To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

Hitachi SuperH™ RISC engine

SH-3/SH-3E/SH3-DSP

Programming Manual

LENESAS

ADE-602-096B
Rev.3.0

3/6/03

Hitachi, Ltd

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’'s or any third party’
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that yo
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi's sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operatipn of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docqument
without written approval from Hitachi.

7. Contact Hitachi's sales office for any questions regarding this document or Hitachi
semiconductor products.

Introduction

The SH-3/SH-3E/SH3-DSP is a new generation of RISC microcomputers that integrate a RISC-
type CPU and the peripheral functions required for system configuration onto a single chip to
achieve high-performance operation. It can operate in a power-down state, which is an essentia
feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

In addition, the SH-3E supports single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. The SH-3E
instructions are a subset of the floating point calculations conforming to the IEEE754 standard.

This programming manual describes in detail the instructions for the SH-3/SH-3E/SH3-DSP anc
is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH-3/SH-3E/SH3-DSP. For information on the hardware,
please refer to the hardware manual for the product in question.

Please contact a Hitachi sales office for information on development environment systems.

RENESAS

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 show the relationships between the iten

listed and lists the sections within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Programming Types and structure of general registers, control

model

registers and system registers

Data Formats

Data formats for registers and memory

Floating Point
Processor Unit

FPU register configuration, FPU exceptions

5. DSP Operations Fixed-point operations, integer operations, logic
and Data Transfer operations, multiplication, shift operations,
overview of DSP operations such as saturation
operations, repeat control
Introduction to 6. Instruction Instruction features, addressing modes, and
instructions Features instruction formats
7. Instruction Sets Summary of instructions by category and list in
alphabetic order
Detailed information 8. Description of Operation of each instruction in alphabetical order
on instructions Each Instruction
Architecture (2) 9. Processing States Power-down and other processing states

10. Pipeline Operation

Pipeline operation

RENESAS

Table 2 Subjects and Corresponding Sections

Category Topic Section Title
Introduction and CPU features 1. Features
features Instruction features 6.1 RISC-Type Instruction Set
Pipelines 10.1Basic Configuration of
Pipelines
10.2 Slot and Pipeline Flow
Architecture Organization of registers 2. Programming model
Data formats 3. Data Formats
Floating point processor unit 4. Floating Point Processor Unit
DSP 5. DSP Operations and Data
Transfer
Processing states, reset state, exception 9. Processing States
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode
Pipeline operation 10. Pipeline Operation
Introduction to Instruction features 6. Instruction Features
instructions Addressing modes 6.2 Addressing Modes
Instruction formats 6.3 Instruction Formats
List of Instruction sets 7.1 Instruction Set by
instructions Classification
7.2 Instruction Set in
Alphabetical Order
Detailed Detailed information of instruction 8. Instruction Description
information on operation 10.7 Instruction Pipelines
instructions

Number of instruction execution states

10.3 Number of Instruction
Execution Cycles

RENESAS

RENESAS

Contents

SECHON 1 FRALUIES ...ttt
1.1 SH-3 CPU FEAIUINES.....ceitiieiiitieeee ettt e e e e e e 1.
1.2 SH3-DSP FEAMUIES ...ttt e e e e e e e e e e e e e e aaaaeeemeeeees 3.
Section 2 Programming MOdEL.............ccccceiiiiiiiiiiicccieeee e 5
2.1 Organization Of REQISIEISuuuiiiiiiiieee e a e e e e 5.
2.1.1 Privileged Mode and Banks............ccuuiiiiiiiiiiiiiiiee e
2.2 General-PurpOSe REQISIEISciiiiiiiei ittt e e e e e L.
2.3 CONIOI REQISTEIS. ... eeeiieiitiiiee ettt et e e et e e e e st e e e e e et mmmnnae e 13
2.4 SYSIEM REGISIEIS ..o iiiiiie ittt st e b e e 15..
2.5 Initial REQISIEr VAIUE ...ttt e e e e e e 16..
Section 3 Data FOMMALS ..o 1
3.1 Data FOrmat in REQISTEIS.couiii ittt e e e e e e et e e e e e e e e e e e s mmaes 17.....
3.2 Data FOrmat in MEIMOIYccoiiiiiiieiiiie ettt I.....
3.3 Data Format for Immediate Data..........cccvuriiiiieieee i e
3.4 DSP Type Data Formats (SH3-DSP ONlY)......cccoiiiiiiiiiiiiiiiiee st ee e e
Section 4 Floating Point Unit (SH-3E ONlY)........ccccooviiiviiiiccecccec, 21
o R [o1 o To (U Tod 1 o o TP TP TR RRRERR 21
4.2 Floating Point Registers and System Registers for FPU...........occoccoiiiiiiiiiiiieeeiieeeeee
4.2.1 Floating Point REGISTEr Fleouiiiiiiiiiiiie e :
4.2.2 Floating Point Communication Register (FPUL)ccccoovecviiiiveeieee e 2
4.2.3 Floating Point Status/Control Register (FPSCR).........cuvviiieeeiiiiiiiiiiieeieeee e |
4.3 Floating Point FOIMALooiiiiiiiieiii et 24....
4.3.1 Floating Point FOMMALcooiiiiiiiiiiiie ettt e e e e e e
4.3.2 NOt a NUMBEr (NAN) ...ooiiiiiiiiie it
4.3.3 Denormalized ValUES..........cccuuiiiiiiiiiiie et s e e e e e e e e s
4.3.4 Other SPECIal VAIUES ..o e e e e e s e raeeee e
4.4 Floating Point EXCEPion MOUEIuuiiiiiiiiiie e
4.4.1 ENaDIed EXCEPLIONuuiiiiiiiieiie ettt e e
4.4.2 DiSAbled EXCEPLION ...eetiiiiie ittt ettt e e e e et e e e e e e e e e e e aanbne e
4.4.3 Exception Event and Code fOor FPU...........oooiiiiiiiiiiiiie e
4.4.4 Alignment of Floating Point Data in MEeMOIY...........eeieiiiiiieniiiieee e 2
4.4.5 Arithmetic with Special OpPerands...........ccccciviiiiiiiiee e :
4.5 SYNChronization ISSUESccccciuiiiiiiiiiie et e e e e s e e e e e e e e e s e e e 27.....

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP..Qnly29
5.1 ALU Fixed Decimal POINt OPEratioNS...........ueieiiiiiiieiiiiiiee ettt

RENESAS

L7000t R 10 | ¢ ox 1T o [T Q... 3

5.1.2 InStructions and OPEIaNGdSccooiuiiiiiiiiiiiiee ettt e e s ee e aaes :
ST 0 T I T O 2 T S UPRSTRT 32....
5.1.4 CONILION BItS ...cuveieiieieiriie ittt e e nnnee e 3
5.1.5 Overflow Prevention Function (Saturation Operation)cccccceevevvvvvvrereeeeeenn. 3L
5.2 ALU INtEQEr OPEIALIONSuuiiiiiiiiiieeeeee ittt et e e e e e e e e e e e e e e e e s e e aaababbeaeeeaaaaaeas B 3
5.3 ALU LOQICAl OPEIAtiONS.uiiiiiiiiieieee ettt e et e e e e e e e e e e bbb e eeeaaaae e I.... 3
B5.3. 1 FUNCHON ettt e e e e e e e e et e e e e e e e e e e e annnne 1. 3
5.3.2 INStructions and OPEIandSccooiuuiiieiiiiiiee ettt e e ebree e :
ST TR T I T O = | PP PU R PP R PTRRPT 39....
5.3.4 CONILION BItS ..ccuviieiiiieiiiiee ittt ettt e e nnre e nnnee e 3
5.4 Fixed Decimal Point MUIIPIICAION..........c..uuviiiiiiiieee e 3¢
5.5 Shift OPErationsScooiiiiiiiiiiie ettt e e e e e e s e e e e e e e s 41
5.5.1 Arithmetic Shift OPeratioNS.........cccoiiiiiiiiiiiiiie e 4!
5.5.2 Logical Shift OPerationSc.ueeiiiiiiiiiiiiiiiiee e 4.
5.6 The MSB Detection INSIrUCHIONccoiiiiiiiiic et 4
B5.6.1 FUNCHON ..ottt ettt e e e es 5. 4
5.6.2 INStructions and OPEIaNGdSeeeiieeeiiiiiiiiiiiiiieetae e e e e et e e e e e e e e e e aabbereeeeeeas .
5.6.3 DIC Bil..ueeiiiiiiiiiiie ittt sb e e snre e sanee e 48.....
LG S @0 T o 1 1To] o T = 1 £ PR 4
L A = (o 18] o [TV F PP 49
5.7.1 Operation FUNCLONccoiiiiiiiieeie e e e e e e s s s e e e e e e e e e e e e ennnrnen 4
5.7.2 INStructions and OPErandsceeeieeeeiiiiiiiiiiiiieieee e e e e s e s seinrarre e e e e e e e e s s e snanrnraeeeees !
B.7.3 DC Bl ueeiiiiiieiitiie ettt 51....
5.7.4 CONAItION BILS ...ttt e e e e e e e e e aeeeen 5
5.7.5 Overflow Prevention Function (Saturation Operation)cccccevvuveeeeriiineeeenns 51
5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)........cceeveiriiieieeiiiiieee e Y
5.9 Overflow Prevention Function (Saturation Operation)..............cccccuvverrrereeeeeesisrcirnnneeeeens 5
B5.10 DaAta TraNSTEISeii ittt ee e 54
5.10.1 X and Y Memory Data Transfer........cccccuuuiiiiiiiieeiei e 5!
5.10.2 Single Data TranSTerS......cc..uiiiiiiiiii e ee e !
5.11 Operand CONENTIONuiiiiiiriiieiiiieie ettt e e eabr e e e s emmeees 59....
5.12 SP Repeat (LOOP) CONIOL.....ccciiiiiiieiiiiiiee ettt e e sinree e 6qQ.......
B5.12.1 USAQE NOES ...eueieiiiiiiiiieis et e et ettt ettt s s s e s s e e e s e eaeaeaaaaeeeeeeeeennennnnnnes |
5.13 Conditional Instructions and Data TranSfers.........coocvviiiiieiiie e {
Section 6 INSrUCtiON FEATUIES..........cooiiiiccei s 69
6.1 RISC-TYPE INSIIUCHON SEL.....ciiiiiiiiiiiiiiiiie ettt e ee e 9..... €
6.1.1 16-Bit FiXed LENGLN....cciiiiiiiiiiiieiie e 6
6.1.2 ONe INSrUCHION/CYCIE ...t a e e e e e eneee e 6
6.1.3 Data Length ... e e e e e 6
6.1.4 L0OAd-StOre ArCRItECIUIE.vviiieiiiieie et 6
6.1.5 Delayed Branch INSIUCHONS.........cooiiiiiiiiiiiiiiiii et 7
1}

RENESAS

6.1.6 Multiplication/Accumulation OPEration.............coeiiiiiiiiiiiiiieie e 7
S 700 O N = 1| PRSI 7Q...
L0 S B 1101 0 T=To [T L0 T - PR
6.1.9 ADSOIUIE AGAIESS...cciiieiiiieie ettt
6.1.10 16-Bit/32-Bit DiSPIaCEMENt........uiiiiiiiiiie e |
6.1.11 Privileged INSIIUCLIONSiiiiiiiie ittt e e e e e e e e |
6.2 CPU Instruction AddreSSING MOUEScooiiiiiiiiiiieie et e e e e
6.3 DSP Data Addressing (SH3-DSP ONIY)ccciiiiiiiiiiiiiiie it
6.3.1 X and Y Data AdAreSSINGcccoiruiiiieiiiiiiie ettt |
6.3.2 Single Data ADAreSSINGcocccvvriiiiiieie e e iesrrr e e e e e e e e s s s e e e e e e e e e s e s anrneeees
SRS T Y/ [To [V] (o 102X [0 | (=571 1 o SRR |
6.3.4 DSP Addressing OPerationccuuieeaiiiiiiiiiiiiiieaea e e e et e e e e e e e e arebebeeeeeen
6.4 Instruction Format of CPU INSIIUCHIONSuuiiiiiiiiiiiii it
6.5 Instruction Formats for DSP Instructions (SH3-DSP ONlY).......cccveviiiiiiiiiiiiieee e ¢
6.5.1 Double and Single Data Transfer INStruCtionsS............ccccoevviiieee e
6.5.2 Parallel Processing INStrUCHIONSccuuviiiiiiiiee e e e ee e e e e e
Section 7 INSIUCLION SEL.........ccoiiiiee et 0:
7.1 Instruction Set by ClasSIfiCatiONcciiiiiiiiiiie e
7.1.1 Data Transfer INSIrUCHONScooo i e e e e e e
7.1.2 Arithmetic INSLIUCLIONSooviieeiie it r e e e e e e e 1(
7.1.3 Logic Operation INSrUCHIONSuuviiieeeeeiiiiiiiiiiee e e e e e e e e s s s r e e e e e e s e s snnnnnreeeeees 1
7.1.4 SHiIft INSIUCHONS ...ttt 1
7.1.5 Branch INSIIUCLIONoviiiiiiiieee et 1
7.1.6 System Control INSITUCHONS.cciiiiiiiiiiiiiiieeeee et 1
7.1.7 Floating Point Instructions (SH-3E ONIY)coooiiiiiiiiiiiieeee e 1C
7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)cc.coccveeeennee 1
7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)ccccccvvee... 1!
7.2 Instruction Set in AlphabetiCal Order...........oovieiiii i 1
7.3 DSP Data Transfer Instruction Set (SH3-DSP ONly)ccooiiiiiiiiiiiiiiieeeeiiieeeee e 1
7.3.1 Double Data Transfer Instructions (X Memory Data)............ccccuvveeeeeiereeeninininnns 12
7.3.2 Double Data Transfer Instructions (Y Memory Data)..........cccoeuveereiiiiieneninnnnen. 12
7.3.3 Single Data Transfer INSIrUCHIONScuuveiiiiiiiiiie e 1
7.4 DSP Operation Instruction Set (SH3-DSP ONly)coooiiiiiiiiiiieeeee e 1
7.4.1 ALU Arithmetic Operation INStrUCLIONScccciiiiiiiiieeee e 13l
7.4.2 ALU Logical Operation INStrUCHONScooiiiiiiiiiiiiieiie et e e 13
7.4.3 Fixed Decimal Point Multiplication INStruCtioNS............cceieiiiiiiiiiiiiiieeeeeee e 13
7.4.4 Shift Operation INSIUCHIONS.........oiiiiiieiiiiiie e 1
7.4.5 System Control INSIIUCIONS........ccoiiiiiiiiiiiiiee e 1
7.4.6 NOPX and NOPY INStruction COUEcociuveirreeiiieie e 1
Section 8 INStruction DEeSCIIPLIONS.........c.coviveiiiieeeccee e 139
8.1 Sample Description (Name): ClasSifiCation............ooiiiiuiiiiiiiiiaee e 1
1

RENESAS

8.2

Instruction Description (Listing and Description of Instructions

Common to the SH-3, SH-3E and SH3-DSP)........ccccuiiiiiiiiiieeeee e 14
8.2.1 ADD (Add Binary): Arithmetic INStrUCLION.uveeiiiiiiiiieiiiee e 143
8.2.2 ADDC (Add with Carry): Arithmetic INStructionccccccvvveeeeeeee e 144
8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction................... 145
8.2.4 AND (AND Logical): Logic Operation INStruCtion..............c.eeeeeeeeeeriiiiniiiiniineeenn. 146
8.2.5 BF (Branch if False): Branch INStrUCLION.cooiiiiiiiiiiiiiiiieee e 14
8.2.6 BF/S (Branch if False with Delay Slot): Branch INStruction.............c.ccccovcveeeeene 149
8.2.7 BRA (Branch): Branch INSrUCIONoueiiiiiiiiiiiiiiie e 15!
8.2.8 BRAF (Branch Far): Branch INStruCtioncccovviiiiiiiiiiiiec e 15:
8.2.9 BSR (Branch to Subroutine): Branch InStructioncccccceeeiiiiiiiiiiiiiieiceee e 15
8.2.10 BSRF (Branch to Subroutine Far): Branch InStructioncccoooiiiiiiiinennnennnn, 15
8.2.11 BT (Branch if True): Branch INStrUCtiONccoooiiiiiiiiiiiiiiieieeee e 15€
8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction.............ccccccevvieeen 159
8.2.13 CLRMAC (Clear MAC Register): System Control Instructionccceeern 161
8.2.14 CLRS (Clear S Bit): System Control INStruction...........ccccccvveeeeeiiiiicciiiieeeeeeee e, 162
8.2.15 CLRT (Clear T Bit): System Control INStruCtioNcceeeeeeeiiiiiiiiiiiiieeeeee e 163
8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction............ccccccceeeenes 164
8.2.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instructioncccceeeeiieennnnnn 168
8.2.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic INStructionccccovcvveeeene 169
8.2.19 DIV1 (Divide Step 1): Arithmetic INStruCtioN............coccuvveiiiiiiiiieiiieee e 170
8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction............ 175
8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction....... 177
8.2.22 DT (Decrement and Test): Arithmetic INStruction............ccccccoeviiiiiiiiiiiienneneeennn, 17¢
8.2.23 EXTS (Extend as Signed): Arithmetic INStructionccccoeiiiiiiiiiiiiiiiiiiieeeeen 18C
8.2.24 EXTU (Extend as Unsigned): Arithmetic INStructionccoccvveveiniieneniinnenn. 181
8.2.25 JIMP (Jump): Branch INStrUCHIONccoviiiiiiiiiiiii e 18
8.2.26 JSR (Jump to Subroutine): Branch INStructioncccccevveeeiiiiiiiiiiiieieceee e 18

8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only) 186
8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction

(1 R D IS] 2 © 1] 1Y) [RS PRT 19:
8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction

(1 R D IS 2@] 1Y) [PPSR 19:
8.2.30 LDS (Load to System Register): System Control Instruction..............ccccceveeren.n. 19:
8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction

(PrIVIIEgEd ONIY) .ot e e e e e a e 197
8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction..................... 198
8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction.............ccccoeeviiviiiineeen 201
8.2.34 MOV (Move Data): Data Transfer INStruCtioncccoocvveeeiiiiiiie e 204
8.2.35 MOV (Move Immediate Data): Data Transfer Instruction...........cccccceevveeeriiiinnnn 209
8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction................ccccccvvvvveeeen.... 211
8.2.37 MOV (Move Structure Data): Data Transfer INStructionccccoeecvviviieeenne 214
8.2.38 MOVA (Move Effective Address): Data Transfer Instruction............ccccccceeeeenn 217

RENESAS

8.3

8.2.39 MOVT (Move T Bit): Data Transfer INStruction.............ccccoiiiiiiiiiiieiiieeeens 21¢
8.2.40 MUL.L (Multiply Long): Arithmetic INSIrUCHIONccuvveeeiiiiiiiiiiiiiee e 219
8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instructionccceveeee. 220
8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction........................ 221
8.2.43 NEG (Negate): Arithmetic INStrUCHION.........cccviiiiiiiiiiee e 22
8.2.44 NEGC (Negate with Carry): Arithmetic INStruCtioncccouvviiiieiiiienniiiins 22
8.2.45 NOP (No Operation): System Control INStruCtion...............cccceeeiiiiiiiiiiiieeeeeeeenn. 2:
8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction...................... 225
8.2.47 OR (OR Logical) Logic Operation INStruCtioNoccveeeeiiiiiieeeiniieee e 22
8.2.48 PREF (Prefetch Data to the Cache)coccvviiiiiiiiiee e :
8.2.49 ROTCL (Rotate with Carry Left): Shift INStructionooecvviviieeeieeee i 22
8.2.50 ROTCR (Rotate with Carry Right): Shift INStruction...............cccooieeeieniiin 23
8.2.51 ROTL (Rotate Left): Shift INSIIUCIONooiiiiiiiiiiiiiee s 23
8.2.52 ROTR (Rotate Right): Shift INSTIUCHION.cccoiiiiiiiiiiie e 2
8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only).... 233
8.2.54 RTS (Return from Subroutine): Branch InStructioncccccccevveeee i 2:
8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction

(SH3B-DSP ONIY) ..ttt 2
8.2.56 SETS (Set S Bit): System Control INStrUCLION...........ciiiiiiiiiiiiiiiiiiieeee e 2.
8.2.57 SETT (Set T Bit): System Control INStruCtionccooviieieiiiiiiiieiiiieee e 2/
8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction............cccccceeviiiierennnnn 241
8.2.59 SHAL (Shift Arithmetic Left): Shift INStruCtionccccceeevvviiiiiiiieeeee e 243
8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction.............ccccccvveveeeee i, 244
8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction..............cccccceeeeeiiiiiiiinnnee. 245
8.2.62 SHLL (Shift Logical Left): Shift INStrUCLIONcooviiiiiiiiiieeee e 247
8.2.63 SHLLn (Shift Logical Left n Bits): Shift INStruction..............ccoccvveveiniiieeniiien. 248
8.2.64 SHLR (Shift Logical Right): Shift INStrUCtION............ccooviiiiiiiiiee e, 25(
8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction...........cccccccveeeeeiiiiicciiiie 251
8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)..........cccccvveeeeeeenn. 25
8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only)..... 25
8.2.68 STS (Store System Register): System Control InStruction...........ccccccoevviivivvinnen 2
8.2.69 SUB (Subtract Binary): Arithmetic INStruction............cccovviiiiiiiiiieiiiee e, 26.
8.2.70 SUBC (Subtract with Carry): Arithmetic INStructionccccevvviieeiiniieee e 26!
8.2.71 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction 266
8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction............cccccceeeeeriniiinns 2
8.2.73 TAS (Test and Set): Logic Operation INStruction.............cccuuvveeeeieieeinininiiiiiiieeeen 2
8.2.74 TRAPA (Trap Always): System Control INStrucCtion...........cccccooeviiiiiiiiiiieenneeennn. 26
8.2.75 TST (Test Logical): Logic Operation INStruCtioncccevveveeeeiiiiiiiiiiiieeeeeeee 27
8.2.76 XOR (Exclusive OR Logical): Logic Operation INStruction............ccccccevvvveeeenns 27:
8.2.77 XTRCT (Extract): Data Transfer INStruction............ccccccvveeeeiiiiiciiiiieeece e 27
Floating Point Instructions and FPU Related CPU Instructions (SH-3E Only)................ 2
8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction..................... 27
8.3.2 FADD (Floating Point Add): Floating Point INStruction............cccccceeeeviiiiinnnnee. 27¢

\'

RENESAS

8.4

8.5

Vi

8.3.3 FCMP (Floating Point Compare): Floating Point INStructioncccccceeeeenn. 281

8.3.4 FDIV (Floating Point Divide): Floating Point InStruction...............cccceeevviiieeeenns 285
8.3.5 FLDIO (Floating Point Load Immediate 0): Floating Point Instruction 287
8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction................ 288
8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction 289
8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction.......... 290
8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction........... 291
8.3.10 FMOV (Floating Point Move): Floating Point INStructionccccceevviiieeennnn 294
8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction.................ccceeeene. 298
8.3.12 FNEG (Floating Point Negate): Floating Point Instruction..............ccccccvvvvveeeennn. 30C
8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction........................ 301
8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction.. 302
8.3.15 FSUB (Floating Point Subtract): Floating Point InStructioncccccvvvieeeeen. 303
8.3.16 FTRC (Floating Point Truncate And Convert To Integer):

Floating PoiNt INSIUCHIONouviiiiiiiiiie et 30¢€
8.3.17 LDS (Load to System Register): FPU Related CPU Instruction...........cccccceeeenn.. 30:
8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction 31
DSP Data Transfer Instructions (SH3-DSP ONly)cccuuiiiiiiiiiiiiieeee e 31
8.4.1 MOVS (Move Single Data between Memory and DSP Register):

DSP Data Transfer INStrUCION.ooii i 32
8.4.2 MOVX (Move between X Memory and DSP Register):

DSP Data Transfer INStrUCHION.cooviiiiiicieie e 32.
8.4.3 MOVY (Move between Y Memory and DSP Register):

DSP Data Transfer INSTTUCHION.vevieiiiiiiee e 32

8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction .. 326
8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction .. 326
DSP Operation INSIIUCLIONSoo.vviiieiiiiiie ettt e e sebreee e e I..... 3.
8.5.1 PABS (Absolute): DSP Arithmetic Operation Instructionccccccvvvveverennnn 340
8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction 343
8.5.3 PADD PMULS (Addition & Multiply Signed by Signed):

DSP Arithmetic Operation INSIFUCLION.eiiiiiiiiiiiieeee e 346
8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction.............. 348
8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction 350
8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction...........cccccccvveeeeennn. 353
8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction.................. 355
8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction.. 357
8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction 360
8.5.10 [if cc] PDMSB (Detect MSB with Condition):

DSP Arithmetic Operation INSIIUCLION.cooiiiiiiieiiiiie e 363
8.5.11 [if cc] PINC (Increment by 1 with Condition):

DSP Arithmetic Operation INStrUCtION...........cuviiiieeeii e 366
8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction............ 369

8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction ... 371

RENESAS

8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instructioncoccuee 37.

