S/MUS INTEGRATED CIRCIIIT

08785

D

T-50-17

PRELIMINARY DATA

MICROPOWER PHASE-LOCKED LOOP

QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
VERY LOW POWER CONSUMPTION: 100 μW (TYP.) AT VCO f_o = 10 kHz, V_{DD}= 5V
OPERATING FREQUENCY RANGE: UP TO 1.4 MHz (TYP.) AT V_{DD}= 10V
LOW FREQUENCY DRIFT: 0.06%/°C (TYP.) AT V_{DD}= 10V
CHOICE OF TWO PHASE COMPARATORS:1) EXCLUSIVE - OR NETWORK
2) EDGE-CONTROLLED MEMORY NETWORK WITH
PHASE-PULSE OUTPUT FOR LOCK INDICATION

HIGH VCO LINEARITY: 1% (TYP.)
VCO INHIBIT CONTROL FOR ON-OFF KEYING AND ULTRA-LOW STANDBY POWER CONSUMPTION
SOURCE-FOLLOWER OUTPUT OF VCO CONTROL INPUT (DEMOD. OUTPUT)
ZENER DIODE TO ASSIST SUPPLY REGULATION

5V, 10V AND 15V PARAMETRIC RATING
INPUT CURRENT OF 100 nA AT 18V AND 25°C FOR HCC DEVICE
100% TESTED FOR QUIESCENT CURRENT
MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD NO. 13A, "STANDARD
SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

The HCC 4046B (extended temperature range) and HCF 4046B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and ceramic flat package. The HCC/HCF 4046B COS/MOS Micropower Phase-Locked Loop (PLL) consists of a lowpower, linear voltage-controlled oscillator (VCO) and two different phase comparators having a common signal-input amplifier and a common comparator input. A 5.2V zener diode is provided for supply regulation if necessary.

VCO Section

The VCO requires one external capacitor C1 and one or two external resistors (R1 or R1 and R2). Resistor R1 and capacitor C1 determine the frequency range of the VCO and resistor R2 enables the VCO to have a frequency offset if required. The high input impedance (101212) of the VCO simplifiers the design of low-pass filters by permitting the designer a wide choice of resistor-to-capacitor ratios. In order not to load the low-pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULATED OUTPUT). If this terminal is used, a load resistor (R_S) of 10 k Ω or more should be connected from this terminal to V_{SS}. If unused this terminal should be left open. The VCO can be connected either directly or through frequency dividers to the comparator input of the phase comparators. A full COS/MOS logic swing is available at the output of the VCO and allows direct coupling to COS/MOS frequency dividers such as the HCC/HCF 4024B, HCC/HCF 4018B, HCC/HCF 4020B, HCC/HCF 4022B, HCC/HCF 4029B, and HBC/HBF 4059A. One or more HCC/HCF 4018B (Presettable Divide-by-N Counter) or HCC/HCF 4029B (Presettable Up/Down Counter), or HBC/HBF 4059A (Programmable Divide-by-"N" Counter), together with the HCC/HCF 4046B (Phase-Locked Loop) can be used to build a micropower low-frequency synthesizer. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize stand-by power consumption.

Phase Comparators

1703

The phase-comparator signal input (terminal 14) can be direct-coupled provided the signal swing is within COS/MOS logic levels [logic "0" \leq 30% (V_{DD} - V_{SS}), logic "1" \geq 70% (V_{DD} - V_{SS})]. For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input. Phase. comparator I is an exclusive-OR network; it operates analogously to an over-driven balanced mixer. To maximize the lock range, the signal-and comparator-input frequencies must have a 50% duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to $V_{\rm DD}/2$. The low-pass filter connected to the output of phase comparator I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency (fo). The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range (2 f_c). The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range (2 f₁). The capture range is ≤ the lock range. With phase

comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal. One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency, Fig. (a) shows the typical, triangular, phase-to-output response characteristic of phase-comparator I, Typical waveforms for a COS/MOS phase-locked-loop employing phase comparator I in locked condition of fo is shown in Fig. (b). Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a three-stage output-circuit comprising p-and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to V_{DD} or down to V_{SS}, respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparator-input frequency, the p-type output driver is maintained ON most of the time, and both the n-and p-drivers OFF (3 state) the remainder of the time. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is maintained ON most of the time, and both the n-and p-drivers OFF (3 state) the remainder of the time. If the signal and comparator-input frequencies are the same, but the signal input lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the signal and comparator-input frequencies are the same, but the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point both p-and n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range, Moreover, the power dissipation due to the low-pass filter is reduced when this type of phase comparator is used because both the p-and n-type output drivers are OFF for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II.Fig. (c) shows typical waveforms for a COS/MOS PLL employing phase comparator II in a locked condition,

