DATA SHEET # NE/SA5214 Postamplifier with link status indicator Product specification 1995 Apr 26 IC19 ## **Philips Semiconductors** **PHILIPS** NE/SA5214 #### **DESCRIPTION** The NE/SA5214 is a 75MHz postamplifier system designed to accept low level high-speed signals. These signals are converted into a TTL level at the output. The NE5214 can be DC coupled with the previous transimpedance stage using NE5210, NE5211 or NE5212 transimpedance amplifiers. This "system on a chip" features an auto-zeroed first stage with noise shaping, a symmetrical limiting second stage, and a matched rise/fall time TTL output buffer. The system is user-configurable to provide noise filtering, adjustable input thresholds and hysteresis. The threshold capability allows the user to maximize signal-to-noise ratio, insuring a low Bit Error Rate (BER). An Auto-Zero loop can be used to minimize the number of external coupling capacitors to one. A signal absent flag indicates when signals are below threshold. Additionally, the low signal condition forces the overall TTL output to a logical Low level. User interaction with this "jamming" system is available. The NE/SA5214 is packaged in a standard 20-pin surface-mount package and typically consumes 42mA from a standard 5V supply. The NE/SA5214 is designed as a companion to the NE/SA5211/5212 transimpedance amplifiers. These differential preamplifiers may be directly coupled to the post-amplifier inputs. The NE/SA5212/5214 or NE/SA5211/5214 combinations convert nanoamps of photodetector current into standard digital TTL levels. #### **APPLICATIONS** - Fiber optics - Communication links in Industrial and/or Telecom environment with high EMI/RFI - Local Area Networks (LAN) - Metropolitan Area Networks (MAN) - Synchronous Optical Networks (SONET) - RF limiter #### PIN CONFIGURATION #### **FEATURES** - Postamp for the NE/SA5211/5212 preamplifier family - Wideband operation: typical 75MHz (100MBaud NRZ) - Interstage filtering/equalization possible - Single 5V supply - Low signal flag - Low signal output disable - Link status threshold and hysteresis programmable - LED driver (normally ON with above threshold signal) - Fully differential for excellent PSRR - Auto-zero loop for DC offset cancellation - 2kV ElectroStatic Discharge (ESD) protection #### **ORDERING INFORMATION** | DESCRIPTION | TEMPERATURE RANGE | ORDER CODE | DWG# | | |--|-------------------|------------|----------|--| | 20-Pin Plastic Small Outline Large (SOL) Package | 0 to +70°C | NE5214D | SOT163-1 | | | 20-Pin Plastic Small Outline Large (SOL) Package | -40°C to +85°C | SA5214D | SOT163-1 | | #### ABSOLUTE MAXIMUM RATINGS | SYMBOL | PARAMETER | RAT | T | | | |------------------|--------------------------------------|-------------|-------------|------|--| | STRIBUL | PARAMETER | NE5214 | SA5214 | UNIT | | | V _{CCA} | Power supply | +6 | +6 | V | | | V _{CCD} | Power supply | +6 | +6 | ٧ | | | T _A | Operating ambient temperature range | 0 to +70 | -40 to +85 | °C | | | TJ | Operating junction temperature range | -55 to +150 | -55 to +150 | °C | | | T _{STG} | Storage temperature range | -65 to +150 | -65 to +150 | °C | | | P _D | Power dissipation | 300 | 300 | mW | | | V _{IJ} | Jam input voltage | -0.5 to 5.5 | -0.5 to 5.5 | V | | Philips Semiconductors Product specification ## Postamplifier with link status indicator NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# #### **PIN DESCRIPTIONS** | PIN