8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction..............cccccceee..... 37t
8.5.16 PRND (Rounding): DSP Arithmetic Operation INStructioncccccevvvveeriiiinn 37
8.5.17 [if cc] PSHA (Shift Arithmetically with Condition):

DSP Arithmetic Shift INSTTUCLION.oiiiiiiee e 38
8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction ... 387
8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction.............. 3¢

8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction.. 395
8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed):

DSP Arithmetic Operation INStrUCHION...........euviiieeeiis e 39
8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction........... 40(
8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction........ 402
Section 9 ProcCesSiNg STALES..........coiiiiiii e 40¢
9.1 State TranSitioNS......ccuviiiiiiieeee e e e s s sssenrreerreeeeeeessssssnrnsneeeeeseeeeseeennnnns 40D
0.1.1 RESEE STALEeuviiiiiiiieiee et e e e e e e e e e 6....... .
9.1.2 EXCepPtion ProCessing State........ccccuuriiiiiiiiee i e e e e s sarrerre e e e e e e e s e A
9.1.3 Program EXECULION SEALEcoiieiiiiiiiiiii ettt e e £
9.1.4 POWEI-DOWN SEALEuuuiiiiieie et e e e e e e e e e e e e e eaeeeeeees 4
9.1.5 BUS REIEASE StAe......cci it e e e e e
0.2 POWEI-DOWN STALEoeeiiiiiiiiiiiiiieies sttt a e e e e e e e e e e ens 406.....
S A 1 1= =T o Y/ o Yo [PR £
S I S v 12 To | o)V Y[To [T SRRSO 4
9.2.3 Hardware Standby MOAEueiiiiiiiiiii s 4
9.2.4 Module Standby FUNCLON...........uiiiiiiiiiiie e 4
Section 10 Pipeline OPEration............cccooiiirrnerieeeeee s 409
10.1 Basic Configuration Of PIPEIINEScciviieiiiiiiieeee e e e 4
10.1.1 Five-Stage PIPEIINEuviiiiiie et a e e e L
10.1.2 Slot and PIpeling FIOW...........uuiiiiiiiiiiaaei e 4
10.1.3 Number of Cycles Required for Execution of One SIotccccccoviviiiiiiiiieennen 4
10.1.4 Number of Instruction EXecution CYCIES...........ueviiiiiiiiiiiiiiie e 4
02 @' 11T 1T o S 413
10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)............... 41
10.2.2 Effects of Memory Load Instructions on Pipelines...........ccccovvviveieeeeec i, 4]
10.2.3 Contention due to SR Update INStrUCLIONS..........eeiiiiiiiiiiiiiiiieieee e 4
10.2.4 Multiplier ACCESS CONENTION ..ottt e e e e e a4
10.2.5 FPU Contention (SH-3E ONIY) ...c..uiiiiiiiiiiieeiee et 4.
10.2.6 Contention between DSP Data Operation Instructions and Store Instructions
(SH3-DSP ONIY) cetiieeiieiieeieeee e e e e e e s s e e e e e e e e e s sensnrenaeeeeeeaeeen 4z
10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only).................. 4
10.3 Programming GUIAEINEScooiiiiiiiiiiiiii ettt e e e e 24...... ‘
10.3.1 Correspondence between Contention and INStruCtions..............eeeeevieieeiiiniiiiinnnen ‘
Vil

RENESAS

10.3.2 Increasing Instruction EXecution SPeed..............ueeeiiiiiiiiiiiiiiiiiiiieeeee e 4z

10.3.3 NUMDBDET Of CYCIES ...t 47
10.4 Operation of INStruCtion PIPElINESccooiiiiiiiiiii e 4:
10.4.1 Data Transfer INSTIUCIONSc.coiiiiiiiiiicee e 44
10.4.2 ArithmetiC INSIIUCHIONSoiieiiiiiie it 45
10.4.3 Logic Operation INSIIUCLIONScouuiiiiiiiiieee et e e e e e e 45
10.4.4 St INSIFUCTIONSeeiiieiee ettt e e e e e e e s e eae b 46
10.4.5 BranCh INSIUCHIONSeeiiiiiiee ittt e e e e e e e e e e e aee e e e e e nannens 4¢
10.4.6 System Control INSIIUCHIONS.viiiiiiiiiie e 46
O S A (=Y o] (o T o T == T 4
10.4.8 Pipeline for FPU Instructions (SH-3E ONlY)......c.ccuuviiiiiieeiiiiiiiiiiiieeeeeee e 48¢
10.4.9 DSP Data Transfer Instructions (SH3-DSP ONly).......ccooviiiiiiiiiieiiieeeeeiiii 49
10.4.10 DSP Operation Instructions (SH3-DSP ONly).......cccuuuiiiiiiiiaiiiiiiiiiiieeeeeae e 49
AppendiX A INSTIUCHION COUE..........coiirieieiceee e 501
A.1 Instruction Set by ADAressSing MOGE.........cccieeiiiiiiiiiiiee e 5(
N 0 R N o T @ o 11 - o SRRSO 5(
A.1.2 Direct Register AAAreSSIiNGuueeiiiiiiiiiiiiiiiiie e a e 50
A.1.3 Indirect Register AAAreSSINGueeiiiiiaiiiiiiiiiiiee e 50
A.1.4 Post-Increment Indirect Register AddreSSingccoovviveieeiiiiiieeiiiiee e 51
A.1.5 Pre-Decrement Indirect Register AAdreSSingcoocuveieiiiiiiieeiniiieee e 51
A.1.6 Indirect Register Addressing with Displacementcccoccvieiiiiee e 51:
A.1.7 Indirect Indexed Register AAAreSSiNgcccccuvviriiiieeeeeeie s 51
A.1.8 Indirect GBR Addressing with Displacementccoooviiiiiiiiieiiieeee e 514
A.1.9 Indirect Indexed GBR AdAreSSINgG........coccuuuiiiiiiiiiaaae et 51!
A.1.10 PC Relative Addressing with Displacement............ccooiiiiiiiiiieeieniiee e 51
A.1.11 PC Relative AdAreSSING ...eeeiiiiiiiieei ittt ettt ettt e e sbaeee e 51
A LL2 IMMEAIALE ...veveieiieeiee et nnne e nnne e 6..... 51
A.2 Instruction Sets by INStrUCtion FOIMAL..........ccoviiiiiiiiiiiiieiie e 51
A2.1 O FOMMAL......cciiiiiiiiitiee it 19...... 5
A2.2 N FOIMMAL. .ttt e e e e e e e e e e 20...... 5
A28 M FOMMAL. . e e e e e et e e e e et b b 52
N oo 0 o] 1 = | PRSPPI 52
A25 M FOMAL....ciiiiiiic ettt 52
A2.6 NOA FOMMAL......eiiiiiieitie ettt e e s e e s e e nnre e e snee e 53
A2.7 NMA FOMMAL...... it e s s e e e e e e e 53
AL2.8 A FOMMAL....ciiiiii ettt e e e e e e e e aaeaaas 30...... 5
F N o 2 o 1 4T | PR 3
N K I T £ B o g = PSRRI 1. 5
A 21T T FOIMAL.c.iiieiiiee e 531.....
A2.12 N FOIMMAL. ..ttt 532.....
A3 Operation COOE MaPccuuuiiiiiieiaeee ettt e e e e e e e e e riba b e eeeeeaeaeenas 533.....
viii

Appendix B Pipeline Operation and Contention

RENESAS

RENESAS

Section 1 Features

1.1 SH-3 CPU Features

The SH-3/SH-3E/SH3-DSP has RISC-type instruction sets. Basic instructions are executed in o
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal

32-bit architecture for enhanced data processing ability. Table 1-1 lists the SH-3/SH-3E/SH3-DS
CPU features.

Table 1-1 SH-3/SH-3E/SH3-DSP CPU Features

Feature Description

Architecture « Hitachi original architecture
e 32-bit internal data bus

General-register machine < Sixteen 32-bit general registers (eight banked registers)
« Five 32-bit control registers
* Four 32-bit system registers (SH-3)
¢ Six 32-bit system registers (SH-3E)

Instruction set « Instruction length: 16-bit fixed length for improved code efficiency

« Load-store architecture (basic arithmetic and logic operations are
executed between registers)

« Delayed branch system used for reduced pipeline disruption
« Instruction set optimized for C language

Instruction execution time + One instruction/cycle for basic instructions

Address space ¢ Architecture makes 4 Gbytes available

On-chip multiplier « Multiplication operations (32 bits x 32 bits — 64 bits) executed in 2
to 5 cycles, and multiplication/accumulation operations (32 bits x 32
bits + 64 bits — 64 bits) executed in 2 to 5 cycles

Pipeline « Five-stage pipeline

Processing states ¢ Reset state
« Exception processing state
* Program execution state
* Power-down state
* Bus release state

Power-down states ¢ Sleep mode
« Standby mode
« Hardware standby mode

RENESAS

Table 1-1 SH-3/SH-3E/SH3-DSP CPU Features (cont)

Feature

Description

FPU (SH-3E only)

.

Single-precision floating point format
Subset of IEEE754 standard data types

Invalid calculation exception and divide-by-zero exception (in
compliance with IEEE754 standard)

Rounding to zero (in compliance with IEEE754 standard)
General purpose register file, 16 32-bit floating point registers

Execution pitch for basic instructions: 1 cycle/latency or 2 cycles
(FADD, FSUB, FMUL)

FMAC (floating point multiply accumulate)
Execution pitch: 1 cycle/latency or 2 cycles
Support for FDIV and FSQRT

Support for FLDIO and FLDI1 (load constant 0/1)

RENESAS

1.2 SH3-DSP Features

The SH3 CPU only has 16-bit instructions. The SH3-DSP basically has the same 16-bit
instructions, but it also has additional 32-bit DSP instructions that it uses for parallel processing
DSP type instructions. The SH3 CPU use a standard Neumann architecture, but the SH3-DSP |
the DSP data paths of the expanded Harvard architecture. Table 1-2 lists the added features of
SH3-DSP.

RENESAS

Table 1-2

Feature

Features of SH3-DSP Series Microprocessor CPUs

Description

DSP unit

.

Multiplier

Arithmetic logic unit (ALU)
Barrel shifter

DSP registers

MSB detection

Multiplier

16 bits x 16 bits - 32 bits (fixed decimal point)
1 cycle multiplier

DSP registers

Two 40-bit data registers

Six 32-bit data registers

Modulo register (MOD, 32 bits) added to control registers
Repeat counter (RC) added to status registers (SR)

Repeat start register (RS, 32-bit) and repeat end register (RE, 32-
bit) added to control registers

DSP data bus

Expanded Harvard architecture
Simultaneous access of two data bus and one instruction bus

On-chip memory

16-kbyte RAM

Parallel processing

Maximum of four parallel processes (ALU operation, multiplication,
and two loads or stores)

Address operator

Two address operators
Address operations for accessing two memories

DSP data addressing
modes

Increment decrement and index

Increment decrement and index can have modulo addressing or
not

Repeat control

Zero-overhead repeat control (loop)

Instruction set

16 or 32 bits
— 16 bits (for load or store only)
— 32 bits (including for ALU operations and multiplication)

SuperH microprocessor instructions added for accessing DSP
registers.

Pipeline

Five-stage pipeline

Fifth stage is the DSP stage

RENESAS

Section 2 Programming Model

2.1 Organization of Registers

2.1.1 Privileged Mode and Banks

Processing ModesThe SH-3/SH-3E/SH3-DSP has two operating modes: user mode and
privileged mode. The SH-3/SH-3E/SH3-DSP operates in user mode under normal conditions an
enters privileged mode in response to an exception or interrupt. There are three types of registe
general, system, and control. All of these registers are 32 bits. Which registers can be accessec
through software depends on the processing mode.

General-Purpose RegistersThere are 16 general-purpose registers, numbered RO through R15.
General-purpose registers RO to R7 are banked registers that are switched by the processor mc

In privileged mode, the register bank (RB) bit in the status register (SR) defines which banked
registers can be accessed as general-purpose registers and which cannot. Inaccessible registel
be accessed through the load control register (LDC) and store control register (STC) instruction:

When the RB bit is one (BANKL1 is selected), BANK1 general-purpose registers RO_BANK1
through R7_BANKZ1 and non-banked general-purpose registers R8 through R15 (a total of 16
registers) can be accessed as general-purpose registers RO through R15 and BANKO general-
purpose registers RO_BANKO through R7_BANKO (eight registers) are accessed by the LDC an
STC instructions. When the RB bit is a zero (BANKO is selected), BANKO general-purpose
registers RO_BANKO through R7_BANKO and nonbanked general-purpose registers R8 througt
R15 (16 registers) can be accessed as general-purpose registers RO through R15 and BANK1
general-purpose registers RO_BANK1 through R7_BANK1 (eight registers) are accessed by the
LDC and STC instructions.

In user mode, BANKO general-purpose registers RO_BANKO through R7_BANKO and nonbanke
general-purpose registers R8 through R15 can be accessed as general-purpose registers RO th
R15 (a total of 16 registers) and BANK1 general-purpose registers RO_BANK1 through
R7_BANK1 (eight registers) cannot be accessed.

When the DSP extended features of the SH3-DSP are enabled, DSP instructions use X and Y ¢
memory and L bus data memory (single data) addressing for eight of the 16 general-purpose
registers.

To access X memory, R4 and R5 are used as the X address register [AX] and R8 is used as the
index register [IX]. To access the Y memory, R6 and R7 are used as the Y address register [Ay]
and R9 is used as the Y index register [ly]. To access single data using the L bus, R2, R3, R4, ¢
R5 are used as the single data address register and R8 as the single data index register [Is].

RENESAS

DSP type instructions can simultaneously access X and Y memory. There are two groups of
address pointers for specifying the X and Y data memory addresses.

Control Registers The control registers include registers that can be accessed in either mode (th
global base register (GBR) and status register (SR)) and registers that can only be accessed in
privileged mode (the saved status register (SSR), saved program counter (SPC), and vector bas
register (VBR)). Some bits in the status register (for example, the RB bit) can only be accessed il
privileged mode.

System RegistersThere are four system registers that can be accessed in either processing mod

Multiply and accumulate registers
Multiply and accumulate high (MACH)
Multiply and accumulate low (MACL)

Procedure register (PR)

Program counter (PC)

The register configurations are shown in figure 2-1 by processing mode. Switch between user an
privileged modes using the processing operation mode bit in the status register.

Floating Point Registers and System Registers Used by the FPU (SH-3E Onlijtere are 16
floating point registers: FRO to FR15. These are used as source and destination registers for sing
precision floating point operations.

The system registers used by the FPU are the floating point communication register (FPUL) and
the floating point status/control register (FPSCR). These are used for communication between th
FPU and CPU as well as exception handling settings.

The register configurations for the different processing modes are illustrated in Figure 2-1 and
Figure 2-2. Refer to 4. Floating Point Unit.

RENESAS

Notes 1.

31 0
RO_BANKO*1, *2
R1_BANKO*2
R2_BANKO0*2
R3_BANKO0*2
R4_BANKO*2
R5_BANKO0*2
R6_BANKO0*2
R7_BANKO0*2
R8
R9
R10
R11
R12
R13
R14
R15
31 0

FRO*3
FR1*3
FR2*3

FR15*3

SR
FPSCR*3

GBR
MACH
MACL

FPUL*3
PR

| PC |

Register RO is used as an index register in the indexed register-indirect addressing
mode and indexed GBR-indirect addressing mode. There are some instructions for
which only RO can be used as the source or destination register.

RO to R7 are banked registers, and BANKO is used in the user mode.

These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FRO to FR15, FPSCR, and FPUL.

Figure 2-1 User Mode Programming Model

RENESAS

Notes 1.

2.

31 0 31 0
RO_BANK1*1, *2 RO_BANKO*1, *2
R1_BANK1*2 R1_BANKO*2
R2_BANK1*2 R2_BANKO0*2
R3_BANK1*2 R3_BANKO0*2
R4_BANK1*2 R4_BANKO*2
R5_BANK1*2 R5_BANKO*2
R6_BANK1*2 R6_BANKO*2
R7_BANK1*2 R7_BANKO*2
R8 R8
R9 R9
R10 R10
R11 R11
R12 R12
R13 R13
R14 R14
R15 R15
FRO*4 FRO*4
FR1*4 FR1*4
FR2*4 FR2*4
FR15*4 FR15
31 0 31 0
SR SR
SSR SSR
FPSCR*4 FPSCR*4
GBR GBR
MACH MACH
MACL MACL
EPUL*4 FPUL*4
PR PR
VBR VBR
[PC | [PC |
[SPC | [SPC |
RO_BANKO*1, *3 RO_BANK1*1, *3
R1_BANKO*3 R1_BANK1*3
R2_BANKO*3 R2_BANK1*3
R3_BANKO*3 R3_BANK1*3
R4_BANKO*3 R4_BANK1*3
R5_BANKO*3 R5_BANK1*3
R6_BANKO*3 R6_BANK1*3
R7_BANKO*3 R7_BANK1*3
(b) User Mode Programming Model (c) User Mode Programming Model
(RB=1) (RB=0)

Register RO is used as an index register in the indexed register-indirect
addressing mode and indexed GBR-indirect addressing mode.

RO to R7 are banked registers. In privileged mode, the RB bit of register SR
determines which bank is accessed:

BANKO if the RB bit is set to 0

BANK1 if the RB bit is set to 1.

. These banks are accessed by the LDC and STC instructions only. the RB bit of

register SR determines which bank is accessed:
BANKO if the RB bit is set to 0
BANK1 if the RB bit is set to 1.

. These registers only exist on the SH-3E. They are used for floating point

operations. Refer to 4. Floating Point Unit for details on FRO to FR15, FPSCR,
and FPUL.

Figure 2-2 Structure of Registers in Privileged Mode

RENESAS

DSP Registers and Registers Used by the DSP (SH3-DSP Only)
The DSP unit has nine DSP registers, divided into eight data registers and one control register.

The DSP data registers include two 40-bit registers (A0 and Al) and six 32-bit registers (MO, M:
X0, X1, Y0, and Y1). The Al and AO registers each has eight guard bits, AOG and Al1G.

The DSP data registers are used in transferring and processing DSP data as the operand for th
DSP instruction. There are three types of instructions that access the DSP data registers: DSP ¢
processing, X data processing, and Y data processing.

The 32-bit DSP status register (DSR) is the control register, which indicates the results of
operations. The DSR register has bits to display the results of the operation, which include a
signed greater than bit (GT), a zero value bit (Z), a negative value bit (N), an overflow bit (V), a
DSP condition bit (DC), and condition select bits, which control the DC bit settings (CS).

The DC bit is one of the status flags; it is very similar to the SuperH microcomputer CPU core’s
T bit. In the case of conditional DSP type instructions, the execution of DSP data processing is

controlled in accordance with the DC bit. This control is related to DSP unit execution only, and
only the DSP registers are updated. It is not related to the execution instructions of the SuperH

microprocessor’s CPU core, such as address calculation and load/store instructions. The contrg
bits CS (bits 0 to 2) specify the condition that the DC bits set.

DSP instructions include both unconditional DSP instructions and conditioned DSP instructions.
Data processing of unconditional DSP instructions updates the condition bits and DC bits, excej
for the PMULS, PWAD, PWSB, MOVX, MOVY, and MOVS instructions. Conditional DSP type
instructions are executed in accordance with the status of the DC bit. DSR registers are not
updated, regardless of whether these instructions are executed or not.

Figure 2-1 shows the DSP registers. Table 2-1 lists the DSR register bit functions.

RENESAS

39

32 31

AOG

AO DSP data registers

Al1G

Al

MO

M1

X0

X1

YO

Y1

8 76 54 3210

EGT! Z! N : \Y : CS[2:0] iDC| DSP status register (DSR)

Table 2-1

Bits

Figure 2-3 Organization of the DSP Registers

Name

DSR Register Bits

Function

31-8

Reserved

0: Always reads 0. Always write 0.

7

Signed greater than bit
(GM

Indicates whether the operation result is positive (and
nonzero) or whether operand 1 is larger than operand 2.
1: Operation result is positive or operand 1 is larger.

Zero value bit (2)

Indicates whether the operation result is zero or whether of
operands 1 and 2 are the same.
1: Operation result is zero or operands 1 and 2 are the same.

Negative value bit (N)

Indicates whether the operation result is negative or whether
operand 1 is smaller than operand 2.
1: Operation result is negative or operand 1 is smaller.

Overflow bit (V)

Indicates that the operation result overflowed.
1: Operation result overflowed.

Condition select bits
(Cs)

Specifies the mode for selecting the status of the operation
result set in the DC bit. Do not specify 110 or 111.

000: Carry/borrow mode

001: Negative value mode

010: Zero value mode

011: Overflow mode

100: Signed greater than mode

101: Signed equal or greater than mode

DSP condition bit (DC)

Sets the operation result status in the mode specified by the
CS bits.

0: Specified mode status not achieved

1: Specified mode status achieved.

10

RENESAS

CPU core instructions use the DSR register as a system register. Data transfer to the DSR regis
include the following load store instructions:

STS DSR, Rm;
STS.L DSR, @-Rn;
LDS Rn, DSR;
LDS.L @Rn+, DSR;

CPU core instructions also use the A0, Al, X0, X1, YO, and Y1 registers as system registers.
There are three DSP control registers: the repeat start (RS) register, the repeat end (RE) registe
and the modulo (MOD) register.

The RS and RE registers are used to control program repetition (loops). The number of iteratior
is specified in the SR register’s repeat counter (RC), the repeat start address is specified in the
register, and the repeat end address is specified in the RE register. The address values stored i
RS and RE registers are not always the same as the physical starting address and ending addr
the repeat.

The MOD register uses modulo addressing to buffer the repeat data. Modulo addressing is
specified by DMX or DMY in the SR register, the modulo end address (ME) is specified in the to
16 bits of the MOD register, and the modulo start address (MS) is specified in the bottom 16 bits
The DMX and DMY bits cannot simultaneously specify modulo addressing. Modulo addressing
can be used for X and Y data transfers (MOVX and MOVY). It cannot be used in single data
transfers (MOVS).

Figure 2-5 shows the control registers.

2.2 General-Purpose Registers

Figure 2-4 shows the structure of the general-purpose registers.

11
RENESAS

31

0

RO*L *2

R1*2

R2*2 [As]*4

R3*2 [As]*4

R4*2 [As, AX]*4

R5*2 [As, AX]*4

R6*2 [Ay]*4

R7*2 [Ay]*4

R8 [Ix, Is]*4

RO [ly]*4

R10

R11

R12

R13

R14

R15

31

FRO*3

FR1*3

FR2*3

FR3*3

FR4*3

FR5*3

FR6*3

FR7*3

FR8*3

FR9*3

FR10*3

FR11*3

FR12*3

FR13*3

FR14*3

FR15*3

General-purpose registers
Undefined after reset

Floating point data register
The FMAC instruction uses FRO to set the multipli-

cation value.

Notes: 1.

RO functions as an index register in the
indexed register-indirect addressing
mode and indexed GBR-indirect
addressing mode. In some instructions,
only RO can be used as the source or
destination register.

RO to R7 are banked registers. In
privileged mode, the RB bit of register
SR determines which banks
(RO_BANKO to R7_BANKO or
RO_BANK1 to R7_BANK1) are
accessed as general-purpose registers.
These registers only exist on the SH-
3E. They are used for floating point
operations. Refer to 4. Floating Point
Unit for details on FRO to FR15.

When the DSP instruction extended
features of the SH3-DSP are enabled,
DSP instructions use these registers as
memory address registers and index
registers.

12

Figure 2-4 Structure of the General-Purpose Registers

RENESAS

The symbols R2—R9 are used by the assembler. To change a name to something that indicates
role of the register for DSP instructions, use an alias. The assembler writes as follows:

Ix: .REG (R8)
The name Ix becomes the alias R8. Aliases are also assigned as follows:

AX0: .REG (R4)
Axl: .REG (R5)
Ix: REG (RS)
Ay0: .REG (R6)
Ayl: .REG (R7)

ly: .REG (R9)

AsO: .REG (R4); defined when an alias is needed for a single data transfer.
Asl: .REG (R5); defined when an alias is needed for a single data transfer.
As2: .REG (R2); defined when an alias is needed for a single data transfer.
As3: .REG (RS3); defined when an alias is needed for a single data transfer.
Is: .REG (R8); defined when an alias is needed for a single data transfer.

2.3 Control Registers

Figure 2-5 shows the organization of the control registers.

13
RENESAS

31

0 Saved Status Register (SSR)

SSR | Stores current SR value at time of exception to

31

indicate processor status in the return to instruction
stream from exception handler. Undefined after reset.

0 Saved Program Counter (SPC)

SPC | Stores current PC value at time of exception to

31

indicate return address at completion of exception
processing. Undefined after reset.

0 Global Base Register (GBR)

GBR | Stores the base address of the GBR-indirect addressing

31

mode. The GBR-indirect addressing mode is used to
transfer data to the register areas of the resident
peripheral modules, and for logic operations. The GBR
can be accessed in user mode. Undefined after reset.

0 Vector Base Register (VBR)

VBR | Stores the base address of the exception processing

31

vector area. Initialized to H'00000000 after reset.
0

RS | Repeat Start Register (RS)

31

0

RE | Repeat End Register (RE)

31

16 15 0

| Modulo Register (MOD)

ME: Modulo End Address
MS: Modulo Start Address

31 30 29 28 27 13 12 11 10 9 87 2 10
Status
| 0 |MD|RB|BL| RC* | 0—0 |DSP*|DMY*|DMX*|M|Q| 13121110 |RF1*|RFO* S|T| register (SR)
MD: Processor operation mode bit: Indicates the processor operation mode as follows:

RB:

B

DSP bit:

M and Q bits:
RC:

DMY:

DMX:

13-10:

S bit:
RF1, RFO:

T bit:

0 bits:

Notes:

r

1 = Privileged mode; 0 = User mode. Becomes 1 when an exception or interrupt
occurs. Initialized to 1 reset.

