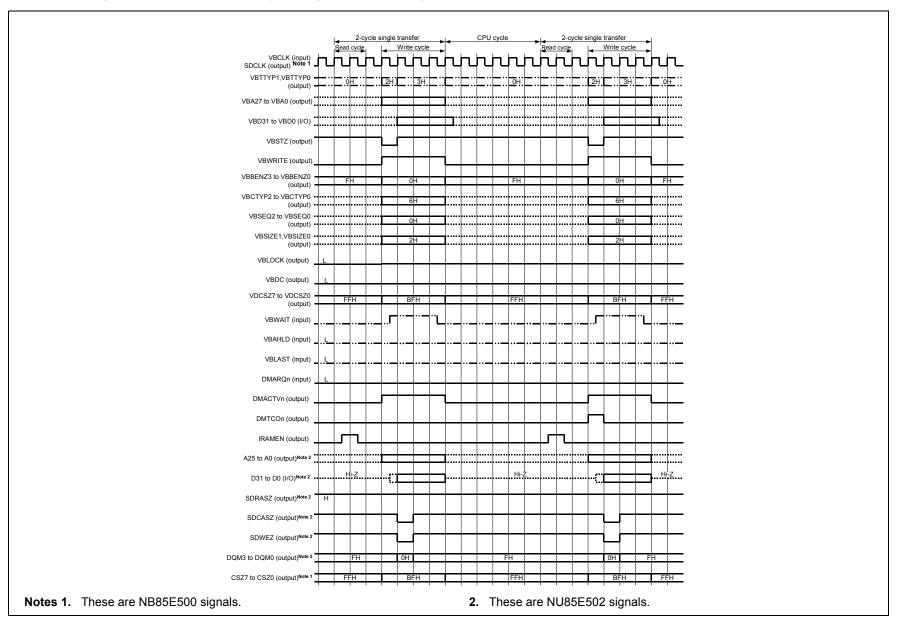
- DBCn register = 0006H (7 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7077H (No CS2 wait states)

Note An NB85E500 register.

CHAPTER 7 DMAC

Figure 7-30. Example of Two-Cycle Block Transfer Timing (Between External SRAMs Connected to NB85E500)

Note These are NB85E500 signals.


Figure 7-31 shows an example of the timing of a two-cycle transfer (from RAM connected to the VDB to SDRAM connected to the NU85E502). The settings of the registers in this figure are as follows.

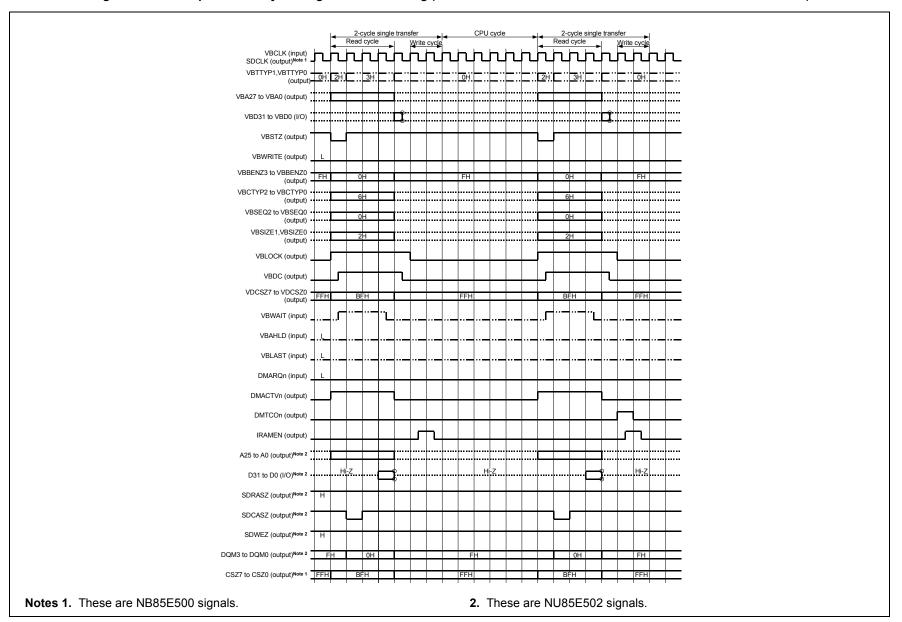
[Register settings]

- DBCn register = 0001H (2 transfers)
- SCRn register^{Note} = 2062H (CAS latency = 2,

number of wait states = 1, address shift width = 2 bits (32-bit data bus), low address width = 11 bits, address multiplexed width = 10 bits)

Note An NU85E502 register.

Figure 7-31. Example of Two-Cycle Single Transfer Timing (from RAM Connected to VDB to SDRAM Connected to NU85E502)


Figure 7-32 shows an example of the timing of a two-cycle single transfer (from SDRAM connected to the NU85E502 to RAM connected to the VDB). The settings of the registers in this figure are as follows.

[Register settings]

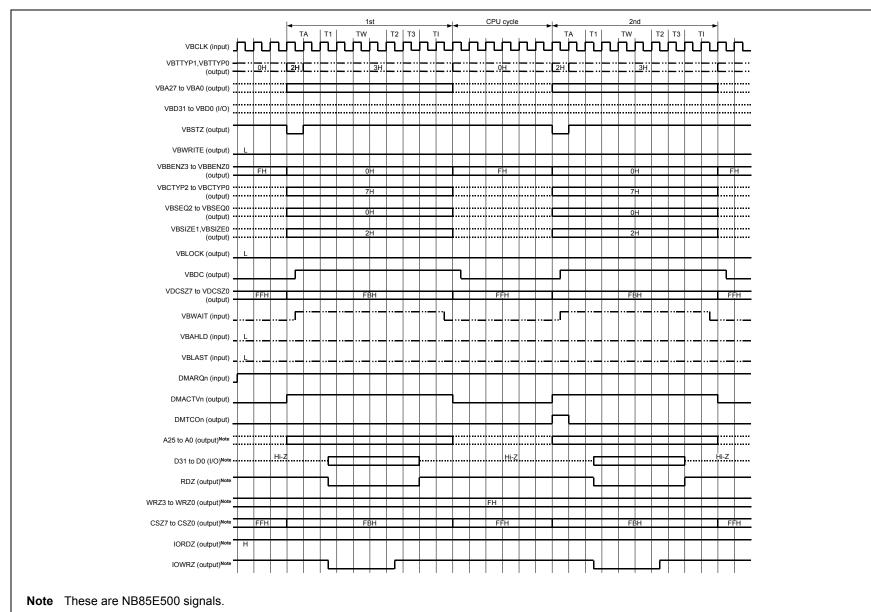
- DBCn register = 0001H (2 transfers)
- SCRn register^{Note} = 2062H (CAS latency = 2,

number of wait states = 1, address shift width = 2 bits (32-bit data bus), low address width = 11 bits, address multiplexed width = 10 bits)

Note An NU85E502 register.

Figure 7-32. Example of Two-Cycle Single Transfer Timing (from SDRAM Connected to NU85E502 to RAM Connected to VDB)

(2) Flyby transfers


Figures 7-33 to 7-38 show examples of the timing of flyby transfers between external SRAM and external I/O connected to the MEMC (NB85E500). The flyby transfer consists of the following states.

- T1, T2 states: These are basic states for accessing the NB85E500.
- T3 state: This is a basic state added for flyby transfer.
- TA state: This is an address setting wait state inserted by means of a setting in the NB85E500's ASC register.
- TI state: This is an idle state inserted by means of a setting in the NB85E500's BCC register.
- TW state: This is a wait state inserted by means of a setting in the NB85E500's DWC0 register.
- Remarks 1. The levels of the broken-line portions of the VBTTYP1, VBTTYP0, VBA27 to VBA0, VBD31 to VBD0, VBCTYP2 to VBCTYP0, VBSEQ2 to VBSEQ0, VBSIZE1, VBSIZE0, VBWAIT, VBAHLD, and VBLAST signals indicate the undefined state (Weak unknown) entered when the NB85E internal bus holder is driving. The levels of the broken-line portions of the A25 to A0 signals are undefined.
 n = 3 to 0

Figure 7-33 shows an example of the timing of a flyby single transfer (from external SRAM to external I/O connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

Preliminary User's Manual A13971EJ7V0UM

Figure 7-34 shows an example of the timing of a flyby single-step transfer (from external SRAM to external I/O connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

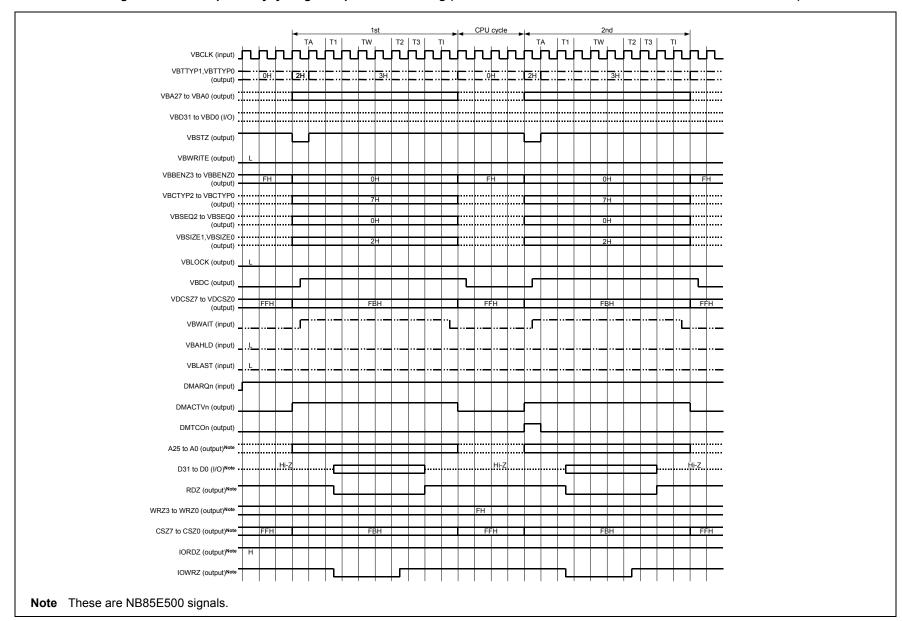


Figure 7-35 shows an example of the timing of a flyby single-step transfer (from external I/O to external SRAM connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

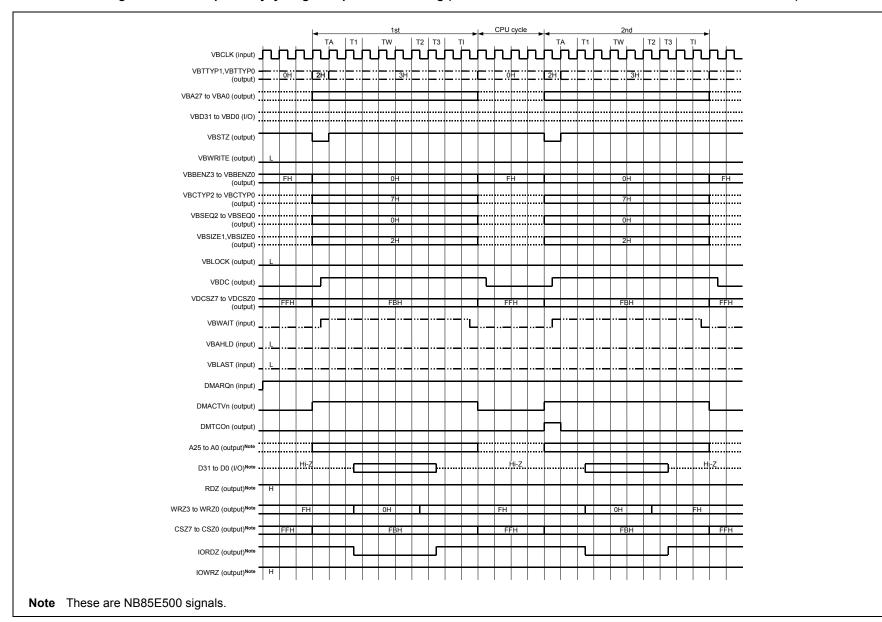


Figure 7-35. Example of Flyby Single-Step Transfer Timing (from External I/O to External SRAM Connected to NB85E500)

Figure 7-36 shows an example of the timing of a flyby line transfer (from external SRAM to external I/O connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)

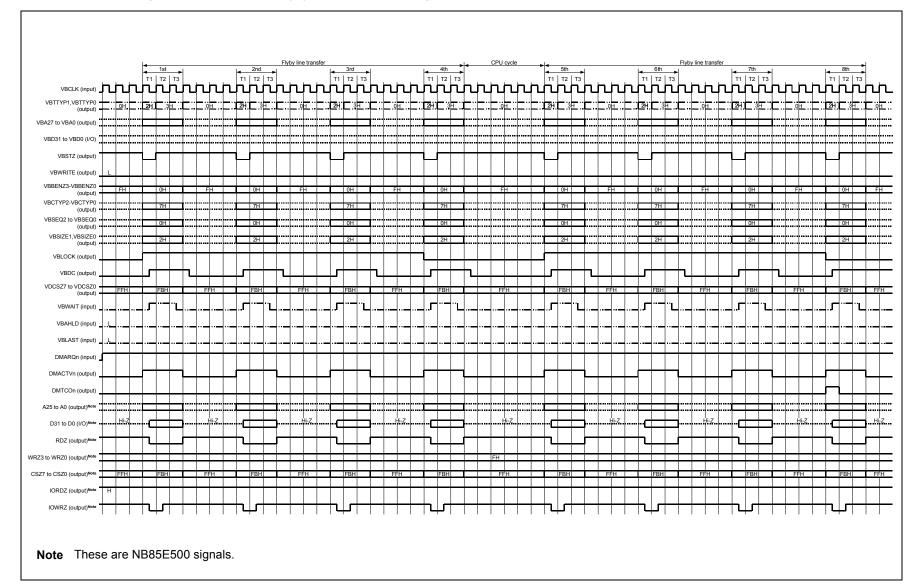
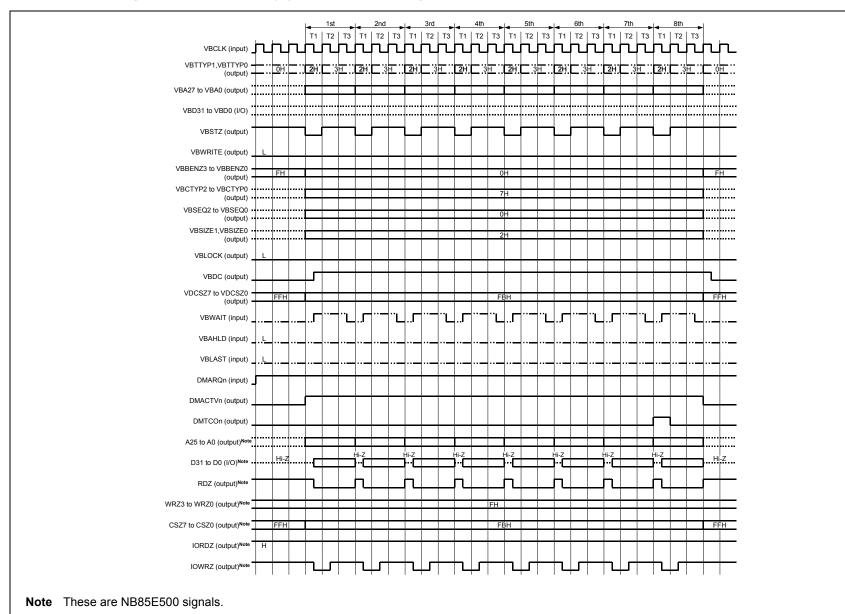