Fig. (a) - Phase-comparator I characteristics at low-pass filter output

Fig. (b) - Typical waveforms for COS/MOS Phase-Locked-Loop employing phase comparator I in locked condition of fo

5-1478

T-50-17

ABSOLUTE MAXIMUM RATINGS

NOTE : DASHED LINE IS AN OPEN-CIRCUIT CONDITION

Supply voltage: HCC types	-0.5 to 20	
HCF types	-0.5 to 18	V
Input voltage .	-0.5 to V _{DD} +0.5	V
DC input current (any one input)	± 10	mΑ
Total power dissipation (per package)	200	mW
Dissipation per output transistor	·	
for Top = full package-temperature range	100	mW
Operating temperature: HCC types	-55 to 125	°c
HCF types	-40 to 85	°C
Storage temperature	-65 to 150	°C
	HCF types Input voltage DC input current (any one input) Total power dissipation (per package) Dissipation per output transistor for Top= full package-temperature range Operating temperature: HCC types HCF types	HCF types Input voltage DC input current (any one input) Total power dissipation (per package) Dissipation per output transistor for Top = full package-temperature range Operating temperature: HCC types HCF types -55 to 125 -40 to 85

^{*} All voltage values are referred to V_{SS} pin voltage

ORDERING NUMBERS:

HCC 4046 BD for dual in-line ceramic package

for dual in-line ceramic package, frit seal HCC 4046 BF

HCC 4046 BK HCF 4046 BE for ceramic flat package

for dual in-line plastic package

for dual in-line ceramic package, frit seal HCF 4046 BF

RECOMMENDED OPERATING CONDITIONS

V_{DD}	Supply voltage: HCC types	3 to 18	V
	HCF types	3 to 15	٧
V _I	Input voltage	0 to V _{DD}	V
Top	Operating temperature: HCC types	-55 to 125	°C
••	HCF types	-40 to 85	°C

T-50-17

MECHANICAL DATA (dimensions in mm)

