

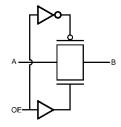
November 1996 Revised January 2001

NC7SZ66

TinyLogic™ Low Voltage UHS Single SPST Normally Open Analog Switch or 1-Bit Bus Switch

General Description

The NC7SZ66 is a ultra high-speed (UHS) CMOS compatible single-pole/single-throw (SPST) analog switch or 1-bit bus switch. The LOW on resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a switch enable (OE) signal. When OE is HIGH, the switch is on and Port A is connected to Port B. When OE is LOW, the switch is open and a high-impedance state exists between the two ports.


Features

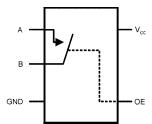
- Space saving SOT23 or SC70 5-lead package
- Broad V_{CC} Operating Range 1.65V–5.5V
- Rail-to-rail signal handling
- \blacksquare 5 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Zero bounce in flow-through mode
- Control input compatible with CMOS input levels
- >250 MHz -3dB bandwidth

Ordering Code:

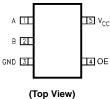
Order Package Product Code		Package Description	Supplied As		
Number	Number	Top Mark	rackage bescription	oupplied As	
NC7SZ66M5	MA05B	7Z66	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel	
NC7SZ66M5X	MA05B	7Z66	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7SZ66P5	MAA05A	Z66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel	
NC7SZ66P5X	MAA05A	Z66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	

Logic Symbol

Pin Descriptions


Pin Names	Description
OE	Switch Enable Input
А	Bus A I/O
В	Bus B I/O

Function Table


OE	B ₀	Function
L	HIGH-Z State	Disconnect
Н	A_0	Connect

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

Analog Symbol

Connection Diagram

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 3)

Supply Voltage (V _{CC})	−0.5V to +7.0V
DC Switch Voltage (V _S)	$-0.5V$ to V_{CC} +0.5V
DC Input Voltage (V _{IN}) (Note 2)	-0.5V to $+7.0V$
DC Input Diode Current	
$(I_{IK}) V_{IN} < 0V$	−50 mA
DO O	400 1

 $\begin{array}{lll} (I_{\text{IK}}) \ V_{\text{IN}} < 0V & -50 \ \text{mA} \\ \text{DC Output } (I_{\text{OUT}}) \ \text{Sink Current} & 128 \ \text{mA} \\ \text{DC } V_{\text{CC}} / \text{GND Current} \ (I_{\text{CC}} / I_{\text{GND}}) & \pm 100 \ \text{mA} \\ \end{array}$

Storage Temperature Range $(T_{STG}) \hspace{1cm} -65^{\circ}C \hspace{1mm} to \hspace{1mm} +150^{\circ}C$

Junction Lead Temperature

under Bias (T_J) $$+150^{\circ}\text{C}$$ Junction Lead Temperature (T_L)

(Soldering, 10 Seconds) Power Dissipation (P_D) @ +85°C

SOT23-5 200 mW SC70-5 150 mW $\begin{array}{lll} \mbox{Power Supply Operating (V$_{CC}$)} & 1.65 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Control Input Voltage (V$_{IN}$)} & 0 \mbox{V to } 5.5 \mbox{V} \\ \mbox{Switch Input Voltage (V$_{IN}$)} & 0 \mbox{V to V$_{CC}$} \\ \mbox{Switch Output Voltage (V$_{OUT}$)} & 0 \mbox{V to V$_{CC}$} \\ \mbox{Input Rise and Fall Time (t$_{r}$, t$_{f}$)} \\ \end{array}$

Thermal Resistance (θ_{JA})

