NTGS3446

Power MOSFET 5 Amps, 20 Volts

N-Channel TSOP-6

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- IDSS and VDS(on) Specified at Elevated Temperature

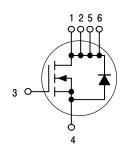
Applications

- Power Management in portable and battery–powered products, i.e. computers, printers, PCMCIA cards, cellular and cordless
- Lithium Ion Battery Applications
- Note Book PC

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	20	Vdc
Gate-Source Voltage - Continuous	VGS	±20	Vdc
Drain – Continuous – Continuous @ 70°C – Single Pulse (t _p ≤10 μs)	I _D I _{DM}	5.8 TBD 20	Adc
Total Power Dissipation	PD	1.6	Watts
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Single Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 20 Vdc, V_{GS} = 4.5 Vdc, I_L = 5.8 A, L = TBD mH, R_G = 25 Ω)	E _{AS}	TBD	mJ
Thermal Resistance Junction-to-Ambient (Note 1.) Steady State Junction-to-Ambient (Note 2.) Junction-to-Lead Steady State	R _θ JA R _θ JA R _θ JL	TBD TBD TBD	°C/W

- When surface mounted to Min Pad.
- 2. When surface mounted to 1" x 1" FR4 Board.



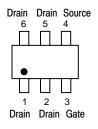
ON Semiconductor™

http://onsemi.com

5 AMPERES 20 VOLTS RDS(on) = 45 m Ω

N-Channel

MARKING DIAGRAM



TSOP-6 CASE 318G STYLE 1

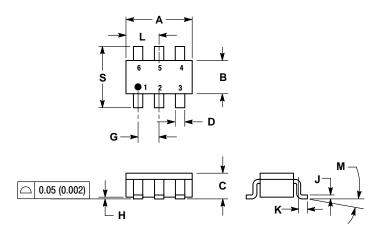
W = Work Week

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping
NTGS3446T1	TSOP-6	3000 Tape & Reel

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)


С	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown V (VGS = 0 Vdc, I _D = 0.25 mAr Temperature Coefficient (Pos	V(BR)DSS	20 -	– TBD	- -	Vdc mV/°C	
Zero Gate Voltage Collector Cu (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc	I _{DSS}	- -	_ _	1.0 25	μAdc	
Gate-Body Leakage Current (\	IGSS(f) IGSS(r)	_ _	- -	100 100	nAdc	
ON CHARACTERISTICS (Note	1.)	•		•		•
Gate Threshold Voltage I _D = 0.25 mA, V _{DS} = V _{GS} Temperature Coefficient (Neg	VGS(th)	0.6 -	0.9 TBD	1.2 -	Vdc mV/°C	
Static Drain-to-Source On-Resistance (VGS = 4.5 Vdc, ID = 5.3 Adc) (VGS = 2.5 Vdc, ID = 4.4 Adc)		V _{DS(on)}	- -	36 44	45 55	mΩ
Forward Transconductance (V	9FS	10	17	-	mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	930	TBD	pF
Output Capacitance	$(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, $ f = 1.0 MHz)	Coss	-	370	TBD	_
Transfer Capacitance]	C _{rss}	-	105	TBD	
SWITCHING CHARACTERISTIC	CS (Note 2.)					
Turn-On Delay Time		^t d(on)	_	8.6	TBD	ns
Rise Time	$(V_{DD} = 10 \text{ Vdc}, I_D = 1.0 \text{ Adc},$	t _r	_	14	TBD	
Turn-Off Delay Time	V_{GS} = 4.5 Vdc, R _L = 10 Ω R_{G} = 6.0 Ω)	t _d (off)	-	57	TBD	
Fall Time]	t _f	_	54	TBD	
Gate Charge		QT	-	11	15	nC
	$(V_{DS} = 10 \text{ Vdc}, I_{D} = 5.8 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc})$	Q ₁	_	2.4	-	
	VGS = 4.0 Vd6/	Q ₂	_	2.4	-	
SOURCE-DRAIN DIODE CHAR	ACTERISTICS	•		•		•
Forward On–Voltage (Note 1.)	$(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 85^{\circ}\text{C})$	V _{SD}	- -	0.74 TBD	1.1 -	Vdc
Reverse Recovery Time		t _{rr}	_	30	_	ns
		ta	_	14.5	_	1
	$(I_S = 1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ \text{dig/dt} = 100 \text{ A/}\mu\text{s})$	t _b	_	15.5	_	1
Reverse Recovery Stored Charge]	Q _{RR}	_	0.01	_	μС

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

NTGS3446

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE G

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
С	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
Н	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
M	0 °	10°	0 °	10°
S	2.50	3.00	0.0985	0.1181

- STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. GATE
 4. SOURCE
 5. DRAIN
 6. DRAIN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.