NO. | SYMBOL | DESCRIPTION | |------------|--------------------|--| | 1 | LED | Output for the LED driver. Open collector output transistor with 125Ω series limiting resistor. An above threshold signal turns this transistor ON. | | 2 | C _{PKDET} | Capacitor for the peak detector. The value of this capacitor determines the detector response time to the signal, supplementing the internal 10pF capacitor. | | 3 | THRESH | Peak detector threshold resistor. The value of this resistor determines the threshold level of the peak detector. | | 4 | GND _A | Device analog ground pin. | | 5 | FLAG | Peak detector digital output. When this output is LOW, there is data present above the threshold. This pin is normally connected to the JAM pin and has a TTL fanout of two. | | 6 | JAM | Input to inhibit data flow. Sending the pin HIGH forces TTL DATA OUT ON, Pin 10, LOW. This pin is normally connected to the FLAG pin and is TTL-compatible. | | 7 | V _{CCD} | Power supply pin for the digital portion of the chip. | | 8 | V _{CCA} | Power supply pin for the analog portion of the chip. | | 9 | GND_D | Device digital ground pin. | | 10 | V _{OUT} | TTL output pin with a fanout of five. | | 11 | R _{PKDET} | Peak detector current resistor. The value of this resistor determines the amount of discharge current available to the peak detector capacitor, C _{PKDET} . | | 12 | R _{HYST} | Peak detector hysteresis resistor. The value of this resistor determines the amount of hysteresis in the peak detector. | | 13 | IN _{2A} | Non-inverting input to amplifier A2. | | 14 | OUT _{1A} | Non-inverting output of amplifier A1. | | 15 | IN _{2B} | Inverting input to amplifier A2. | | 16 | OUT _{1B} | Inverting output of amplifier A1. | | 17 | C _{AZN} | Auto-Zero capacitor pin (Negative terminal). The value of this capacitor determines the low-end frequency response of the preamp A1. | | 18 | C _{AZP} | Auto-Zero capacitor pin (Positive terminal). The value of this capacitor determines the low-end frequency response of the preamp A1. | | 19 | IN _{1A} | Non-inverting input of the preamp A1. | | 20 | IN _{1B} | Inverting input of the preamp A1. | #### **BLOCK DIAGRAM** NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# #### **RECOMMENDED OPERATING CONDITIONS** | SYMBOL | PARAMETER | RAT | ring | LINUT | |------------------|--------------------------------------|--------------|--------------|-------| | STMBUL | PARAMETER | NE5214 | SA5214 | UNIT | | V _{CCA} | Supply voltage | 4.75 to 5.25 | 4.75 to 5.25 | ٧ | | V _{CCD} | Power supply | 4.75 to 5.25 | 4.75 to 5.25 | ٧ | | TA | Ambient temperature range | 0 to +70 | -40 to +85 | °C | | T _J | Operating junction temperature range | 0 to +95 | -40 to +110 | °C | | P _D | Power dissipation | 250 | 250 | mW | #### DC ELECTRICAL CHARACTERISTICS Min and Max limits apply over the operating temperature range at $V_{CCA}=V_{CCD}=+5.0V$ unless otherwise specified. Typical data applies at $V_{CCA}=V_{CCD}=+5.0V$ and $T_A=25^{\circ}C$. | | | | LIMITS | | | | | | | |---------------------|--|---|--------|--------|------|--------|------|-------|------| | SYMBOL | PARAMETER | TEST CONDITIONS | | NE5214 | | SA5214 | | | UNIT | | | | | Min | Тур | Max | Min | Тур | Max | | | ICCA | Analog supply current | | | 30 | 40 | | 30 | 41.2 | mA | | ICCD | Digital supply current
(TTL, Flag, LED) | | | 10 | 13.3 | | 10 | 13.5 | mA | | V ₁₁ | A1 input bias voltage
(+/- inputs) | | 3.11 | 3.4 | 3.68 | 3.08 | 3.4 | 3.70 | V | | V ₀₁ | A1 output bias voltage
(+/- outputs) | | 3.17 | 3.8 | 4.45 | 3.10 | 3.8 | 4.50 | ٧ | | A _{V1} | A1 DC gain
(without Auto-Zero) | | | 30 | | | 30 | | dB | | A1 _{PSRR} | A1 PSRR (V _{CCA} , V _{CCD}) | V _{CCA} =V _{CCD} =4.75 to 5.25V | | 60 | | ĺ | 60 | | dB | | A1 _{CMRR} | A1 CMRR | ΔV _{CM} =200mV | | 60 | | ĺ | 60 | Ī | dB | | V _{I2} | A2 input bias voltage
(+/- inputs) | | 3.59 | 3.7 | 3.85 | 3.56 | 3.7 | 3.86 | ٧ | | V _{OH} | High-level TTL output voltage | l _{OH} =-200μA | 2.4 | 3.4 | | 2.4 | 3.4 | | V | | V _{OL} | Low-level TTL output voltage | I _{OL} =8mA | | 0.3 | 0.4 | | 0.3 | 0.4 | V | | loн | High-level TTL output current | V _{OUT} =2.4V | | -40 | -26 | İ | -40 | -24.4 | mA | | l _{OL} | Low-level TTL output current | V _{OUT} =0.4V | 8.0 | 30 | | 7.0 | 30 | | mA | | los | Short-circuit TTL output current | V _{OUT} =0.0V | | -95 | | | -95 | | mA | | V _{THRESH} | Threshold bias voltage | Pin 3 Open | | 0.75 | | | 0.75 | | V | | V _{RPKDET} | RPKDET | Pin 11 Open | | 0.72 | | | 0.72 | | ٧ | | V _{RHYST} | RHYST bias voltage | Pin 12 Open | | 0.72 | | | 0.72 | | ٧ | | V _{IHJ} | High-level jam input voltage | | 2.0 | | | 2.0 | | | ٧ | | V _{ILJ} | Low-level jam input voltage | | | | 0.8 | | | 0.8 | ٧ | | l _{IHJ} | High-level jam input current | V _{IJ} =2.7V | | | 20 | | | 30 | μА | | I _{ILJ} | Low-level jam input current | V _{IJ} =0.4V | -450 | -240 | | -485 | -240 | | μА | | V _{OHF} | High-level flag output voltage | I _{OH} =-80μA | 2.4 | 3.8 | | 2.4 | 3.8 | 1 | V | | V _{OLF} | Low-level flag output voltage | I _{OL} =3.2mA | | 0.33 | 0.4 | | 0.33 | 0.4 | V | | l _{OHF} | High-level flag output current | V _{OUT} =2.4V | | -18 | -5.3 | | -18 | -5 | mA | | OLF | Low-level flag output current | V _{OUT} =0.4V | 3.6 | 10 | | 3.25 | 10 | 1 | mA | | ISCF | Short-circuit flag output current | V _{OUT} =0.0V | -60 | -40 | -25 | -61 | -40 | -26 | mA | | LEDH | LED ON maximum sink current | V _{LED} =3.0V | 13 | 22 | 80 | 8 | 22 | 80 | mA | Philips Semiconductors Product specification ## Postamplifier with link status indicator NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# #### **AC ELECTRICAL CHARACTERISTICS** Min and Max limits apply over the operating temperature range at $V_{CCA} = V_{CCD} = +5.0V$ unless otherwise specified. Typical data applies at $V_{CCA} = V_{CCD} = +5.0V$ and $T_A = 25$ °C. | | | | LIMITS | | | | | | | |-------------------|--|--|--------|----------|-----|---------|------|-----|-------------------| | SYMBOL | PARAMETER | TEST CONDITIONS | | NE5214 | | SA5214 | | | TINU | | | | | Min | Тур | Max | Min | Тур | Max | | | f _{OP} | Maximum operating frequency | Test circuit | 60 | 75 | | 60 | 75 | | MHz | | BW _{A1} | Small signal bandwidth (differential OUT ₁ /IN ₁) | Test circuit | | 75 | | | 75 | | MHz | | V _{INH} | Maximum Functional A1 input signal (single ended) | Test Circuit | | 1.6 | | | 1.6 | | V _{P-P} | | V _{INL} | Minimum Functional A1 input signal (single ended) | Test Circuit ¹ | | 12 | | | 12 | | mV _{P-P} | | R _{IN1} | Input resistance
(differential at IN ₁) | | | 1200 | | | 1200 | | Ω | | C _{IN1} | Input capacitance (differential at IN ₁) | | | 2 | | | 2 | | pF | | R _{IN2} | Input resistance
(differential at IN ₂) | | | 1200 | | | 1200 | | Ω | | C _{IN2} | Input capacitance (differential at IN ₂) | | | 2 | | | 2 | | pF | | R _{OUT1} | Output resistance (differential at OUT ₁) | | | 25 | | | 25 | | Ω | | C _{OUT1} | Output capacitance (differential at OUT ₁) | | | 2 | | | 2 | | pF | | V _{HYS} | Hysteresis voltage | Test circuit | | 3 | | | 3 | | mV _{P-F} | | V _{THR} | Threshold voltage range (FLAG ON) | Test circuit, @ 50MHz
R _{RHYST} =5k R _{THRESH} =47k | | 12 | | | 12 | | mV _{P-P} | | t _{TLH} | TTL Output Rise Time
20% to 80% | Test Circuit | | 1.3 | | | 1.3 | | ns | | t _{THL} | TTL Output Fall Time
80% to 20% | Test Circuit | | 1.2 | | | 1.2 | | ns | | t _{RFD} | t _{TLH} /t _{THL} mismatch | | | 0.1 | | | 0.1 | | ns | | t _{PWD} | Pulse width distortion of output | 50mV _{P-P} , 1010input Distortion= T _H -T _L 10 ² | | | | | | | | | | | T _H +T _L | 2.5 | <u> </u> | | <u></u> | 2.5 | | % | #### NOTES: ^{1.} The NE/SA5214 is capable of detecting a much lower input level. Operation under 12mV_{P-P} cannot be guaranteed by present day automatic testers. NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# Figure 1. AC Test Circuit #### TYPICAL PERFORMANCE CHARACTERISTICS NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# Figure 2. A 50Mb/s Fiber Optic Receiver ## THEORY OF OPERATION AND APPLICATION INFORMATION The NE 5214 postamplifier system is a highly integrated chip that provides up to 60dB of gain at 60MHz, to bring mV level signals up to TTL levels. The NE5214 contains eight amplifier blocks (see Block Diagram). The main signal path is made up of a cascade of limiting stages: A1, A2 and A8. The A3-A4-A7 path performs a wideband full-wave rectification of the input signal with adjustable