 SOT23-5
 300°C/Watt

 SC70-5
 425°C/Watt

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

		V _{CC}	T _A =	T _A = -40°C to +85°C			
Symbol	Parameter	(V)	Min	Typ (Note 5)	Max	Units	Conditions
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			V	
		2.3 to 5.5	0.7 V _{CC}			•	
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}	V	
		2.3 to 5.5			0.3 V _{CC}	V	
I _{IN}	Control Input Leakage Current	0 to 5.5			±1.0	μΑ	0 ≤ V _{IN} ≤ 5.5V
I _{OFF}	OFF Leakage Current	1.65 to 5.5			±10.0	μΑ	0 ≤ A, B ≤ V _{CC}
R _{ON}	Switch On Resistance			3	7	Ω	V _{IN} = 0V, I _{IN} = 30 mA
	(Note 4)	4.5		5	12	Ω	V _{IN} = 2.4V, I _{IN} = 15 mA
				7	15	Ω	$V_{IN} = 4.5V$, $I_{IN} = 30 \text{ mA}$
		3.0		4	9	Ω	$V_{IN} = 0V$, $I_{IN} = 24$ mA
		0.0		10	20	Ω	$V_{IN} = 3V$, $I_{IN} = 24$ mA
		2.3		5	12	Ω	$V_{IN} = 0V$, $I_{IN} = 8 \text{ mA}$
		2.5		13	30	Ω	$V_{IN} = 2.3V, I_{IN} = 8 \text{ mA}$
		1.8		7	28	Ω	$V_{IN} = 0V$, $I_{IN} = 4$ mA
		1.0		25	60	Ω	$V_{IN} = 1.8V$, $I_{IN} = 4$ mA
I _{CC}	Quiescent Supply Current	1.65 to 5.5			10	μА	$V_{IN} = V_{CC}$ or GND
		1.00 10 0.0			.0	μΛ	$I_{OUT} = 0$

+260°C

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

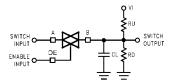
Note 5: All typical values are at the specified V_{CC} , and $T_A = 25^{\circ}C$.

AC Electrical Characteristics

			T _A =	-40°C to +8	5°C,			
Symbol	Parameter	v _{cc}	C _L = 50	pF, RU= RD	$=$ 500 Ω	Units	Conditions	Fig. No.
		(V)	Min	Typ (Note 6)	Max		l	
t _{PHL} , t _{PLH}	Prop Delay Bus to Bus	1.65 to 1.95			4.3			
	(Note 7)	2.3-2.7			1.2	ns	V _{IN} = OPEN	Figures
		3.0-3.6			0.8	ns	1	1, 2
		4.5-5.5			0.3	ns		
t _{PZL} , t _{PZH}	Output Enable Time	1.65 to 1.95	1.5	7.0	14.2			
		2.3-2.7	1.5	3.3	7.0	ns	$V_{IN} = 2 \times V_{CC}$ for t_{PZL} $V_{IN} = 0V$ for t_{PZH}	Figures 1, 2
		3.0-3.6	1.5	2.4	5.5	ns		
		4.5-5.5	1.5	2.0	4.5	ns		
t _{PLZ} , t _{PHZ}	Output Disable Time	1.65 to 1.95	1.5	9.2	18.2		V _{IN} = 2 x V _{CC} for t _{PLZ}	
		2.3-2.7	1.5	5.3	9.0	ns		Figures
		3.0-3.6	1.5	4.0	7.0	ns	$V_{IN} = 0V$ for t_{PHZ}	1, 2
		4.5-5.5	1.5	2.7	5.0	ns		
Q	Charge Injection (Note 8)	1.65-5.5				pC	$\begin{aligned} &C_L = 0.1 \text{ nF, } V_{GEN} = 0V, \\ &R_{GEN} = 0\Omega, \text{ f} = 1 \text{ MHz} \end{aligned}$	Figure 3
OIRR	Off Isolation (Note 9)	1.65-5.5		-50		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 10 MHz	Figure 4
BW	-3dB Bandwidth	1.65-5.5		>250		MHz	RL = 50 Ω	Figure 5

Note 6: All typical values are at the specified V_{CC} , and $T_A=25^{\circ}C$.

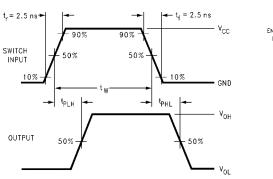
Note 7: This parameter is guaranteed by design but is not tested. The switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).


Note 8: Guaranteed by design.

Note 9: Off Isolation = 20 $log_{10} [V_A/V_{BN}]$.

Capacitance

Symbol	Parameter	Тур	Max	Units	Conditions	
C _{IN}	Control Pin Input Capacitance	2		pF	$V_{CC} = 0V$	
C _{I/O}	Input/Output Capacitance	6		pF	V _{CC} = 5.0V	


AC Loading and Waveforms

Input driven by 50Ω source terminated in 50Ω C_L includes load and stray capacitance.