Figure 7-36. Example of Flyby Line Transfer Timing (from External SRAM to External I/O Connected to NB85E500)

Figure 7-37 shows an example of the timing of a flyby block transfer (from external SRAM to external I/O connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)

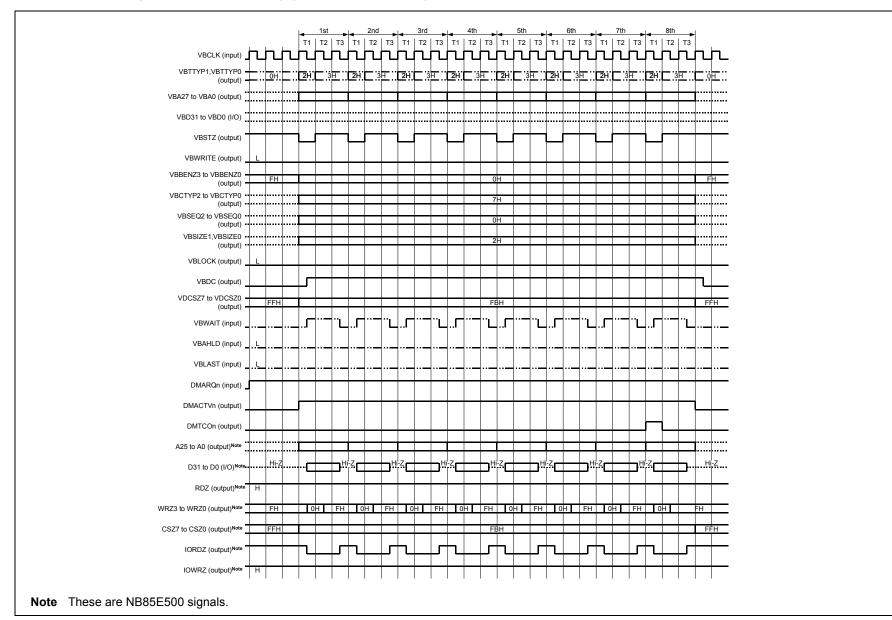


Figure 7-37. Example of Flyby Block Transfer Timing (from External SRAM to External I/O Connected to NB85E500)

Figure 7-38 shows an example of the timing of a flyby block transfer (from external I/O to external SRAM connected to NB85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)

7.15 Precautions

(1) Memory boundary

Operation is not guaranteed if the address of the transfer source or transfer destination is outside of the area for the DMA object (external memory, RAM, or peripheral macro) during a DMA transfer.

(2) Misalign data transfer

DMA transfer of misalign data with a 32-bit or 16-bit bus width is not supported.

(3) Intervals related to DMA transfer

The overhead before a DMA transfer and the minimum number of clocks required for a DMA transfer are shown below.

- From the acknowledgement of the DMARQn signal until the rising edge of the DMACTVn signal (n = 3 to 0): 3 clocks
- Access to RAM connected to VDB: 2 clocks

In the case of external memory access, these depend on the connected MEMC and the external memory. An example is shown below.

Fxamp	le When	SRAM is	accessed	usina tl	he MEMC	(NB85E500/NU85E500)	١
LAamp			accesseu	using u			/

Transfer Type	Conditions	Transfer Mode	Minimum Clock Number	
2-cycle	 Time between start of read cycle and end of write cycle The transfer time of one transfer for single and single-step transfers, and four transfers for a line transfer. 	Single	5 clocks	
	 The combinations of transfer sources and destinations are as follows. 	Single-step	5 clocks	
	$\begin{array}{cccc} VSB & \to & RAM \\ RAM & \to & VSB \\ RAM & \to & RAM \end{array}$	Line	32 clocks	
	Time in which bus is released to CPU	Single Single-step	6 clocks 4 clocks	
		Line	6 clocks	
Flyby	Transfer time of one transfer from SRAM to I/O, and from I/O to SRAM	—	3 clocks	

(4) Bus arbitration for the CPU

The CPU can access external memory, peripheral macros, or RAM for which no DMA transfer is being performed.

If a data transfer is being performed within external memory or a peripheral macro, the CPU can access RAM. Also, if a data transfer is being performed between on-chip RAM and RAM, the CPU can access external memory or a peripheral macro.

(5) DMA transfer end interrupt

The DMA transfer end interrupt is not generated when DMA transfer is complete. If the generation of an interrupt coinciding with the completion of transfer is required, input the DMATCOn signal to the INTm pin and perform maskable interrupt servicing (n = 3 to 0, m = 63 to 0).

CHAPTER 8 INTC

The interrupt control unit (INTC), which can process interrupt requests generated for a total of 67 sources, processes various types of interrupt requests from external sources. In addition, exception processing can be started (exception trap) due to a TRAP instruction (software exception) or due to the generation of an exception event (fetching of an illegal opcode).

An interrupt is an event that is generated independently of program execution, and an exception is an event that is generated dependent on program execution. Generally, the processing of an exception takes precedence over the processing of an interrupt.

8.1 Features

Interrupt
 Non-maskable interrupt: 3 sources
 Maskable interrupt: 64 sources
 8 levels programmable priorities (Maskable interrupt)
 Multiple interrupt control according to priority
 Mask specification to each maskable interrupt request

Exception
 Software exception: 32 sources
 Exception trap: 1 source (illegal opcode exception)

These interrupt/exception sources are listed in Table 8-1.

Туре	Classifi-		Interrupt/Exception	Source	Default Priority	Exception	Handler	Restored
	cation	Name	Control Register	Generating Source		Code	Address	PC
Reset	Interrupt	RESET	_	DCRESZ input	_	0000H	0000000H	Undefined
Non-maskable	Interrupt	NMI0	_	DCNMI0 input	_	0010H	00000010H	nextPC
	Interrupt	NMI1	_	DCNMI1 input	_	0020H	00000020H	nextPC
	Interrupt	NMI2	_	DCNMI2 input	_	0030H	00000030H	nextPC
Software	Exception	TRAP0n ^{Note}	_	TRAP instruction	_	004nH	00000040H	nextPC
exception	Exception	TRAP1n ^{Note}	_	TRAP instruction	_	005nH	00000050H	nextPC
Exception trap	Exception	ILGOP	_	Illegal opcode	_	0060H	0000060H	nextPC
Maskable	Interrupt	INT0	PIC0	INT0 input	0	0080H	00000080H	nextPC
	Interrupt	INT1	PIC1	INT1 input	1	0090H	00000090H	nextPC
	Interrupt	INT2	PIC2	INT2 input	2	00A0H	000000A0H	nextPC
	Interrupt	INT3	PIC3	INT3 input	3	00B0H	000000B0H	nextPC
	Interrupt	INT4	PIC4	INT4 input	4	00C0H	000000C0H	nextPC
	Interrupt	INT5	PIC5	INT5 input	5	00D0H	000000D0H	nextPC
	Interrupt	INT6	PIC6	INT6 input	6	00E0H	000000E0H	nextPC

Table 8-1. Interrupt/Exception List (1/3)

Note n: value of 0 to FH

Туре	Classifi-		Interrupt/Exception	Source	Default Priority	Exception	Handler	Restored
	cation	Name	Control Register	Generating Source		Code	Address	PC
Maskable	Interrupt	INT7	PIC7	INT7 input	7	00F0H	000000F0H	nextPC
	Interrupt	INT8	PIC8	INT8 input	8	0100H	00000100H	nextPC
	Interrupt	INT9	PIC9	INT9 input	9	0110H	00000110H	nextPC
	Interrupt	INT10	PIC10	INT10 input	10	0120H	00000120H	nextPC
	Interrupt	INT11	PIC11	INT11 input	11	0130H	00000130H	nextPC
	Interrupt	INT12	PIC12	INT12 input	12	0140H	00000140H	nextPC
	Interrupt	INT13	PIC13	INT13 input	13	0150H	00000150H	nextPC
	Interrupt	INT14	PIC14	INT14 input	14	0160H	00000160H	nextPC
	Interrupt	INT15	PIC15	INT15 input	15	0170H	00000170H	nextPC
	Interrupt	INT16	PIC16	INT16 input	16	0180H	00000180H	nextPC
	Interrupt	INT17	PIC17	INT17 input	17	0190H	00000190H	nextPC
	Interrupt	INT18	PIC18	INT18 input	18	01A0H	000001A0H	nextPC
	Interrupt	INT19	PIC19	INT19 input	19	01B0H	000001B0H	nextPC
	Interrupt	INT20	PIC20	INT20 input	20	01C0H	000001C0H	nextPC
	Interrupt	INT21	PIC21	INT21 input	21	01D0H	000001D0H	nextPC
	Interrupt	INT22	PIC22	INT22 input	22	01E0H	000001E0H	nextPC
	Interrupt	INT23	PIC23	INT23 input	23	01F0H	000001F0H	nextPC
	Interrupt	INT24	PIC24	INT24 input	24	0200H	00000200H	nextPC
	Interrupt	INT25	PIC25	INT25 input	25	0210H	00000210H	nextPC
	Interrupt	INT26	PIC26	INT26 input	26	0220H	00000220H	nextPC
	Interrupt	INT27	PIC27	INT27 input	27	0230H	00000230H	nextPC
	Interrupt	INT28	PIC28	INT28 input	28	0240H	00000240H	nextPC
	Interrupt	INT29	PIC29	INT29 input	29	0250H	00000250H	nextPC
	Interrupt	INT30	PIC30	INT30 input	30	0260H	00000260H	nextPC
	Interrupt	INT31	PIC31	INT31 input	31	0270H	00000270H	nextPC
	Interrupt	INT32	PIC32	INT32 input	32	0280H	00000280H	nextPC
	Interrupt	INT33	PIC33	INT33 input	33	0290H	00000290H	nextPC
	Interrupt	INT34	PIC34	INT34 input	34	02A0H	000002A0H	nextPC
	Interrupt	INT35	PIC35	INT35 input	35	02B0H	000002B0H	nextPC
	Interrupt	INT36	PIC36	INT36 input	36	02C0H	000002C0H	nextPC
	Interrupt	INT37	PIC37	INT37 input	37	02D0H	000002D0H	nextPC
	Interrupt	INT38	PIC38	INT38 input	38	02E0H	000002E0H	nextPC
	Interrupt	INT39	PIC39	INT39 input	39	02F0H	000002F0H	nextPC
	Interrupt	INT40	PIC40	INT40 input	40	0300H	00000300H	nextPC
	Interrupt	INT41	PIC41	INT41 input	41	0310H	00000310H	nextPC
	Interrupt	INT42	PIC42	INT42 input	42	0320H	00000320H	nextPC
	Interrupt	INT43	PIC43	INT43 input	43	0330H	00000330H	nextPC

Table 8-1. Interrupt/Exception List (2/3)

Туре	Classifi-		Interrupt/Exception	Source	Default Priority	Exception	Handler	Restored
	cation	Name	Control Register	Generating Source		Code	Address	PC
Maskable	Interrupt	INT44	PIC44	INT44 input	44	0340H	00000340H	nextPC
	Interrupt	INT45	PIC45	INT45 input	45	0350H	00000350H	nextPC
	Interrupt	INT46	PIC46	INT46 input	46	0360H	00000360H	nextPC
	Interrupt	INT47	PIC47	INT47 input	47	0370H	00000370H	nextPC
	Interrupt	INT48	PIC48	INT48 input	48	0380H	00000380H	nextPC
	Interrupt	INT49	PIC49	INT49 input	49	0390H	00000390H	nextPC
	Interrupt	INT50	PIC50	INT50 input	50	03A0H	000003A0H	nextPC
	Interrupt	INT51	PIC51	INT51 input	51	03B0H	000003B0H	nextPC
	Interrupt	INT52	PIC52	INT52 input	52	03C0H	000003C0H	nextPC
	Interrupt	INT53	PIC53	INT53 input	53	03D0H	000003D0H	nextPC
	Interrupt	INT54	PIC54	INT54 input	54	03E0H	000003E0H	nextPC
	Interrupt	INT55	PIC55	INT55 input	55	03F0H	000003F0H	nextPC
	Interrupt	INT56	PIC56	INT56 input	56	0400H	00000400H	nextPC
	Interrupt	INT57	PIC57	INT57 input	57	0410H	00000410H	nextPC
	Interrupt	INT58	PIC58	INT58 input	58	0420H	00000420H	nextPC
	Interrupt	INT59	PIC59	INT59 input	59	0430H	00000430H	nextPC
	Interrupt	INT60	PIC60	INT60 input	60	0440H	00000440H	nextPC
	Interrupt	INT61	PIC61	INT61 input	61	0450H	00000450H	nextPC
	Interrupt	INT62	PIC62	INT62 input	62	0460H	00000460H	nextPC
	Interrupt	INT63	PIC63	INT63 input	63	0470H	00000470H	nextPC

Table 8-1. Interrupt/Exception List (3/3)

Remarks 1. Default Priority: Priority that takes precedence when two or more maskable interrupt requests with the same priority level occur at the same time. The highest priority is 0.