hysteresis and decay times. It outputs a TTL HIGH on the "FLAG" output (Pin 5) when the input is below a user adjustable threshold. An on-chip LED driver turns the external LED to the ON state when the input signal is above the threshold. In a typical application the "FLAG" output is tied back to the "JAM" input; this forces the TTL data OUT into a LOW state when no signal is present at the input. An auto zero loop allows the NE5214 to be directly connected to a transimpedance amplifier such as the NE5210, NE5211, or NE5212 without coupling capacitors. This auto-zero loop cancels the transimpedance amplifier's DC offset, the NE5214 A1 offset, and the data-dependent offset in the PIN diode/transimpedance amplifier combination. For more information on the NE5214 Theory of Operation, please refer to paper titled "A Low Cost 100 MBaud Fiber-Optic Receiver" by W. Mack et al. A typical application of the NE5214 postamplifier is depicted in Figure 2. The system uses the NE5211 transimpedance amplifier which has a 28k differential transimpedance gain and a -3dB bandwidth of 140MHz. This typical application is optimized for a 50 Mb/s Non Return to Zero (NRZ) bit stream. As the system's gain bandwidth product is very high, it is crucial to employ good RF design and printed circuit board layout techniques to prevent the system from becoming unstable. For more information on this application, please refer to AB 1432. #### **Die Sales Disclaimer** Due to the limitations in testing high frequency and other parameters at the die level, and the fact that die electrical characteristics may shift after packaging, die electrical parameters are not specified and die are not guaranteed to meet electrical characteristics (including temperature range) as noted in this data sheet which is intended only to specify electrical characteristics for a packaged device. Product specification Philips Semiconductors ## Postamplifier with link status indicator NE/SA5214 #### DO NOT DISTRIBUTE WITHOUT NEW ECN# All die are 100% functional with various parametrics tested at the wafer level, at room temperature only (25°C), and are guaranteed to be 100% functional as a result of electrical testing to the point of wafer sawing only. Although the most modern processes are utilized for wafer sawing and die pick and place into waffle pack carriers, it is impossible to guarantee 100% functionality through this process. There is no post waffle pack testing performed on individual die. Since Philips Semiconductors has no control of third party procedures in the handling or packaging of die, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems on any die sales. Although Philips Semiconductors typically realizes a yield of 85% after assembling die into their respective packages, with care customers should achieve a similar yield. However, for the reasons stated above, Philips Semiconductors cannot guarantee this or any other yield on any die sales. Figure 3. NE/SA5214 Bonding Diagram NE/SA5214 #### SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁ | A ₂ | A ₃ | Ьp | С | D(1) | E ⁽¹⁾ | 8 | HE | L | Lp | Q | ٧ | w | у | z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|----------------|--------------|--------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 2.65 | 0.30
0.10 | 2.45
2.25 | 0.25 | 0.49
0.36 | 0.32
0.23 | 13.0
12.6 | 7.6
7.4 | 1.27 | 10.65
10.00 | 1.4 | 1.1
0.4 | 1.1
1.0 | 0.25 | 0.25 | 0.1 | 0.9
0.4 | 8° | | inches | 0.10 | | 0.096
0.089 | 0.01 | 0.019
0.014 | | 0.51
0.49 | 0.30
0.29 | 0.050 | 0.42
0.39 | 0.055 | 0.043
0.016 | 0.043
0.039 | 0.01 | 0.01 | 0.004 | 0.035
0.016 | 0° | #### Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | ſ | OUTLINE | | REFER | EUROPEAN ISSUE DATE | | | | |---|----------|--------|----------|---------------------|--|------------|---------------------------------| | | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | | SOT163-1 | 075E04 | MS-013AC | | | | 92 11 17
95-01-24 |