Register bank bit: Defines the general-purpose register used as bank in privileged
mode. A logic 1 designates RO_BANK1-R7_BANK1 and R8-R15 are accessed

as general-purpose registers, and RO_BANKO-R7_BANKO are only accessed by
LDC and STC instructions; a logic zero designates RO_BANKO-R7_BANKO and
R8-R15 are accessed as general-purpose registers, and RO_BANK1-R7_BANK1
are only accessed by LDC and STC instructions. Becomes 1 when an exception or
interrupt occurs. Initialized to 1 reset.

Block bit: Masks exceptions and interrupts when 1. For details, see section 5,
Exception Processing. When 0, accepts exceptions and interrupts. Becomes 1
when an exception or interrupt occurs. Initialized to 1 at reset.

DSP operation mode. DSP instructions are enabled when set to 1.

Used by the DIVOS/DIVOU and DIV1 instructions.

Repeat counter. Specifies the number of repeats for repeat (loop) control (2 to 4,095).
Modulo addressing specification for pointer Y. 1: Modulo addressing mode enabled
for Y memory address pointer and Ay (R6 and R7).

Modulo addressing specification for pointer X. 1: Modulo addressing mode enabled
for memory address pointer and Ax (R4 and R5).

Interrupt mask bits: A 4-bit field indicating the interrupt request mask level. The
level of interrupt acceptance does not change when an interrupt occurs. Initialized
to B'1111 at reset.

Used by the MAC instruction.

Repeat flags. Used for zero-overhead repeat (loop) control.

00: 1-step repeat

01: 2-step repeat

11: 3-step repeat

10: 4-step (or more) repeat

The MOVT, CMP/cond, TAS, TST, BT, BF, SETT, CLRT, and DT instructions use
the T bit to indicate true (logic one) or false (logic zero). The ADDV/ADDC, SUBV/SUBC,
DIVOU/DIVOS, DIV1, NEGC, SHAR/SHAL, SHLR/SHRL, ROTA/ROTL, and
ROTCR/ROTCL instructions also use the T bit to indicate a carry, borrow,

overflow or underflow.

Always read as 0, and should always be written as 0.

Only the M, Q, S, and T can be set or cleared by special instructions from user
mode. Undefined after reset. All other bits are read or written from privileged mode.
* 0 for versions other than the SH3-DSP.

14

Figure 2-5 Control Registers Configuration

RENESAS

2.4

System Registers

The system registers are accessed by the LDS and STS instructions.

Figure 2-3 shows the system register configuration.

System registers

0 Multiply and Accumulate High and Low

Registers (MACH/L)

Store the results of multiply and multiply-and-

accumulate operations. Undefined after reset.

0 Floating Point Communication Register (FPUL)

Points the communication buffer between

the CPU and the FPU.

0 Procedure Register (PR)

| Stores the return address for existing subroutines.

Undefined after reset.

o Program Counter (PC)

| Indicates starting address of the current instruction

incremented by four (two instructions). Initialized to
H'A000 0000 after reset.

31
MACH
MACL
31
| FPUL* |
31
| PR
31
| PC
31
| FPSCR*

0 Floating Point Status/Control Register (FPSCR)

| Stores status or controls information for floating

Note: * See section 4, Floating Point Unit, for more information on the FPUL and FPSCR.

point operations.

Figure 2-6 System Register Configuration

RENESAS

15

2.5

Initial Register Value

Table 2-1 shows the register values after a reset.

Table 2-1 Initial Register Values

Register Type Register Initial Value* *
General purpose RO-R15 Undefined
FRO-FR15*2 Undefined
Control SR MD bit is 1, RB bit is 1, BL bit is 1, bits I3-10 are
1111 (H'F), bits RC, DMY, and DMX are 0 (SH3-
DSP only), reserved bits are 0, and all others are
undefined
GBR, SSR, SPC Undefined
VBR H'00000000
RS*? RE*? Undefined
MOD*? Undefined
System MACH, MACL, PR, Undefined
FPSCR**, FPUL**
PC H'A0000000
DSP A0, AOG, A1, A1G,
MO, M1, X0, X1, YO,
Y1l
DSR H'00000000

Notes: 1. These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FRO to FR15, FPSCR, and FPUL.

2. These registers only exist on the SH-3E.

16

RENESAS

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3-1). When the memory operand is on
a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a registel

31 0
| Longword

Figure 3-1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessec
bytes (8 bits), words (16 bits), or longwords (32 bits). Memory operands that do not fill out 32 bit
are sign-extended and stored in a register.

Access word operands from word boundaries (even addresses two bytes apart: 2n addresses) «
longword operands from longword boundaries (even addresses four bytes apart: 4n addresses)
Other accesses cause address errors. Byte operands can be accessed from any address.

Data formats can use either big endian or little endian byte order. Use the external pin (MD5) to
set the endian at power-on reset. When MD?5 is low, the processor operates in big endian; wher
MDS5 is high, the processor operates in little endian. Endians cannot be changed dynamically.
Numbers are always assigned to bit positions, from most significant to least significant and from
left to right. For example, in a longword (32 bits), the leftmost bit (31) is the most significant and
the rightmost bit (0) is the least significant.

Figure 2-6 shows the data format in memory. When little endian is used, data written in bytes (8
bits) should be read in bytes. Data written in words (16 bits) should be read in words.

A A+1 A+2 A+3 A+11A+10A+9 A+38
31 23 15 7 0 |31 23 15 7 0

7 0|7 0|7 0|7 Of (7 0|7 0|7 0|7 O
Address A |ByteO |Bytel|Byte2 [Byte3| |Byte3|Byte2|Bytel|Byte0| Address A +8

Address A +4 15 WordO 015 Word1 0 |15 Word1 015 Word0 0 Address A + 4

Address A+ 8 31 Longword 0 31 Longword 0| Address A

Big endian Little endian

Figure 3-2 Data Formats in Memory

17
RENESAS

3.3 Data Format for Immediate Data

Immediate data bytes are arranged inside instruction codes.

For the MOV, ADD, and CMP/EQ instructions, immediate data is sign-extended and then
processed as registers and longwords. In contrast, for the TST, AND, OR, and XOR instructions,
immediate data is zero-extended and then processed as longwords. Consequently, if immediate
data is used with the AND instruction, the upper 24 bits of the destination register will always be
cleared.

Word and longword immediate data is not arranged inside instruction codes. Instead, it is stored
memory table. Memory tables can be accessed using the immediate data transfer instruction
(MQOV) in the PC relative addressing mode with displacement.

For specific examples, see 6.1.8 Immediate Data in section 6. Instruction Features.

3.4 DSP Type Data Formats (SH3-DSP Only)

The SH-DSP uses three different data formats for instructions: the fixed decimal point data forma
the integer data format, and the logical data format.

The DSP type of fixed decimal point data format places a binary decimal point between bits 31
and 30. This data format can have guard bits, no guard bits, or be multiplication input. The valid
bit lengths and values displayed vary for each.

DSP type integer data formats place a binary decimal point between bits 16 and 15. This data
format can have guard bits, no guard bits, or be a shift amount. The valid bit lengths and values
displayed vary for each. The shift amount for arithmetic shift (PSHA) is a seven-bit area between
—64 and +63, although only values between —32 and +32 are valid. The shift amount for logical
shifts is a six bit area, although, in the same fashion, only values between —16 and +16 are valid.

The DSP type logical data format has no decimal point. The data format and valid data length val
with the instruction and DSP register.

Figure 3-3 shows the three DSP data formats and the position of the two binary decimal points, a
well as the SuperH data format (as reference).

18
RENESAS

DSP fixed decimal

point data
39 32 3130 0
With guard bits |S| | | —28to +28 231
A
3130 0
No guard bits | S | ~1to+1-2731
A
39 3130 16 15 0
Multiplication input |S | —1to+1-2715
7y
DSP integer data
39 3231 16 15 0
With guard bits |s | | | —223 10 +223 1
31 16 15 0
No guard bits | S | | —215t0 +2151
31 22 16 15 0
Arithmetic shift (PSHA) | B | -32t0+32
A
31 21 16 15 0
Logical shift (PSHL) | |s| | -1610+16
A
39 31 16 15 0
DSP logical data | | | (16 bits)
31 0
SuperH integer (word) |S| —231t0 +2811
(reference) A
S: Sign bit

A : Binary decimal point
|:| : Unrelated to processing (ignored)

RENESAS

Figure 3-3 DSP Data Formats

19

20

RENESAS

Section 4 Floating Point Unit (SH-3E only)

4.1 Introduction
The SH-3E has a built-in floating point operations unit (FPU). Figure 4-1 shows the FPU registe

Floating point registers
31 0 FRO functions as the index register
FRO for FMAC instructions.
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15
System registers
31 0 Floating Point Communication Register (FPUL)
| FPUL* | Indicates the buffer as the communication register
between the CPU and the FPU.
31 0 Floating Point Status/Control Register (FPSCR)
| FPSCR* | Stores_ status or control information for floating point
operations.
Note: * See section 4.2, Floating Point Registers and FPU Systems Registers, for more
information.

Figure 4-1 Register Set Overview: Floating Point Registers and
System Registers Used by the FPU

21
RENESAS

4.2 Floating Point Registers and System Registers for FPU

4.2.1 Floating Point Register File

The SH-3E provides sixteen 32-bit single-precision floating point registers. Register designators
are always 4-bits. In assembly language, the floating point registers are designated as FRO, FR1
FR2, etc. FRO functions as the index for FMAC instructions.

4.2.2 Floating Point Communication Register (FPUL)

Information is transferred between the FPU and the CPU through a communication register,
FPUL, which is analogous to the MACL and MACH registers of the integer unit. The SH-3E
provides this communication register because of the differences between integer format and FPL
format. FPUL is a 32-bit system register, accessed on the CPU side by LDS and STS instruction:

4.2.3 Floating Point Status/Control Register (FPSCR)

The SH-3E implements a floating point status and control register, FPSCR, as a system register
accessed through the LDS and STS instructions (figure 4-2). FPSCR is available for modification
by user programs. The FPSCR is part of the process context. It must be saved across context
switches and may need to be saved across procedure calls.

The FPSCR is a 32-bit register that controls FPU rounding, handling of denormalized values, anc
captures details about floating point exceptions.

In the SH-3E, only the following modes are supported for these functions.

* Rounding mode: Rounding toward O.

* Handling of denormalized values: When denormalized values are in the source or destination
operand, they are always treated as O.

« FPU exceptions: Divide by zero (Z) and invalid (V).

22
RENESAS

31 19 18 17 16 15 14 12 11 10 9 7 6 5 4 210

Cause Enable Flag
0 -meemmmmmeeeeees 0 1(0|CviCzZ[0O O O|EVIEZ|O O O|FV|FZ|O O 001
Cv: Invalid-operation cause bit

1: Invalid-operation exception occurred during execution of the current instruction
0: Invalid-operation exception did not occur

Cz: Divide-by-zero cause bit
1: Divide-by-zero exception occurred during the execution of the current instruction
0: Divide-by-zero exception did not occur

EV: Invalid-operation exception enable bit
1: Enable invalid-operation exception
0: Disable invalid-operation exception and return gNaN as a result

EZ: Divide-by-zero exception enable bit
1: Enable divide-by-zero exception
0: Disable divide-by-zero exception and return correctly signed infinity

FV: Invalid-operation exception flag bit
1: Invalid-operation exception occurred during execution of the current instruction
0: Invalid-operation exception did not occur

FzZ: Divide-by-zero exception flag bit
1: Divide-by-zero exception occurred during the execution of the current instruction
0: Divide-by-zero exception did not occur

Note: With the exception of the above bits, all bits are reserved as shown in the figures and
cannot be modified even by LDS instruction.

Figure 4-2 Floating Point Status/Control Register

The bits in the cause field indicate the cause of exception for the executing of the current
instruction. The cause bits are modified by execution of a floating point instruction. These bits al
set to 0 or 1, depending on occurrence or hon-occurrence of exception conditions during the
execution of a single instruction.

The bits in the enable field indicate the specific types of exceptions that are enabled to cause ar
exception, that is, change of flow to an exception handling procedure. An exception occurs if the
enable bit and the corresponding cause bit are set by the execution of the current instruction.

The bits in the flag field are used to capture the cumulative effect of all exceptions during the
execution of a sequence of instructions. These bits, once set by an instruction, can not be reset
following instructions. The bits in this field can only be reset by an explicit store operation on
FPSCR.

See section 4.4, Floating Point Exceptions Model, for more information on handling of floating
point exceptions.

23
RENESAS

4.3 Floating Point Format

4.3.1 Floating Point Format
The SH-3E supports single-precision floating point operations. It also conforms fully to the
IEEE754 standard.

Floating point numbers are composed of three fields:

Sign field : s
Exponent field : e
Mantissa field : f

The exponent is biased. In other words:
e = E + bias

The range of unbiased exponents E js-8 to E,,+1. The two values (-1 and E_+1) are
distinguished as follows. E—1 represents zero (sign is both positive and negative) and a
denormalized number while E+1 represents positive and negative infinity and a not-a-number
(NaN). In single-precision operations, the bias value is 12{i€=-126, and E,is 127.

31 30 23 22 0
s e f

Figure 4-3 Floating Point Format
The value v of the floating point number is determined as follows:
If E== E,,*t1 and f1=0, then v is not a number (NaN) regardless of sign s
If E== E,+1 and f==0, then v=(-1)° (infinity) [positive or negative infinity]
If E in<=E<= E, . then v =(=1)°2% (1.f) [normalized number]
If E== E,,—1 and fI=0, then v =(-1)°*2"" (0.f) [denormalized number]
If E== E;,;—1 and f==0, then v =(-1)° O [positive or negative zero]
4.3.2 Not a Number (NaN)

In not-a-number (NaN) expressions in single-precision operations, at least one of the bits 220 is
set. Set bit 22 for a signaling NaN (sNaN). When bit 22 is reset, the value is then the quiet NaN
(gNaN).

24
RENESAS

The following figure shows the bit pattern of the not-a-number (NaN). Bit N in the figure is set fo
sNaN and reset for gqNaN. An x indicates a don’t-care bit. At least one of bits 22-0 must be set.

In a not-a-number (NaN), the sign bit is a don’t-care bit.

31 30 23 22 0

X 11111111 NXXXXXXXXXXXXXXXXXXKXXXXK

N =1: sNaN
N =0: gNaN

Figure 4-4 NaN Bit Pattern
When a not-a-number (sNaN) is entered in the operation that generates the floating point value:

When the EV bit is reset in the FPSCR, the operation result (output) is gNaN.

When the EV bit is set in the FPSCR, an invalid operation exception occurs. In such cases, the
contents of the register at the destination side of the operation do not change.

When gNaN is input to the operation that generates the floating point value and sNaN is not inpi
to the operation, the output will always be qNaN regardless of how the EV bit is set in the FPSC
No exception will occur.

4.3.3 Denormalized Values

Denormalized floating point values are expressed by a biased exponent of 0, a nonzero mantiss
and a hidden bit of 0. In the SH-3E’s floating point unit, denormalized values (operand source ol
operation result) are uniformly flushed with O in floating point operations (other than copy) that
generate values.

4.3.4 Other Special Values

Other special values are as stipulated by standard IEEE754. Table 4-1 shows the seven differel
types of special values in floating point value expressions.

25
RENESAS

Table 4-1 Special Value Expressions in Single-Precision Stipulated in IEEE754

Value Expression

+0.0 0x00000000

-0.0 0x80000000

Denormalized number See section 4.3.3, Denormalized Values
+INF 0x7F800000

—INF OxFF800000

gNaN (quiet NaN) See section 4.3.2, Not a Number (NaN)
sNaN (signaling NaN) See section 4.3.2, Not a Number (NaN)

4.4 Floating Point Exception Model

4.4.1 Enabled Exception

Invalid-operation and divide-by-zero exceptions are enabled by setting the enable bit for the
relevant exception (the EV or EZ bit) in FPSCR. All exceptions caused by the FPU are mapped
FPU exception events. The meaning of an individual exception is determined by software by
reading the FPSCR system register and analyzing the information held there.

4.4.2 Disabled Exception

If enable bit EV is not set in FPSCR, the result of an invalid operation will be gNaN (with the
exception of FCMP and FTRC). If enable bit EZ is not set, division by zero will return infinity
with the sign of the current expression (+ or -).

The other floating-point exceptions specified in the IEEE754 standard—inexact, overflow, and
underflow—are not supported by the SH-3E. In these cases, the SH-3E operates as described
below.

« An overflow will produce the number whose absolute value is the largest representable finite
number in the format with the correct sign bit. An underflow will produce a correctly signed
zero. If the result of an operation is inexact, the destination register will hold the inexact result.

443 Exception Event and Code for FPU

All FPU exceptions are mapped onto the single general exception event at address H'0x120. Loz
and stores of system registers FPUL and FPSCR cause the normal memory management gener
exceptions.

26
RENESAS

4.4.4 Alignment of Floating Point Data in Memory

Single precision floating point data is aligned on modulus-4 boundaries, that is, in the same
fashion as SH-3E long integers.

4.45 Arithmetic with Special Operands
All arithmetic with special operands (qNaN, sNaN, +INF, —INF, +0, —0) follows IEEE754 rules.

4.5 Synchronization Issues

Synchronization with CPU: Floating-point and CPU instructions are issued serially in program
order, but may complete out-of-order due to execution cycle differences. A floating point
operation that accesses only FPU resources does not require synchronization with the CPU, an
subsequent CPU operations can complete before the completion of the floating point operation.
Therefore an optimized program can hide the execution cycle of a long-execution-cycle floating
point operation such as Divide. A floating point operation such as Compare that accesses CPU
resources, however, requires synchronization to ensure program order.

Floating Point Instructions Requiring Synchronization: Loads, stores, compares/tests, and
instructions accessing FPUL access CPU resources and therefore require synchronization. Loa
and Stores refer to general registers. Post-increment loads and pre-decrement stores modify
general registers. Compares/tests modify the T bit. Instructions accessing FPUL refer to or mod
FPUL. These references and modifications must be synchronized with the CPU.

Maintaining Program Order on Exceptions: Floating point instructions are never completed

until subsequent CPU instructions are completed. If an FPU exception is detected before
subsequent CPU instructions finish and an FPU exception occurs, subsequent CPU instructions
canceled.

During a floating point instruction execution, if a subsequent instruction causes an exception, th
floating point instruction is left executing and FPU resources cannot be accessed by other
instructions. The other instructions must await the completion of the floating point operation
before they can access. This ensures program order.

27
RENESAS

28

RENESAS

Section 5 DSP Operation Functions and Data Transfers
(SH3-DSP Only)

DSP operations and data transfers are listed below:

ALU Fixed Decimal Point Operations: These are fixed decimal point operations with either 40-
bit (with guard bits) or 32-bit (with no guard bits) fixed decimal point data. These include
addition, subtraction, and comparison instructions.

ALU Integer Operations: These are integer arithmetic operations with either 24-bit (with guard
bits) or 16-bit (with no guard bits) integer data. They include increment and decrement
instructions.

ALU Logical Operations: These are logical operations with 16-bit logical data. They include
AND, OR, and exclusive OR.

Fixed Decimal Point Multiplication: This is fixed decimal point multiplication (arithmetic
operation) of the top 16 bits of fixed decimal point data. Condition bits such as the DC bit are no
updated.

Shift Operations: These are arithmetic and logical shift operations. Arithmetic shift operations
are arithmetic shifts of 40 bits (with guard bits) or 32 bits (with no guard bits) of fixed decimal
point data. Logical shift operations are logical operations on 16 bits of logical data. The amount
the arithmetic shift operation is —32 to +32 (negative for right shifts, positive for left shifts); for
logical shifts, the amount is —16 to +16.

MSB Detection Instruction: This operation finds the amount of the shift to normalize the data. It
finds the position of the MSB bit in either 40-bit (with guard bits) or 32-bit (with no guard bits)
fixed decimal point data as either 24 bits (with guard bits) or 16 bits (with no guard bits) integer
data.

Rounding Operation: Rounds 40-bit fixed decimal point data (with guard bits) to 24 bits or 32-
bit (with no guard bits) fixed decimal point data to 16 bits.

Data Transfers: Data transfers consist of X and Y data transfers, which load or store 16-bit data
to and from X and Y memory, and single data transfers, which load and store 16- or 32-bit data
from all memories. Two X and Y data transfers can be processed in parallel. Condition bits suct
as the DC bit are not updated.

The operation instructions include both conditional operation instructions and instructions that a
conditionally executed depending on the DC bit. Condition bits such as the DC bit are not updat
by conditional instructions. Their settings vary for arithmetic operations, logical operations,
arithmetic shifts, and logical shifts. or MSB detection instructions and rounding instructions, set
the condition bits like for arithmetic operations.

29
RENESAS

Arithmetic operations include overflow preventing instructions (saturation operations). When
saturation operation is specified with the S bit in the SR register, the maximum (positive) or
minimum (negative) value is stored when the result of operation overflows.

5.1 ALU Fixed Decimal Point Operations

5.1.1 Function

ALU fixed decimal point operations basically work with a 32-bit unit to which 8 guard bits are
added for a total of 40 bits. When the source operand is a register without guard bits, the register
sign bit is extended and copied to the guard bits. When the destination operand is a register
without guard bits, the lower 32 bits of the operation result are stored in the destination register.

ALU fixed decimal point operations are performed between registers. The source and destination
operands are selected independently from the DSP register. When there are guard bits in the
selected register, the operation is also executed on the guard bits. These operations are execute
the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’'s DC, N, Z, V, and GT bits
are updated by the operation result. For conditional instructions, however, condition bits are not
updated even when the specified condition is achieved. For unconditional instructions, the bits ar
updated according to the operation result.

The condition reflected in the DC bit is selected with the CS[2:0] bits. The DC bits of the PADDC
and PSUB instructions, however, are updated regardless of the CS bit settings. In the PADDC
instruction, it is updated as a carry flag; in the PSUB instruction, it is updated as a borrow flag.

Figure 5-1 shows the ALU fixed decimal point operation flowchart.

30
RENESAS

Guard bits Guard bits

{ 31 0 4 31 0
L | L
Source 1 Source 2
Y Y
V
ALU [—{cT[Z[N]V [DC]
DSR
Destination
L
31 0
Guard bits

Figure 5-1 ALU Fixed Decimal Point Operation Flowchart

When the memory read destination operand is the same as the ALU operation source operand
the data transfer instruction program is written on the same line as the ALU operation, data loac
from memory in the memory access stage (MA) cannot be used as the source operand of the A
operation instruction. When this occurs, the result of the instruction executed first is used as the
source operand of the ALU operation and is updated as the destination operand of the data loac

instruction thereafter. Figure 5-2 is a flowchart of the operation.

PADD X0, YO, AO MOVX.W @ R4+, X0

Slot 1 2 3 4 > °
EX (ad- MA bsp
MOVX IF ID dressing) | (MOVX) (nop)
UK EX (ad- MA DSP
ADD i D dressing) \(MOVX) (ADD)
\/;

The result of the previous step is used.

Figure 5-2 Sample Processing Flowchart

31
RENESAS

5.1.2 Instructions and Operands

Table 5-1 shows the types of ALU fixed decimal point arithmetic operations. Table 5-2 shows the
correspondence between the operands and registers.

Table 5-1 Types of ALU Fixed Decimal Point Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination
PADD Addition Sx Sy Dz (Du)
PSUB Subtraction Sx Sy Dz (Du)
PADDC Addition with carry Sx Sy Dz
PSUBC Subtraction with borrow Sx Sy Dz
PCMP Compare Sx Sy —
PCOPY Copy data Sx — Dz

— Sy Dz
PABS Absolute value Sx — Dz

— Sy Dz
PNEG Invert sign Sx — Dz

— Sy Dz
PCLR Zero clear — — Dz

Table 5-2 Correspondence between Operands and Registers for ALU Fixed Decimal Point
Arithmetic Operations

Operand X0 X1 YO Y1 MO M1 A0 Al
Sx Yes*! Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes
Du*? Yes Yes Yes Yes

Notes: 1. Yes: Register can be used with operand.
2. Du: Operand when used in combination with multiplication.

5.1.3 DCBit

The DC bit is set as follows depending on the specification of the CS0-CS2 bits (condition select
bits) of the DSR register.

32
RENESAS

Carry/Borrow Mode: CS2—CS0 = 000:The DC bit indicates whether a carry or borrow has
occurred from the MSB of the operation result. The guard bits have no affect on this. This mode
the default. Figure 5-3 shows examples when carries and borrows occur.

Example 1: Carry Example 2: Carry
Guard bits Guard bits
0000 0000 1111 12211 1111 1111 1111 1111 0111 0000 0000 0000
+) 0000 0000 0000 0000 0000 0001 +) 0011 1111 0001 0000 0000 0000
0000 0001 0000 0000 0000 0000 (1)0011 1110 1000 0000 0000 0000

Position where

Position where
carry is detected

carry is detected

Example 3: Borrow Example 4: Borrow
Guard bits Guard bits
0000 0000 0000 0000 0000 0001 0000 0000 0001 0000 0000 0001
—) 0000 0000 0000 0000 0000 0001 —) 0000 0000 0001 0000 0000 0010
0000 0000 0000 0000 0000 0000 1111 12111 11121 1211 1111 1111
Position where L Position where

borrow is detected

borrow is detected

Figure 5-3 Examples of Carries and Borrows

Negative Mode: CS2—-CS0 = 001n this mode, the DC bit is the same as the MSB of the
operation result. When a result is negative, the DC bit is 1. When the result is positive, the DC b
is 0. ALU arithmetic operations are always done in 40 bits. The sign bit indicating positive or
negative is thus the MSB included in the guard bits of the operation result rather than the MSB ¢
the destination operand. Figure 5-4 shows an example of distinguishing negative from positive.
this mode, the DC bit has the same value as the condition bit N.