Restored PC: This is the PC value saved in EIPC or FEPC upon activation of interrupt servicing or exception processing. Note, however, that the restored PC when a non-maskable or maskable interrupt is acknowledged while one of the following instructions is being executed does not become the nextPC (if an interrupt is acknowledged during interrupt execution, execution stops, and then resumes after the interrupt servicing has finished).

- Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
- Division instructions (DIV, DIVH, DIVU, DIVHU)
- PREPARE, DISPOSE instructions (only if an interrupt is generated before the stack pointer is updated)

nextPC: The PC value that starts the processing following the completion of interrupt/exception processing.

 The execution address of the illegal instruction when an illegal opcode exception occurs is calculated as follows: (Restored PC – 4)

8.2 Non-Maskable Interrupts (NMI)

A non-maskable interrupt request (NMI) is acknowledged unconditionally even if the NB85E is in an interrupt disabled (DI) state.

A non-maskable interrupt request is generated according to DCNMIn pin input (n = 2 to 0). When a rising edge is input to the DCNMIn pin, a non-maskable interrupt (NMIn) is generated.

If multiple non-maskable interrupts are generated at the same time, the highest priority servicing is executed according to the following priority order (the lower priority interrupts are ignored).

NMI2 > NMI1 > NMI0

Note that if an NMI0, NMI1, or NMI2 request is generated while NMI0 is being serviced, the servicing is executed as follows.

(1) If an NMI0 request is generated while NMI0 is being serviced

The new NMI0 request is held pending regardless of the value of the PSW's NP bit. The pending NMI0 request is acknowledged after servicing of the current NMI0 request has finished (after execution of the RETI instruction).

(2) If an NMI1 request is generated while NMI0 is being serviced

If the PSW's NP bit remains set (1) while NMI0 is being serviced, the new NMI1 request is held pending. The pending NMI1 request is acknowledged after servicing of the current NMI0 request has finished (after execution of the RETI instruction).

If the PSW's NP bit is cleared (0) while NMI0 is being serviced, the newly generated NMI1 request is executed (NMI0 servicing is halted).

(3) If an NMI2 request is generated while NMI0 is being serviced

The new NMI2 request is executed, regardless of the value of the PSW's NP bit (NMI0 servicing is halted).

Caution Although the values of the PC and PSW are saved to an NMI status save register (FEPC, FEPSW) when a non-maskable interrupt (NMI) request is generated, only NMI0 can be restored by the RETI instruction at this time. Because NMI1 and NMI2 cannot be restored by the RETI instruction, the system must be reset after servicing these interrupts.

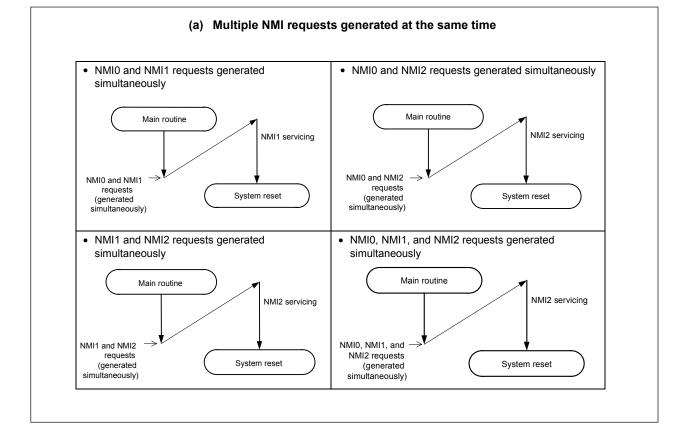
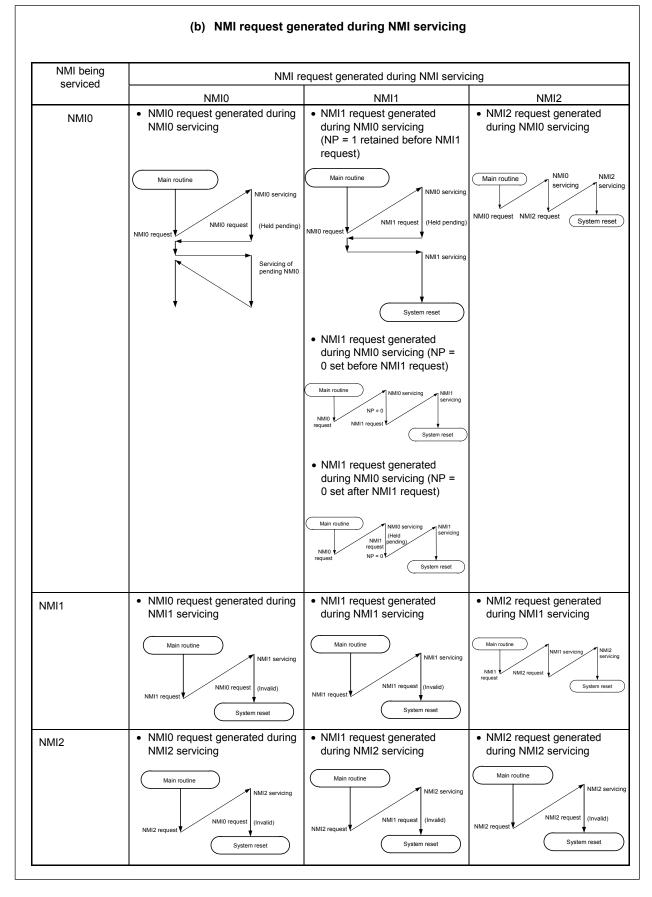
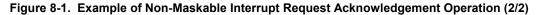
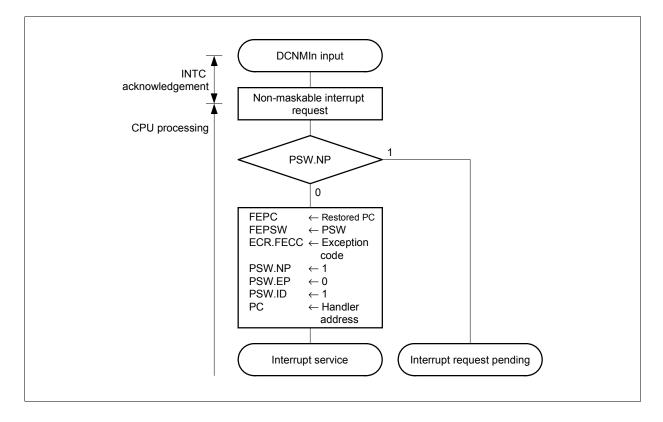




Figure 8-1. Example of Non-Maskable Interrupt Request Acknowledgement Operation (1/2)


8.2.1 Operation

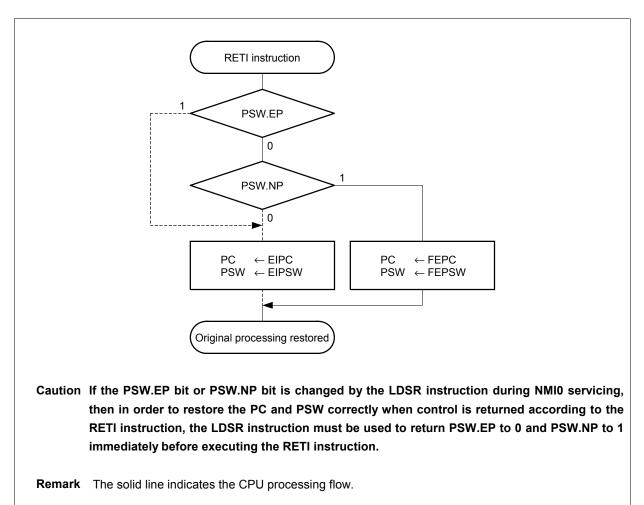
If a non-maskable interrupt is generated according to DCNMIn input, the CPU performs the following processing and shifts control to the handler routine (n = 2 to 0).

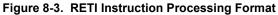
- <1> Save the restored PC in the FEPC.
- <2> Save the current PSW in the FEPSW.
- <3> Write the exception code in the higher halfword (FECC) of the ECR.
- <4> Set the NP and ID bits of the PSW and clear the EP bit.
- <5> Set the handler address for the non-maskable interrupt in the PC and shift control.

Figure 8-2 shows the processing format of non-maskable interrupt service.

Figure 8-2. Non-Maskable Interrupt Processing Format

8.2.2 Restore


(1) NMI0


Control is returned from NMI0 servicing according to the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 0 and the NP bit is 1, fetch the restored PC and PSW from the FEPC and FEPSW.
- <2> Shift control to the fetched restored PC address and PSW status.

Figure 8-3 shows the processing format of the RETI instruction.

(2) NMI1, NMI2

Restoring by RETI instruction is not possible. Perform a system reset according to DCRESZ input after interrupt servicing.

8.3 Maskable Interrupts

A maskable interrupt request is an interrupt request for which the acknowledgement of the interrupt can be masked according to the interrupt control register. There are 64 interrupt sources for maskable interrupts.

A maskable interrupt request is generated according to INTn pin input (n = 63 to 0). When a rising edge is input to the INTn pin, a maskable interrupt (INTn) is generated.

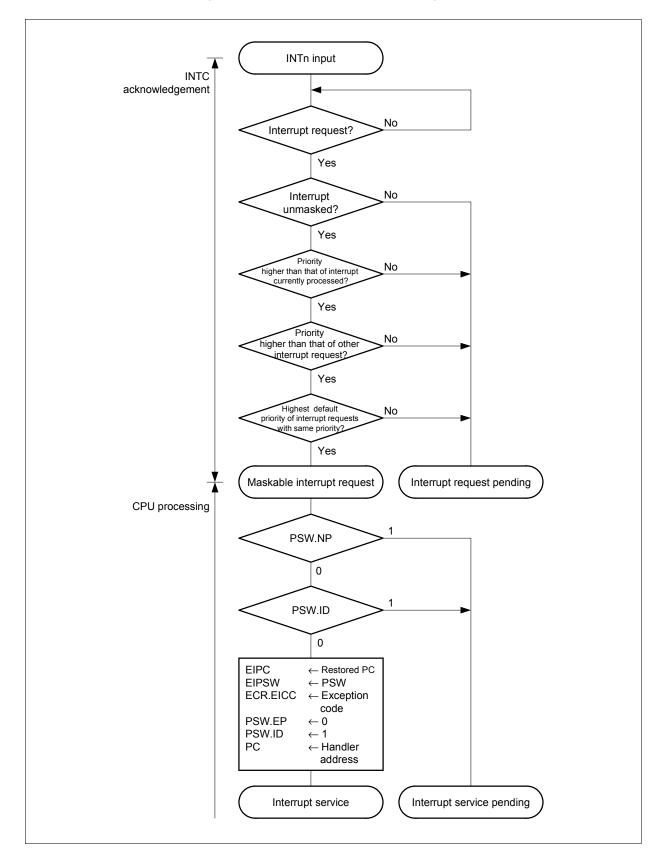
If multiple maskable interrupt requests are generated at the same time, their priorities are determined according to the default priorities. In addition to the default priority, eight interrupt priority levels can be set according to the interrupt control register (programmable priority control).

When an interrupt request is acknowledged, interrupt disabled (DI) state is set, and the acknowledgement of subsequent maskable interrupt requests is prohibited.

If the EI instruction is executed during an interrupt service routine, interrupt enabled (EI) state is set, and the acknowledgement of interrupt requests having higher priorities than the priority level of the currently acknowledged interrupt request (specified by the interrupt control register) is permitted. Interrupts having the same priority level cannot be nested.

However, the following processing is required for multiple interrupt service.

- <1> Save the EIPC and EIPSW in memory or general-purpose registers before executing the EI instruction.
- <2> Before executing the RETI instruction, execute the DI instruction and return the values that were saved in step <1> to the EIPC and EIPSW.


8.3.1 Operation

If a maskable interrupt is generated according to INTn input, the CPU performs the following processing and shifts control to the handler routine.

- <1> Save the restored PC in the EIPC.
- <2> Save the current PSW in the EIPSW.
- <3> Write the exception code in the lower halfword (EICC) of the ECR.
- <4> Set the ID bit of the PSW and clear the EP bit.
- <5> Set the handler address for the interrupt in the PC and shift control.

An INTn input that is masked by the INTC and an INTn input that was generated while another interrupt was being serviced (PSW.NP = 1 or PSW.ID = 1) are kept pending within the INTC. In this case, if the mask is canceled or the RETI and LDSR instructions are used to set PSW.NP to 0 and PSW.ID to 0, the new maskable interrupt service is started according to the INTn input that had been pending.

Figure 8-4 shows the processing format of maskable interrupt service.

8.3.2 Restore

Control is returned from maskable interrupt service according to the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 0 and the NP bit is 0, fetch the restored PC and PSW from the EIPC and EIPSW.
- <2> Shift control to the fetched restored PC address and PSW status.

Figure 8-5 shows the processing format of the RETI instruction.