Dual in-line plastic package for HCF 4046 BE

Ceramic flat package for HCC 4046 BK

CONNECTION DIAGRAM

BLOCK DIAGRAM

1706

C-07

208

T-50-17

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			1	Test cond	itions		Values							
	Parameter		V ₁	v _o	lol	V _{DD}	TLo	w*	25°C T _{High}			gh*	Unit	
			(v)	(v)	(μ A)		Min.	Max.	Min.	Тур.	Max.	Min.	Max,	
vco s	SECTION	•												
V _{OH} ·	Output high vo	oltage	0/ 5		< 1	5	4.95		4.95	5		4.95		1
- 011		-	0/10		< 1	10	9,95		9.95	10		9.95		ľ
			0/15		< 1	15	14.95		14.95	15		14.95		l
V _{OL} Output low voltage		Itage	5/0		< 1	5		0.05			0.05		0.05	1
		_	10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	·
ОН	Output		0/ 5	2.5	I .	5	-2		-1.6	-3.2		-1.15		·
011	drive	HCC types	0/ 5	4.6		. 5	-0.64		-0.51	-1		-0.36		I
	current	rypes	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		l
			0/15	13,5		15	-4.2		-3.4	-6.8	· · ·	-2.4		l
			0/ 5	2.5	I	5	-1.53		-1.36	-3.2		-1.1		1
		HCF	0/ 5	4.6	1.	5	-0.52		-0.44	-1		-0.36		-
		types	0/10	9,5		10	-1.3	-	-1.1	-2.6		-0.9		
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4		l
٠,	Output sink current HCC		0/ 5	0.4		5	0.64		0.51	1		0.36		1
		uik laanna	0/10	0,5		10	1,6		1.3	2.6		0.9]
			0/15	1.5	1.	15	4.2		3,4	6.8	L	2.4		l m
			0/5	0,4		5	0.52		0.44	1		0.36		l '''
		HCF types	0/10	0.5		10	1.3		1.1	2,6	Ι	0,9] .
		thhea	0/15	1,5		15	3.6		3,0	6,8		2.4		<u>L</u>
րեկր	Input	HCC	0/18			18		±0,1		±10⁻⁵	±0,1		±1	
	leakage current	types		Any inpu	put		├				ļ		 	μ/
	ourront	types	0/15			15		±0.3		±10 ⁻⁵	±0.3		± 1	l
PHAS	E COMPARA	TOR	SECTIO	N	-			•						
I _{DD}	Total device c		0/ 5	<u> </u>	T	5	1	0.1		0.05	0.1.	1	0.1	Γ
.00	Pin 14 = open		0/10			10		0.5		0.25	0.5		0.5	[m
	Pin 5 = V _{DD})	0/15			15		1.5		0.75	1.5		1.5	}
			0/20			20	1.	4		2	4		4	L
	Pin 14 = V _{SS}		0/ 5		Î	5	F .	5		0.04	5		150	Ι
	or V _{DD}	HCC types	0/10			10		10		0.04	10		300	
	Pin 5 = V _{DD}	rabes	0/15			15		20		0.04	20		600	
			0/20		<u> </u>	20		100		80.0	100		3000	μ
		HCF	0/ 5			5	<u> </u>	20		0.04	20	ļ	150	1
			0/10	1		10	<u> </u>	40	1	0.04	40	<u> </u>	300	1
			0/10			1 4 5	1	80	<u> </u>	0.04	80	<u> </u>	600	<u> </u>
		types	0/15			15	_			-3.2	1	1-1.15	1	1
Тон	Output	types	0/15 0/ 5	2.5		5	-2		-1.6					
Гон	drive	types	0/15 0/ 5 0/ 5	4.6		5 5	-0.64		-0.51	-1		-0.36		ļ
Гон		types	0/15 0/ 5 0/ 5 0/10	4.6 9.5		5 5 10	-0.64 -1.6		-0.51 -1.3	-1 -2.6		-0.36 -0.9		
I _{OH}	drive	types	0/15 0/ 5 0/ 5	4.6		5 5 10 15	-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-1 -2.6 -6.8		-0.36 -0.9 -2.4		m
I _{OH}	drive	types	0/15 0/ 5 0/ 5 0/10 0/15 0/ 5	4.6 9.5 13.5 2.5		5 5 10 15 5	-0.64 -1.6 -4.2 -1.53		-0.51 -1.3 -3.4 -1.36	-1 -2.6 -6.8 -3.2		-0.36 -0.9 -2.4 -1.1		m
I _{OH}	drive	HCC types	0/15 0/ 5 0/ 5 0/10 0/15 0/ 5 0/ 5	4.6 9.5 13.5 2.5 4.6		5 5 10 15 5	-0.64 -1.6 -4.2 -1.53 -0.52		-0.51 -1.3 -3.4 -1.36 -0.44	-1 -2.6 -6.8 -3.2		-0.36 -0.9 -2.4 -1.1 -0.36		m
I _{OH}	drive	HCC types	0/15 0/ 5 0/ 5 0/10 0/15 0/ 5	4.6 9.5 13.5 2.5		5 5 10 15 5	-0.64 -1.6 -4.2 -1.53		-0.51 -1.3 -3.4 -1.36	-1 -2.6 -6.8 -3.2		-0.36 -0.9 -2.4 -1.1		m

T-50-17

STATIC ELECTRICAL CHARACTERISTICS (continued)