Example 1: Negative Example 2: Positive
Guard bits Guard bits
1100 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000
+) 0000 0000 0000 0000 0000 0001 +) 0000 0000 1000 0000 0000 0001
1100 0000 0000 0000 0000 0001 0011 0000 1000 0000 0000 0001
L Sign bit L Sign bit

Figure 5-4 Distinguishing Negative and Positive

33
RENESAS

Zero Mode: CS2—CS0 = 010The DC bit indicates whether the operation result is zero. When it
is, the DC bit is 1. When the operation result is nonzero, the DC bit is 0. In this mode, the DC bit
has the same value as the condition bit Z.

Overflow Mode: CS2-CSO0 = 011The DC bit indicates whether the operation result has caused
an overflow. When the operation result without the guard bits has exceeded the bounds of the
destination register, the DC hit is set to 1. The DC bit considers there to be no guard bits, which
makes it an overflow even when there are guard bits. This means that the DC bit is always set to
when large numbers use guard bits. In this mode, the DC bit has the same value as the conditior
bit V. Figure 5-5 shows an example of distinguishing overflows.

Example 1: Overflow Example 2: No overflow
Guard bits Guard bits
1111 12111 12171 11211 1111 1111 1111 1211 1111 1111 1111 1111
+) 1111 1111 1000 0000 0000 0000 +) 1111 1111 1000 0000 0000 0001
1111 1111 0111 1111 1111 1111 1111 1111 1000 0000 0000 0000
L Overflow detection range L Overflow detection range

Figure 5-5 Distinguishing Overflows

Signed Greater Than Mode: CS2-CS0 = 100¢he DC bit indicates whether the source 1 data
(signed) is greater than the source 2 data (signed) in the result of a comparison instruction PCMF
For that reason, the PCMP instruction is executed before checking the DC bit in this mode. Wher
the source 1 data is larger than the source 2 data, the result of the comparison is positive, so this
mode becomes similar to the negative mode. When the source 1 data is larger than the source 2
data and the bounds of the destination operand are exceeded, however, the sign of the result of
comparison becomes negative. The DC bit is updated. In this mode, the DC bit has the same val
as the condition bit GT. The equation shown below defines the DC bit in this mode. However, VR
becomes a positive value when the result including the guard bit area exceeds the display range
the destination operand.

DC bit = ~ {(N bit » VR)|Z bit}

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the
bit that indicates the result of the SH core’s CMP/GT instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as wel

Signed Greater Than or Equal to Mode: CS2—CS0 = 10The DC bit indicates whether or not

the source 1 data (signed) is greater than or equal to the source 2 data (signed) in the result of tt
execution of a comparison instruction PCMP. For that reason, the PCMP instruction is executed
before checking the DC bit in this mode. This mode is similar to the Signed Greater Than mode
except for checking if the operands are the same. The equation shown below defines the DC bit

34
RENESAS

this mode. However, VR becomes a positive value when the result, including the guard bit area,
exceeds the display range of the destination operand.

DC bit = ~ (N bit A VR)

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as th
bit that indicates the result of the SuperH core’s CMP/GE instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as we

5.1.4 Condition Bits

The condition bits are set as follows:

e The N (negative) bit has the same value as the DC bit when the CS bits specify negative mo
When the operation result is negative, the N bit is 1. When the operation result is positive, th
N bit is 0.

» The Z (zero) bit has the same value as the DC bit when the CS bits specify zero mode. Whe
the operation result is zero, the Z bit is 1. When the operation result is nonzero, the Z bit is 0

* The V (overflow) bit has the same value as the DC bit when the CS bits specify overflow
mode. When the operation result exceeds the bounds of the destination register without the
guard bits, the V bit is 1. Otherwise, the V bit is 0.

» The GT (greater than) bit has the same value as the DC bit when the CS bits specify Signed
Greater Than mode. When the comparison result indicates the source 1 data is greater than
source 2 data, the GT bit is 1. Otherwise, the GT bit is 0.

5.1.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function is engaged for the
ALU fixed decimal point arithmetic operation executed by the DSP unit. When the operation
result overflows, the maximum (positive) or minimum (negative) value is stored.

5.2 ALU Integer Operations

ALU integer operations are basically 24-bit operations on the top word (the top 16 bits, or bits 1(
through 31) and 8 guard bits. In ALU integer operations, the bottom word of the source operand
(the bottom 16 bits, or bits 0-15) is ignored and the bottom word of the destination operand is
cleared with zeros. When the source operand has no guard bits, the sign bit is extended to fill th
guard bits. When the destination operand has no guard bits, the top word of the operation result
(not including the guard bits) are stored in the top word of the destination register.

Integer operations are basically the same as ALU fixed decimal point arithmetic operations. The
are only two types of integer operation instructions, increment and decrement, which change the
second operand by +1 or —1. 16 bits of integer data (word data) is loaded to the DSP register ar
stored in the top word. The operation is performed using the top word in the DSP register. Wher

35
RENESAS

there are guard bits, they are valid as well. These operations are executed in the DSP stage (the
stage) of the pipeline.

Whenever an ALU integer arithmetic operation is executed, the DSR register's DC, N, Z, V, and
GT bits are basically updated by the operation result. This is the same as for ALU fixed decimal
point operations.

For conditional instructions, condition bits and flags are not updated even when the specified

condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result. Figure 5-6 shows the ALU integer operation
flowchart.

Guard bits Guard bits
31 0 {31 0
L | L
Source 1 Source 2
A A
V
ALU GT|z| N |V |DC|
DSR
Destination
Y
31 0
Guard bits : Ilgnored
- :Clearedto 0

Figure 5-6 ALU Integer Operation Flowchart

Table 5-3 lists the types of ALU integer operations. Table 5-4 shows the correspondence betwee
the operands and registers.

36
RENESAS

Table 5-3 Types of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination
PINC Increment by 1 SX (+1) Dz

(+1) Sy Dz
PDEC Decrement by 1 Sx (-1) Dz

(-1) Sy Dz

Table 5-4 Correspondence between Operands and Registers for ALU Integer Operations

Operand X0 X1 YO Y1l MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

When the S bit of the SR register is set to 1, the overflow prevention function (saturation
operation) is engaged. The overflow prevention function can be specified for ALU integer
arithmetic operations executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

5.3 ALU Logical Operations

5.3.1 Function

ALU logical operations are performed between registers. The source and destination operands
selected independently from the DSP register. These operations use only the top word of the
respective operands. The bottom word of the source operand and the guard bits are ignored ani
bottom word of the destination operand and guard bits are cleared with zeros. These operations
executed in the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. For conditional instructions, condition bits and flag
are not updated even when the specified condition is achieved and the instruction executed. Fo
unconditional instructions, the bits are always updated according to the operation result. The DC(
bit is updated as specified in the CS bits. Figure 5-7 shows the ALU logical operation flowchart.

37
RENESAS

Guard bits Guard bits

l 31 0 l 31 0
| | Source 1 | | | Source 2
Y A 4
ALU GT[z[N[V [DC]
DSR
Destination
31 0
Guard bits
: Ignored
- :Clearedto 0

Figure 5-7 ALU Logical Operation Flowchart

5.3.2 Instructions and Operands

Table 5-5 lists the types of ALU logical arithmetic operations. Table 5-6 shows the
correspondence between the operands and registers, which is the same as for ALU fixed decima
point operations.

Table 5-5 Types of ALU Logical Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination
PAND AND Sx Sy Dz
POR OR Sx Sy Dz
PXOR Exclusive OR Sx Sy Dz

Table 5-6 Correspondence between Operands and Registers for ALU Logical Arithmetic

Operations
Operand X0 X1 YO Y1 MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

38
RENESAS

5.3.3 DC Bit

The DC bit is set in logical operations as follows:
Carry/Borrow Mode: CS2—-CS0 = 000The DC bit is always 0.

Negative Mode: CS2—-CS0 = 001n this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2-CS0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011The DC hit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2-CS0 = 100:he DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal to Mode: CS2—CS0 = 10T:he DC bit is always 0.

5.3.4 Condition Bits

The condition bits are set as follows.

» The N bit is the value of bit 31 of the operation result.

e The Z bitis 1 when the operation result is zero; otherwise, the Z bit is 0.
» The V bitis always 0.

e The GT hit is always O.

5.4 Fixed Decimal Point Multiplication

Multiplication in the DSP unit is between signed single-length operands. It is processed in one
cycle. When double-length multiplication is needed, use the SuperH RISC engine’s double-leng
multiplication.

Basically, the operation result for multiplication is 32 bits. When a register that has guard bits is
specified as the destination operand, it is sign-extended.

In the DSP unit, multiplication is a fixed decimal point arithmetic operation, not an integer
operation. This means the top words of the constant and multiplicand are entered into the MAC
operator. In SuperH RISC engine multiplication, the bottom words of the two operands are entel
into the MAC operator. The operation result thus is different from the SuperH RISC engine. The
SuperH RISC engine operation result is matched to the LSB of the destination, while the fixed
decimal point multiplication operation result is matched to the MSB. The LSB of the operation
result in fixed decimal point multiplication is thus always 0.

39
RENESAS

Figure 5-8 shows a flowchart of fixed decimal point multiplication.

Guard bits Guard bits

l31 0 | = 0
L] L

Destination

[«—s 0|

31

t 0
Guard bits I:I - Ignored

Figure 5-8 Fixed Decimal Point Multiplication Flowchart

Table 5-7 shows the fixed decimal point multiplication instruction. Table 5-8 shows the
correspondence between the operands and registers.

Table 5-7 Fixed Decimal Point Multiplication

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table 5-8 Correspondence between Operands and Registers for Fixed Decimal Point
Multiplication

Operand X0 X1 YO Y1 MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.
DSP unit fixed decimal point multiplication completes a single-length 16 16t bit operation in

one cycle. Other multiplication is the same as in the SuperH RISC engines.

40
RENESAS

Multiplication instructions do not update the DC, N, Z, V, GT, or any condition bit of the DSR
register.

The overflow prevention function is valid for DSP unit multiplication. Specify it by setting the S
bit of the SR register is set to 1. When an overflow or underflow occurs, the operation result valt
is the maximum or minimum value respectively. In DSP unit fixed decimal point multiplication,
overflows only occur for H'8008 H'8000 ((—1.0% (—1.0)). When the S bit is 0, the operation

result is H'80000000, which means —1.0 rather than the correct answer of +1.0. When the S bit
1, the overflow prevention function is engaged and the result is H'O07FFFFFFF.

5.5 Shift Operations

The amount of shift in shift operations is specified either through a register or using a direct
immediate value. Other source operands and destination operands are registers. There are two
types of shift operations: arithmetic and logical. Table 5-9 shows the operation types. The
correspondence between operands and registers is the same as for ALU fixed decimal point
operations, except for immediate operands. The correspondence is shown in table 5-10.

Table 5-9 Types of Shift Operations

Mnemonic Function Source 1 Source 2 Destination
PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz
PSHL Sx, Sy, Dz Logical shift Sx Sy Dz
PSHA #lmm, Dz Arithmetic shift with Dz Imm1 Dz
immediate data
PSHL #lmm, Dz Logical shift with immediate Dz Imm1 Dz
data

-32<Imml<+32,-16 <Imm2 < +16

Table 5-10 Correspondence between Operands and Registers for Shift Operations

Operand X0 X1 YO0 Y1 MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.5.1 Arithmetic Shift Operations

Function: ALU arithmetic shift operations basically work with a 32-bit unit to which 8 guard bits
are added for a total of 40 bits. ALU fixed decimal point operations are basically performed
between registers. When the source operand has no guard bits, the register’s sign bit is copied

41
RENESAS

the guard bits. When the destination operand has no guard bits, the lower 32 bits of the operatior
result are stored in the destination register.

In arithmetic shifts, all bits of the source 1 operand and destination operand are valid. The source
operand, which specifies the shift amount, is integer data. The source 2 operand is specified as ¢
register or immediate operand. The valid amount of shift is —32 to +32. Negative values are shifts
to the right; positive values are shifts to the left. Between —64 and +63 can be specified for the
source 2 operand, but only —32 to +32 is valid. When an invalid number is specified, the results
cannot be guaranteed. When an immediate value is specified for the shift amount, the source 1
operand must be the same as the destination operand. The action of the operation is the same a
fixed decimal point operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever an arithmetic shift operation is executed, the DSR register's DC, N, Z, V, and GT bits
are basically updated by the operation result. This is the same as for ALU fixed decimal point
operations. For conditional instructions, condition bits are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result.

Figure 5-9 shows the arithmetic shift operation flowchart.

Left shift Right shift
79 Og 31 16 15 0 7g Og 31 16 15 0
K (Copy MSB) N
Shift out >0 <0 Shift out
+32 to -32
_ 79 Og 31 23221615 0
Shift amount data. | | [Dz] | Update [GT|z [N]V [DC]
(source 2) 6 0 DSR
I:I : Ignored

Figure 5-9 Arithmetic Shift Operation Flowchart
DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits:

« Carry/Borrow Mode: CS2—-CSO0 = 000: The DC bhit is the operation result, the value of the bit
pushed out by the last shift.

* Negative Mode: CS2—-CS0 = 001: Set to 1 for a negative operation result and O for a positive
operation result. In this mode, the DC bit has the same value as bit N.

42
RENESAS

e Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, th
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

e Overflow Mode: CS2—-CS0 = 011: The DC hit is set to 1 by an overflow. In this mode, the DC
bit has the same value as bit V.

» Signed Greater Than Mode: CS2—CS0 = 100: The DC bit is always 0. In this mode, the DC &
has the same value as bit GT.

» Signed Greater Than or Equal To Mode: CS2-CS0 = 101: The DC bit is always 0.
Condition Bits: The condition bits are set as follows:

e The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. Itis s
to 1 for a negative operation result and O for a positive operation result.

» The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is se
to 1 when the operation result is zero; otherwise, the Z bit is 0.

» The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for an overflow.

e The GT hit is always O.

Overflow Prevention Function (Saturation Operation): When the S bit of the SR register is set

to 1, the overflow prevention function is engaged for the ALU fixed decimal point arithmetic
operation executed by the DSP unit. When the operation result overflows, the maximum (positiv
or minimum (negative) value is stored.

5.5.2 Logical Shift Operations

Function: Logical shift operations use the top words of the source 1 operand and the destinatior
operand. As in ALU logical operations, the guard bits and bottom word of the operands are
ignored. The source 2 operand, which specifies the shift amount, is integer data. The source 2
operand is specified as a register or immediate operand. The valid amount of shift is —16 to +16
Negative values are shifts to the right; positive values are shifts to the left. Between —32 and +3
can be specified for the source 2 operand, but only —16 to +16 is valid. When an invalid number
specified, the results cannot be guaranteed. When an immediate value is specified for the shift
amount, the source 1 operand must be the same as the destination operand. The action of the
operation is the same as for fixed decimal point operations and is executed in the DSP stage (tf
last stage) of the pipeline.

Whenever a logical shift operation is executed, the DSR register's DC, N, Z, V, and GT bits are
basically updated by the operation result. This is the same as for ALU logical operations. For
conditional instructions, condition bits are not updated even when the specified condition is
achieved and the instruction executed. For unconditional instructions, the bits are always update
according to the operation result.

Figure 5-10 shows the logical shift operation flowchart.

43
RENESAS

Left shift Right shift

7g Og 31 16 15 0 7g 0g 31 16 15 0
. !0 0 .
Shift out Shift out
2:\ %
+16 to —16
_ 79 Og 31 23221615 0
Shift amount data 7] [Dz] | update [GT[z[N[V]DC]
(source 2) 5 0
DSR
|:| - Ignored

- : Cleared to O

Figure 5-10 Logical Shift Operation Flowchart

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits.

Carry/borrow mode: CS2-CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

Negative Mode: CS2—-CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is all zeros; otherwise.
the DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the
same value as bit V.

Signed Greater Than Mode: CS2—CS0 = 100: The DC bit is always 0. In this mode, the DC bi
has the same value as bit GT.

Signed Greater Than Or Equal To Mode: CS2—CSO0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows.

44

The N bit is the same as the result of the ALU logical operation. It is set to the value of bit 31
of the operation result.

The Z bit is the same as the result of the ALU logical operation. It is set to 1 when the
operation result is all zeros; otherwise, the Z bit is 0.

The V bit is always 0.
The GT bit is always 0.

RENESAS

5.6 The MSB Detection Instruction

5.6.1 Function

The MSB detection instruction (PDMSB: most significant bit detection) finds the amount of shift
for normalizing the data.

The operation result is the same as for ALU integer operations. Basically, the top 16 bits and 8
guard bits are valid for a total 24 bits. When the destination operand is a register that has no gu
bits, it is stored in the top 16 bits of the destination register.

The MSB detection instruction works on all bits of the source operand, but gets its operation res
in integer data. This is because the shift amount for normalization must be integer data for the
arithmetic shift operation. The action of the operation is the same as for fixed decimal point
operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever a PDMSB instruction is executed, the DSR register's DC, N, Z, V, and GT bits are
basically updated by the operation result. For conditional instructions, condition bits are not
updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result.

Figure 5-11 shows the MSB detection instruction flowchart. Table 5-11 shows the relationship
between source data and destination data.

Guard bits
31 0

v
L |

Source 1 or 2

A4

Priority encoder —»IGT| z | N | \% |DC|
DSR

Destination

L]
R 0
Guard bits I:I :Clearedto O

Figure 5-11 MSB Detection Flowchart

45
RENESAS

Table 5-11 Relationship between Source Data and Destination Data

Source Data

Bottom Word

27-4 3

Top Word

Guard Bits

6g 5g-2g 1g Og 31 30 29 28 27-4

79

46

RENESAS

Table 5-11 Relationship between Source Data and Destination Data (cont)

Destination Result

Guard Bits Top word
10
79-0g 31-22 21 20 19 18 17 16 Hexadecimal
allo all 0 0 1 1 1 1 1 +31
0 1 1 1 1 0 +30
0 1 1 1 0 1 +29
0 1 1 1 0 0 +28
! ! ! !
allo allo 0 0 0 0 1 0 +2
0 0 0 0 0 1 +1
0 0 0 0 0 0 0
all1 all 1 1 1 1 1 1 1 -1
1 1 1 1 1 0 -2
! ! ! !
all1 all 1 1 1 1 0 0 0 -8
1 1 1 0 0 0 -8
! ! ! !
all1 all 1 1 1 1 1 1 0 -2
1 1 1 1 1 1 -1
allo allo 0 0 0 0 0 0 0
0 0 0 0 0 1 +1
0 0 0 0 1 0 +2
! ! ! !
allo allo 0 1 1 1 0 0 +28
0 1 1 1 0 1 +29
0 1 1 1 1 0 +30
0 1 1 1 1 1 +31

Note: Don't care bits have no effect.

5.6.2 Instructions and Operands

Table 5-12 shows the MSB detection instruction. The correspondence between the operands ar
registers is the same as for ALU fixed decimal point operations. It is shown in table 5-13.

47
RENESAS

Table 5-12 MSB Detection Instruction

Mnemonic Function Source 1 Source 2 Destination
PDMSB MSB detection Sx — Dz
— Sy Dz

Table 5-13 Correspondence between Operands and Registers for MSB Detection

Instructions
Operand X0 X1 YO Y1 MO M1 AO Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.6.3 DCBit
The DC bit is set as follows depending on the mode specified by the CS bits:

Carry/Borrow Mode: CS2—CS0 = 000:The DC bit is always 0.

Mode: CS2—-CS0 = 001Set to 1 for a negative operation result and 0 for a positive operation
result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—-CS0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2-CS0 = 10@Bet to 1 for a positive operation result and 0 for a
negative operation result. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2-CS0 = 10Bet to 1 for a positive or zero
operation result and 0 for a negative operation result.

5.6.4 Condition Bits
The condition bits are set as follows.

« The N bit is the same as the result of the ALU integer operation. It is set to 1 for a negative
operation result and 0 for a positive operation result.

48
RENESAS

» The Z bit is the same as the result of the ALU integer operation. It is set to 1 when the
operation result is zero; otherwise, the Z bit is 0.

e TheV bitis always 0.

» The GT bit is the same as the result of the ALU integer operation. It is set 1 for a positive
operation result and otherwise to 0.

5.7 Rounding

5.7.1 Operation Function

The DSP unit has a function for rounding 32-bit values to 16-bit values. When the value has gue
bits, 40 bits are rounded to 24 bits. When the rounding instruction is executed, H'0000 8000 is
added to the source operand and the bottom word is then cleared to zeros.

Rounding uses all bits of the source and destination operands. The action of the operation is the
same as for fixed decimal point operations and is executed in the DSP stage (the last stage) of
pipeline.

The rounding instruction is unconditional. The DSR register's DC, N, Z, V, and GT bits are thus
always updated according to the operation result.

Figure 5-12 shows the rounding flowchart. Figure 5-13 shows the rounding process definitions.

Guard bits
v 31 0
L | | H00008000
Source 1 or 2 Addition
A4 A4
ALU GT[z[N[V [bC]
DSR
Destination
A4
L |
Y 0
Guard bits
. Clearedto 0

Figure 5-12 Rounding Flowchart

49
RENESAS

Rounding result A
I O
|
|
! Analog values
H000002 -=--{-==---- o 9
Lo
|
H'000001 ----1 - > 1
I
N .
O i : : >
0 ol Actual value
o o o
o O O
o O O
W O o©
— N N
o O O
o O O
o O O
o O O
S © o
T T T

Figure 5-13 Rounding Process Definitions

5.7.2 Instructions and Operands

Table 5-14 shows the instruction. The correspondence between the operands and registers is the
same as for ALU fixed decimal point operations. It is shown in table 5-15.

Table 5-14 Rounding Instruction

Mnemonic Function Source 1 Source 2 Destination
PRND Rounding Sx — Dz
— Sy Dz

Table 5-15 Correspondence between Operands and Registers for Rounding Instruction

Operand X0 X1 YO Y1 MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

50
RENESAS

5.7.3 DC Bit

The DC bit is updated as follows depending on the mode specified by the CS bits. Condition bit:
are updated as for ALU fixed decimal point arithmetic operations.

Carry/Borrow Mode: CS2—CS0 = 000:The DC bit is set to 1 when a carry or borrow from the
MSB of the operation result occurs; otherwise, it is set to 0.

Negative Mode: CS2—-CS0 = 001Set to 1 for a negative operation result and O for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2-CSO0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011The DC bit is set to 1 by an overflow; otherwise, it is set to 0.
In this mode, the DC bit has the same value as bit V.

Signed Greater Than Mode: CS2-CSO0 = 10@Bet to 1 for a positive operation result; otherwise,
it is set to 0. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2-CS0 = 10Bet to 1 for a positive or zero
operation result; otherwise, it is set to O..

5.7.4 Condition Bits

The condition bits are set as follows. They are updated as for ALU fixed decimal point arithmetic
operations.

* The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for a negative operation result and O for a positive operation result.

» The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is se
to 1 when the operation result is zero; otherwise, the Z bit is 0.

» The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for an overflow; otherwise, the V bit is 0.

* The GT bit is the same as the result of the ALU fixed decimal point arithmetic operation and
the ALU integer operation. It is set 1 for a positive operation result; otherwise, the GT bit is 0

5.7.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function can be specified fc
all rounding processing executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

51
RENESAS

5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)

DSP instructions may be either conditional or unconditional. Unconditional instructions are
executed without regard to the DSP condition bit (DC bit), but conditional instructions may
reference the DC bit before they are executed. With unconditional instructions, the DSR register’.
DC bit and condition bits (N, Z, V, and GT) are updated according to the results of the ALU
operation or shift operation. The DC bit and condition bits (N, Z, V, and GT) are not updated
regardless of whether the conditional instruction is executed. The DC bit is updated according to
the specifications of the condition select (CS) bits. Updates differ for arithmetic operations, logica
operations, arithmetic shifts and logical shifts. Table 5-16 shows the relationship between the CS
bits and the DC bit.

52
RENESAS

Table 5-16 Condition Select Bits (CS) and DSP Condition Bit (DC)

CS Bits
2 1 0 Condition Mode Description
0 0 0 Carry/borrow The DC bit is set to 1 when a carry or borrow occurs in the
result of an ALU arithmetic operation. Otherwise, it is cleared to
0

In logical operations, the DC bit is always cleared to 0.
For shift operations (the PSHA and PSHL instructions), the bit
shifted out last is copied to the DC bit.

0 0 1 Negative In ALU arithmetic operations or arithmetic shifts (PSHA), the
MSB of the result (including the guard bits) is copied to the DC
bit.

In ALU logical operations and logical shifts (PSHL), the MSB of
the result (not including the guard bits) is copied to the DC bit.

0 1 0 Zero When the result of an ALU or shift operation is all zeros (0), the
DC bit is set to 1. Otherwise, it is cleared to 0.

0 1 1 Overflow In ALU arithmetic operations or arithmetic shifts (PSHA), when
the operation result (not including the guard bits) exceeds the
destination register’s value range, the DC bit is set to 1.
Otherwise, it is cleared to 0.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

1 0 O Signed greater This mode is like the Greater Than Or Equal To mode, but the
than DC bit is cleared to 0 when the operation result is zero (0).
When the operation result (including the guard bits) exceeds
the expressible limits, the TRUE condition is VR.