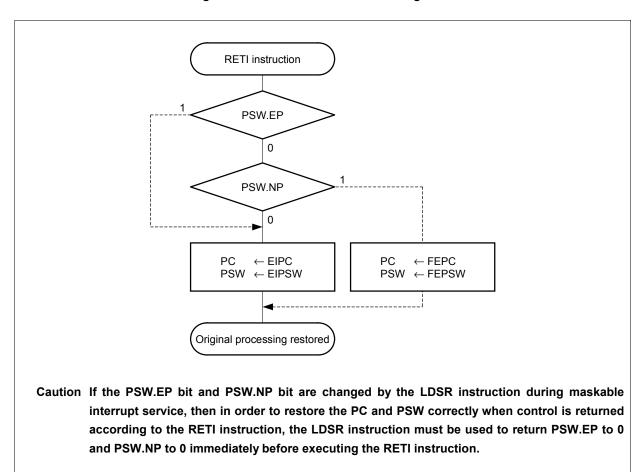
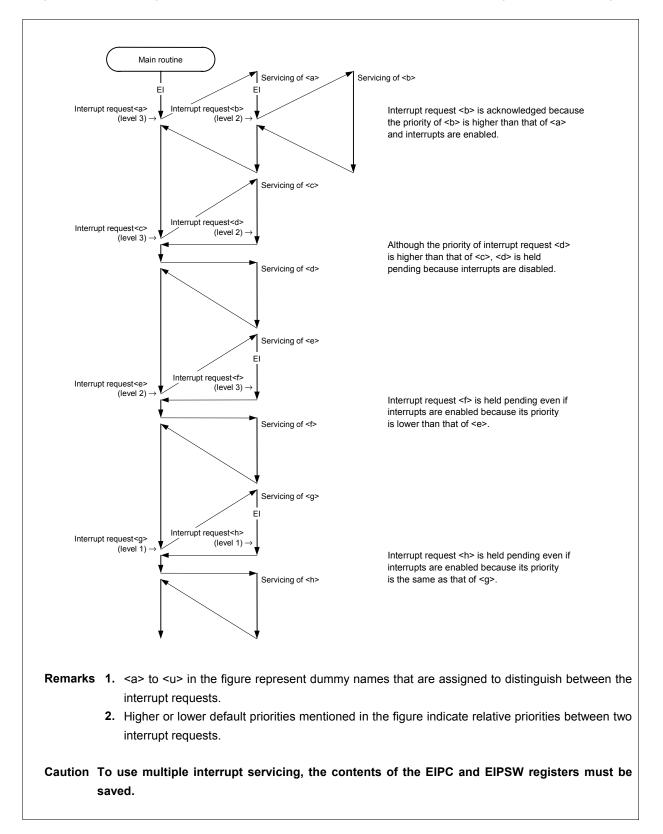
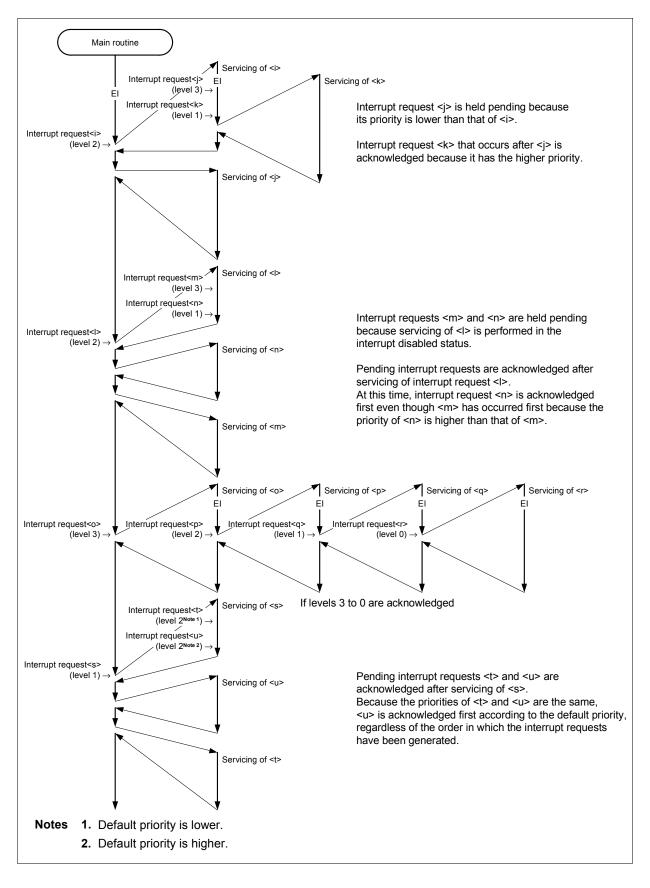


Figure 8-5. RETI Instruction Processing Format


Remark The solid line indicates the CPU processing flow.

8.3.3 Maskable interrupt priorities


The INTC provides multiple interrupt service that acknowledges another interrupt while an interrupt is being serviced. Multiple interrupts can be controlled according to priorities.

Priority control includes control according to default priorities and programmable priority control according to the interrupt control register (PICn). For priority control according to default priorities, if multiple interrupts having the same priority level according to the PICn register are generated at the same time, the interrupts are serviced according to the priorities (default priorities) that have been assigned in advance to each interrupt request (see **Table 8-1 Interrupt/Exception List**). For programmable priority control, the interrupt requests are divided into eight levels according to PICn register settings.

When an interrupt is acknowledged, the ID flag of the PSW is automatically set (1). Therefore, to use multiple interrupt service, clear (0) the ID flag (such as by executing the EI instruction during the interrupt service program) to set the interrupt enable state.

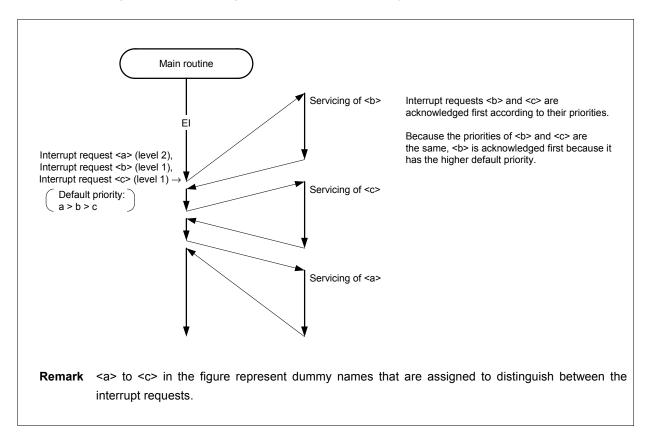


Figure 8-7. Processing Example for Simultaneously Issued Interrupt Requests

8.3.4 Control registers

(1) Interrupt control registers 0 to 63 (PIC0 to PIC63)

The interrupt control registers, which are assigned to each interrupt request (maskable interrupt), set control conditions for each interrupt.

These registers can be read or written in 8-bit or 1-bit units.

_	7	(6	5	4	:	3 2	1	0	_				
PICn	PIFn PMk		Kn	0	0	() PPRn2	PPRn1	PPRn0	Address After res FFFFF110H to 47H FFFFF18EH				
Bit pos	sition	Bit name												
7		PIFn	Т	his is the i	nterrupt re	equest flac	1.							
				0: No interrupt request issued										
				1: Interrup										
							cknowledged, this	s is automat	icallv cleare	ed (0).				
6		PMKn		This is the interrupt mask flag.										
				0: Interrupt service enabled										
				1: Interrup			pending)							
2 to 0		PPRn2 to PPRn0	S	Specifies eight priority levels for each interrupt.										
				PPRn2	PPRn1									
				0	0	0	Specifies level) (highest)						
				0	0	1	Specifies level	1						
				0	1	0	Specifies level 2	2						
				0	1	1	Specifies level	3						
				°										
				1	0	0	Specifies level	1						
						0	Specifies level							
				1	0	-		5						
				1	0	1	Specifies level	5						

Figure 8-8. Interrupt Control Registers 0 to 63 (PIC0 to PIC63)

(2) Interrupt mask registers 0 to 3 (IMR0 to IMR3)

The interrupt mask registers maintain the mask status of each maskable interrupt.

The PMKn bit of this register and the PMKn bit of the PICn register are linked (n = 0 to 63).

The IMRm register can be read or written in 16-bit units (m = 0 to 3).

When using the higher 8 bits of the IMRm register as the IMRmH register, and the lower 8 bits as the IMRmL register, the IMRm register can be read or written in 8-bit or 1-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
MR0	PMK	Address	After res															
NII (U	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF100H	FFFFI
		r.	r.	1				1	1	r.		ī						
MR1	РМК	PMK	Address	After re														
IVII (I	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF102H	FFFFI
MR2	РМК	РМК	РМК	РМК	PMK	PMK	PMK	РМК	РМК	РМК	PMK	РМК	PMK	PMK	PMK	РМК	Address	After re
IVITZ	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	FFFFF104H	FFFF
MR3	РМК	PMK	Address	After re														
IVIRG	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	FFFFF106H	FFFF

Figure 8-9. Interrupt Mask Registers 0 to 3 (IMR0 to IMR3)

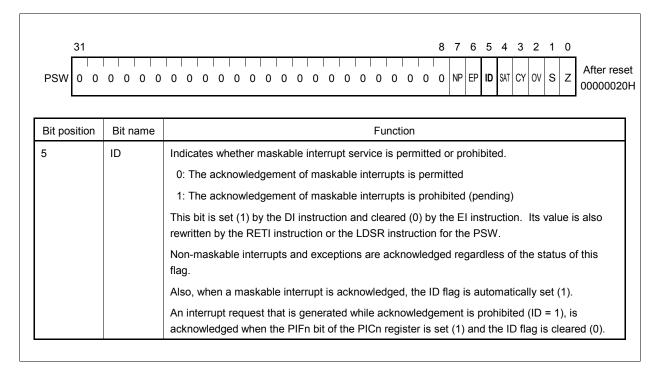
(3) In-service priority register (ISPR)

This register maintains the priority level of the maskable interrupt that is being acknowledged. When an interrupt request is acknowledged, the bit corresponding to the priority level of that interrupt request is set (1) and maintained while the interrupt is being serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority among the bits that are set (1) within the ISPR register is automatically cleared (0). However, it is not cleared (0) when control returns from non-maskable interrupt service or exception processing.

This register is read-only in 8-bit or 1-bit units.

	7		6	5	4	3	2	1	0	_	
ISPR	SPR ISPR		ISPR6	ISPR5	ISPR4	ISPR3	ISPR2	ISPR1	ISPR0	Address FFFFF1FAH	After rese 00H
Bit position		Bit n	ame				Funct	ion			
7 to 0		ISPR ISPR		Indicates the p 0: Interrupt ro 1: Interrupt ro	equest havi	ng priority n	has not bee	en acknowle	edged		


Figure 8-10. In-Service Priority Register (ISPR)

8.3.5 Maskable interrupt status flag (ID)

This flag, which controls the operation status of maskable interrupts, stores information indicating whether the acknowledgement of interrupt requests is permitted or prohibited.

It is assigned to bit 5 of the program status word (PSW).

8.4 Software Exception

A software exception, which is an exception that is generated when the CPU executes the TRAP instruction, can always be acknowledged.

8.4.1 Operation

If a software exception is generated, the CPU performs the following processing and shifts control to the handler routine.

- <1> Save the restored PC in the EIPC.
- <2> Save the current PSW in the EIPSW.
- <3> Write the exception code in the lower 16 bits (EICC) of the ECR (interrupt source).
- <4> Set the EP and ID bits of the PSW.
- <5> Set the handler address (00000040H or 00000050H) for the software exception in the PC and shift control.

Figure 8-12 shows the processing format of software exception processing.

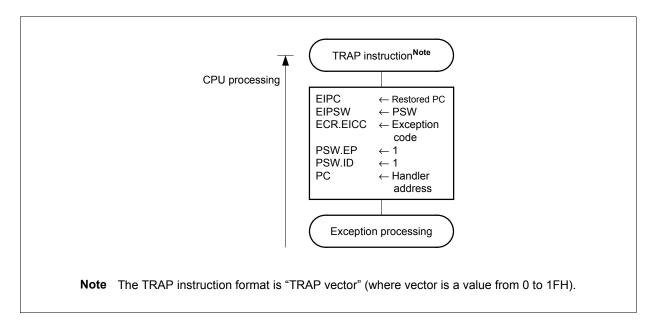
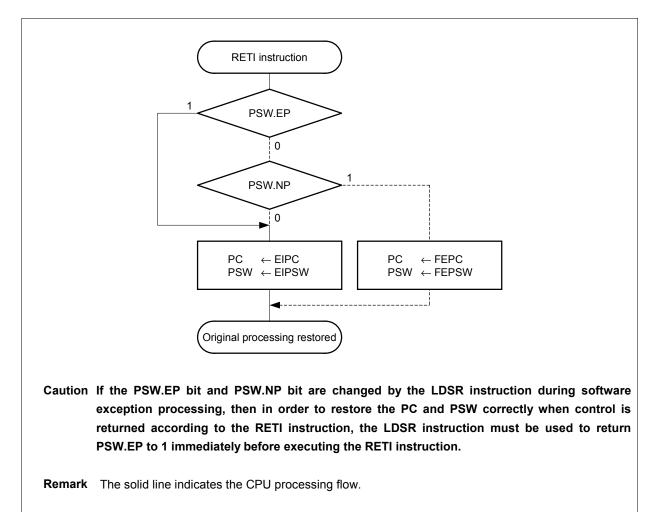


Figure 8-12. Software Exception Processing Format

The handler address is determined by the TRAP instruction operand (vector). When vector is 0 to 0FH, the address is 00000040H. When vector is 10H to 1FH, the address is 00000050H.


8.4.2 Restore

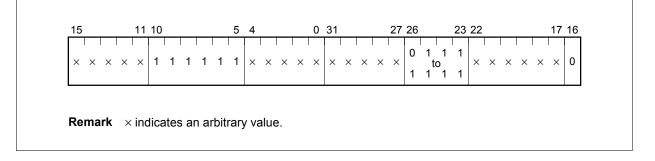

Control is returned from software exception processing according to the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 1, fetch the restored PC and PSW from the EIPC and EIPSW.
- <2> Shift control to the fetched restored PC address and PSW status.

Figure 8-13 shows the processing format of the RETI instruction.

8.5 Exception Trap

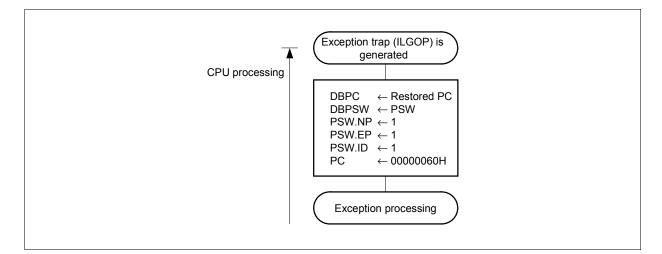

The exception trap is an interrupt that is requested when the illegal execution of an instruction occurs. In the NB85E, the illegal opcode exception (ILGOP: Illegal opcode trap) is assigned for the exception trap.

An illegal opcode exception is generated when the sub-opcode of the instruction to be executed next is an illegal opcode.

