

MICROWAVE GaInP/GaAs DISCRETE HBT DC TO 12GHz

Typical Applications

- Active Amplifier in VCO Circuit
- Gain Stage

• Buffer Amplifier

Product Description

The NBT-168 discrete HBT is ideal for low-cost amplifier and oscillator applications up to 12GHz. Low noise figure, high gain, high current capability, and medium output give this device high dynamic range and excellent linearity for cascaded amplifier designs. This device is also ideally suited for VCO/buffer amplifier applications. The NBT-168 is packaged in a low-cost, surface-mount ceramic package, providing ease of assembly for high-volume tapeand-reel requirements. It is available in either packaged or chip (NBT-168-D) form, where its gold metallization is ideal for hybrid circuit designs.

Solder pads are coplanar to within ±0.025 mm.
 Lid will be centered relative to frontside metallization with a tolerance of ±0.13 mm.
 Mark to include two characters and dot to reference pin 1.

Optimum Technology Matching® Applied

-		
🗌 Si BJT	GaAs HBT	GaAs MESFET
Si Bi-CMOS	SiGe HBT	Si CMOS
GalnP/HBT	GaN HEMT	SiGe Bi-CMOS

Functional Block Diagram

Package Style: MPGA, Bowtie, 3x3, Ceramic

Features

- Reliable, Low-Cost HBT Design
- 26.0dB Gain @ 1.0GHz
- Positive Power Supply Operation
- 4-Finger Device for High-Current Capability
- Low Noise Figure, 1.7dB@2.0GHz

Ordering Information

NBT-168 Microwave GalnP/GaAs Discrete HBT DC to 12GHz NBT-168-T1 or -T3Tape & Reel, 1000 or 3000 Pieces (respectively)					
NBT-168-D NBT-168 Chip Form					
NBT-168-E	Fully Assembled Evalua	tion Board			
RF Micro Device 7628 Thorndike Greensboro, NC	The first of the second sec				

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Power	+10	dBm
Power Dissipation	250	mW
V _{CBO}	8	
V _{CEO}	6	
V _{EBO}	1.5	V
Collector Current	42	mA
Junction Temperature	200	°C
Operating Temperature	-45 to +85	°C
Storage Temperature	-65 to +150	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Exceeding any one or a combination of these limits may cause permanent damage.

Baramotor	Specification		Unit	Condition		
Farameter	Min.	Тур.	Max.	Unit	Condition	
Overall					V _C =+3.9V, I _{CC} =25mA, Z ₀ =50Ω, T _A =+25°C	
Collector Cutoff Current, ICBO			0.1	μA	V _{CB} =5.0V, I _E =0	
Emitter Cutoff Current, IEBO			0.1	μA	V _{EB} =1.0V, I _C =0	
DC Current Gain, h _{FE}	90	110	130		V _{CE} =4.0V, I _C =25mA	
Current Gain, H21		20		dB	V _{CE} =4.0V, I _C =25mA, 2GHz	
Small Signal Power Gain, S21	24	26		dB	f=1.0GHz	
Noise Figure, NF		1.7		dB	f=2.0GHz	
Reverse Isolation, S12	-30	-32		dB	f=1.0GHz	
MTTF versus Temperature						
@ V _{CE} =3.9V, I _{CC} =25mA						
Case Temperature		85		°C		
Junction Temperature		112		°C		
MTTF		>1,000,000		hours		
Thermal Resistance						
θJC		277		°C/W	Thermal Resistance, at any temperature (in °C/Watt) can be estimated by the following equation: θ_{JC} (°C/Watt)=277[T _J (°C)/112]	

Pin	Function	Description	Interface Schematic
1	EMITTER	For best high frequency performance, this should be grounded. For best performance, keep traces physically short and connect immedi- ately to ground plane.	
2	EMITTER	Same as pin 2.	
3	EMITTER	Same as pin 2.	
4	BASE	RF input pin. This pin is NOT internally DC blocked. A DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. Base bias network should provide 1.3V to the base and be a current source sufficient to supply the correct base current for the collector current set.	
5	EMITTER	Same as pin 2.	
6	EMITTER	Same as pin 2.	
7	EMITTER	Same as pin 2.	
8	COLLECTOR	Collector bias. Must provide collector voltage and current. Biasing is accomplished with an external series resistor and choke inductor to V_{CC} . The resistor is selected to set the DC current into this pin at the desired level. The resistor value is determined by the following equation: $R = \frac{(V_{CC} - V_C)}{I_{CC}}$ Care should be taken to ensure the current through the devices never exceeds the maximum datasheet setting. Additionally, care should be taken to ensure the voltages between the collector and emitter (pins 3, 2 and 4), VCE is typically 3.5V to 4.0V. Because DC is present on this pin, a DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. The supply side of the bias network should also be well bypassed.	BASE O
9	EMITTER	Same as pin 2.	

Typical Bias Configuration

Application notes related to biasing circuit, device footprint, and thermal considerations are available on request.

Note: RF bypass circuitry omitted for simplicity.

Application Notes

Die Attach

The die attach process mechanically attaches the die to the circuit substrate. In addition, it electrically connects the ground to the trace on which the chip is mounted, and establishes the thermal path by which heat can leave the chip.

Wire Bonding

Electrical connections to the chip are made through wire bonds. Either wedge or ball bonding methods are acceptable practices for wire bonding.

Assembly Procedure

Epoxy or eutectic die attach are both acceptable attachment methods. Top and bottom metallization are gold. Conductive silver-filled epoxies are recommended. This procedure involves the use of epoxy to form a joint between the backside gold of the chip and the metallized area of the substrate. A 150°C cure for 1 hour is necessary. Recommended epoxy is Ablebond 84-1LMI from Ablestik.

Bonding Temperature (Wedge or Ball)

It is recommended that the heater block temperature be set to 160°C±10°C.

Tape and Reel Dimensions

All Dimensions in Millimeters

330 mm (13") REEL			Micro-X, MPGA		
	ITEMS	SYMBOL	SIZE (mm)	SIZE (inches)	
	Diameter	В	330 +0.25/-4.0	13.0 +0.079/-0.158	
FLANGE	Thickness	Т	18.4 MAX	0.724 MAX	
	Space Between Flange	F	12.4 +2.0	0.488 +0.08	
	Outer Diameter	0	102.0 REF	4.0 REF	
нив	Spindle Hole Diameter	S	13.0 +0.5/-0.2	0.512 +0.020/-0.008	
	Key Slit Width	A	1.5 MIN	0.059 MIN	
	Key Slit Diameter	D	20.2 MIN	0.795 MIN	

User Direction of Feed

A watch be measured on a plane or the inside bottom of the pocket to the surface of the carrier.
 Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Rev A1 020412