Input PRR = 1.0 MHz; $t_{\rm W}$ = 500 ns

FIGURE 1. AC Test Circuit

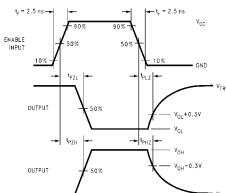
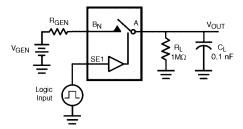



FIGURE 2. AC Waveforms

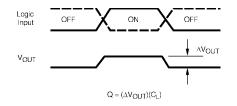
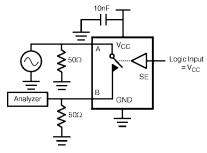
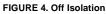
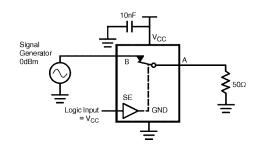
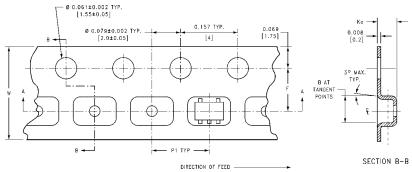
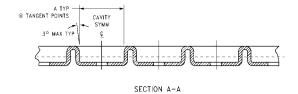
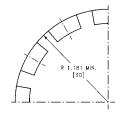




FIGURE 3. Charge Injection Test




FIGURE 5. Bandwidth


Tape and Reel Specification


TAPE	FOR	MAT
------	-----	-----

Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5, P5	Carrier	250	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5X, P5X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

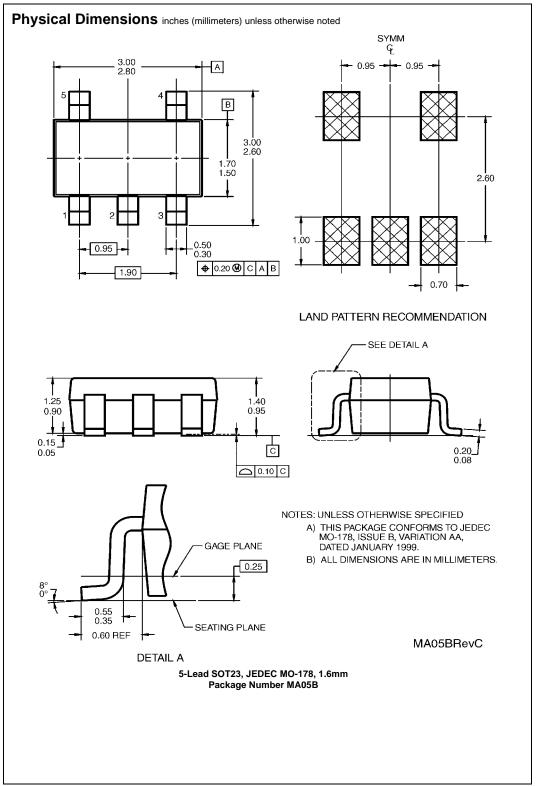
TAPE DIMENSIONS inches (millimeters)

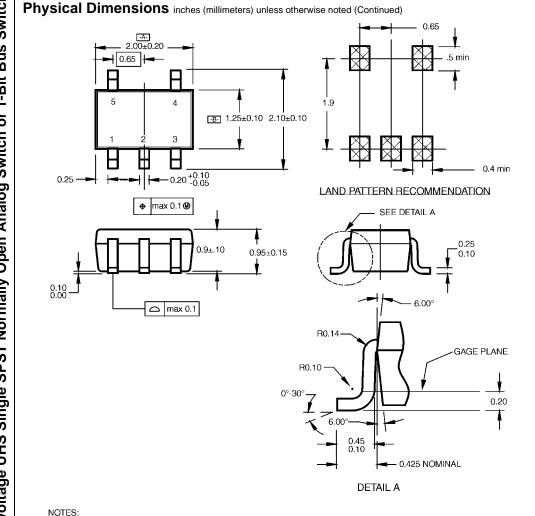
				BEND RADIUS NOT TO SCALE				
Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W	
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004	
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)	
SOT22 F	9 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012	
SOT23-5	8 mm	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)	

8 mm

(177.8)

(13.00)


(20.20)


Tape and Reel Specification (Continued) REEL DIMENSIONS inches (millimeters) TAPE SLOT DETAIL X DETAIL X SCALE: 3X **W**1 W2 Tape Size С D N В W3 0.567 7.0 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 W1 + 0.078/-0.039

(8.40 + 1.50 / -0.00)

(14.40)

(W1 + 2.00/-1.00)

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
- B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.
- C. DIMENSIONS ARE IN MILLIMETERS.

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

MAA05ARevC

www.fairchildsemi.com