				Test cond	itions					Values	; ,			ļ.
Parameter		V ₁	v _o			T _{Low} * 25°C				T _{High} *		Unit		
			(V)	(V)	(μ A)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	1
loL	Output	нсс	0/5	0.4		5	0,64		0.51	1		0.36		
	sinķ	types	0/10	0.5		10	1,6		1.3	2.6		0.9	 	
	current	турез	0/15	1.5		15	4.2		3.4	6.8		2,4	1 1	Ι.
		HOT	0/ 5	0.4		5	0.52		0.44	1		0.36	1 7	mA
		HCF types	0/10	0.5		10	1.3		1.1	2.6		0.9		i
L '		rypes	0/15	1,5		15	3.6		3.0	6.8		2.4	1	ŀ
V _{IH} I	Input high voltage			0.5/4.5	< 1	5	3.5		3.5			3.5		
				1/9	< 1	10	7		7			7		v-
				1.5/13.5	< 1	15	11		11	i		11		
VIL Input low voltage		tage		4.5/0.5	< 1	5		1,5			1,5	-	1.5	
		,		9/1	< 1	10		3			3		3	l v
		`		13.5/1.5	< 1	15		4			4		4	
IH,IIL	Input leakage current	HCC types	0/18	Any in	nut	18		±0.1		±10⁻⁵	±0.1	,	± 1.	μА
	(except, pin 14)	HCF types	0/15	,	,	15		±0.3		±10 ⁻⁵	±0.3	-	± 1	μ.Α.
I _{OUT} 3-state leakage	leakage	HCC types	0/18	0/18		18		±0.4		±10 ⁻⁴	±0.4		± 12	
<u> </u>	current	HCF types	0/15	0/15		15		±1.0		±10 ⁻⁴	±1.0		±7.5	μA
o _i	Input capacit	ance		Any in	put					5	7.5			pF

D

T-50-17

ELECTRICAL CHARACTERISTICS (T_{amb}= 25°C)

	Parameter	Test conditions	·		Unit		
	rarameter		V _{DD} (V)	Min.	Тур.	Max.] Unit
VCO :	SECTION						
PD	Operating power	f _o = 10 KHz R1= 1 MΩ	5		70	140	
	dissipation	R2= ∞ V _{COIN} = V _{DD}	10		800	1600	μW
			15		3000	6000	
fmax	Maximum frequency	R1=10 KΩ C1=50 pF	5	0.3	0.6]
		R2= ∞	10	0.6	1.2	<u> </u>]
		V _{COIN} = V _{DD}	15	8.0	1.6		MHz
		R1= 5 KΩ C1= 50 pF	5	0,5	0.8		J'''''
		R2= ∞	10	11	1.4		1
		V _{COIN} = V _{DD}	15	1.4	2.4		
	Center frequency (f _o) and frequency range f _{max} -f _{min}	Programmable with external co	mponents R1	, R2 and	I C1		
	Linearity	V _{COIN} = 2.5V ^{±03} R1= 10 kΩ	5		1.7		
	•	$V_{COIN} = 5V^{\pm 1}$ R1 = 100 kΩ	10		0.5	_	1 %
		$V_{COIN} = 5V^{\pm 2.5}$ R1 = 400 k Ω	10		. 4		1
		V_{COIN} = 7.5 $V^{\pm 1.5}$ R1= 100 kΩ	15		0.5		1
		$V_{\text{COIN}} = 7.5 V^{\pm 5}$ R1= 1 M Ω	15		7		1
	Temperature frequency	COIN	5		±0.12		t
	stability (no frequency		10		±0.04		1
	offset) f _{min} = 0	·	15		±0.015		ا ا
	Frequency offset		5		±0,09		%/°¢
	f _{min} ≠ 0		10		±0.07		1
			15		±0.03		Ĺ
Vco	Output duty cycle		5, 10, 15		50		%
t _{THL} ,	VCO output transition		5		100	200	
^t ፒLH	time	-	10		50	100	ns
			15		40	80	<u> </u>
	Source follower output (demodulated output): offset voltage VCOIN-VDEM	R _S > 10 kΩ	5, 10, 15		1,8	2,5	٧
	Source follower output	R _S = 100 kΩ V _{COIN} = 2.5 ^{±0.3} \	/ 5		0.3		
	(demodulated output):	$R_S = 300 \text{ k}\Omega$ $V_{COIN} = 5^{\pm 2.5} \text{ V}$	10		0.7	-	%
	Linearity	R _S = 500 kΩ V _{COIN} = 7.5 ^{±5} V	15		0.9		1
Vz	Zener diode voltage	I _Z = 50 μA		4.45	5.5	6,15	V
Rz	Zener dynamic resistance	I _Z =1 mA			40	,	Ω
PHAS	E COMPARATOR SEC	TION			•		
R14	Pin 14 (signal in) input		5	1	2		1
	resistance	1	10	0.2	0.4		МΩ
e		1	15	0.1	0.2	i	1
	A.C. coupled signal input	f _{In} = 100 KHz	5	180	360		1 .
	voltage sensitivity*	sine Wave	10	330	660		mV
	(peak-to-peak)		15	900	1800		1