8.5.1 Illegal opcode

The illegal opcode, which has a 32-bit long instruction format, is defined as an arbitrary opcode in which bits 10 to 5 are 111111B, bits 26 to 23 are 0111B to 1111B, and bit 16 is 0B.

Caution Since a new instruction may be assigned in the future for the illegal opcode, we recommend that this opcode not be used.

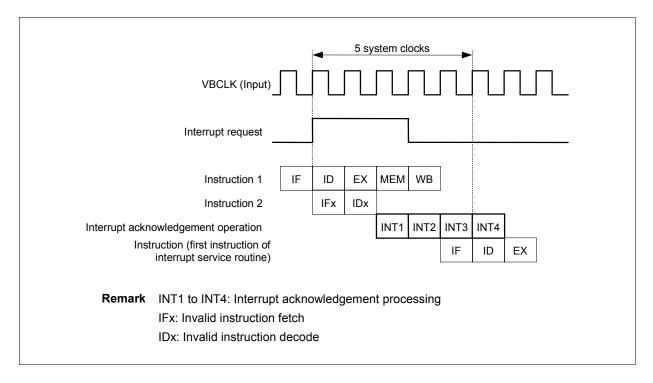

8.5.2 Operation

If an exception trap is generated, the CPU performs the following processing and shifts control to the handler routine.

- <1> Save the restored PC in the DBPC.
- <2> Save the current PSW in the DBPSW.
- <3> Set the NP, EP, and ID bits of the PSW.
- <4> Set the handler address (0000060H) for the exception trap in the PC and shift control.

Figure 8-15 shows the processing format of exception trap processing.

8.5.3 Restore


Control cannot return from an exception trap. Perform a system reset according to DCRESZ input.

8.6 Interrupt Response Time

Except in the following cases, the interrupt response time is a minimum of 5 clocks. To input interrupt requests continuously, leave a space of at least 5 clocks between interrupt request inputs.

- During software or hardware STOP mode
- · When an external bus is accessed
- When there are two or more successive interrupt request non-sampling instructions (see 8.7 Periods When Interrupts Cannot Be Acknowledged).
- · When the interrupt control register is accessed

Figure 8-16. Example of Pipeline Operation When Interrupt Request Is Acknowledged (Outline)

8.7 Periods When Interrupts Cannot Be Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, an interrupt is not acknowledged between an interrupt request non-sampling instruction and the subsequent instruction (the interrupt is held pending). The interrupt request non-sampling instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (for PSW)
- Store instruction for specific area (xFFF100H to xFFF1FFH^{Note}, xFFF900H to xFFF9FFH)

Note The IMR0 to IMR3, PIC0 to PIC63, ISPR, PRCMD, and PSC registers are allocated to a part of this area.

CHAPTER 9 TEST FUNCTION

The NB85E is equipped with an on-chip test interface control unit (TIC) for testing the NB85E itself or connected peripheral macros via the test buses (TBI39 to TBI0 and TBO34 to TBO0). The test buses are effective when the TEST and BUNRI signals are active.

9.1 Test Pins

9.1.1 Test bus pins (TBI39 to TBI0 and TBO34 to TBO0)

The test bus pins are used in place of normal pins when the NB85E is in unit test mode. Always extend these pins outside of the ASIC (they can be used in combination with normal pins). For details, refer to the various cell-based IC family design manuals.

9.1.2 BUNRI and TEST pins

These pins are used to select normal, unit test, or standby test mode.

High level

BUNRI Pin Input Level	TEST Pin Input Level	Mode
Low level	Arbitrary	Normal mode
High level	Low level	Standby test mode

Table 9-1. List of Test Mode Settings

(1) Normal mode

High level

This is the mode the user normally uses.

When a low level signal is being input to the BUNRI pin, the pins other than the test pins are enabled, and the NB85E is in normal mode. At this time, input to the TBI39 to TBI0 pins is ignored, and the TBO34 to TBO0 pins are set to high impedance.

Unit test mode

(2) Unit test mode and standby test mode

When a high-level signal is being input to the BUNRI pin, the NB85E is in test mode. The two types of test mode are unit test mode and standby test mode.

Circuits should be designed so that floating or bus contention does not occur for the pins constituting the bus (excluding test pins) during unit or standby test mode (For the pin status in each mode, see **2.4 Pin Status**).

(a) Unit test mode

When a high-level signal is being input to the BUNRI and TEST pins, the input from the TBI39 to TBI0 pins is enabled in their place. Also, the test result is output from the TBO34 to TBO0 pins.

Input/output signals from the following pins are also valid in test mode, and operate in the same way as in normal mode. Accordingly, in test mode, be sure to handle these pins as indicated in **9.4 Handling of Each Pin in Test Mode**.

- VSB pins
- NPB pins
- VFB pins

- VDB pins
- Instruction cache pins
- Data cache pins
- RCU pins

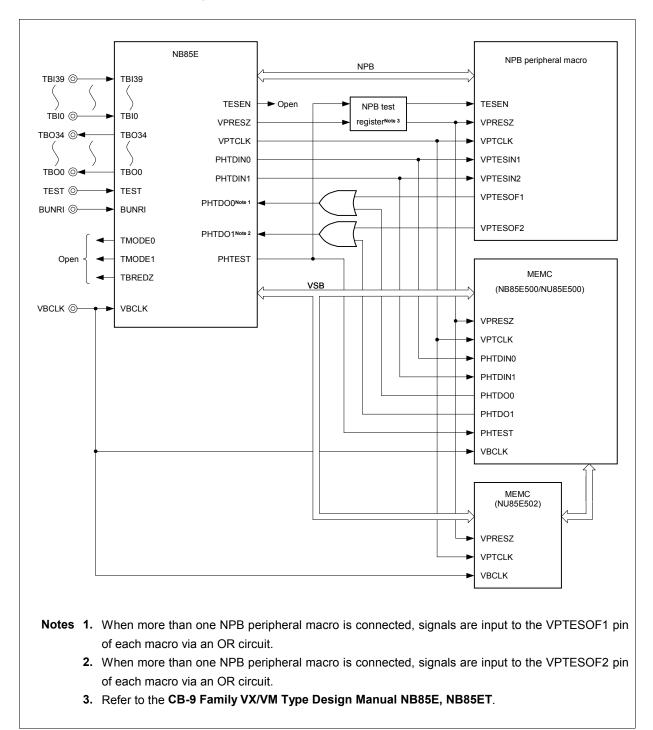
Caution Unit test mode is used for tests performed by NEC. The test patterns are provided by NEC.

(b) Standby test mode

When a high-level signal is being input to the BUNRI pin and a low-level signal is being input to the TEST pin, the NB85E is in standby test mode.

The input to the TBI39 to TBI0 pins is ignored, and the TBO34 to TBO0 pins are set to high impedance.

9.2 List of Test Interface Signals


Signal Name	I/O	Function
PHTDIN1, PHTDIN0	Output	Dedicated test signals output to peripheral macros
PHTDO1, PHTDO0	Input	Dedicated test signals input from peripheral macros
TESEN	Output	Enable signal output for setting peripheral macros to test mode
VPTCLK	Output	Peripheral macro test clock output
PHTEST	Output	Status signal output pin indicating peripheral test mode status
TMODE1	Output	Test mode selection output
TMODE0	Output	These are NEC reserved pins. Leave them open.
TBREDZ	Output	

Caution The above signals are only required for tests performed at NEC.

9.3 Example of Connection of Peripheral Macro in Test Mode

The NPB peripheral macro, MEMC (NB85E500/NU85E500, NU85E502), instruction cache (NB85E212, NB85E213), and data cache (NB85E252, NB85E263) supported by NEC are tested via the NB85E.

An example of the connections between the NB85E, the NPB peripheral macro, and the MEMC is shown below.

9.4 Handling of Each Pin in Test Mode

(1) Pins other than those for test mode

(a) I/O pins

When the peripheral macro is tested via test interface pins, if the peripheral macro and user logic are both connected to VSB and NPB, it may cause the signals to collide in test mode.

In order to avoid signal collision, it is necessary to validate only the peripheral macro signals. Because of this, make sure that the following I/O pins connected to user logic are designed on the user logic side to become high impedance in test mode (see **Figure 9-2**). Note that this does not apply to cases where each signal has been pre-designed not to collide in test mode.

- VBWAIT
- VBSEQ2 to VBSEQ0
- VDSELPZ
- VBBENZ3 to VBBENZ0
- VBCTYP2 to VBCTYP0
- VPD15 to VPD0
- VBTTYP1, VBTTYP0
- VBWRITE

VBLAST

• VBBSTR

- VBA27 to VBA0
- VBD31 to VBD0
- VBAHLD
- VDCSZ7 to VDCSZ0
- VBSIZE1, VBSIZE0
- VBLOCK
- VBSTZ

Special handling is not required for I/O pins other than those above (handle as in normal mode).

Caution The test bus automatic connection tool provided by NEC does not support the NB85E. Test bus connection must therefore be performed on the user side.

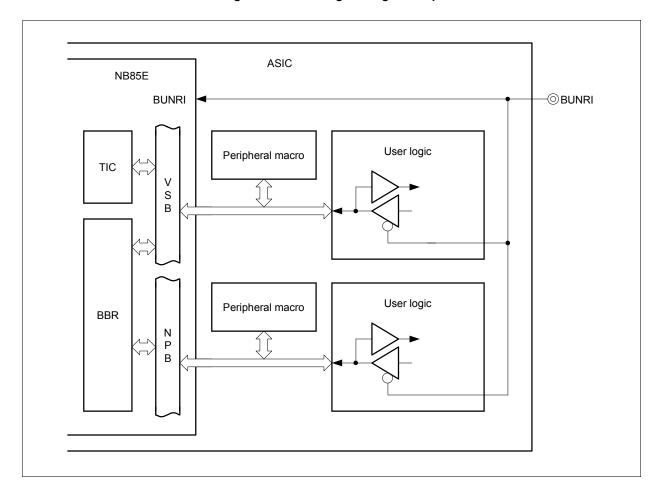


Figure 9-2. User Logic Design Example

(b) Input pins

Input a low level to the VAREQ pin. Special handling is not required for pins other than the VAREQ pin (handle as in normal mode).

(c) Output pins

Special handling is not required (handle as in normal mode).

(2) Test mode pins

Handle the pins for test mode as indicated below.

ſ	Pin Name	I/O				
			When NPB Peripheral Is Connected	When MEMC Is Connected	When Cache Is Connected	When Neither NPB Peripheral, MEMC, nor Cache Is Connected
	PHTDOn	Input	Connect to the VPTESOFn pin.	Connect to the PHTDOn pin of the NB85E500/NU85E500.	_	Input low level.
	PHTDINn	Output	Connect to the VPTESINn pin.	Connect to the PHTDINn pin of the NB85E500/NU85E500.	_	Leave open.
*	VPRESZ	Output	Connect to the NPB test register.	Connect to the VPRESZ pin of the NB85E500/NU85E500.	Connect to the VPRESZ pin.	
	VPTCLK	Output	Connect to the VPTCLK pin.	Connect to the VPTCLK pin of the NB85E500/NU85E500, NU85E502.	Connect to the VPTCLK pin.	
	TESEN	Output	Leave open.	—	—	
	PHTEST	Output	Connect to the NPB test register.	Connect to the PHTEST pin of the NB85E500/NU85E500.	_	
	TMODEn, TBREDZ	Output	Leave open.			

Remark n = 1, 0

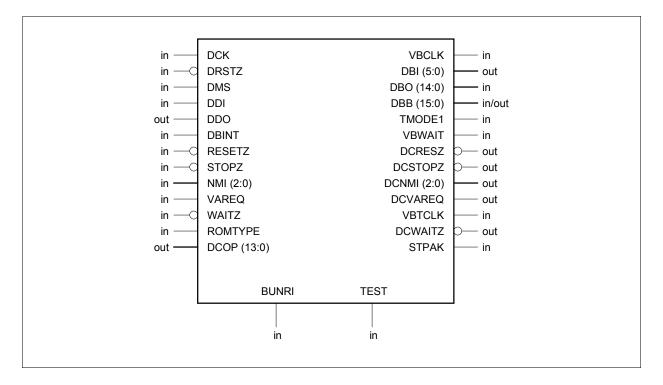
(3) Precautions when NB85E901 is connected

When the NB85E901 (RCU) is connected to the NB85E, the following pins are used in the single-unit test mode. All of these pins should be attached off chip as external pins.

- TBI39 to TBI0^{Note 1}
- DRSTZ^{Note 2}
- TBO34 to TBO0^{Note 1}
- DMS^{Note 2}
 DDI^{Note 2}
- TEST^{Note 1}
 BUNRI
- DDO^{Note 2}
- DCK^{Note 2}
- DBINT Notes 1, 2

Notes 1. Can be used as an alternate function pin with a pin used in normal mode.

2. Pins of the NB85E901 (for details, refer to CHAPTER 10 NB85E901.)


CHAPTER 10 NB85E901

(Under Development)

10.1 Overview

The NB85E901 (RCU: Run Control Unit) is a run control unit that realizes the execution of JTAG communication and debug processing. Connection of the NB85E901 with an N-Wire type in-circuit emulator (N-Wire type IE) makes it possible to perform on-chip debugging on the NB85E.

10.1.1 Symbol diagram

10.2 Pin Functions

10.2.1 Pin function list

Pin Na	ime	I/O	Function
N-Wire type IE connection	DCK	Input	Clock input for RCU
pins	DRSTZ	Input	Reset input for RCU
	DMS	Input	Debug mode selection input
	DDI	Input	Debug data input
	DDO	Output	Debug data output
	DBINT	Input	External debug interrupt input
System control pins	RESETZ	Input	System reset input
	STOPZ	Input	Hardware STOP mode request input
	NMI2 to NMI0	Input	Non-maskable interrupt input
	VAREQ	Input	Bus access right request input
	WAITZ	Input	Wait request input
	ROMTYPE	Input	NEC reserved pin (input low level)
	DCOP13 to DCOP0	Output	NEC reserved pin (leave open)
NB85E connection pins	VBCLK	Input	System clock input
	DBI5 to DBI0	Output	Debug control output
	DBO14 to DBO0	Input	Debug control input
	DBB15 to DBB0	I/O	Debug control I/O
	TMODE1	Input	Test mode selection input
	VBWAIT	Input	Wait response input
	DCRESZ	Output	Reset output
	DCSTOPZ	Output	Hardware STOP mode request output
	DCNMI2 to DCNMI0	Output	Non-maskable interrupt output
	DCVAREQ	Output	Bus access right request output
	VBTCLK	Input	Clock input for testing
Peripheral connection pins	DCWAITZ	Output	Wait request output
	STPAK	Input	STOP mode request acknowledge input
Test mode pins	BUNRI	Input	Normal/test mode selection input
	TEST	Input	Test bus control input

10.2.2 Pin functions

(1) N-Wire type IE connection pins

Caution N-Wire type IE connection pins (DCK, DRSTZ, DMS, DDI, DDO, DBINT) must be attached off the chip as external pins since they are used in the single-unit test mode. Do not use these pins as alternate function pins (however, the DBINT pin can be used as the alternate function of a pin other than the TBI39 to TBI0, TBO34 to TBO0, TEST, BUNRI, DCK, DRSTZ, DMS, DDI, and DDO pins).

