

NDH8505N Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

SuperSOT™-8 N-Channel enhancement mode power field effect transistors are produced using National's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- Proprietary SuperSOT[™]-8 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDH8505N	Units			
V _{DSS}	Drain-Source Voltage		30	V			
V _{GSS}	Gate-Source Voltage		±20	V			
I _D	Drain Current –Continuous	(Note 1)	1.6	A			
	– Pulsed		5				
$\overline{P_D}$	Maximum Power Dissipation	(Note 1)	0.8	W			
T_{J} , T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C			
THERMAL CHARACTERISTICS							

$R_{\theta J A}$	Thermal Resistance, Junction-to-Ambient	(Note 1)	156	°C/W
R _{euc}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

NDH8505N Rev. A

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
OFF CHARACTERISTICS									
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ			
I _{GSSF}	Gate –Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nΑ			
I _{GSSR}	Gate –Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			400	nΑ			
ON CHA	RACTERISTICS (Note 2)								
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS'} I_D = 250 \mu A$	1		3	V			
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 1.6 \text{ A}$			0.16	Ω			
		$V_{GS} = 4.5 \text{ V}, I_{D} = 1.2 \text{ A}$			0.25				
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	5			А			
		$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	2						
DRAIN-S	OURCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS							
I _s	Maximum Continuous Drain-Source Diode Forward Current				0.67	А			
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.67 \text{ A} \text{ (Note 2)}$			1.2	V			
Ninter			•						

$$P_D(t) = \frac{T_J - T_A}{R_{DJ}(t)} = \frac{T_J - T_A}{R_{DJ} + R_{DJ}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$$

Typical R_{eJA} using the board layout shown below on 4.5"x5" FR-4 PCB in a still air environment:

156°C/W when mounted on a 0.0025in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

NDH8505N Rev. A

^{1.} R_{b,A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{Buc} is guaranteed by design while R_{BCA} is determined by the user's board design. $P_D(t) = \frac{T_J - T_A}{R_{\text{BUA}}(t)} = \frac{T_J - T_A}{R_{\text{BCA}}(t)} = I_D^2(t) \times R_{DS(ON) \otimes T_J}$