HCC/HCF 4046B

41C 08792

T-50-17

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Values				
			V _{DD} (V)	Min.	Тур.	Max.	Unit	
PHASI	E COMPARATOR SECTION	ON(cont'd)						
T _{PHL}	Propagation delay time		5	225	450		·	
High	High to low level Pins 14 to 13		10	100	200		ns	
	FIIIS 14 tO 13	· · · · · · · · · · · · · · · · · · ·	15	65	130			
T _{PLH}	Propagation delay time		5		350	700		
	Low to high, level		10		150	300	ns	
			15		100	200	1	
T _{PHZ}	Propagation delay time 3-state	· · · · · · · · · · · · · · · · · · ·	5		225	450		
	High level to		10		100	200	ns	
	High Impedance Pins 14 to 13		15	<u></u>	65	130	<u> </u>	
TPLZ	Low level to high		5		285	570	_	
	Impedance		10		130	260	ns	
			15		95	190	1	
tr, tf	Input rise or fall time		5			50		
	Comparator Pin 3		10.			1	μs	
	·		15			0,3	1	
	Signal Pin 14		5			500	-	
	i		10	-		20	μs	
			15			2.5		
tTHL,	Transition time		5		100	200		
t _{TLH}			10		50	100	ns	
	·		15	Ī	40	80	1.	

^{*} For sine wave the frequency must be greater than 10 KHz for Phase Comparator II.

T-50-17

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the HCC/HCF 4046B in a Phase-Locked-Loop system. The selected external components must be within the following ranges:

 $5 \text{ k}\Omega \leq \text{R1, R2, R}_{\text{S}} \leq 1 \text{ M}\Omega$

C1 \geq 100 pF at $V_{DD} \geq$ 5V

C1 \geq 50 pF at $V_{DD} \geq$ 10V

				
	USING PHASE C	OMPARATORI	USING PHASE C	OMPARATOR II
CHARACTERISTICS	VCO WITHOUT OFFSET R ₂ = ∞	VCO WITH OFFSET	VCO WITHOUT OFFSET R ₂ = ∞	VCO WITH OFFSET
VCO Frequency	10 21L 1mm Y501 Y00 L VCO (NPUT Y0LTAGE 5 12)	10 125L 125L 100 100 100 100 100 100 100 100 100 10	1 _{max} 1 ₂₁	7max 70 21L 121L 1000 1000 1000 1000 1000 1000
For No Signal Input	VCO in PLL system will ad	just to centre frequency fo	VCO in PLL system will a frequency, f _{min}	djust to lowest operating
Frequency Lock Range, 2f _L			ull VCO frequency range	
Frequency Capture Range, 2f _C	1H O R3 C2 C2	$21_C = \frac{1}{11} \sqrt{\frac{2\pi r_1}{\epsilon r_1}}$ 5-(1)		
Loop Filter Component Selection	INO R1	— C) OUT FOR 21 _C SEE * 5-1464	fc.#	.
Phase Angle between Signal and Comparator	90° at centre frequency (f. 180° at ends of lock range	o), approximating 0° and (2f _L)	Always	0° in lock
Locks on Harmonics of Centre Frequency	Ye	s		lo
Signal Input Noise Rejection	Hig	h	L	ow

^{*} G.S. Mosckytz "miniaturized RC filters using phase Lockedloop" BSTJ, may 1965.

4015B

4016B

2112 D-07

630