(a) DCK (input)

This is the pin to which the clock for the RCU is input from the N-Wire type IE.

(b) DRSTZ (input)

This is the RCU reset input pin. The RCU is reset asynchronously when a low level is input.

(c) DMS (input)

This is the pin to which the debug mode selection is input from the N-Wire type IE.

(d) DDI (input)

This is the pin to which the debug data is input from the N-Wire type IE.

(e) DDO (output)

This is the pin from which the debug data is output to the N-Wire type IE.

(f) DBINT (input)

This is the external debug interrupt input pin. An active level (high level) is input when shifting to the debug mode by an external request.

(2) System control pins

(a) RESETZ (input)

This is the system reset input pin.

(b) STOPZ (input)

This is the hardware STOP mode request input pin.

(c) NMI2 to NMI0 (input)

These are non-maskable interrupt input pins.

(d) VAREQ (input)

This is the bus access right request input pin.

(e) WAITZ (input)

This is the external wait request input pin.

(f) ROMTYPE (input)

This is an NEC reserved pin. Always input a low level.

(g) DCOP13 to DCOP0 (output)

These are NEC reserved pins. Leave them open.

(3) NB85E connection pins

(a) VBCLK (input)

This is the system clock input pin.

(b) DBI5 to DBI0 (output)

These are debug control output pins. Connect them to pins DBI5 to DBI0 on the NB85E.

(c) DBO14 to DBO0 (input)

These are debug control input pins. Connect them to pins DBO14 to DBO0 on the NB85E.

(d) DBB15 to DBB0 (I/O)

These are debug control I/O pins. Connect them to pins DBB15 to DBB0 on the NB85E.

(e) TMODE1 (input)

This is the test mode selection input pin. Connect it to the TMODE1 pin on the NB85E.

(f) VBWAIT (input)

This is the wait response input pin.

(g) DCRESZ (output)

This is the reset output pin. Connect it to the DCRESZ pin on the NB85E.

(h) DCSTOPZ (output)

This is the hardware STOP mode request output pin. Connect it to the DCSTOPZ pin on the NB85E.

(i) DCNMI2 to DCNMI0 (output)

These are non-maskable interrupt output pins. Connect them to pins DCNMI2 to DCNMI0 on the NB85E.

(j) DCVAREQ (output)

This is the bus access right request output pin. Connect it to the VAREQ pin on the NB85E.

(k) VBTCLK (input)

This is the test clock input pin. Connect it to the VPTCLK pin on the NB85E.

(4) Peripheral connection pins

(a) DCWAITZ (output)

This is the external wait request output pin.

(b) STPAK (input)

This is the STOP mode request acknowledge input pin. Input the STPAK signal from the memory controller.

(5) Test mode pins

(a) BUNRI (input)

This is the input pin for selecting normal mode or test mode.

(b) TEST (input)

This is the test bus control input pin.

10.2.3 Recommended connection of unused pins

	Pin Name	I/O	Recommended Connection Method
N-Wire type IE connection pins	DCK, DRSTZ, DMS, DDI	Input	_
	DDO	Output	_
	DBINT	Input	Input a low level.
System control pins	RESETZ	Input	_
	STOPZ, WAITZ	Input	Input a high level.
	NMI2 to NMI0, VAREQ, ROMTYPE	Input	Input a low level.
	DCOP13 to DCOP0	Output	Leave open.
NB85E connection pins	VBCLK, DBO14 to DBO0, TMODE1, VBTCLK	Input	_
	DBI5 to DBI0	Output	—
	DBB15 to DBB0	I/O	—
	VBWAIT	Input	Input a low level.
	DCRESZ, DCSTOPZ, DCNMI2 to DCNMI0, DCVAREQ	Output	Leave open.
Peripheral connection pins	DCWAITZ	Output	Leave open.
	STPAK	Input	Input the STPRQ signal of the NB85E.
Test mode pins	BUNRI, TEST	Input	_

10.2.4 Pin status

The following table shows the status in each operating mode of the pins that have output functions.

Pin Name	Pin Status					
	Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
DDO	L/ Operates					
DCOP13 to DCOP10	L/ Operates					
DCOP9	L/L	L/ Operates				
DCOP8 to DCOP3	L/ Operates					
DCOP2	H/ Operates					
DCOP1, DCOP0	L/ Operates					
DBI5	H/ Operates					
DBI4 to DBI2	L/ Operates					
DBI1	H/ Operates					
DBI0	L/H	L/H	L/H	L/H	L/H	L/H
DB15 to DBB0	Retained/ Retained	Retained/ Retained	Retained/ Retained	Retained/ Retained	Retained/ Retained	Retained/ Operates
DCRESZ	RESETZ	RESETZ	RESETZ	RESETZ	RESETZ	Undefined
DCSTOPZ	STOPZ	STOPZ	STOPZ	STOPZ	STOPZ	Undefined
DCNMI2 to DCNMI0	NMI2 to NMI0	Undefined				
DCVAREQ	VAREQ	VAREQ	VAREQ	VAREQ	VAREQ	Undefined
DCWAITZ	WAITZ	WAITZ	WAITZ	WAITZ	WAITZ	Undefined

Table 10-1. Pin Status in Each Operating Mode

Note When a low level is input to the DCRESZ pin and an external clock is input to the VBCLK pin.

Remarks 1. L: Low-level output

H: High-level output

Retained: Retains previous status

- **2.** The item to the left of the slash (/) indicates the status when a low level is input to the DRSTZ pin, and the item to right indicates the status when a high level is input to the DRSTZ pin.
- **3.** The status of the DCRESZ, DCSTOPZ, DCNMI2 to DCNMI0, DCVAREQ, and DCWAITZ pins indicates the status either when a low level is input to the DRSTZ pin or when a high level is input to the DRSTZ pin and the external input signals (RESETZ, STOPZ, NMI2 to NMI0, VAREQ, and WAITZ) have not been masked.

Pin Name	Pin Status					
	Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
DRSTZ	L/H	L/H	L/H	L/H	L/H	L/H
DDI	H/ Operates	H/ Operates	H/ Operates	H/ Operates	H/ Operates	H/ Operates
DBINT	L/ Operates	L/ Operates	L/ Operates	L/ Operates	L/ Operates	L/ Operates
ROMTYPE	L	L	L	L	L	L

Caution The following input pins must be set according to the table below in the respective operating modes.

Note When a low level is input to the DCRESZ pin and an external clock is input to the VBCLK pin.

Remarks 1. L: Low-level output

H: High-level output

Retained: Retains previous status

2. The item to the left of the slash (/) indicates the status when a low level is input to the DRSTZ pin, and the item to right indicates the status when a high level is input to the DRSTZ pin.

10.3 Debug Function

(1) Debug interface

Communication with the host machine is performed via the N-Wire type IE using the DCK, DRSTZ, DMS, DDI, and DDO signals. JTAG communication specification is used for the interface. The boundary scan function is not supported.

(2) On-chip debug

By connecting with the N-Wire type IE, it is possible to debug the NB85E901 on the NB85E chip. For details on the above connection, refer to **10.5 N-Wire Type IE Connection**.

(3) Forcible reset function

The NB85E901 unit can be forcibly reset.

(4) Break reset function

The CPU can be started in debug mode immediately after CPU reset release.

(5) Forcible break function

Execution of the user program can be forcibly interrupted. Note that the illegal opcode exception handler (start address: 00000060H) cannot be used.

(6) Debug interrupt interface

The forcible break function can be executed by inputting a high level to the DBINT pin.

Remark It is also possible to release the HALT, software STOP, and hardware STOP modes by DBINT input.

(7) Breakpoint function

Execution of the user program can be interrupted at an arbitrary address. Also, data access to an arbitrary address can be interrupted. Note that the illegal opcode exception handler (start address: 00000060H) cannot be used.

There are two kinds of instruction/access alternate breakpoints: a pre-execution break and a post-access execution break.

(8) Debug monitor function

A debug-dedicated memory space, which is different to the user memory space, is used during debugging (background monitor format). Execution of the user program can be started from an arbitrary address. It is also possible to read/write the user resource (such as memory and I/O) and download the user program during a user program interruption.

(9) Mask function

The external input signals (RESETZ, STOPZ, NMI2 to NMI0, VAREQ, WAITZ) can be masked.

10.4 NB85E Connection Example

Figure 10-1 shows an example of the connection between the NB85E901 and the NB85E.

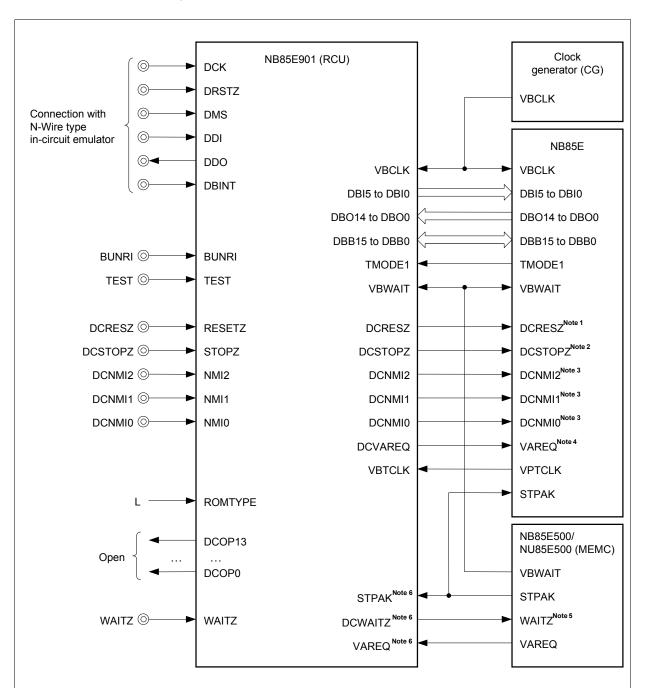
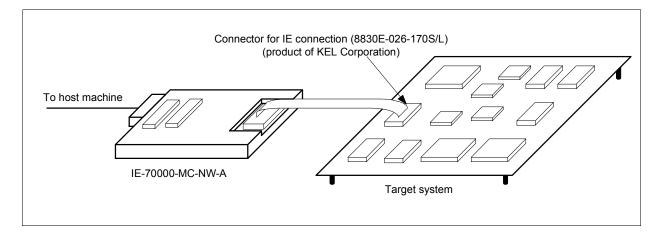


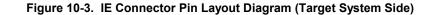
Figure 10-1. NB85E901 and NB85E Connection Example


Notes 1. Input the signal input from the RESETZ pin of the RCU and output from the DCRESZ pin.

- 2. Input the signal input from the STOPZ pin of the RCU and output from the DCSTOPZ pin.
- **3.** Input the signal input from the NMIn pin of the RCU and output from the DCNMIn pin (n = 2 to 0).
- 4. Input the signal input from the VAREQ pin of the RCU and output from the DCVAREQ pin.
- 5. Input the signal input from the WAITZ pin of the RCU and output from the DCWAITZ pin.
- 6. If the MEMC is not used, process the pin as shown in 10.2.3 Recommended connection of unused pins.

10.5 N-Wire Type IE Connection

In order to connect the N-Wire type IE (IE-70000-MC-NW-A), it is necessary to mount a connector for IE connection and a connection circuit on the target system.



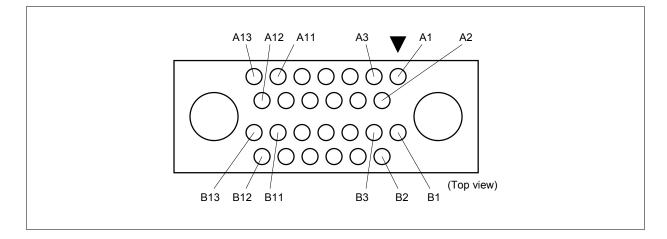
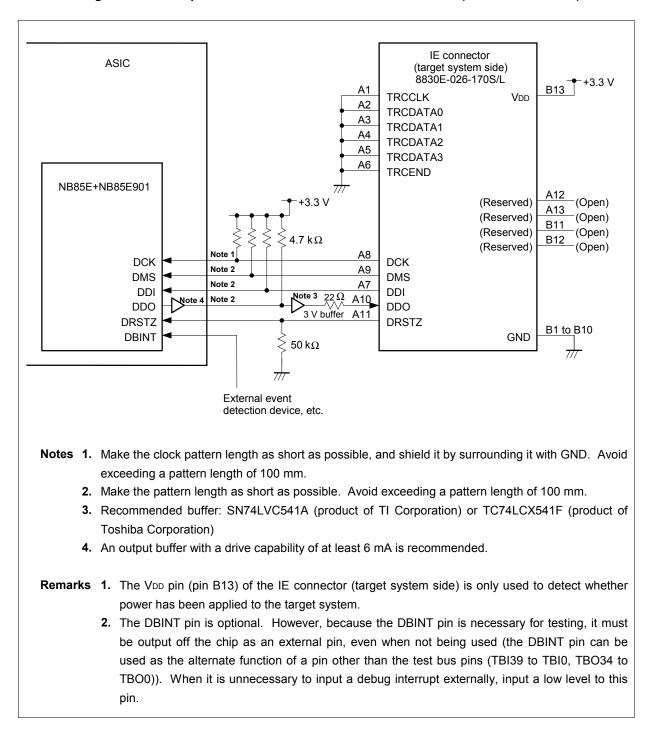

10.5.1 IE connector (target system side)

Figure 10-3 shows the pin layout of the IE connector (target system side), and Table 10-1 describes the pin functions.