DC bit = ~{(N bit * VR)|Z bit)}; for arithmetic operations
DC bit = 0; for logical operations

1 0 1 Greaterthanor In ALU arithmetic operations or arithmetic shifts (PSHA), when
equal to the result does not overflow, the value is the inversion of the
negative mode’s DC bit. When the operation result (including
the guard bits) exceeds the expressible limits, the value is the
same as the negative mode’s DC bit.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

DC bit = ~(N bit » VR)); for arithmetic operations
DC bit = 0; for logical operations

1 1 0 Reserved

53

RENESAS

5.9 Overflow Prevention Function (Saturation Operation)

The overflow prevention function (saturation operation) is specified by the S bit of the SR register
This function is valid for arithmetic operations executed by the DSP unit and multiply and

accumulate operations executed by the CPU core. An overflow occurs when the operation result
exceeds the bounds that can be expressed as a two’s complement (not including the guard bits).

Table 5-17 shows the overflow definitions for fixed decimal point arithmetic operations. Table 5-
18 shows the overflow definitions for integer arithmetic operations. Multiply/Accumulate
calculation instructions (MAC) supported by previous SuperH RISC engines are performed on 64
bit registers (MACH and MACL), so the overflow value differs from the maximum and minimum
values. They are defined exactly the same as before.

Table 5-17 Overflow Definitions for Fixed Decimal Point Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result > 12731 1-2-31 007FFFFFFF
Negative Result < -1 -1 FF80000000

Table 5-18 Overflow Definitions for Integer Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result>2715-1 27151 007FFF*+*
Negative ~ Result <-271° —2-15 FE8000*++*

Note: Don't care bits have no effect.

When the overflow prevention function is specified, overflows do not occur. Naturally, the
overflow bit (V bit) is not set. When the CS bits specify overflow mode, the DC bit is not set
either.

5.10 Data Transfers

The SH3-DSP can perform up to two data transfers in parallel between the DSP register and on-
chip memory with the DSP unit. The SH-DSP has the following types of data transfers:

1. X and Y memory data transfers: Data transfer to X and Y memory using the XDB and YDB
buses

« Double data transfer: Data transfer only, where transfer in one direction only is permitted
» Parallel data transfers: Data transfer that proceeds in parallel to ALU operation processing

54
RENESAS

2. Single data transfers: Data transfer to on-chip memory using the LDB bus
Note: Data transfer instructions do not update the DSR register’s condition bits.
Table 5-19 shows the various functions.

Table 5-19 Data Transfer Functions

Parallel
Processing Parallel
with ALU Processing with Instruction
Category Bus Length Operation Data Transfer Length
X and Y memory XDB bus 16 bits None (double) None (XDB or 16 bits
data transfer YDB bus YDB bus)
Available (XDB 16 bits
and YDB bus)
Available None (XDB or 32 bits
(parallel) YDB bus)
Available (XDB 32 bits
and YDB bus)
Single data LDB bus 32 bits None None 16 bits

transfer 16 bits

5.10.1 X andY Memory Data Transfer

X and Y memory data transfers allow two data transfers to be executed in parallel and allow dat
transfers to be executed in parallel with DSP data operations. 32-bit instruction code is required
for executing DSP data operations and transfers in parallel. This is called a parallel data transfe
When executing an X and Y memory data transfer by itself, 16-bit instruction code is used. This
called a double data transfer.

Data transfers consist of X memory data transfers and Y memory data transfers. X memory dat:
loaded to either the X0 or X1 register; Y memory data is loaded to the YO or Y1 register. The XC
X1, YO, and Y1 registers become the destination registers. Data can be stored in the X and Y
memory if the AO or Al register is the source register. All these data transfers involve word data
(16 bits). Data is transferred from the top word of the source register. Data is transferred to the t
word of the destination register and the bottom word is automatically cleared with zeros.

Specifying a conditional instruction as the operation instruction executed in parallel has no effec
on the data transfer instructions.

X and Y memory data transfers access only the X and Y memory; they cannot access other
memory areas.

55
RENESAS

X pointer (R4, R;)/P Y pointer (R6, R;)/}>

0, +2, +R8 0, +2, +R9
XABJ[15:1] YABJ[15:1]
A A 4
X memory Y memory
(RAM, ROM) (RAM, ROM)
A A
XDBJ[15:0] YDB[15:0]
4 A
X0 YO
X1 Y1
A0 MO
Al M1

AOG || A1G|J DSR

I:I : Not affected for storing; cleared for loading

- : Cannot be set

Figure 5-14 Flowchart of X and Y Memory Data Transfers

5.10.2 Single Data Transfers

Single data transfers execute only one data transfer. They use 16-bit instruction code. Single dat
transfers cannot be processed in parallel with ALU operations. The X pointer, which accesses X
memory, and two added pointers are valid; the Y pointer is not valid. As with the SuperH RISC
engine, single data transfers can access all memory areas, including external memory. Except fo
the DSR register, the DSP registers can be specified as source and destination operands. (The L
register is defined as the system register, so it can transfer data with LDS and STS instructions.)
The guard bit registers AOG and A1G can be specified for operands as independent registers.
Single data transfers use the LAB and LDB buses in place of the XAB, XDB, YAB, and YDB
buses, so contention occurs on the LDB bus between data transfers and instruction fetches.

Single data transfers handle word and longword data. Word data transfers involve only the top
word of the register. When data is loaded to a register, it goes to the top word and the bottom wo
is automatically filled with zeros. If there are guard bits, the sign bit is extended to fill them. When
storing from a register, the top word is stored.

When a longword is transferred, 32 bits are valid. When loading a register that has guard bits, the
sign bit is extended to fill the guard bits.

56
RENESAS

When a guard bit register is stored, the top 24 bits become undefined, and the read out is to the
LDB bus. When the guard bit registers AOG and A1G load word data as the destination register:
of the MOVS.W instruction, the bottom byte is written to the register.

Pointer (R2, R3, R4, RVS)/}>

-2,0,+2, +R8
LAB[31:0]
A
All memory areas
A
LDBJ[15:0]
Y
X0 YO
X1 Y1
A0 MO
Al M1
[AoG | A1G [[DSR

: Not affected for storing; cleared for loading. See
the text for information about AOG and A1G.

- : Cannot be set

Figure 5-15 Single Data Transfer Flowchart (Word)

57
RENESAS

Pointer (R2, R3, R4, RVS/)P

-4, 0, +4, +R8
LAB[31:0]
A 4
All memory areas
Y
LDB[31:0]
y
X0 YO
X1 Y1
A0 MO
Al M1
[A0G | A1G [DSR

- : Cannot be set

Figure 5-16 Single Data Transfer Flowchart (Longword)

Data transfers are executed in the MA stage of the pipeline while DSP operations are executed il
the DSP stage. Since the next data store instruction starts before the data operation instruction h
finished, a stall cycle is inserted when the store instruction comes on the instruction line after the
data operation instruction. This overhead cycle can be avoided by adding one instruction betwee
the data operation instruction and the data transfer instruction. Figure 5-17 shows an example.

58
RENESAS

PADD X0, YO, AO

MOVX.W A0, @R4+
MOVX.W @R5, X1 <— |
MOVX.W A0, @R4+

Insert an unrelated step
between data operation

instruction and store instruction.

Slot 1 2 3 4 5 6 7
MOVX, EX (ad-
ADD IF ID dressing) MOVX ADD
MOVX IF ID EX (@d- | \iovx \| DSP (nop)
dressing)
R
MOVX IF ID EX (ad MOVX | DSP (nop)
dressing)

Figure 5-17 Example of the Execution of Operation and Data Store Instructions

5.11 Operand Contention

Data contention occurs when the same register is specified as the destination operand for two ¢
more parallel processing instructions. It occurs in three cases.

1. When the same destination operand is specified for an ALU operation and multiplication (Du
Dg)

2. When the same destination operand is specified for an X memory load and an ALU operatiol
(Dx, Du, Dz)

3. When the same destination operand is specified for a Y memory load and an ALU operation
(Dx, Du, Dz)

Results cannot be guaranteed when contention occurs. Table 5-20 shows the operand and regi:
combinations that cause contention.

Some assemblers can detect these types of contention, so pay attention to assembler functions
when selecting one.

59
RENESAS

Table 5-20 Operand and Register Combinations That Create Contention

DSP Register

Operation Operand X0 X1 YO0 Y1 MO M1 A0 Al
X memory AX
load IX

Dx 2 2
Y memory Ay
load ly

Dy *3 *3
6-operand ALU Sx xt x1 x1 x1
operation Sy *1 *1 *1 *1

Du *2 *3 *4 *4
3-operand Se xt x1 x1 x1
multiplication Sf *1 *1 *1 *1

Dg *1 *1 *4 *4
3-operand ALU Sx xt x1 x1 x1
operation Sy *1 *1 *1 *1

DZ *2 *2 *3 *3 *1 *1 *1 *1

Notes: 1. Register is settable for the operand
2. Dx, Du, and Dz contend
3. Dy, Du, and Dz contend
4. Du and Dg contend

5.12 DSP Repeat (Loop) Control

The SH3-DSP repeat (loop) control function is a special utility for controlling repetition

efficiently. The SETRC instruction is executed to hold a repeat count in the repeat counter (RC,]
bits) and set an execution mode in which the repeat (loop) program is repeated until the RC is 1.
Upon completion of the repeat operation, the content of the RC becomes 0.

The repeat start register (RS) holds the start address of the repeated section. The repeat end
register (RE) holds the ending address of the repeated section. (There are some exceptions. Ref
to Note 1, Actual programming, in this section [below figure 5-18].) The repeat counter (RC)
holds the repeat count. The procedure for executing repeat control is shown below:

1. Set the repeat start address in the RS register.
2. Set the repeat end address in the RE register.
3. Set the repeat count in the RC counter.

60
RENESAS

4. Execute the repeated program (loop).
The following instructions are used for executing 1 and 2:

LDRS @(disp,PC);
LDRE @(disp,PC);

The SETRC instruction is used to execute 3 and 4. Immediate data or a general register may be
used to specify the repeat count as the operand of the SETRC instruction:

SETRC #imm; #mm - Rc, enable repeat control
SETRC Rmy; Rm - Rc, enable repeat control

#imm is 8 bits and the RC counter is 12 bits, so to set the RC counter to a value of 256 or great:
use the Rm register. A sample program is shown below.

LDRS RptStart;
LDRE RptEnd;
SETRC #mm; RC=#imm
instro;
; instrl~5 executes repeatedly
RptStart: instrl;
instr2;
instr3;
instr4;
RptENnd: instr5;

instr6;
There are several restrictions on repeat control:

1. Atleast one instruction must come between the SETRC instruction and the first instruction o
the repeat program (loop).

2. Execute the SETRC instruction after executing the LDRS and LDRE instructions.

3. When there are more than four instructions for the repeat program (loop) and there is no rep
start address (in the above example, it was address instrl) at the long word boundary, one ¢
stall (cycle awaiting execution) is required for each repeat.

4. When there are three or fewer instructions in the loop, branch instructions (BRA, BSR, BT,
BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used. If such an
instruction is used, illegal instruction exception handling starts and the address values showr
Table 5-21 are stored in SPC.

61
RENESAS

Table 5-21 PC Values Address Stored in SPC (1)

Conditions Position Address Stored in SPC
RC>=2 Any RptStart
RC=1 Any Program address of illegal instruction

5. If there are four or fewer instructions in the loop, branched instructions (BRA, BSR, BT, BF,
BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC, LDRS,
LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used for the last three
instructions in the repeat program (loop). If such an instruction is used, illegal instruction
exception handling starts and the address values shown in Table 5-22 are stored in SPC. In
case of repeat control instruction (SETRC, LDRS, LDRE), and SR, RS, and RE load
instructions, they cannot be described in positions other than the repeat module. If described,
proper operation cannot be guaranteed.

Table 5-22 PC Values Address Stored in SPC (2)

Conditions Position Address Stored in SPC

RC>=2 instr3 Program address of illegal instruction
instr4 RptStart-4
instr5 RptStart-2

RC=1 Any Program address of illegal instruction

6. When there are three or fewer instructions in the loop, PC relative instructions (MOVA
(disp,PC), RO, or the like) can only be used at the first instruction (instrl).

7. If there are four or more instructions in the loop, PC relative instructions (MOVA (disp,PC),
RO, or the like) cannot be used in the final two instructions.

8. The SH3-DSP does not have a repeat valid flag; repeats become invalid when the RC counte
becomes 0. When the RC counter is not 0 and the PC counter matches the RE register conte
repeating begins. When the RC counter is set to 0, the repeat program (loop) is invalid but the
loop is executed only once and does not return to the starting instruction of the loop as when
RC is 1. When the RC counter is set to 1, the repeat module is executed only once. Though it
does not return to the repeat program (loop) start instruction, the RC counter becomes zero
when the repeat module is executed.

9. If there are four or more instructions in the loop, the branched instructions including the
subroutine call back and return instructions cannot be used for the “inst3” through “inst5”
instructions as branch destination address. If they are executed, the repeat control does not
work correctly. If a repeating portion of a program (a loop) contains three or more instructions
and the branching destination is RptStart or an address ahead of it, repeat control does not
work properly and the content of RC in the SR register is not updated.

62
RENESAS

10. While the repeat is being executed, interruption is restricted. Figure 5-18 shows the flow for
each stage of EX. The initial EX stage of interruption is usually started immediately after the
EX stage of the instruction is completed (indicated by “A”). "B" in the figure below indicates
locations where no interruption is accepted.

A: Interruption is accepted.
B: No interruption is accepted.
When RC>=1
1-step repeat 2-step repeat 3-step repeat
) -) - . <A
instr0 _ g instr0 _ g instr0 _ g
Start(End): instrl _ g Start: instrl _ g Start: instrl _ g
instr2 _ a End: instr2 _ g instr2 _ g
instr3 _ A End: instr3 _ g
instr4 _ p
More than 4 steps repeat
) <A
instr0 ~ A or B (when returning from instr n)
Start: instrl A
o - A
instrn-3 _ g
instrn-2 _ g
instrn-1 _ g
End: instr n - B
instrntl _ A
When RC=0: Interruption is accepted.
Figure 5-18 Restriction on Acceptance of Interruption by Repeat Module
63

RENESAS

5.12.1 Usage Notes

Note 1. Actual programming

The repeat start register (RS) and repeat end register (RE) store the repeat start addri
and repeat end address respectively. Addresses stored in these registers are chan
depending on the number of instructions in the repeat program (loop). This rule is
shown below.

Repeat_Start: Address of repeat start instruction
Repeat_StartO: Address of instruction one higher than the repeat start instruction
Repeat_Start3: Address of instruction three higher than the repeat end instruction

Table 5-23 RS and RE Setup Rule

Number of Instructions in Repeat Program (Loop)

Register 1 2 3 >=4
RS Repeat_start0+8 Repeat_start0+6 Repeat_start0+4 Repeat_Start
RE Repeat_start0+4 Repeat_start0+4 Repeat_start0+4 Repeat_End3+4

An example of an actual repeat program (loop) assuming various cases based on the above tabl
given below:

Case 1: One repeat instruction

LDRS RptStart0+8;
LDRE RptStartO+4;
SETRC RptCount;
RptStart0: instr0;
RtpStart: instrl; Repeat instruction

instr2;
Case 2: Two repeat instructions

LDRS RptStart0+6;
LDRE RptStartO+4;
SETRC RptCount;
RptStartO: instro;
RtpStart: instrl; Repeat instruction 1
RptENd: instr2; Repeat instruction 2
instr3;

64
RENESAS

Case 3: Three repeat instructions

LDRS RptStartO+4;
LDRE RptStart0+4;
SETRC RptCount;

RptStart0: instro;

RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2

RptENd: instr3; Repeat instruction 3
instr4;

Case 4: Four or more instructions

LDRS RptStart;
LDRE RptStart3+4;
SETRC RptCount;
RptStartO: instro;
RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2
instr3; Repeat instruction 3

RptENd3: instrN-3; Repeat instruction N
instrN-2; Repeat instruction N-2
instrN-1; Repeat instruction N-1
RptENd: instrN; Repeat instruction N
instrN+1

The above example can be used as a template when programming this repeat program (loop)
sequence. Extension instruction “REPEAT” can simplify the problems of such complicated
labeling and offset. Details are described in Note 2 below.

Note 2. Extension instruction REPEAT

The extension instruction REPEAT can simplify the handling of the labeling and offse
described in Table 5-23. Labels used are shown below.

RptStart: RptStart: Address of first instruction of repeat program (loop)
RptEnd: Address of last instruction of repeat program (loop)

PptCount: Repeat count immediate No.

Use this instruction as described below.

65
RENESAS

Repeat count can be designated as immediate value #lmm or register indirect value RI

Case 1: One repeat instruction

REPEAT RptStart, RptEnd, RptCount

instro;
RptStart: instrl; Repeat instruction 1
instr2;

Case 2: Two repeat instructions

REPEAT RptStart, RptEnd, RptCount

instrO;
RptStart: instrl; Repeat instruction 1
RptENd: instr2; Repeat instruction 2

Case 3: Three repeat instructions

REPEAT RptStart, RptEnd, RptCount
instro;

RptStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2

RptENd: instr3; Repeat instruction 3
Case 4: Four or more instructions

REPEAT RptStart, RptEnd, RptCount
instrO;

RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2
instr3; Repeat instruction 3

instrN-3; Repeat instruction N

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1
RptENd: instrN; Repeat instruction N

instrN+1

66
RENESAS

Result of extension of each case corresponds to the case 1 in Note 1.

5.13 Conditional Instructions and Data Transfers

Data operation instructions include both unconditional and conditional instructions. Data transfe
instructions that execute both in parallel can be specified, but they will always execute regardles
of whether the condition is met without affecting the data transfer instruction.

The following is an example of a conditional instruction and a data transfer:

DCT PADD X0, YO, AO MOVX.W @R4+, X0 MOVY.W A0, @R6+R9;

When condition is true:

Before execution: X0=H 33333333, YO=H 55555555, AO0=H 123456789A,
R4=H 00008000, R6=H 00008232, R1=H 00000004
(R4) =H 1111, (R6)=H 2222

After execution: X0=H 11110000, YO=H 55555555, AO=H 0088888888,
R4=H 00008002, R6=H 00008236, R1=H 00000004
(R4) =H 1111, (R6)=H 1234

When condition is false:

Before execution: X0=H 33333333, YO=H 55555555, AO0=H 123456789A,
R4=H 00008000, R6=H 00008232, R1=H 00000004
(R4) =H 1111, (R6)=H 2222

After execution: X0=H 11110000, YO=H 55555555, AO=H 123456789A,
R4=H 00008002, R6=H 00008236, R1=H 00000004
(R4) =H 1111, (R6)=H 1234

67
RENESAS

68

RENESAS

Section 6 Instruction Features

6.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

6.1.1 16-Bit Fixed Length
In the SH-3 CPU all instructions have a fixed length of 16 bits. This contributes to increased cod
efficiency.

Like SH-3, the SH-3DSP has 16-bit instructions, but additional 32-bit DSP instructions are
provided to allow parallel processing of DSP instructions. For details on the DSP, see 5. DSP
Operations and Data Transfer.

6.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system.

6.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, wort
or longwords. Byte or word data accessed from memory is sign-extended and handled as longw
data (table 6-1). Immediate data is sign-extended for arithmetic operations or zero-extended for
logic operations. It also is handled as longword data.

Table 6-1 Sign Extension of Word Data

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU
MOV.W @(disp,PC),R1 Data is sign-extended to 32 ADD.W #H'1234,R0
ADD RLRO bits, and R1 becomes

H'00001234. It is next
--------- operated upon by an ADD
DATAW H1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

6.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, ¢
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

69
RENESAS

6.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 6-2).

Table 6-2 Delayed Branch Instructions

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU
BRA TRGET Executes an ADD before ADD.W R1,RO
ADD R1RO branching to TRGET. BRA TRGET

6.1.6 Multiplication/Accumulation Operation

Multiplication of two 16-bit values to produce a 32-bit result is executed in one to three cycles
(one to two cycles for the SH3-DSP), and multiplication of two 32-bit values to produce a 64-bit
result is executed in two to five cycles (two to three cycles for the SH3-DSP).
Multiplication/accumulation, in which two 32-bit values are multiplied and one 32-bit value is
added, is executed in two to five cycles (two to four cycles for the SH3-DSP) when the MAC
instruction is used and in one system when the FMAC instruction* is used.

Note: The FMAC instruction is only available on the SH-3E (floating point calculation
instruction).

6.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is tt
condition (true/false) that determines if the program will branch (table 6-3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speec

Table 6-3 T Bit

Example for Conventional

SH-3/SH-3E/SH3-DSP CPU Description CPU

CMP/GE R1,RO T bit is set when RO = R1. The CMP.W R1,RO

BT TRGETO program branches to TRGETO BGE TRGETO
when RO = R1 and to TRGET1

BF TRGET1 when RO < R1. BLT TRGET1

ADD #-1R0 T bit is not changed by ADD. T SUBW #1,R0

CMP/EQ #0,R0 bit is set when RO = 0. The BEQ TRGET
program branches if RO = 0.

BT TRGET

70

RENESAS

6.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not inpL
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 6-4).

Table 6-4 Immediate Data Accessing

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU
8-bit immediate MOV #H12RO MOV.B #H12,R0
16-bit immediate MOV.W @(disp,PC),RO MOV.W #H1234,R0

.DATAW H1234

32-bit immediate MOV.L @(disp,PC),RO MOV.L #H'12345678,R0

.DATA.L H'12345678

Note: The address of the immediate data is accessed by @(disp, PC).

6.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is place
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 6-5 Absolute Address

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

Absolute address MOV.L @(disp,PC),R1 MOV.B @H'12345678,R0
MOV.B @R1,R0

.DATAL H12345678

71
RENESAS

6.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfe
that value to the register and the data is accessed in the indirect indexed register addressing mo

Table 6-6 16-Bit/32-Bit Displacement

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

16-hit displacement MOV.W @(disp,PC),RO MOV.W @(H1234,R1),R2
MOV.W @(RO,R1),R2

.DATAW H1234

6.1.11 Privileged Instructions

The processor has two operation modes (user/privileged). If these instructions are used in user
mode, an illegal instruction exception is detected. Privileged instructions are:

« LDC
« STC
« RTE
LDTLB
SLEEP

72
RENESAS

6.2

CPU Instruction Addressing Modes

Addressing modes and effective address calculation are described in table 6-7.

Table 6-7 Addressing Modes and Effective Addresses

Addressing Instruction

Mode Format Effective Addresses Calculation Equation

Direct Rn The effective address is register Rn. (The operand is —

register the contents of register Rn.)

addressing

Indirect @Rn The effective address is the content of register Rn. Rn

e

addressing Rn Rn

Post- @Rn + The effective address is the content of register Rn. A Rn

increment constant is added to the content of Rn after the (After the

indirect instruction is executed. 1 is added for a byte instruction is

register operation, 2 for a word operation, and 4 for a executed)

addressing longword operation.
Byte: Rn + 1
- Rn
Word: Rn + 2
- Rn
Longword:
Rn+4 - Rn

Pre- @-Rn The effective address is the value obtained by Byte: Rn—1

decrement subtracting a constant from Rn. 1 is subtracted fora -, Rn

indirect byte operation, 2 for a word operation, and 4 for a

register longword operation. Word: Rn -2

addressing =~ RN
Longword:
Rn—-4 - Rn

Rn _1/2/4 (Instruction

executed
with Rn after
calculation)

I:I . Effective address

RENESAS

73

Table 6-7

Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Equation

Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +

register Rn) (disp). The value of disp is zero-extended, and disp

addressing remains the same for a byte operation, is doubled for Word: Rn +

with a word operation, and is quadrupled for a longword disp N 2

displace- operation.

ment Longword:
Rn + disp x 4

: Rn
disp .
(zero-extended) + disp x 1/2/4

Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO

indexed

register

addressing

©

Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +

GBR GBR) displacement (disp). The value of disp is zero- disp

addressing extended, and remains the same for a byte Word: GBR +

with operation, is doubled for a word operation, and is disp x 2

displace- quadrupled for a longword operation.

ment Longword:
GBR + disp x
4

disp _ GBR
(zero-extended) + disp x 1/2/4

Indirect @(RO, The effective address is the GBR value plus the RO. GBR + RO

indexed GBR)

GBR

addressing

74

RENESAS

Table 6-7 Addressing Modes and Effective Addresses (cont)
Addressing Instruction
Mode Format Effective Addresses Calculation Equation
Indirect PC ~ @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and remains the same for a byte Longword:
displace- operation, is doubled for a word operation, and is PC & '
ment quadrupled for a longword operation. For a longword H'EEFEEEEC
operation, the lowest two bits of the PC are masked. disp x 4
(for longword)
H'FFFFFFFC PC +disp x 2
or
. PC&H'FFFFFFFC
disp +disp x 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC + disp x 2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x 2

with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC + disp x 2

75
RENESAS

Table 6-7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Equation
PCrelative Rn The effective address is the register PC plus RO. PC + RO
addressing

(cont)

Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —
and CMP/EQ instructions are sign-extended.

#imm:8 Immediate data (imm) for the TRAPA instruction is —
zero-extended and is quadrupled.

6.3 DSP Data Addressing (SH3-DSP Only)

The DSP command performs two different types of memory accesses. One uses the X and Y dat
transfer instructions (MOVX.W and MOVY.W) while the other uses the single data transfer
instructions (MOVS.W and MOVS.L). Data addressing for these two types of instructions also
differs. Table 6-8 summarizes the data transfer instructions.