Remark The recommended connectors are as follows.

- 8830E-026-170S (product of KEL Corporation): 26-pin straight type
- 8830E-026-170L (product of KEL Corporation): 26-pin right angle type



Pin No.	Pin Name	I/O	Pin Function
A1	TRCCLK	Input	Trace clock input
A2	TRCDATA0	Input	Trace data 0 input
A3	TRCDATA1	Input	Trace data 1 input
A4	TRCDATA2	Input	Trace data 2 input
A5	TRCDATA3	Input	Trace data 3 input
A6	TRCEND	Input	Trace data end input
A7	DDI	Output	Debug serial interface data output
A8	DCK	Output	Debug serial interface clock output
A9	DMS	Output	Debug serial interface transfer mode selection output
A10	DDO	Input	Debug serial interface data input
A11	DRSTZ	Output	DCU reset output
A12	(Reserved)	—	(Leave open)
A13	(Reserved)	—	(Leave open)
B1	GND	_	_
B2	GND	—	_
B3	GND	—	_
B4	GND	—	_
B5	GND	_	—
B6	GND	_	—
B7	GND	_	_
B8	GND	_	—
B9	GND	_	—
B10	GND	_	_
B11	(Reserved)	_	(Leave open)
B12	(Reserved)	_	(Leave open)
B13	Vdd	—	+3.3 V input (for monitoring target power supply application)

Table 10-2. IE Connector Pin Functions (Target System Side)

10.5.2 Example of recommended circuit when connecting NB85E901 and NB85E

Figure 10-4 shows an example of the circuit recommended for IE connector section (target system side).

APPENDIX A ROM/RAM ACCESS TIMING

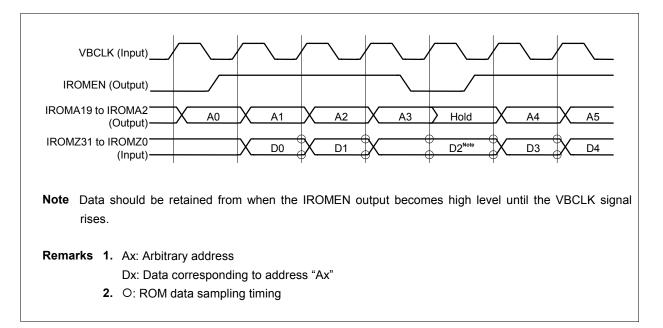
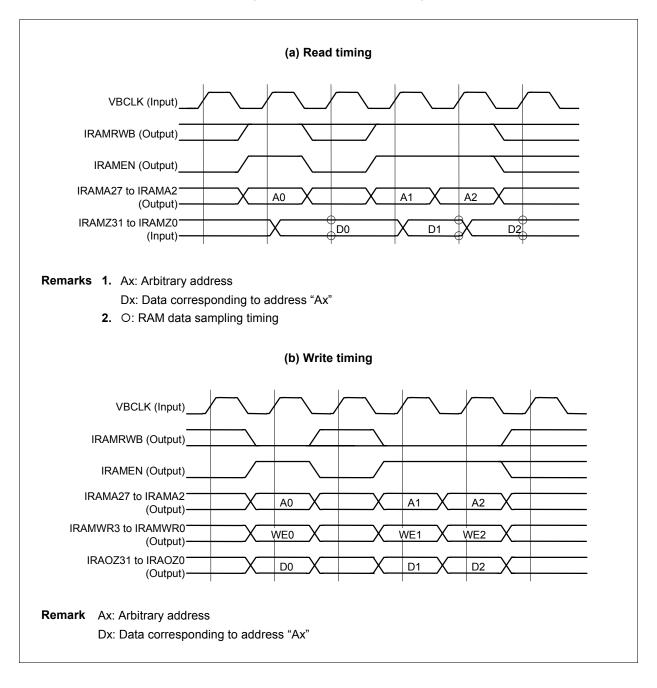



Figure A-1. ROM Access Timing

Figure A-2. RAM Access Timing

APPENDIX B INDEX

[A]

Address Space	55
Application System Example	18

[B]

BBR	114
BC15 to BC0	149
BCU	71
BCUNCH	36
BCU-Related Register Setting Examples	88
BEC	84
BEn0	84
BHC	87
BHn0	87
BHn1	87
Block transfer mode	163
BPC	82
BSC	83
BSn1, BSn0	83
BUNRI	42
Bus master transition	108
Bus Size Configuration Register	83
Bus Size Setting Function	83

[C]

Cache Configuration	87
Cache Configuration Register	87
CGREL	33
CH3 to CH0	153
Chip Area Select Control Register 0	74
Chip Area Select Control Register 1	75
Clock Control	137
Command register	132
CPU	48
CSC0	74
CSC1	75
CSn3 to CSn0	74
CTBP	52
CTPC	52
CTPSW	52
CY	54

[D]

DA15 to DA0	148
DA27 to DA16	147
DAD1, DAD0	151
DADC0 to DADC3	150
Data area	57
Data Transfer Using VSB	
DBB15 to DBB0	
DBC0 to DBC3	149
DBI5 to DBI0	38
DBO14 to DBO0	38
DBPC	52
DBPSW	52
DCHC0 to DCHC3	152
DCNMI2 to DCNMI0	34
DCRESZ	32
DCSTOPZ	33
DDA0 to DDA3	147
DDIS	153
Debug Function	235
DMA addressing control registers 0 to 3	150
DMA Bus State	155
DMA channel control registers 0 to 3	152
DMA Channel Priorities	144
DMA destination address registers 0 to 3	147
DMA disable status register	153
DMA restart register	153
DMA source address registers 0 to 3	145
DMA transfer count registers 0 to 3	
DMA Transfer Start Factors	165
DMA Transfer Timing Examples	170
DMAC	
DMAC bus cycle state transitions	157
DMACTV3 to DMACTV0	34
DMARQ3 to DMARQ0	33
DMTCO3 to DMTCO0	33
DRST	153
DS1, DS0	
DSA0 to DSA3	145

[E]

ECR	52
EICC	53
EIPC	52
EIPSW	52
EN3 to EN0	153
Endian Configuration Register	84
Endian Setting Function	
ENn	152
EP	54
EVAD15 to EVAD0	
EVASTB	
EVCLRIP	
EVDSTB	
EVIEN	
EVINTAK	
EVINTLV6 to EVINTLV0	
EVINTRQ	
EVIREL	
EVLKRT	
EVOEN	
Example of Connection of Peripheral Macro in	Test
Mode	222
External memory	
External memory area	64

[F]

FCOMB	41
FECC	53
FEPC	52
FEPSW	-
Flyby transfer	

[G]

General-purpose registers	0
---------------------------	---

[H]

HALT Mode13	3
Handling of Each Pin in Test Mode	24
Hardware STOP Mode13	6
HWSTOPRQ	33

[I]

IBAACK	35
IBBTFT	36
IBDLE3 to IBDLE0	35
IBDRDY	35
IBDRRQ	35
IBEA25 to IBEA2	35
IBEDI31 to IBEDI0	35
ID	54
IDAACK	36
IDDARQ	36
IDDRDY	38
IDDRRQ	37
IDDWRQ	37
IDEA27 to IDEA0	38
IDED31 to IDED0	38
IDES	38
IDHUM	38
IDMASTP	33
IDRETR	37
IDRRDY	37
IDSEQ2	
IDSEQ4	
IDUNCH	
IFID256	
IFIMAEN	
IFIMODE3, IFIMODE2	
IFINSZ1, IFINSZ0	
IFIRA64, IFIRA32, IFIRA16	
IFIRABE	
IFIRASE	
IFIROB2	
IFIROBE	
IFIROME	
IFIROPR	
IFIUNCH0	
IFIUNCH1	
IFIUSWE	
IFIWRTH	
IIAACK	
IIBTFT	
IIDLEF	
IIDLEF	
IIEA25 to IIEA2	
IIEDI31 to IIEDI0	
IIRCAN	
Illegal opcode	
niegai upuue	- 17

IMR0 to IMR3	212
INITn	152
In-service priority register	213
INT63 to INT0	34
INTC	196
Internal block diagram	22
Interrupt control registers 0 to 63	211
Interrupt mask registers 0 to 3	212
Interrupt Response Time	219
Interrupt/Exception List	. 196, 197, 198
Interrupt/exception table	59
INTM	130
IR	145, 147
IRAMA27 to IRAMA2	34
IRAMEN	35
IRAMRWB	35
IRAMWR3 to IRAMWR0	35
IRAMWT	35
IRAMZ31 to IRAMZ0	34
IRAOZ31 to IRAOZ0	34
IROMA19 to IROMA2	34
IROMAE	34
IROMCS	34
IROMEN	34
IROMIA	34
IROMWT	34
IROMZ31 to IROMZ0	34
IRRSA	
ISPR	213
ISPR7 to ISPR0	213

[L]

Line transfer mode161	
-----------------------	--

[M]

Maskable interrupt priorities	207
Maskable Interrupts	204
Memory Banks	71
Misalign access timing	112
MLEn	152

[N]

NB85E901	227
NB85E901 and NB85E Connection Example	236
NB85E901 (RCU) Interface	70

Next Address Setting Function 1	54
NMI 1	99
NMIOM 1	30
NMI1M 1	30
NMI2M 1	30
Non-Maskable Interrupts 1	99
Normal mode 2	20
Normal mode	
	54
NP	54 17
NP NPB	54 17 22

[0]

On-chip debugging	70
OV	54

[P]

PA13 to PA00	82
PA15	82
PC	50
Periods When Interrupts Cannot Be Acknowle	dged
	219
Peripheral I/O area	62
Peripheral I/O Area Select Control Register	82
Peripheral I/O Registers	64
PHEVA	41
PHTDIN1, PHTDIN0	
PHTDO1, PHTDO0	
PHTEST	
PIC0 to PIC63	211
PIFn	211
PIN FUNCTIONS	
Pin Status	45
PMKn	211
Power save control register	130
Power Save Function	129
PPRn2 to PPRn0	211
PRCMD	132
Program area	56
Program counter	
Program registers	50
Programmable Chip Select Function	74
Programmable Peripheral I/O Area	116
Programmable Peripheral I/O Area Selection I	-unction

PSC1	30
PSW	52

[R]

r0 to r31	
RAM	
RAM area	61
Recommended Connection of Unused Pins	43
REG7 to REG0	132
Retry Function	121
ROM	
ROM area	
ROM relocation function	
ROM/RAM ACCESS TIMING	240

[S]

S	54
SA15 to SA0	
SA27 to SA16	145
SAD1, SAD0	150
SAT	
Single transfer mode	158
Single-step transfer mode	160
Software Exception	215
Software STOP Mode	134
Standby test mode	221
STBC	129
STGn	
STP	
STPAK	
STPRQ	
SUWL2 to SUWL0	119
SWSTOPRQ	
Symbol Diagram	21
System registers	

[T]

TBI39 to TBI0	42
TBO34 to TBO0	42
TBREDZ	42
TCn	152
TDIR	151
TESEN	42
TEST	42
TEST FUNCTION	

TM1, TM0	151
TMODE0	42
TMODE1	42
Transfer Objects	144
TTYP	151
Two-cycle transfer	165

[U]

Unit test mode	20
----------------	----

[V]

VAACK
VAREQ
VBA27 to VBA0
VBAHLD
VBBENZ3 to VBBENZ0 29
VBBSTR
VBCLK
VBCTYP2 to VBCTYP0
VBD31 to VBD0
VBDC
VBLAST
VBLOCK
VBSEQ2 to VBSEQ0
VBSIZE1, VBSIZE0
VBSTZ
VBTTYP1, VBTTYP0
VBWAIT
VBWRITE
VDB
VDCSZ7 to VDCSZ0
VDSELPZ
VFB
VPA13 to VPA0
VPD15 to VPD0
VPDACT
VPLOCK
VPRESZ
VPRETR
VPSTB
VPTCLK
VPUBENZ
VPWRITE
VSB
VSWC
VSWL2 to VSWL0

[W]	[Z]
Wait Insertion Function119	Z54

246

APPENDIX C REVISION HISTORY

A history of the revisions up to this edition is shown below. "Pages" indicates the pages of the earlier edition to which the revision was applied.