76
RENESAS

Table 6-8 Summary of Data Transfer Instructions

Iltem

X and Y Data Transfer
Processing (MOVX.W and
MOVY.W)

Single Data Transfer
Processing (MOVS.W and
MOVS.L)

Address registers

Ax: R4, R5; Ay: R6, R7

As: R2, R3, R4, R5

Index registers

IX: R8; ly: R9

Is: R8

Addressing

Nop/Inc(+2)/Index addition:

Post updating

Nop/Inc(+2, +4)/Index addition:

Post updating

Dec(-2, —4): Pre updating

Modulo addressing Available Not available
Data buses XDB, YDB LDB
Data length 16 bits (word) 16 or 32 bits (word or

longword)

Bus contention

None

Occurs

Memory

X and Y data memories

All memory spaces

Source registers

Dx, Dy: A0, Al

Ds: A0/A1, MO/M1, X0/X1,
Y0/Y1, AOG, A1G

Destination registers

Dx: X0/X1; Dy: YO/Y1

Ds: AO0/A1, MO/M1, X0/X1,
YO0/Y1, AOG, A1G

6.3.1 XandY Data Addressing

The DSP command allows X and Y data memories to be accessed simultaneously using the
MOVX.W and MOVY.W instructions. DSP instructions have two pointers so they can access the
X and Y data memories simultaneously. DSP instructions have only pointer addressing; immedi
addressing is not available. Address registers are divided in two. The R4 and R5 registers beco
the X memory address register (Ax) while the R6 and R7 registers become the Y memory addre
register (Ay). The following three types of addressing may be used with X and Y data transfer

instructions.

» Address registers with no update: The Ax and Ay registers are address pointers. They are nc

updated.

« Addition index register addressing: The Ax and Ay registers are address pointers. The value:
of the Ix and ly registers are added to the Ax and Ay registers respectively after data transfel
(post updating).

* Increment address register addressing: The Ax and Ay registers are address pointers. +2 is

added to them after data transfer (post updating).

RENESAS

7

Each of the address pointers has an index register. Register R8 becomes the index register (Ix) f
the X memory address register (Ax); register R9 becomes the index register (ly) for the Y memor
address register (Ay).

X and Y data transfer instructions are processed in words. X and Y data memory is accessed in :
bit units. Increment processing for that purpose adds two to the address register. To decrement
them, set -2 in the index register and specify addition index register addressing.

Figure 6-1 shows the X and Y data transfer addressing.

R8[Ix] R4[AX] R9[ly] R6[AyY]

R5[AX] R7[Ay]
+2 (INC) +2 (INC)

+0 (No update) —| +0 (No update)]

ALU AU

Notes: 1. Adder added for DSP processing
2. All three addressing methods (increment, index register addition (Ix, ly), and
no update) are post-updating methods. To decrement the address pointer, set
the index register to —2 or —4.

Figure 6-1 X and Y Data Transfer Addressing

6.3.2 Single Data Addressing

The DSP command has single data transfer instructions (MOVS.W and MOVS.L) that load data
to DSP registers and store data from DSP registers. With these instructions, the R2—-R5 registers
are used as address registers (As) for single data transfers.

There are four types of data addressing for single data transfer instructions.

« Address registers with no update: The As register is the address pointer. It is not updated.

« Addition index register addressing: The As register is the address pointer. The value of the Is
register is added to the As register after data transfer (post updating).

« Increment address register addressing: The As register is the address pointer. +2 or +4 is adc
to it after data transfer (post updating).

78
RENESAS

» Decrement address register addressing: The As register is the address pointer. —2 or —4 (or -
or +4) is added to it before data transfer (pre updating).

The address pointer uses the R8 register as its index register (Is). Figure 6-2 shows the single c
transfer addressing.

R2[As]
R3[As]
R8[Is] R4[As]
—2/-4 (DEC) R5[As]
+2/+4 (INC)
+0 (No update) —|

ALU

Note: There are four addressing methods (no update, index register addition (Is),
increment, and decrement). Index register addition and increment are
post-updating methods. Decrement is a pre-updating method.

Figure 6-2 Single Data Transfer Addressing

6.3.3 Modulo Addressing

Like other DSPs, the SH3-DSP has a modulo addressing mode. Address registers are updated
the same way in this mode. When a modulo end address in which the address pointer value is
already set is reached, the address pointer becomes the modulo start address.

Modulo addressing is only effective for X and Y data transfer instructions (MOVX.W and
MOVY.W). When the DMX bit of the SR register is set, the X address register enters modulo
addressing mode; when the DMY bit is set, the Y address register enters modulo addressing mq
Modulo addressing cannot be used on both X and Y address registers at once. Accordingly, do
set DMX and DMY at the same time. Should they both be set at once, only DMY will be valid.

The MOD register is provided for specifying the start and end addresses for the modulo addres:
area. The MOD register stores the MS (modulo start) and ME (modulo end). The following show
how to use the modulo register (MS and ME).

79
RENESAS

MOV.L ModAddr,Rn; Rn=ModEnd, ModStart

LDC Rn,MOD; ME=ModEnd, MS=ModStart
ModAddr: .DATA.W mEnd; Lower 8bit of ModEnd
.DATAW mStart; Lower 8bit of ModStart

ModStart: .DATA

ModEnd: .DATA

Set the start and end addresses in MS and ME and then set the DMX or DMY bit to 1. The addre
register contents are compared to ME. If they match ME, the start address MS is stored in the
address register. The bottom 16 bits of the address register are compared to ME. The maximum

modulo size is 64 kbytes. This is ample for accessing the X and Y data memory. Figure 6-3 show
a block diagram of modulo addressing.

Instruction (MOVX/MOVY)
31 1615 O DMX DMY 31 1615 0
31 0 RA4[AX] R6[Ay] 31 0
| Reiq | R5[AX] Lt R7[AY] RO[IY]
]
:g | [o | +2
-] 7 15 0 —I —+0
\/ MS
ALU <« AU
CMP
| aex | [ME] ABy
15 l 1 15 0 15 1
XAB YAB

Figure 6-3 Modulo Addressing
The following is an example of modulo addressing.

MS=H'08; ME=H'0C; R4=H'C008;
DMX=1; DMY=0; (Sets modulo addressing for address register Ax (R4, R5))

The above setting changes the R4 register as shown below.

80
RENESAS

R4: H'C008
Inc. R4: H'CO0A
Inc. R4: H'C00C

Inc. R4:HCO008 (Becomes the modulo start address when the modulo end address is
reached)

Place data so the top 16 bits of the modulo start and end address are the same, since the modt
start address only swaps the bottom 16 bits of the address register.

Note: When using addition index as the DSP data addressing, the address pointer may excee
this value without matching ME. Should this occur, the address pointer will not return to
the modulo start address.

6.3.4 DSP Addressing Operation

The following shows how DSP addressing works in the execution stage (EX) of a pipeline
(including modulo addressing).

if (Operation is MOVX.W MOVY.W) {
ABx=Ax; ABy=Ay’

[* memory access cycle uses Abx and Aby. The addresses to be used have
not been updated */

/¥ Axis one of R4,5*

if (DMX==0 || DMX==1 @@ DMY==1)} Ax=Ax+(+2 or R8][Ix} or +0);
* Inc,Index,Not-Update */

else if (Inot-update) Ax=modulo(Ax, (+2 or R8][IX]));

[* Ay is one of R6,7 */
if (DMY==0) Ay=Ay+(+2 or R9[ly] or +0; /* Inc,Index,Not-Update */
else if (! not-update) Ay=modulo(Ay, (+2 or R9[ly]));
}
else if (Operation is MOVS.W or MOVS.L) {
if (Addressing is Nop, Inc, Add-index-reg) {
MAB=As;

/* memory access cycle uses MAB. The address to be used has not been
updated */

[* As is one of R2-5 */

As=As+(+2 or +4 or R8[Is] or +0); /* Inc.Index,Not-Update */
else { /* Decrement, Pre-update */
[* As is one of R2-5*/
As=As+(-2 or -4);

81
RENESAS

MAB=As

/* memory access cycle uses MAB. The address to be used has been updated
%
}

[* The value to be added to the address register depends on addressing
operations.

For example, (+2 or R8][Ix] or +0) means that
+2: if operation is increment
R8]Ix}: if operation is add-index-reg
+0: if operation is not-update

function modulo (AddrReg, Index) {
if (AdrReg[15:0]==ME) AdrReg[15:0]==MS;
else AdrReg=AdrReg+Index
return AddrReg;

82

RENESAS

6.4 Instruction Format of CPU Instructions

The instruction format table, table 6-8, refers to the source operand and the destination operanc
The meaning of the operand depends on the instruction code. The symbols are used as follows

* XXxX: Instruction code

e mmmm: Source register
* nnnn: Destination register
e iiii: Immediate data

» dddd: Displacement

Table 6-9 Instruction Formats

Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
XXXX XXXX XXXX XXXX
n format — nnnn: Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH,Rn
| xxxx| nnnn | XXXX XXXX or system register
register
Control register nnnn: Indirect pre- STC.L
or system decrement register SR,@-Rn
register
m format mmmm: Direct Control registeror LDC Rm,SR
register system register
15 0 mmmm: Indirect Control register or LDC.L @Rm+,SR
| XXXX |mmmm| XXXX XXXX post-increment system register
register
mmmm: Direct — JMP @Rm
register
mmmm: PC — BRAF Rm
relative using
Rm

83
RENESAS

Table 6-9 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nm format mmmm: Direct nnnn: Direct ADD Rm,Rn
register register
15 0 mmmm: Direct nnnn: Direct MOV.L Rm,@Rn
| XXXX | nnnn |mmmm| XXXX register register
mmmm: Indirect MACH, MACL MAC.W
post-increment @Rm+,@Rn+
register
(multiply/

accumulate)

nnnn: Indirect
post-increment

register
(multiply/
accumulate)*
mmmm: Indirect nnnn: Direct MOV.L @Rm+,Rn
post-increment register
register
mmmm: Direct nnnn: Indirect pre- MOV.L Rm,@-Rn
register decrement register
mmmm: Direct nnnn: Indirect MOV.L
register indexed register Rm,@(RO,Rn)
md format mmmmdddd: RO (Direct register) MOV.B
15 0 indirect register @(disp,Rm),RO
XXX XXXX |mmmm| dddd with
displacement
nd4 format RO (Direct nnnndddd: Indirect MOV.B
15 0 register) register with RO,@(disp,Rn)
XXXX XXXX | nnnn | dddd displacement

Note: * In multiply/accumulate instructions, nnnn is the source register.

84
RENESAS

Table 6-9

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct nnnndddd: Indirect MOV.L
15 0 register register with Rm,@(disp,Rn)
| XXXX | nnnn |mmmm| dddd displacement
mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp,Rm),Rn
with
displacement
d format dddddddd: RO (Direct register) MOV.L
15 0 Indirect GBR @(disp,GBR),RO
XXXX xxxX | dddd dddd W.Ith
displacement
RO(Direct dddddddd: Indirect MOV.L
register) GBR with RO,@(disp,GBR)
displacement
dddddddd: PC RO (Direct register) MOVA
relative with @(disp,PC),R0
displacement
dddddddd: PC — BF label
relative
d12 format dddddddddddd: — BRA label
15 0 PC relative (label = disp +
| %0 | dddd dddd dddd PC)
nd8 format dddddddd: PC nnnn: Direct MOV.L
15 0 relative with register @(disp,PC),Rn
| XXXX | nnnn | dddd dddd displacement
i format iiiiiiii: Immediate Indirect indexed AND.B
GBR #imm,@(RO,GBR)
15 0 iiiiiiii: Immediate RO (Direct register) AND #mm,R0
|xxxx xxxx| Pl i
iiiiiiii: Immediate — TRAPA #mm
ni format jiiiiiii: Immediate nnnn: Direct ADD #mm,Rn
15 0 register
| oo | nnnn [i i

RENESAS

85

6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)

New instructions have been added to the SH3-DSP for use in digital signal processing. The new
instructions are divided into two groups.

« Double and single data transfer instructions for memory and DSP registers (16 bits)
» Parallel processing instructions processed by the DSP unit (32 bits)

Figure 6-4 shows their instruction formats.

15 0
CPU core 0000
instructions to
1110
15 10 9 0
Double data -
transfer instructions | 111100 | A field |
) 15 109 0
Single data -
transfer instructions | 111101 | A field |
i 31 26 25 16 15 0
Parallel processing | - | :
instructions 111110 | A field B field

Figure 6-4 Instruction Formats of DSP Instructions

6.5.1 Double and Single Data Transfer Instructions

Table 6-10 shows the instruction formats for double data transfer instructions. Table 6-11 shows
the instruction formats for single data transfer instructions

86
RENESAS

Table 6-10

Instruction Formats for Double Data Transfers

Category Mnemonic 15 14 13 12 11 10
X memory NOPX 1 1 1 1 0 0 0
data transfers MOVXW @AxDx Ax
MOVX.W @AX+,Dx
MOVXW @Ax+Ix,Dx
MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix
Y memory NOPY 1 1 1 1 0 0 0
data transfers MOVYW @Ay.Dy Ay
MOVYW @Ay+Dy
MOVY.W @Ay+ly,Dy
MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+ly
Table 6-10 Instruction Formats for Double Data Transfers (cont)
Category Mnemonic 7 6 5 4 3 2 1
X memory NOPX 0 0 0
data transfers MOVX W @AxX,Dx Dx 0 1
MOVX.W @AX+,Dx 1 0
MOVXW @Ax+Ix,Dx 1 1
MOVX.W Da,@Ax Da 1 0 1
MOVX.W Da,@Ax+ 1 0
MOVX.W Da,@Ax+Ix 1 1
Y memory NOPY 0 0 0
data transfers MOVYW @Ay,Dy Dy 0 1
MOVYW @Ay+Dy 1 0
MOVY.W @Ay+ly,Dy 1 1
MOVY.W Da,@Ay Da 1 0 1
MOVYW Da,@Ay+ 1 0
MOVYW Da,@Ay+ly 1 1
Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=A1
87

RENESAS

Table 6-11

Instruction Formats for Single Data Transfers

Category Mnemonic 15 14 13 12 11 10 8
Single data MOVSW @-As,Ds 1 1 1 1 0 1 As
transfer MOVS.W @As,Ds 0: R4
MOVSW @As+Ds 1:R5
MOVSW @As+Is,Ds 2:R2
MOVSW Ds,@A-s 3:R3
MOVSW Ds@As
MOVS.W Ds@As+
MOVS.W Ds,@As+Is
MOVS.L @-As,Ds
MOVS.L @As,Ds
MOVSL @As+Ds
MOVS.L @Astls,Ds
MOVSL Ds@A-s
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is
Table 6-11 Instruction Formats for Single Data Transfers (cont)
Category Mnemonic 7 6 5 4 3 2
Single data MOVSW @-As,Ds Ds 0: (*) 0 0
transfer MOVS.W @As,Ds 1: (% 0 1
MOVSW @As+Ds 2: (%) 1 0
MOVSW @As+ls,Ds 3 (%) 1 1
MOVSW Ds,@A-s 4: (%) 0 0 1
MOVSW Ds@As 5:A1 0 1
MOVSW Ds,@As+ 6: (*) 1 0
MOVSW Ds,@Asts 7: AO 1 1
MOVSL @-AsDs 8: X0 0 0 0
MOVS.L @As,Ds 9: X1 0 1
MOVS.L @As+,Ds A: YO 1 0
MOVS.L @As+Is,Ds B:Y1l 1 1
MOVS.L Ds,@A-s C: MO 0 0 1
MOVS.L Ds,@As D: A1G 0 1
MOVS.L Ds,@As+ E:M1 1 0
MOVS.L Ds,@As+Is F:A0G 1 1

Note: * System reserved code

88

RENESAS

6.5.2 Parallel Processing Instructions

Parallel processing instructions are used by the SH3-DSP to increase the execution efficiency o
digital signal processing using the DSP unit. They are 32 bits long and four can be processed in
parallel (one ALU operation, one multiplication, and two data transfers).

Parallel processing instructions are divided into two fields, A and B. The data transfer instructior
are defined in field A and the ALU operation instruction and multiplication instruction are definec
in field B. These instructions can be defined independently, processed independently, and can ¢
executed simultaneously in parallel. Table 6-12 lists the field A parallel data transfer instructions
and Table 6-13 shows the field B ALU operation instructions and multiplication instructions. The
field A instructions are identical to the double data transfer instructions shown in Table 6-10.

Table 6-12 Field A Parallel Data Transfer Instructions

Category Mnemonic 31 30 29 28 27 26 25 24 23
X memory NOPX 1 1 1 1 1 0 0 0
data MOVXW @Ax,Dx Ax Dx

transfers MOVX. W @AX+Dx
MOVXW @Ax+Ix,Dx

MOVX.W Da,@Ax Da
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Y memory NOPY 0

data MOVYW @Ay,Dy Ay
transfers MOVYW @Ay+Dy

MOVYW @Ay+ly,Dy

MOVYW Da@Ay

MOVYW Da,@Ay+

MOVYW Da@Ay+ly

89
RENESAS

Table 6-12 Field A Parallel Data Transfer Instructions (cont)

Category Mnemonic 22 21 20 19 18 17 16 15-0
X memory NOPX 0 0 0 Field B
data MOVXW @Ax,Dx 0 0o 1
transfers MOVXW @Ax+Dx 1 0
MOVXW @Ax+x,Dx 1 1
MOVXW Da,@Ax 1 0o 1
MOVXW Da,@Ax+ 1 0
MOVXW Da,@Ax+x 11
Y memory NOPY 0 0 0
data MOVYW @Ay,Dy Dy 0 1
transfers MOVYW @Ay+Dy 1 0
MOVYW @Ay+ly,Dy 1 1
MOVYW Da,@Ay Da 1 0 1
MOVYW Da@Ay+ 1 0
MOVYW Da,@Ay+y 1 1

Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=Al

90

RENESAS

Table 6-13 Field B ALU Operation Instructions and Multiplication Instructions

RENESAS

Category Mnemonic 31-27| 26 | 25-16 [1514 13}12l11]10] o] 8]7] 6] 5[4 [3]2[1] 0
_ _ PSHL #imm, Dz 1 0 FieldA|0 O 0]0|0] —16<imm< +16 Dz
imm. Shift |~ pgHA #imm, Dz 00 0[1]|0] —32<imm<+32
o . 00 0] [1]
eserve 00 1
5 PMULS Se, Sf, Dg 0100|Se | sf|sx| sy|Dg|Du
x - ___________—____ | ___
operand Reserved 01 0 1|0:X0|0:YO [0:X0|0:YO [0:MO|0:X0
parallel | (| 1:X1 | 1:Y1 |1:X1|1:Y1|1:M1|1:YO
instruction PSUB Sx, Sy, Du 01 1 0)2:Y0 |2:X0 [2:A0|2:M0|2:A0 |2:A0
kﬁPﬁl\/lLlLﬁSﬁ§gL87f,ﬁQg 7777777777 3:Al1 | 3:A1 |3:A1|3:M1|3:A1|3:A1
PADD Sx, Sy, Du 0111
_PMULS Se, Sf,Dg__
Three Reserved 10100000 0 Dz
01
operand F--------—---—--——- -
instructions| _ PSUBC Sx, Sy, Dz_ _ ____|to 0: (*1)
| _ PADDC Sx, Sy, bz _ o[t 1 1: (%)
| ___PCMPSx, Sy __ ____|00j01 2: (*1)
,,,,,, Reserved o1 3 (1)
| PwsBSxSy.Dz 1o 2)
| __PWAD Sx, Sy, Dz __ R 5:Al
| ___PABSSx,Dz____ ____100j10 6: (*1)
| ___PRNDSx,Dz ___ ____[91 7: AO
| ___PABSSy,Dz____ 110 8: X0
| ___PRNDSy,Dz ___ B N 9: X1
00|11 A'YO
01 B:Y1
Reserved 10 C: MO
11 D: (*)
E: M1
F: (*1)
91

Table 6-13 Field B ALU Operation Instructions and Multiplication Instructions (cont)

Category Mnemonic 31—27\ 26 \ 25-16 |15 14 131211 10| 9 \ 8|7 \ 6 5\4 3\2\ 1\ 0
Conditional |(if &) PSHL Sx, Sy, Dz| 1 0 FieldA |1 0|0 0|0 0| ifcc | Sx | Sy Dz
three | (if cc) PSHA Sx, Sy, Dz ___Jo1 0:X01 0:¥0 | 0:(*)
operand | (if cc) PSUB Sx, Sy, Dz |10 LXLILYL) L:()
instructions| (if cc) PADD Sx, Sy, Dz 11 01:+2 2:YO|2:MO| 2:(*D)
***************** -—--r--- 3Y1|3ML| 3:(*)
,,,,,, Reserved ____ ____|00J]01 4:(+)
| (if cc) PAND Sx, Sy, Dz, |91 5:A1
| (if cc) PXOR Sx, Sy, Dz ___|to 6:(*1)
(if cc) POR Sx, Sy, Dz_ S . 7:A0
(if cc) PDEC Sx, Dz 0701 o |t0-DCT 8:X0
| _(ifcc) PINC Sx, Dz__ |91 9:x1
| _(ifcc) PDECSy Dz _ 1o Yo
(if cc) PINC Sy, Dz 11 B:Y1
Fmmm =t Sl ————p=-= 11:DCF C:M0
| __(fcc)PCLRDz o011 Di(*Y)
| (if cc) PDMSB Sx, Dz _ |91 EM1
,,,,,, Reserved _____ ____|10 F:(*1)
| (if cc) PDMSB Sy, Dz _ 11
| _(if cc) PNEG Sx, Dz _ 11)00/10
| (if cc) PCOPY Sx, Dz |91
(if cc) PNEG Sy, Dz 10
| (if cc) PCOPY Sy, Dz _ 11
,,,,, Reserved S 0 o
| (if cc) PSTS MACH, Dz ____[00j11] ifcc
| (if cc) PSTS MACL, Dz ____|01
| (if cc) PLDS Dz, MACH ___|to
(if cc) PLDS Dz, MACL 11
”””” Reserved T 0 0
0*3
Reserved 1 1
Notes: 1. [if cc]: DCT (DC bit true), DCF (DC bit false), or none (unconditional
instruction)
2. Unconditional
3. System reserved code
92

RENESAS

Section 7 Instruction Set

7.1 Instruction Set by Classification

The SH-3 instruction set includes 68 basic instruction types, and the SH-3E instruction set
includes 84 basic instruction types, divided into seven functional classifications, as shown in Tal
7-1. Tables 7-3 to 7-9 summarize instruction notation, machine mode, execution time, and
function.

93
RENESAS

Table 7-1 Classification of Instructions

Operation No. of
Classification Types Code Function Instructions
Data transfer 5 MOV Data transfer 39

Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer
MOVT T bit transfer
SWAP Swap of upper and lower bytes
XTRCT Extraction of the middle of registers
connected
PREF Prefetching data to cache
Arithmetic 21 ADD Binary addition 33
operations ADDC Binary addition with carry
ADDV Binary addition with overflow check
CMP/cond Comparison
DIV1 Division
DIVOS Initialization of signed division
DIVOU Initialization of unsigned division
DMULS Signed double-length multiplication
DMULU Unsigned double-length multiplication
DT Decrement and test
EXTS Sign extension
EXTU Zero extension
MAC Multiply/accumulate, double-length
multiply/accumulate operation
MUL Double-length multiplication (32 x 32 bits)
MULS Signed multiplication (16 x 16 bits)
MULU Unsigned multiplication (16 x 16 bits)
NEG Negation
NEGC Negation with borrow
SUB Binary subtraction
SUBC Binary subtraction with carry
SUBV Binary subtraction with underflow check

94
RENESAS

Table 7-1 Classification of Instructions (cont)

Classification Types Operation Code Function :\rlgtr?jctions
Logic 6 AND Logical AND 14
operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR
Shift 12 ROTL One-bit left rotation 16

ROTR One-bit right rotation

ROTCL One-bit left rotation with T bit

ROTCR One-bit right rotation with T bit

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift

SHAD Dynamic arithmetic shift

SHLD Dynamic logical shift
Branch 9 BF Conditional branch, conditional 11

branch with delay (T = 0)
BT Conditional branch, conditional
branch with delay (T = 1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure

RENESAS

95

Table 7-1

Classification of Instructions (cont)

No. of
Classification Types Operation Code Function Instructions
System 15 CLRT T bit clear 83 (75)*
control CLRMAC MAC register clear
CLRS S bit clear
LDC Load to control register
LDS Load to system register
LDTLB Load PTE to TLB
NOP No operation
RTE Return from exception processing
SETS S bit set
SETT T bit set
SLEEP Shift into power-down mode
STC Storing control register data
STS Storing system register data
TRAPA Trap exception handling
Floating point 16 FABS Floating point absolute value 23
instructions FADD Floating point add
(SH-3E only) FCMP Floating point compare
FDIV Floating point divide
FLDIO Floating point load immediate 0O
FLDI1 Floating point load immediate 1
FLDS Floating point load to system register
FPUL
FLOAT Floating point convert from integer
FMAC Floating point multiply accumulate
FMOV Floating point move
FMUL Floating point multiply
FNEG Floating point negate
FSQRT Floating point square root
FSTS Floating point store from system
register FPUL
FSUB Floating point subtract
FTRC Floating point truncate and convert to
integer
Total: 84 219 (188)*
Note: * The LDS and STS instructions include instructions to load/store to the FPU system

96

register. These instructions can only be used with the SH-3E. The figure in parentheses
() is the total excluding the SH-3E instructions.

RENESAS

Instruction codes, operation, and execution states are listed as shown in Table 7-2 in order by
classification.

Tables 7-3 to 7-8 list the minimum number of clock cycles required for execution. In practice, the
number of execution cycles increases when the instruction fetch is in contention with data acces
or when the destination register of a load instruction (memorggister) is the same as the

register used by the next instruction.

Table 7-2 Instruction Code Format

Item Format Explanation
Instruction OP.Sz SRC,DEST OP: Operation code
Sz: Size
SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement

Operation o, Direction of transfer
(xx) Memory operand
M/IQIT Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
A Exclusive OR of each bit
~ Logical NOT of each bit
<<n, >>n n-bit shift
Code MSB - LSB mmmm: Source register
nnnn: Destination register
0000: RO
0001: R1
1111: R15

iiii: Immediate data
dddd: Displacement

Privilege Indicates a privileged instruction

Cycles The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:
1. When contention occurs between instruction fetches
and data access, or
2. When the destination register of the load instruction
(memory - register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed
—: No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "8.
Instruction Descriptions" for details.

97
RENESAS

7.1.1 Data Transfer Instructions
Table 7-3 Data Transfer Instructions
T

Instruction Operation Code Privlege Cycles Bit

MOV #imm,Rn imm - Sign extension - 1110nnnniiiiiiii — 1 —
RN

MOV.W @(disp,PC),Rn (disp x 2 + PC) - Sign 1001nnnndddddddd — 1 —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 + PC) - Rn 1101nnnndddddddd — 1 —

MOV Rm,Rn Rm - Rn 0110nnnnmmmmO011 — 1 —

MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmmmO000 — 1 —

MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 — 1 —

MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmmmO010 — 1 —

MOV.B @Rm,Rn (Rm) - Sign extension 0110nnnnmmmmO000 — 1 —
- Rn

MOV.W @Rm,Rn (Rm) - Sign extension 0110nnnnmmmmO001 — 1 —
- Rn

MOV.L @RmM,Rn (Rm) - Rn 0110nnnnmmmmO0010 — 1 —

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmmO0100 — 1 —

MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmmmO0101 — 1 —

MOV.L Rm,@-Rn Rn—4 - Rn, Rm - (Rn) 0010nnnnmmmmO0110 — 1 —

MOV.B @Rm+,Rn (Rm) - Sign extension 0110nnnnmmmmO0100 — 1 —
- Rn,Rm+1 - Rm

MOV.W @Rm+,Rn (Rm) - Sign extension 0110nnnnmmmmO0101 — 1 —
- Rn,Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - 0110nnnnmmmmO0110 — 1 —
Rm

MOV.B RO, @(disp,Rn) RO - (disp + Rn) 10000000nnnndddd ~ — 1 —

MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd — 1 —

MOV.L Rm,@(disp,Rn) Rm - (disp x4 + Rn) 0001nnnnmmmmdddd — 1 —

MOV.B @(disp,Rm),R0O (disp + Rm) - Sign 10000100mmmmdddd — 1 —
extension » RO

MOV.W @(disp,Rm),R0 (disp x 2 + Rm) - Sign 10000101mmmmdddd — 1 —
extension —» RO

MOV.L @(disp,Rm),Rn (disp x4+ Rm) - Rn 010lnnnnmmmmdddd — 1 —

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNmMmMmmO100 — 1 —

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNMmmMmO101 — 1 —

98

RENESAS

Table 7-3

Data Transfer Instructions (cont)

T

Instruction Operation Code Privilege Cycles Bit

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNnNnmmmmO0110 — 1 —

MOV.B @(RO,Rm),Rn (RO + Rm) — Sign 0000nnNnNnmmmm1100 — 1 —
extension — Rn

MOV.W @(RO,Rm),Rn (RO + Rm) — Sign 0000nnNnNnmmmm1101 — 1 —
extension - Rn

MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000nnNnNnmmmm1110 — 1 —

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd ~ — 1 —

MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd ~ — 1 —

MOV.L RO,@(disp,GBR) RO - (disp x4 + GBR) 11000010dddddddd ~ — 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) - Sign 11000100dddddddd ~ — 1 —
extension » RO

MOV.W @(disp,GBR),R0 (disp x2 + GBR) - Sign 11000101dddddddd — 1 —
extension » RO

MOV.L @(disp,GBR),R0 (disp x4 + GBR) - RO 11000110dddddddd ~ — 1 —

MOVA @(disp,PC),R0O disp x4+ PC - RO 11000111dddddddd — 1 —

MOVT Rn T - Rn 0000nnnNn00101001 — 1 —

PREF @Rn (Rn) - cache 0000nnNn10000011 — 1/2* —

SWAP.B Rm,Rn Rm - Swap the bottom 0110nnnnmmmm31000 — 1 —
two bytes -~ REG

SWAP.W Rm,Rn Rm - Swap two 0110nnnnmmmm21001 — 1 —
consecutive words - Rn

XTRCT Rm,Rn Rm: Middle 32 bits of Rn 0010nnnnmmmm1101 — 1 —
- Rn

Note: * Two cycles on the SH3-DSP.

99

RENESAS

7.1.2

Arithmetic Instructions

Table 7-4 Arithmetic Instructions

Instruction Operation Code Privilege Cycles T Bit
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm31100 — 1 —
ADD #mm,Rn Rn+imm - Rn 0111nnnniiiiiiii — 1 —
ADDC Rm,Rn Rn+RmMm+T - Rn, 0011nnnnmmmm1110 — 1 Carry
Carry - T
ADDV Rm,Rn Rn+Rm - Rn, 0011nnnnmmmm1111 — 1 Overflow
Overflow - T
CMP/EQ #imm,RO IfRO=imm,1 - T 10001000iiiiiiii — 1 Comparison
result
CMP/EQ Rm,Rn IfRN=Rm,1 - T 0011nnnnmmmmO0000 — 1 Comparison
result
CMP/HS Rm,Rn If Rn=Rm with unsigned 0011nnnnmmmmO0010 — 1 Comparison
data,1 - T result
CMP/GE Rm,Rn If Rn = Rm with signed 0011nnnnmmmmO0011 — 1 Comparison
data,1 - T result
CMP/HI Rm,Rn If Rn > Rm with 0011nnnnmmmmO0110 — 1 Comparison
unsigned data, 1 - T result
CMP/GT Rm,Rn If Rn > Rm with signed ~ 0011nnnnmmmmO0111 — 1 Comparison
data,1 - T result
CMP/PZ Rn IfRNn=20,1-T 0100nnnn00010001 — 1 Comparison
result
CMP/PL Rn IfRN>0,1 T 0100nnnn00010101 — 1 Comparison
result
CMP/STR Rm,Rn If Rn and Rm have an 0010nnnnmmmm1100 — 1 Comparison
equivalentbyte, 1 - T result
DIVl Rm,Rn Single-step division 0011nnnnmmmmO0100 — 1 Calculation
(Rn/Rm) result
DIVOS Rm,Rn MSB of Rn - Q, MSB 0010nnnnmmmmO0111 — 1 Calculation
ofRm - M\M"Q - T result
DIVoU 0 - M/IQ/T 0000000000011001 — 1 0
100

RENESAS

Table 7-4 Arithmetic Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit
DMULS.L Rm,Rn Signed operation of 001lnnnnmmmm31101 — 2 (to —
Rn x Rm - MACH, MACL 5/4)x1
32 x 32 - 64 bits
DMULU.L Rm,Rn Unsigned operation of 0011nnnnmmmmO0101 — 2 (to —
Rn x Rm - MACH, MACL 5/4)%1
32 x 32 - 64 bits
DT Rn Rn-1 - Rn,ifRn=0, 0100nnnn00010000 — 1 Comparison
1-Telse0-T result
EXTS.B. Rm,Rn A byte in Rm is sign- 0110nnnnmmmm31110 — 1 —
extended - Rn
EXTS.W Rm,Rn A word in Rm is sign- 0110nnnnmmmm1111 — 1 —
extended - Rn
EXTU.B Rm,Rn A byte in Rmis zero- 0110nnnnmmmm31100 — 1 —
extended —» Rn
EXTUW Rm,Rn A wordin Rm is zero- 0110nnnnmmmm1101 — 1 —
extended —» Rn
MAC.L @Rm+, Signed operation of (Rn) x 0000nnnnmmmm1111 — 2 (to —
@Rn+ (Rm) +MAC - MAC 5/4)*1
MAC.W @Rm+, Signed operation of (Rn) x 0100nnnnmmmm1111 — 2 (to 5)**
@Rn+ (Rm) +MAC - MAC
16 x 16 + 64 — 64 bits
MUL.L Rm,Rn RnxRm - MACL 0000nNnNNnmMmMmmO111 — 2 (to —
32 x 32 - 32 bits 5/4)1
MULS.W Rm,Rn Signed operation of Rn x ~ 0010nnnnmmmm1111 — 1 (to 3)*?
Rm - MAC
16 x 16 - 32 bits
MULU.W Rm,Rn Unsigned operation of Rn 0010nnnnmmmm1110 — 1 (to 3)*?
xRm - MAC
16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 — 1 —
NEGC Rm,Rn O0-Rm-T - Rn, 0110nnnnmmmm1010 — 1 Borrow
Borrow - T
SuUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm21000 — 1 —
SUBC Rm,Rn Rn—RmM-T - Rn, 0011nnnnmmmm1010 — 1 Borrow
Borrow - T
SUBV Rm,Rn Rn-Rm - Rn, 0011nnnnmmmm31011 — 1 Underflow
Underflow - T
Notes: 1. The normal minimum number of execution cycles is 2, but 5 cycles (4 cycles on the

SH3-DSP) are required when the results of an operation are read from the MAC
register immediately after the instruction.
2. The normal minimum number of execution cycles is 1, but 3 cycles are required when
the results of an operation are read from the MAC register immediately after a MUL
instruction.

RENESAS

101

7.1.3

Logic Operation Instructions

Table 7-5 Logic Operation Instructions
Instruction Operation Code Privilege Cycles T Bit
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm21001 — 1 —
AND #imm,R0O RO & imm - RO 1100100iiiiiii — 1 —
AND.B #imm,@(R0O,GBR) (RO + GBR) & imm - 11001101iiiiiiii — 3 —
(RO + GBR)
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 — 1 —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 — 1 —
OR #imm,R0 RO | imm - RO 1100101 ZLiiiiiiii — 1 —
OR.B #imm,@(R0,GBR) (RO + GBR)|imm - (RO 11001111iiiiiiii — 3 —
+ GBR)
TAS.B @Rn If(Rn)is0,1 - T;1 - 0100nnnn00011011 — 3/4* Test
MSB of (Rn) result
TST Rm,Rn Rn & Rm; if the result is 0010nnnnmmmm1000 — 1 Test
0,1-T result
TST #imm,R0 RO & imm; if the resultis ~ 11001000iiiiiiii — 1 Test
0,1-T result
TST.B #imm,@(R0O,GBR) (RO + GBR) & imm; if the 1100110Qiiiiiiii — 3 Test
resultis0,1 - T result
XOR Rm,Rn Rn~"Rm - Rn 0010nnnnmmmm31010 — 1 —
XOR #imm,R0O RO~ imm - RO 1100101 Giiiiiiii — 1 —
XOR.B #imm,@(R0,GBR) (RO + GBR)”~imm - (RO 1100111OQiiiiiiii — 3 —

+ GBR)

Note: * Four cycles on the SH3-DSP.

102

RENESAS

7.1.4 Shift Instructions
Table 7-6 Shift Instructions

Instruction Operation Code Privilege Cycles T Bit
ROTL Rn T « Rn -« MSB 0100nnnn00000100 — 1 MSB
ROTR Rn LSB - Rn - T 0100nnnNn00000101 — 1 LSB
ROTCL Rn T<RnT 0100nnnn00100100 — 1 MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — 1 LSB
SHAD RmRn Rn=20;Rn<<Rm - Rn 0100nnnnmmmm1100 — 1 —
Rn <0; Rn >>Rm - [MSB - Rn]
SHAL Rn T~Rn<0 0100nnNnn00100000 — 1 MSB
SHAR Rn MSB - Rn = T 0100nnnNn00100001 — 1 LSB
SHLD RmRn Rn=0;Rn<<Rm - Rn 0100nnnnmmmm1101 — 1 —
Rn <0; Rn>>Rm - [0-Rn]
SHLL Rn T<Rn<0 0100nnnn00000000 — 1 MSB
SHLR Rn 0O-Rn-T 0100nnnn00000001 — 1 LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnNn00001000 — 1 —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 — 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnNnNn00011000 — 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnNnn00101000 — 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — 1 —
103

RENESAS

7.1.5 Branch Instructions

Table 7-7 Branch Instructions

Instruction Operation Code Privilege Cycles T Bit

BF label If T=0,dispx2+PC - PC; 10001011dddddddd — 3/1* —
if T=1, nop

BF/S label Delayed branch, if T =0, 10001111dddddddd — 2/1* —
disp x2+ PC - PC;if T=1, nop

BT label Delayed branch, if T =1, 10001001dddddddd — 3/1* —
disp x2 + PC - PC;if T=0, nop

BT/S label If T=1,dispx2+PC - PC; 10001101dddddddd — 2/1* —
if T=0, nop

BRA label Delayed branch, disp x 2 + PC - 1010dddddddddddd ~ — 2 —
PC

BRAF Rn Rn+ PC - PC 0000nnnn00100011 — 2 —

BSR label Delayed branch, PC - PR, 1011dddddddddddd — 2 —
dispx2+PC - PC

BSRF Rn PC - PR,Rn+PC - PC 0000nnNN00000011 — 2 —

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — 2 —

JSR @Rn Delayed branch, PC - PR, 0100nnnn00001011 — 2 —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — 2 —

Note: * One state when it does not branch.

104

RENESAS

7.1.6

System Control Instructions

Table 7-8 System Control Instructions
Instruction Operation Code Privilege Cycles T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 — 1 —
CLRS 0-S 0000000001001000 — 1 —
CLRT 0-T 0000000000001000 — 1 0
LDC Rm,SR Rm - SR 0100mmmm00001110 v 5 LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 — 1/3*1 —
LDC Rm,VBR Rm - VBR 0100mmmm00101110 V 1/3+! —
LDC Rm,SSR Rm - SSR 0100mmmm00111110 V 1/3*1 —
LDC Rm,SPC Rm - SPC 0100mmmm01001110 v 1/3*1 —
LDC Rm,RO_BANK Rm - RO_BANK 0100mmmm10001110 V 1/3*1 —
LDC Rm,R1_BANK Rm - R1_BANK 0100mmmm10011110 V 1/3+1 —
LDC Rm,R2_BANK Rm - R2_BANK 0100mmmm10101110 V 1/3*1 —
LDC Rm,R3_BANK Rm - R3_BANK 0100mmmm10111110 V 1/3+1 —
LDC Rm,R4_BANK Rm - R4 _BANK 0100mmmm11001110 V 1/3*1 —
LDC Rm,R5_BANK Rm - R5_BANK 0100mmmm11011110 V 1/3+1 —
LDC Rm,R6_BANK Rm - R6_BANK 0100mmmm11101110 V 1/3*1 —
LDC Rm,R7_BANK Rm - R7_BANK 0100mmmm11111110 V 1/3+1 —
LDC.L @Rm+,SR (Rm) - SR, Rm+4 - Rm 0100mmmm00000111 V 7 LSB
LDC.L @Rm+,GBR (Rm) - GBR, Rm+4 - Rm 0100mmmmO00010111 — 1/5%2 —
LDC.L @Rm+,VBR (Rm) - VBR, Rm+4 - Rm 0100mmmm00100111 Vv 1/5%2 —
LDC.L @Rm+,SSR (Rm) -~ SSR, Rm+4 -~ Rm 0100mmmm00110111 V 1/5%2 —
LDC.L @Rm+,SPC (Rm) - SPC, Rm+4 - Rm 0100mmmm01000111 Vv 1/5%2 —
LDC.L @Rm+,R0_ (Rm) - RO_BANK, 0100mmmm10000111 v 5% —
BANK Rm+4 - Rm
LDC.L @Rm+,R1_ (Rm) - R1_BANK, 0100mmmm10010111 V 1/5%2 —_
BANK Rm+4 - Rm
LDC.L @Rm+,R2_ (Rm) - R2_BANK, 0100mmmm10100111 v 1/5%2 —
BANK Rm+4 - Rm
LDC.L @Rm+,R3_ (Rm) - R3_BANK, 0100mmmm10110111 v 1/5%2 —
BANK Rm+4 -~ Rm
105

RENESAS

Table 7-8

System Control Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit
LDCL @Rm+R4_ (Rm) - R4_BANK, 0100mmmm11000111 v 1/5%2 —
BANK Rm+4 - Rm
LDCL @Rm+R5_ (Rm) - R5_BANK, 0100mmmm11010111 v T —
BANK Rm+4 - Rm
LDC.L @Rm+R6_ (Rm) - R6_BANK, 0100mmmm11100111 v AT —
BANK Rm+4 - Rm
LDC.L @Rm+R7_ (Rm) — R7_BANK, 0100mmmm11110111 v (T —
BANK Rm+4 - Rm
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 — 1 —
LDS Rm,MACL Rm - MACL 0100mmmmO00011010 — 1 —
LDS Rm,PR Rm - PR 0100mmmm00101010 — 1 —
LDS.L @Rm+MACH (Rm) - MACH, Rm+4 - Rm 0100mmmmO00000110 — 1 —
LDS.L @Rm+MACL (Rm) - MACL, Rm+4 -~ Rm 0100mmmmO00010110 — 1 —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 -, Rm 0100mmmmO00100110 — 1 —
LDTLB PTEH/PTEL - TLB 0000000000111000 v 1 —
NOP No operation 0000000000001001 — 1 —
PREF @Rn (Rn) - cache 0000nnNnn10000011 — 1 —
RTE Delayed branch, 0000000000101011 v 4 —
SSR/SPC - SR/PC
SETS 1-.5S 0000000001011000 — 1 —
SETT 1-T 0000000000011000 — 1 1
SLEEP Sleep 0000000000011011 Vv 4%3 —
STC SR,Rn SR - Rn 0000nnNNn00000010 v 1 —
STC GBR,Rn GBR - Rn 0000nnnNn00010010 — 1 —
STC VBR,Rn VBR - Rn 0000nnNnNn00100010 v 1 —
STC SSR,Rn SSR - Rn 0000nNNN00110010 1 —
STC SPC,Rn SPC - Rn 0000nnNnNn01000010 v 1 —
106

RENESAS

Table 7-8

System Control Instructions (cont)

Instruction Operation Code Privlege Cycles T Bit

STC RO_BANK,Rn RO_BANK- Rn 0000nnNNn10000010 v 1 —

STC R1_BANK,Rn R1_BANK- Rn 0000nnNnNn10010010 v —

STC R2_BANK,Rn R2_BANK- Rn 0000nnNN10100010 v 1 —

STC R3 BANK,Rn R3_BANK- Rn 0000nnNnNn10110010 v 1 —

STC R4 _BANK,Rn R4_BANK- Rn 0000nnNnNn11000010 v 1 —

STC R5_BANK,Rn R5_BANK- Rn 0000nnNnNn11010010 v 1 —

STC R6_BANK,Rn R6_BANK- Rn 0000nnNNn11100010 v 1 —

STC R7_BANK,Rn R7_BANK- Rn 0000nnNnNn11110010 v —

STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 v 1/2%4 —

STC.L GBR,@-Rn Rn—4 - Rn, GBR - (Rn) 0100nnnn00010011 — 1/2%4 —

STC.L VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 v 1/2%4 —

STC.L SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 v 1/2%4 —

STC.L SPC,@-Rn Rn—-4 - Rn, SPC - (Rn) 0100nnnn01000011 v 1/2%4 —

STC.L RO_BANK,@- Rn—-4 - Rn, 0100nnnn10000011 v 2 —
RN RO_BANK - (Rn)

STC.L R1_BANK@- Rn—4 - Rn, 0100nnnn10010011 Vv 2 —
RN R1_BANK - (Rn)

STC.L R2_BANK,@- Rn—-4 - Rn, 0100nnnn10100011 v 2 —
RN R2_BANK - (Rn)

STC.L R3_BANK,@- Rn—4 - Rn, 0100nnnn10110011 Vv 2 —
RN R3_BANK - (Rn)

STC.L R4_BANK,@- Rn—-4 - Rn, 0100nnnn11000011 v 2 —
RN R4_BANK - (Rn)

STC.L R5_BANK,@- Rn—4 - Rn, 0100nnnn11010011 Vv 2 —
RN R5_BANK - (Rn)

STC.L R6_BANK,@- Rn—-4 - Rn, 0100nnnn11100011 v 2 —
RN R6_BANK — (Rn)

STC.L R7_BANK,@- Rn—4 - Rn, 0100nnnn11110011 Vv 2 —
RN R7_BANK - (Rn)

STS MACH,Rn MACH - Rn 0000nnNnNn00001010 — 1 —

STS MACL,Rn MACL - Rn 0000nnnNn00011010 — 1 —

STS PR,Rn PR - Rn 0000nnNnNn00101010 — 1 —

RENESAS

107

Table 7-8 System Control Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 — 1 —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 — 1 —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — 1 —
TRAPA #imm PC/SR - SPCI/SSR, 1100001 Liiiiiiii — 6/8*5 —

#imm<<2 - TRA, 0x160 -
EXPEVT VBR + H'0100 - PC

Notes: The number of execution states before the chip enters the sleep state. This table lists the
minimum execution cycles. In practice, the number of execution cycles increases when the
instruction fetch is in contention with data access or when the destination register of a load
instruction (memory - register) is the same as the register used by the next instruction.

1. Three cycles on the SH3-DSP.

Five cycles on the SH3-DSP.

Number of cycles before transition to sleep state.
Two cycles on the SH3-DSP.

Eight cycles on the SH3-DSP.

gk wbd

108
RENESAS

7.1.7 Floating Point Instructions (SH-3E Only)
Table 7-9 Floating Point Instructions
Instruction Operation Code Privilege Cycles T Bit
FABS FRn | FRn| - FRn 1111nnnn01011101 — 1 —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnmmmmO0000 — 1 —
FCMP/EQ FRm,FRn FRn == FRm? 1111nnnnmmmmO0100 — 1 Comparison
1.0 -T result
FCMP/GT FRm,FRn FRn > FRmM? 1111nnnnmmmmO0101 — 1 Comparison
1.0-T result
FDIV FRm,FRn FRn/FRm - FRn 111lnnnnmmmmoO0011 — 13 —
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — 1 —
FLDI1 FRn H'3F800000 —» FRn 1111nnnn10011101 — 1 —
FLDS FRm,FPUL FRm - FPUL 1111nnnn00011101 — 1 —
FLOAT FPUL,FRN (float)FPUL - FRn 1111nnnn00101101 — 1 —
FMAC FRO,FRm,FRn FRO x FRm + 1111nnnnmmmm1110 — 1 —
FRn - FRn
FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 — 1 —
FMOV.S @(RO,Rm),FRn (RO +Rm) - FRn 111lnnnnmmmmO0110 — 1 —
FMOV.S @Rm+,FRn (Rm) - FRn, 1111nnnnmmmm1001 — 1 —
Rm+4 - Rm
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmm1000 — 1 —
FMOV.S FRm,@(RO,Rn) FRm - (RO+Rn) 1111nnnnmmmmO0111 — 1 —
FMOV.S FRm,@-Rn Rn-4 - Rn, 1111nnnnmmmm1011 — 1 —
FRm - (Rn)
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 — 1 —
FMUL FRm,FRn Fm xFRm - FRn 1111nnnnmmmmO0010 — 1 —
FNEG FRn —FRn - FRn 1111nnnn01001101 — 1 —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — 13 —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — 1 —
FSUB FRm,FRn FRn-FRm - FRn 111lnnnnmmmmO0001 — 1 —
FTRC FRm,FPUL (long)FRm - FPUL 1111nnnn00111101 — 1 —
109

RENESAS

7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)
Table 7-10 FPU Related CPU Instructions

Instruction Operation Code Privilege Cycles T Bit
LDS Rm,FPSCR Rm - FPSCR 0100nNnNn01101010 — 1 —
LDS Rm,FPUL Rm - FPUL 0100nnnn01011010 — 1 —
LDS.L @Rm+,FPSCR @Rm - FPSCR, 0100nnnNn01100110 — 1 —
Rm+4 - Rm

LDS.L @Rm+ ,FPUL @Rm - FPUL, Rm+4 - Rm 0100nnnn01010110 — —
STS FPSCR,Rn FPSCR - Rn 0000nNNN01101010 — —
STS FPUL, Rn FPUL - Rn 0000nnnNn01011010 —

STS.L FPSCR,@-Rn Rn-4 - Rn, FPSCR -~ @Rn 0100nnnn01100010 —

R Rk |k |k |R
|

STS.L FPUL,@-Rn Rn-4 - Rn, FPUL — @Rn 0100nnnn01010010 —

7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)

Several system control instructions have been added to the CPU core instructions to support DS
functions. The RS, RE, and MOD registers (which support modulo addressing) have been added
and an RC counter has been added to the SR register. LDC and STC instructions have been adc
to access these. LDS and STS instructions have also been added for accessing the DSP registel
DSR, A0, X0, X1, YO, and Y1.

A SETRC instruction has been added for setting the value of the repeat counter (RC) in the SR
register (bits 16—27). When the operand of the SETRC instruction is immediate, 8 bits of
immediate data are set in bits 16—23 of the SR register and bits 24—-27 are cleared. When the
operand is a register, the 12 bits 0—11 of the register are set in bits 16—27 of the SR register.

In addition to the new LDC instructions, the LDRE and LDRS instructions have been added for
setting the repeat start address and repeat end address in the RS and RE registers.

Table 7-11 shows the added instructions.