(1) From 1st to 2nd

Pages	Description
Throughout	Internal ROM, internal RAM referred to as "ROM", "RAM" respectively.
p.28	Modification of explanation of TESEN, PHTEST pin functions in 2.1 List of Pin Functions
p.29	Addition of explanation 2.2.1 (3) VPWRITE
p.34	Addition of explanation 2.2.4 (3) DMTCO3 to DMTCO0
p.39	Modification of explanation of 2.2.12 (1) IFIROME
p.42	Modification of explanations of 2.2.13 (6) TESEN, (7) VPTCLK, (10) PHTEST
pp.43, 44	Modification of recommended connection of VBLAST, VBAHLD, IDEA27 to IDEA0, IFIROB2, IFIWRTH, IFIUNCH1, IFIUNCH0 in 2.3 Handling of Unused Pins
p.46	Change of status of SWSTOPRQ, HWSTOPRQ, STPRQ after reset in Table 2-10 Pin Status in Each Operating Mode
p.58	Modification of contents of Note 2 in Figure 3-8 Data Area (256 MB Mode)
p.67	Modification of manipulatable bits of instruction cache control register (ICC) in 3.5 (3) Instruction cache control register
pp.80, 82	Addition of caution to 4.4 Programmable Peripheral I/O Area Selection Function
p.86	Addition of caution to 4.7 Cache Configuration
pp.87, 88	Modification of Figure 4-12 BPC, BSC, BEC, BHC Register Setting Example
p.92	Modification of Table 4-6 VBWAIT, VBAHLD, and VBLAST Signals
pp.94 to 105	Modification of remark in Figure 4-14 Read/Write Timing of Bus Slave Connected to VSB
p.108	Modification of Figure 5-2 NB85E and Peripheral Macro Connection Example
p.121	Modification of explanation in 6.2.1 Power save control register (PSC)
p.127	Modification of Figure 6-5 Software STOP Mode Set/Cancel Timing Example
pp.128, 129	Modification of Figure 6-6 Hardware STOP Mode Set/Cancel Timing Example
p.133	Modification of Table 7-2 Relationships Between Wait Function and Transfer Object
p.147	Modification of Figure 7-12 Single Transfer Example 1
p.150	Addition of 7.8.5 One-time transfer when executing single transfers using DMARQn signal
p.154	Addition of 7.14 (5) DMA transfer end interrupt
p.179	Modification of explanation in 9.1.2 BUNRI and TEST pins
p.180	Modification of explanation of VPTCLK, PHTEST pin functions in 9.2 List of Test Interface Signals
p.181	Modification of 9.3 Example of Connection of Peripheral Macro in Test Mode
pp.182 to 184	Modification of 9.4 Handling of Each Pin in Test Mode

(2) From 2nd to 3rd

Pages	Description
pp.28, 29	Change of IBBTFT and IDES pins to NEC reserved pins
pp.29, 30, 41, 45	Modification of description of DBB15 to DBB0 and TMODE1 pins
p.33	Addition of Note to Table 2-4 VBCTYP2 to VBCTYP0 Signals
p.35	Addition of Caution to 2.2.3 (1) DCRESZ
p.35	Addition of Note to Figure 2-1 Acknowledgement of DCRESZ Signal
p.35	Modification of description in 2.2.3 (3) CGREL
p.36	Deletion of part of description in 2.2.3 (7) STPRQ
p.36	Modification of description in 2.2.4 (1) IDMASTP
p.36	Modification of description in 2.2.4 (4) DMACTV3 to DMACTV0
p.36	Deletion of part of description in 2.2.5 (2) INT63 to INT0
p.37	Modification of description in 2.2.7 (5) IRAMWR3 to IRAMWR0
pp.38, 39	Modification of description in 2.2.8 Instruction cache pins
pp.39 to 41	Modification of description in 2.2.9 Data cache pins
p.45	Modification of description in 2.2.13 (6) TESEN
p.45	Addition of Caution to 2.2.13 (9) VPRESZ
p.46	Modification of recommended connection method for STPAK pin in 2.3 Recommended Connection of Unused Pins
pp.48 to 50	Modification of pin status of the following pins in unit test mode in Table 2-10 Pin Status in Each Operating Mode : NPB pins, VSB pins, VFB pins, VDB pins, instruction cache pins, and data cache pins
p.63	Addition of Caution to 3.4.2 RAM area
p.63	Modification of address in Figure 3-10 (d) When 60 Kbytes is selected
p.64	Modification of Caution in 3.4.3 Peripheral I/O area
p.65	Addition of description to 3.5 Peripheral I/O Registers
p.70	Modification of 3.5.3 Instruction cache control registers
p.70	Addition of 3.5.4 Data cache control registers
p.71	Modification of 3.6.2 On-chip debugging
pp.73 to 92	Change of description "Block n" from previous edition to "CSn area"
p.83	Modification of Figure 4-5 Peripheral I/O Area and Programmable Peripheral I/O Area
p.84	Modification of Caution 4 in 4.4 Programmable Peripheral I/O Area Selection Function
pp.87, 88	Addition of 4.6.1 Usage restrictions concerning big endian format with NEC development tools
p.94	Addition of Note to Table 4-2 VBCTYP2 to VBCTYP0 Signals
pp.96 to 108	Modification of diagrams of read/write timing when bus slave is connected to VSB in 4.9.3 Read/write timing
p.109	Modification of Figure 4-15 Reset Timing
pp.110 to 113	Addition of 4.9.5 Bus master transition
,	

Pages	Description
p.116	Modification of Figure 5-2 NB85E and Peripheral Macro Connection Example
p.117	Modification of Figure 5-3 Peripheral I/O Area and Programmable Peripheral I/O Area
p.121	Modification of Figure 5-6 NPB Strobe Wait Control Register (VSWC)
p.121	Addition of description and table to 5.2 Wait Insertion Function
pp.123 to 129	Modification of 5.4 NPB Read/Write Timing
pp.132, 133	Modification of description in 6.2.1 Power save control register (PSC)
p.132	Addition of Note to Figure 6-2 Power Save Control Register (PSC)
p.135	Addition of description in 6.3 (1) Setting and operation status
p.135	Addition of Caution to 6.3 (2) (b) Cancellation by DCRESZ signal input
p.136	Addition of Caution to 6.4 (2) (b) Cancellation by DCRESZ signal input
p.137	Addition of Caution to 6.5 (2) (b) Cancellation by DCRESZ signal input
pp.138, 139	Modification of 6.6 (1) (b) When canceling software STOP mode
pp.140, 141	Modification of 6.6 (2) (b) When canceling hardware STOP mode
p.143	Modification of 7.1 Features
p.150	Addition of description in 7.5.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)
p.158	Deletion of description from 7.7.2 DMAC bus cycle state transitions
p.163	Modification of 7.8.5 One-time transfer when executing single transfers using DMARQn signal
p.164	Modification of 7.9.1 Two-cycle transfer
p.164	Deletion of part of description in 7.10 (1) Request by external pin (DMARQn)
p.165	Modification of 7.11 Output When DMA Transfer Is Complete
p.166	Modification of description and diagram and addition of Caution in 7.12 Forcible Interruption
p.167	Addition of description and Caution in 7.13 Forcible Termination
pp.169 to 188	Addition of 7.14 DMA Transfer Timing Examples
p.189	Modification of 7.15 (3) Intervals related to DMA transfer
p.193	Modification of Remark 1 in Table 8-1 Interrupt/Exception List
p.207	Modification of address in Figure 8-10 In-Service Priority Register (ISPR)
p.213	Modification of description and diagram in 8.6 Interrupt Response Time
p.215	Modification of 9.1.2 (2) (a) Unit test mode
p.216	Modification of description of TESEN and TMODE1 signals in 9.2 List of Test Interface Signals
pp.217, 218	Modification of 9.3 Example of Connection of Peripheral Macro in Test Mode
p.219	Modification of Caution in 9.4 (1) (a) I/O pins
p.220	Modification of 9.4 (1) (b) Handling of input pins
pp.223 to 232	Addition of CHAPTER 10 NB85E901
pp.233, 234	Modification of APPENDIX A ROM/RAM ACCESS TIMING

(2/2)

(3) From 3rd to 4th

Pages	Description				
Throughout	Change of CGREL pin to NEC reserved pin				
pp.34, 35	Modification of 2.2.2 (14) VBWAIT, (15) VBLAST, (16) VBAHLD, and (19) VDSELPZ				
p.35	Modification of Figure 2-1 Acknowledgement of DCRESZ Signal				
p.38	Modification of 2.2.7 (7) IRAMWT				
p.44	Addition of explanation in 2.2.12 (7) IFIWRTH and (8) IFIUNCH1				
pp.52, 53	Modification of description about r2 register				
p.61	Modification of Figure 3-8 Data Area (256 MB Mode) and modification of Note 2 and addition of Caution				
p.64	Deletion of Caution and addition of explanation in 3.4.2 RAM area				
p.67	Addition of explanation of (5) in 3.5 Peripheral I/O Registers				
p.69	Modification of IMR0 to IMR3 registers in 3.5.1 NB85E control registers				
p.71	Modification of 3.5.2 Memory controller (MEMC) control registers				
p.72	Modification of ICC registers in 3.5.3 Instruction cache control registers				
p.72	Modification of initial values in 3.5.4 Data cache control registers				
p.77	Modification of a figure in 4.2 (2) Memory banks for 256 MB mode				
p.85	Modification of Figure 4-5 Peripheral I/O Area and Programmable Peripheral I/O Area (b) 256 MB mode				
p.86	Modification of Caution 2 and addition of Caution 5 in 4.4 Programmable Peripheral I/O Area Selection Function				
p.88	Addition of Caution 1 and modification of Caution 2 in 4.6 Endian Setting Function				
p.91	Modification of Caution 1 and addition of Cautions 2 to 4 in 4.7 Cache Configuration				
p.98	Modification of 4.9.3 Read/write timing				
p.116	Addition of 4.9.6 Misalign access timing				
p.121	Modification of Figure 5-3 Peripheral I/O Area and Programmable Peripheral I/O Area (b) 256 MB mode				
p.122	Modification of Caution 2 and addition of Caution 4 in 5.1 Programmable Peripheral I/O Area				
p.125	Modification of Figure 5-6 NPB Strobe Wait Control Register (VSWC)				
p.126	Modification of Figure 5-7 Retry Function				
p.131	Modification of Figure 5-14 (a) Example of write to NPB peripheral macro (programmable peripheral I/O area)				
p.135	Modification of 6.1 (1) HALT mode				
p.136	Addition of Caution in 6.2.1 Power save control register (PSC)				
p.142	Deletion of description about CGREL pin and modification of Caution in 6.6 Clock Control in Software/Hardware STOP Mode				
p.147	Addition of explanation on line transfer mode in 7.1 Features				
p.163	Addition of explanation in 7.8.1 Single transfer mode				
p.164	Addition of Figure 7-14 Single Transfer Example 3 and Figure 7-15 Single Transfer Example 4				
p.166	Addition of explanation in 7.8.3 Line transfer mode				
p.167	Addition of Figure 7-20 Line Transfer Example 3 and Figure 7-21 Line Transfer Example 4				

		(2/2		
Pages	Pages Description			
p.170	Addition of Caution in 7.9.1 Two-cycle transfer			
p.170	Addition of Caution in 7.9.2 Flyby transfer			
pp.183 to 186	Addition of a timing example of two-cycle transfer between RAM connected to VDB and SDRAM connected to MEMC (NU85E502)			
p.203	dification of description about restored PC in Remark 1 in Table 8-1 Interrupt/Exception List			
p.204	dification of explanation and addition of Caution in 8.2 Non-Maskable Interrupts (NMI)			
pp.205, 206	Modification of Figure 8-1 Example of Non-Maskable Interrupt Request Acknowledgement Operation			
p.208	Modification of 8.2.2 Restore			
p.217	Addition of explanation in 8.3.4 (2) Interrupt mask registers 0 to 3 (IMR0 to IMR3)			
pp.227, 228	Deletion of description about MEMC DRAM controller (NB85E501) and change of MEMC SDRAM controller name from [NB85E502] to [NU85E502]			
p.230	Modification of 9.4 (1) (b) Handling of input pins			
p.231	Modification of 9.5 Precautions			
p.235	Addition of Caution in 10.2.2 (1) N-Wire type IE connection pins and addition of explanation in (f) DBINT			
p.239	Addition of 10.2.4 Pin status			
p.241	Modification of 10.3 (9) Mask function			
p.245	Modification of Remark 2 in Figure 10-4 Example of Recommended Circuit for IE Connection (NB85E + NB85E901)			

(4) From 4th to 5th

Pages	Description		
pp.25, 33	Modification of description about CGREL pin		
pp.28, 41, 85	Modification of description about IFINSZ1, IFINSZ0 pins		
pp.140 to 143	Addition of description about CGREL pin in 6.6 Clock Control in Software/Hardware STOP Mode		
p.226	Modification of Figure 9-1 Peripheral Macro Connection Example		
p.229	Modification of 9.4 (2) Test mode pins		

(5) From 5th to 6th

		(1/2)
Pages	Description	
pp.28, 41	Modification of description on IFINSZ1 and IFINSZ0 pins	
p.29	Modification of description on VPLOCK pin	
p.31	Modification of description on VBWRITE pin	
p.32	Modification of description on VBWAIT pin	
p.32	Modification of description on VBLAST pin	
p.32	Modification of description on VBAHLD pin	

(2/2)

Pages	Description			
p.33	Modification of description on CGREL pin			
p.44	Modification of connection method of VBWAIT, VBLAST, and VBAHLD pins in 2.3 Recommended Connection of Unused Pins			
pp.63, 64	Modification of Caution and Figure 3-11 Peripheral I/O Area in 3.4.3 Peripheral I/O area			
p.85	Modification of input levels to the IFINSZ1 and IFINSZ0 pins in Figure 4-7 Bus Size Configuration Register (BSC)			
p.85	Addition of Example in Figure 4-7 Bus Size Configuration Register (BSC)			
p.89	Modification of Cautions in 4.7 Cache Configuration			
p.96	Addition of Caution in 4.9.2 (6) Transfer status			
p.96	Modification of description and deletion of Table 4-7 VBWRITE Signal in 4.9.2 (7) Transfer direction			
p.124	Adification of read timing of VPD15 to VPD0 in Figure 5-7 Retry Function			
p.127	Modification of timing of VPUBENZ in Figure 5-11 Read Modify Write Timing			
p.138	Addition of Caution in 6.4 (2) (a) Cancellation by interrupt request			
p.139	Addition of Table 6-3 Operation After Setting Software STOP Mode in Interrupt Processing Routine			
p.141	Addition of Caution in Figure 6-4 Connection of NB85E and Clock Control Circuit			
p.143	Addition of Remark in Figure 6-5 Software STOP Mode Set/Cancel Timing Example			
p.184	Modification of timing of VBLOCK in Figure 7-31 Example of Two-Cycle Single Transfer Timing (from RAM Connected to VDB to SDRAM Connected to NU85E502)			
p.186	Modification of timing of VBLOCK and VBDC in Figure 7-32 Example of Two-Cycle Single Transfer Timing (from SDRAM Connected to NU85E502 to RAM Connected to VDB)			
p.231	Deletion of 9.5 Precautions and addition of (3) Precautions when NB85E901 is connected			
p.235	Modification of Caution in 10.2.2 (1) N-Wire type IE connection pins			
p.242	Addition of Note in Figure 10-1 NB85E901 and NB85E Connection Example			
p.247	Addition of Note in Figure A-1 ROM Access Timing			
p.248	Modification of timing of IRAOZ31 to IRAOZ0 and deletion of Note in Figure A-2 RAM Access Timing			
p.253	Addition of APPENDIX C REVISION HISTORY			

NEC

Facsimile Message

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Company	
Tel.	FAX

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +1-800-729-9288 +1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: +82-2-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951	

I would like to report the following error/make the following suggestion:

Document title:

From:

Name

Address

Document number: ____

Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				