110
RENESAS

Table 7-11 Added CPU Instructions

Instruction Operation Code Cycles TBit
LDC Rm,MOD Rm - MOD 0100mmmm01011110 3 —
LDC Rm,RE Rm - RE 0100mmmm01111110 3 —
LDC Rm,RS Rm-RS 0100mmmm01101110 3 —
LDC.L @Rm+,MOD (Rm) - MOD,Rm+4 - Rm 0100mmmm01010111 5 —
LDC.L @Rm+,RE (Rm) - RE,Rm+4 - Rm 0100mmmm01110111 5 —
LDC.L @Rm+,RS (Rm)->RS,Rm+4 - Rm 0100mmmmO01100111 5 —
STC MOD,Rn MOD - Rn 0000nnNnNN01010010 1 —
STCRE,RNn RE - Rn 0000nnNNn01110010 1 —
STCRS,Rn RS - Rn 0000nnnNn01100010 1 —
STC.L MOD,@-Rn Rn—4 - Rn,MOD - (Rn) 0100nnnn01010011 2 —
STC.LRE,@-Rn Rn—4 - Rn,RE - (Rn) 0100nnnn01110011 2 —
STC.LRS,@-Rn Rn—4 - Rn,RS - (Rn) 0100nnnNn01100011 2 —
LDS Rm,DSR Rm-DSR 0100mmmm01101010 1 —
LDS.L @Rm+,DSR (Rm) - DSR,Rm+4 - Rm 0100mmmm01100110 1 —
LDS Rm,A0 Rm - AO 0100mmmm01110110 1 —
LDS.L @Rm+,A0 (Rm) - A0,Rm+4 .Rm 0100mmmm01100110 1 —
LDS Rm,X0 Rm - X0 0100mmmm01110110 1 —
LDS.L @Rm+,X0 (Rm) - X0,Rm+4 .Rm 0100mmmmO01100110 1 —
LDS Rm,X1 Rm- X1 0100mmmm01110110 1 —
LDS.L @Rm+,X1 (Rm) - X1,Rm+4 . Rm 0100mmmm01100110 1 —
LDS Rm,YO Rm- YO 0100mmmm01110110 1 —
LDS.L @Rm+,YO (Rm)-YO,Rm+4 .Rm 0100mmmm01100110 1 —
LDS Rm,Y1 Rm-Y1,Rm+4 - Rm 0100mmmm01110110 1 —
LDS.L. @Rm+,Y1 (Rm)-Y1,Rm+4 . Rm 0100mmmmO01100110 1 —
STSDSR,Rn DSR-Rn 0000nNNN01101010 1 —
STS.L DSR,@-Rn Rn—4 - Rn,DSR - (Rn) 0100nnnNn01100010 1 —
STS AO,Rn AO-Rn 0000nnnn01111010 1 —
STS.LAO,@-Rn Rn—4 - Rn,A0 - (Rn) 0100nnnNn01110010 1 —
STS XO,Rn X0-Rn 0000nNnNn01111010 1 —
STS.L X0,@-Rn Rn—4 - Rn,X0 - (Rn) 0100nnnNn01110010 1 —
STS X1,Rn X1-Rn 0000nnNNN01111010 1 —
STS.L X1,@-Rn Rn—4 - Rn, X1 - (Rn) 0100nnnn01110010 1 —
111

RENESAS

Table 7-11 Added CPU Instructions (cont)

Instruction Operation Code Cycles T Bit
STSYO,Rn YO-Rn 0000nnNnNn10101010 1 —
STS.LYO,@-Rn Rn—4 - Rn,Y0 - (Rn) 0100nnNnNn10100010 1 —
STSY1,Rn Y1-Rn 0000nnnNn10111010 1 —
STSLY1L,@-Rn Rn—4 - Rn,Y1-(Rn) 0100nnnNn10110010 1 —
SETRC Rm RmM[11:0] - RC (SR[27:16]) 0100mmmm00010100 3 —
SETRC #imm imm - RC(SR[23:16]), 1000001 Giiiii 3 —
zeros - SR[27:24]
LDRS @(disp,pc) disp x 2+PC - RS 10001100dddddddd 3 —
LDRE @(disp,pc) disp x 2+PC - RE 10001110dddddddd 3 —

7.2 Instruction Set in Alphabetical Order

Table 7-12 alphabetically lists the instruction codes and number of execution cycles for each
instruction.

Table 7-12 Instruction Set Listed Alphabetically

Instruction Operation Code Privilege Cycles T Bit

ADD #imm,Rn Rn +imm - Rn 011 1nnnniiiiiiii — 1 —

ADD Rm,Rn Rn+ Rm - Rn 0011lnnnnmmmm1100 — 1 —

ADDC Rm,Rn Rn+Rm+T - Rn, 0011lnnnnmmmm1110 — 1 Carry
Carry - T

ADDV Rm,Rn Rn +Rm - Rn, 001lnnnnmmmmi1lll — 1 Overflow
Overflow - T

AND #imm,R0O RO & imm - RO 1100100diiiiiiii — 1 —

AND Rm,Rn Rn&Rm - Rn 0010nnnnmmmm21001 — 1 —

AND.B #imm,@(R0O,GBR) (RO + GBR) & imm - 11001101iiiiiiii — 3 —
(RO + GBR)

BF label IfT=0,disp+PC - 10001011dddddddd — 3/1*2 —
PC; ifT=1, nop

BF/S label If T=0,disp+PC - 10001111dddddddd — 2/1*2 —
PC; if T=1, nop

BRA label Delayed branch, disp + 1010dddddddddddd — 2 —
PC - PC

BRAF Rn Delayed branch, Rn + 0000nnnn00100011 — 2 —
PC - PC

112

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit
BSR label Delayed branch, PC - 1011dddddddddddd — 2 —
PR, disp + PC - PC
BSRF RN Delayed branch, PC -~ 0000nnnn00000011 — 2 —
PR, Rn+PC - PC
BT label IfT=1,disp+PC - 10001001dddddddd — 3/1*2
PC; if T=0, nop
BT/S label If T=1,disp+PC - 10001101dddddddd — 2/1*2 —
PC; if T=0, nop
CLRMAC 0 - MACH, MACL 0000000000101000 — 1 —
CLRS 0-S 0000000001001000 — 1 —
CLRT 0T 0000000000001000 — 1 0
CMP/EQ #imm,RO fRO=imm,1 - T 10001000iiiiiiii — 1 Comparison
result
CMP/EQ Rm,Rn fRNn=Rm,1 - T 0011nnnnmmmmO000 — 1 Comparison
result
CMP/GE Rm,Rn If Rn = Rm with signed 0011nnnnmmmmO0011 — 1 Comparison
data,1 - T result
CMP/GT Rm,Rn If Rn > Rm with signed 0011nnnnmmmmO0111 — 1 Comparison
data,1 - T result
CMP/HI Rm,Rn If Rn > Rm with 0011nnnnmmmmoO0110 — 1 Comparison
unsigned data, result
CMP/HS Rm,Rn If Rn = Rm with 0011nnnnmmmmO010 — 1 Comparison
unsigned data, 1 - T result
CMP/PL Rn IfRN>0,1 - T 0100nnnNn00010101 — 1 Comparison
result
CMP/PZ Rn IfRNn=20,1-T 0100nnnn00010001 — 1 Comparison
result
CMP/STR Rm,Rn If Rnand Rm have an ~ 0010nnnnmmmm21100 — 1 Comparison
equivalentbyte, 1 - T result
DIVOS Rm,Rn MSB of Rn - Q, MSB 0010nnnnmmmmO0111 — 1 Calculation
ofRm - M,M*Q - T result
DIvouU 0 - M/IQIT 0000000000011001 —_ 1 0
DIVl Rm,Rn Single-step division 0011nnnnmmmmO0100 — 1 Calculation
(Rn/Rm) result
DMULS.L Rm,Rn Signed operation of Rn - 0011lnnnnmmmm1101 — 2 —
x Rm - MACH, MACL (to 5)**

RENESAS

113

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit
DMULU.L Rm,Rn Unsigned operation 0011nnnnmmmmO0101 — 2 —
of Rn x Rm - (to 5)**
MACH, MACL
DT Rn Rn-1 - Rn,when 0100nnnn00010000 — 1 Comparison
Rnis0,1 - T. result
When Rn is
nonzero,0 - T
EXTS.B Rm,Rn A byte in Rm is sign- 0110nnnnmmmm1110 — 1 —
extended - Rn
EXTS.W Rm,Rn A word in Rm is 0110nnnnmmmm1111 — 1 —
sign-extended - Rn
EXTU.B Rm,Rn A byte in Rm is 0110nnnnmmmm1100 — 1 —
zero-extended - Rn
EXTUW Rm,Rn A word in Rm is 0110nnnnmmmm31101 — 1 —
zero-extended - Rn
FABS FRrt | FRn| - FRn 1111nnnn01011101 — 1 —
FADD FRm ,FR*3 FRn + FRm - FRn 1111nnnnmmmmO000 — 1 —
FCMP/EQ FRm ,FRrt? (FRn == FRm)? 1111nnnnmmmmO0100 — 1 Comparison
1.0-T result
FCMP/GT FRm ,FRn*3 (FRn > FRm) ? 1111nnnnmmmmO0101 — 1 Comparison
1.0 T result
FDIV FRm ,FRn *3 FRn /FRm - FRn 1112nnnnmmmmO0011 — 13 —
FLDIO FRn*3 H'00000000 —» FRn 1111nnnn10001101 — 1 —
FLDI1 FRn*3 H'3F800000 —» FRn 1111nnnn10011101 — 1 —
FLDS FRm ,FPUL*3 FRm - FPUL 1111nnnn00011101 — 1 —
FLOAT FPUL, FRn*3 (float)FPUL - FRn 1111nnnn00101101 — 1 —
FMAC FRO,FRm,FRrt3 FRO x FRm + FRn 1111nnnnmmmm1110 — 1 —
- FRn
FMOV FRm ,FRrf3 FRm - FRn 1111nnnnmmmm21100 — 1 —
FMOV.S @(RO,Rm),FRn** (RO +Rm) - FRn 1111nnnnmmmmO0110 — 1 —
FMOV.S @Rm+,FRf¥ (Rm) - FRn,Rm + 4 1111nnnnmmmm21001 — 1 —
=Rm
FMOV.S @Rm,FRr? (Rm) - FRn 1111nnnnmmmm21000 — 1 —
FMOV.S FRm,@(RO,RnN)** (FRm) - (RO + Rn) 11llnnnnmmmmO011l — 1 —
FMOV.S FRm,@-Rn*3 Rn-4 - Rn, FRm - 1111nnnnmmmm1011 — 1 —
(Rn)
FMOV.S FRm,@Rr? FRm - (Rn) 1112nnnnmmmm1010 — 1 —
FMUL FRm,FRr® FRn x FRm - FRn 1111nnnnmmmmO0010 — 1 —
114

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit
FNEG FRn® —-FRn - FRn 1111nnnn01001101 — 1 —
FSQRT FRK® Vv FRn - FRn 1111nnnn01101101 — 13 —
FSTS FPUL,FRn*® FPUL - FRn 1111nnnn00001101 — 1 —
FSUB FRm,FRrfi® FRn-FRm - FRn 1111nnnnmmmmO0001 — 1 —
FTRC FRm,FPUE® (long)FRm - FPUL 1111nnnn00111101 — 1 —
JMP @Rn Delayed branch, 0100nnnn00101011 — 2 —
Rn - PC
JSR @Rn Delayed branch, 0100nnnNn00001011 — 2 —
PC - PR,Rn - PC
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 — 1/3*4 —
LDC Rm,SR Rm - SR 0100mmmm00001110 v 5 LSB
LDC Rm,VBR Rm - VBR 0100mmmm00101110 v /3% —
LDC Rm,SSR Rm - SSR 0100mmmm00111110 v 13+ —
LDC Rm,SPC Rm - SPC 0100mmmm01001110 v /3% —
LDC Rm,MOff Rm- MOD 0100mmmm01011110 v 3 —
LDC Rm,RE® Rm- RE 0100mmmm01101110 v 3 —
LDC Rm,RS° Rm- RS 0100mmmm01101110 v 3 —
LDC Rm,RO_BANK Rm - RO_BANK 0100mmmm10001110 v /3% —
LDC Rm,R1_BANK Rm - R1_BANK 0100mmmm10011110 v 13+ —
LDC Rm,R2_BANK Rm - R2_BANK 0100mmmm10101110 v /3% —
LDC Rm,R3_BANK Rm - R3 BANK 0100mmmm10111110 v 13+ —
LDC Rm,R4_BANK Rm - R4 _BANK 0100mmmm11001110 v /3% —
LDC Rm,R5_BANK Rm - R5 BANK 0100mmmm11011110 v 13+ —
LDC Rm,R6_BANK Rm - R6_BANK 0100mmmm11101110 v /3% —
LDC Rm,R7_BANK Rm - R7_BANK 0100mmmm11111110 v 13+ —
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 - Rm 0100mmmmO00010111 — 1/5%% —
LDC.L @Rm+,SR (Rm) - SR,Rm+4 -, Rm 0100mmmm00000111 v 7 LSB
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 - Rm 0100mmmm00100111 v 1/5%% —
LDC.L @Rm+,SSR (Rm) - SSR,Rm+4 - Rm 0100mmmm00110111 v 1/5%5 —
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 -~ Rm 0100mmmm01000111 v 1/5%% —
LDC.L @Rm+,MOfS (Rm) -~ MOD,Rm +4 - Rm 0100mmmm01010111 v 5 —
LDC.L @Rm+RE® (Rm) - RERm+4 - Rm 0100mmmm01110111 v 5 —
LDC.L @Rm+,RS° (Rm) - RSRm+4 - Rm 0100mmmm01100111 v 5 —
115

RENESAS

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

LDC.L @Rm+,R0O_BANK (Rm) - RO_BANK, 0100mmmm10000111 vV 1/5*%5 —
Rm+4 - Rm

LDC.L @Rm+,R1_BANK (Rm) - R1_BANK, 0100mmmm10010111 v 1/5%° —
Rm+4 - Rm

LDC.L @Rm+,R2_BANK (Rm) - R2_BANK, 0100mmmm310100111 1/5%° —
Rm+4 - Rm

LDC.L @Rm+,R3_BANK (Rm) - R3_BANK, 0100mmmm10110111 1/5%5 —
Rm+4 - Rm

LDC.L @Rm+,R4_BANK (Rm) - R4_BANK, 0100mmmm11000111 1/5*%5 —
Rm+4 - Rm

LDC.L @Rm+,R5_BANK (Rm) - R5_BANK, 0100mmmm11010111 1/5*%5 —
Rm+4 - Rm

LDC.L @Rm+,R6_BANK (Rm) - R6_BANK, 0100mmmm11100111 1/5*%5 —
Rm+4 - Rm

LDC.L @Rm+,R7_BANK (Rm) - R7_BANK, 0100mmmm11110111 1/5%° —
Rm+4 - Rm

LDRE @(disp,PC) **° disp x2+PC - RE 10001110dddddddd 3 —

LDRS @(disp,PC) **° disp x2 + PC -~ RS 10001100dddddddd 3 —

LDS Rm,FPSCR? Rm - FPSCR 0100nnnn01101010 1 —

LDS Rm,FPUI*3 Rm - FPUL 0100nnnn01011010 1 —

LDS Rm,MACH Rm - MACH 0100mmmmO00001010 1 —

LDS Rm,MACL Rm - MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm - PR 0100mmmm00101010 1 —

LDS Rm,AQ+° Rm - DSR 0100mmmm01101010 1 —

LDS Rm,DSR® Rm - A0 0100mmmm01111010 1 —

LDS Rm,X0r° Rm - X0 0100mmmm10001010 1 —

LDS Rm,X1*° Rm - X1 0100mmmm310011010 1 —

LDS Rm,Y0+° Rm - YO 0100mmmm10101010 1 —

LDS Rm,Y1*° Rm - Y1 0100mmmm10111010 1 —

LDS.L @Rm+ ,FPSCR? @Rm - FPSCR, 0100nnnn01100110 1 —
Rm+4 - Rn

LDS.L @Rm+ ,FPUL*? @Rm - FPUL, 0100nnnn01010110 1 —
Rm+4 - Rn

LDS.L @Rm+,MACH (Rm) - MACH, 0100mmmmO00000110 1 —
Rm+4 - Rm

LDS.L @Rm+,MACL (Rm) - MACL, 0100mmmm00010110 1 —
Rm+4 - Rm

116

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

LDS.L @Rm+,PR (Rm) - PR, 0100mmmmO00100110 — 1 —
Rm+4 - Rm

LDS.L @Rm+,DSR® (Rm) - DSR, 0100mmmmO01100110 1 —
Rm+4 - Rm

LDS.L @Rm+,A0Q° (Rm) - A0, 0100mmmmO01110110 1 —
Rm+4 - Rm

LDS.L @Rm+,X0° (Rm) - X0, 0100mmmm210000110 1 —
Rm+4 - Rm

LDS.L @Rm+X1*° (Rm) - X1, 0100mmmm10010110 1 —
Rm+4 - Rm

LDS.L @Rm+,YO° (Rm) - YO, 0100mmmm10100110 1 —
Rm+4 - Rm

LDS.L @Rm+,Y1*° (Rm) - Y1, 0100mmmm10110110 1 —
Rm+4 - Rm

LDTLB PTEH/PTEL - TLB 0000000000111000 1 —

MAC.L @Rm+,@Rn+ Signed operation of 0000nnNnnmmmm1111 2 (o 5)*! —
(Rn) x (Rm) + MAC -
MAC

MAC.W @RmM+,@Rn+ Signed operation of 0100nnnnmmmm31111 2 (to5)*! —
(Rn) x (Rm) + MAC -
MAC

MOV #imm,Rn #imm - Sign extension 1110nnnniiiiiiii 1 —
- Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmmmO011 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) — Sign 11000100dddddddd 1 —
extension - RO

MOV.B @(disp,Rm),R0O (disp + Rm) — Sign 10000100mmmmdddd 1 —
extension - RO

MOV.B @(RO,Rm),Rn (RO + Rm) - Sign 0000nNNNMmMmm1100 1 —
extension - Rn

MOV.B @Rm+,Rn (Rm) - Sign extension 0110nnnnmmmmO0100 1 —
- Rn,Rm+1 - Rm

MOV.B @Rm,Rn (Rm) - Sign extension 0110nnNnnmmmmO000 1 —
- Rn

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd 1 —

MOV.B RO, @(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNNNMmMmMmmO100 1 —

MOV.B Rm,@-Rn Rn-1 - Rn,Rm - 0010nnnnmmmmO100 1 —
(Rn)

MOV.B Rm,@Rn Rm - (Rn) 0010nnNnnmmmmO000 1 —

117

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

MOV.L @(disp,GBR),RO (disp + GBR) - RO 11000110dddddddd ~ — 1 —

MOV.L @(disp,PC),Rn (disp + PC) - Rn 1101nnnndddddddd — 1 —

MOV.L @(disp,Rm),Rn (disp + Rm) - Rn 0101nnnnmmmmdddd — 1 —

MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000NnNNnNMmMmMmM1110 — 1 —

MOV.L @Rm+,Rn (Rm) - Rn, 0110nnnnmmmmO0110 — 1 —
Rm+4 - Rm

MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO0010 — 1 —

MOV.L RO,@(disp,GBR) RO - (disp + GBR) 11000010dddddddd ~ — 1 —

MOV.L Rm,@(disp,Rn) Rm - (disp + Rn) 0001nnnnmmmmdddd — 1 —

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNmmmmO110 — 1 —

MOV.L Rm,@-Rn Rn-4 - Rn, Rm - 0010nNnnnmmmmO110 — 1 —
(Rn)

MOV.L Rm,@Rn Rm - (Rn) 0010nNnNnNmMmmmmO010 — 1 —

MOV.W @(disp,GBR),R0 (disp + GBR) - Sign 11000101dddddddd — 1 —
extension - RO

MOV.W @(disp,PC),Rn (disp + PC) - Sign 1001nnnndddddddd — 1 —
extension - Rn

MOV.W @(disp,Rm),RO (disp + Rm) - Sign 10000101mmmmdddd — 1 —
extension - RO

MOV.W @(RO,Rm),Rn (RO + Rm) - Sign 000OnNnnnmmmm1101 — 1 —
extension — Rn

MOV.W @Rm+,Rn (Rm) - Sign extension 0110nnnnmmmmO0101 — 1 —
- Rn,Rm+2 - Rm

MOV.W @Rm,Rn (Rm) - Sign extension 0110nnnnmmmmO001 — 1 —
- Rn

MOV.W RO,@(disp,GBR) RO - (disp + GBR) 11000001dddddddd — 1 —

MOV.W RO,@(disp,Rn) RO - (disp + Rn) 10000001nnnndddd — 1 —

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNmMmmmmO101 — 1 —

MOV.W Rm,@-Rn Rn-2 - Rn, Rm - 0010nNnnnmmmmO101 — 1 —
(Rn)

MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 — 1 —

MOVA @(disp,PC),R0 disp + PC - RO 11000111dddddddd — 1 —

MOVT Rn T - Rn 0000nnNNn00101001 — 1 —

MUL.L Rm,Rn Rn xRm - MAC 0000nNnnNnmmmmO111 — 2 (to 5)*t —

MULS.WRm,Rn Signed operation of Rn - 0010nnnnmmmm1111 — 1(to3)*! —

xRm - MAC

118

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privlege Cycles T Bit
MULU.WRm,Rn Unsigned operation of Rn x ~ 0010nnnnmmmm1110 — 1 (to 3)**
Rm - MAC
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 — 1 —
NEGC Rm,Rn 0-Rm-T - Rn, Borrow - T 0110nnnnmmmm1010 — 1 Borrow
NOP No operation 0000000000001001 — 1 —
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 — 1 —_
OR #imm,R0O RO | imm - RO 1100101 Liiiiiiii — 1 —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 — 1 —
OR.B #imm, (RO + GBR) | imm - 1100111 Liiiiiiii — 3 —
@(RO,GBR) (RO + GBR)
PREF @Rn (Rn) - cache 0000nnNnn10000011 — 1/2%8 —
ROTCL Rn T<«Rn T 0100nnnNn00100100 — 1 MSB
ROTCR Rn T-Rn T 0100nnnn00100101 — 1 LSB
ROTL Rn T « Rn « MSB 0100nnnn00000100 — 1 MSB
ROTR Rn LSB - Rn - T 0100nnnNn00000101 — 1 LSB
RTE Delayed branch, 0000000000101011 v 4 —
SSR/SPC - SR/PC
RTS Delayed branch, PR -~ PC ~ 0000000000001011 — 2 —
SETRC R 12 lower bits of Rm — RC 0100mmmm00010100 — 3 —
(SR bits 27 to 16), repeat
control flag - RF1, RFO
SETRC #imm® imm - RC (SR bits 23 to 10000010iiiiiiii — 3 —
16), repeat control flag —
RF1, RFO
SETS 1-5S 0000000001011000 — 1 —
SETT 1-T 0000000000011000 — 1 1
SHAD Rm,Rn Rn=0; Rn << Rm - Rn 0100nnnnmmmm1100 — 1 —
Rn <0; Rn>>Rm -
(MSB-)Rn
SHAL Rn T<Rn-0 0100nnnn00100000 — 1 MSB
SHAR Rn MSB - Rn - T 0100nnnNn00100001 — 1 LSB
SHLD Rm,Rn Rn=0; Rn<<Rm - Rn 0100nnnnmmmm1101 — 1 —
Rn<0; Rn>>Rm - (0-)Rn
SHLL Rn T<Rn<0 0100nnnNn00000000 — 1 MSB

RENESAS

119

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 — 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — 1 —
SHLR Rn 0O-Rn-T 0100nnnn00000001 — 1 LSB
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 — 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnNn00101001 1 —
SLEEP Sleep 0000000000011011 v 4 —
STC GBR,Rn GBR - Rn 0000nnNn00010010 — 1 —
STC SR,Rn SR - Rn 0000nNNN00000010 v 1 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 v 1 —
STC SSR,Rn SSR - Rn 0000nNNN00110010 1 —
STC SPC,Rn SPC - Rn 0000nNNN01000010 1 —
STC MOD,R#° MOD - Rn 0000nnNnn01010010 — 1 —
STC RE,Rm® RE - Rn 0000nnnn01110010 — 1 —
STC RS,Rm+°® RS -~ Rn 0000nnNnn01100010 — 1 —
STC RO_BANK,Rn RO_BANK- Rn 0000nnNNN10000010 Vv 1 —
STC R1_BANK,Rn R1_BANK- Rn 0000nNNN10010010 vV 1 —
STC R2_BANK,Rn R2_BANK- Rn 0000nnNNN10100010 V 1 —
STC R3_BANK,Rn R3_BANK - Rn 0000nnnNN10110010 v 1 —
STC R4_BANK,Rn R4 _BANK - Rn 0000nnnNN11000010 v 1 —
STC R5_BANK,Rn R5_BANK - Rn 0000nnnNN11010010 v 1 —
STC R6_BANK,Rn R6_BANK- Rn 0000nnNNN11100010 V 1 —
STC R7_BANK,Rn R7_BANK - Rn 0000nnnN11110010 Vv 1 —
STC.L GBR,@-Rn Rn-4 - Rn, 0100nnnNn00010011 — 1/2%8 —
GBR - (Rn)
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 v 1/2%© —
STC.L VBR,@-Rn Rn—4 - Rn, 0100nnnn00100011 v 1/2%8 —
VBR - (Rn)
STC.L SSR,@-Rn Rn-4 - Rn, 0100nnNNn00110011 1/2%6 —
SSR - (Rn)
STC.L SPC,@-Rn Rn-4 - Rn, 0100nnNNn01000011 Vv 1/2%8 —
SPC - (Rn)
STC.L MOD,@-Rrn?® Rn-4 - Rn, MOD - (Rn) 0100nnnn01010011 v 2 —
STC.L RE,@-Rn*° Rn-4 - Rn, RE - (Rn) 0100nnnn01110011 v 2 —
120

RENESAS

Table 7-12

Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

STC.L RS,@-Rn*® Rn-4 - Rn, RS - (Rn) 0100nnnn01100011 vV 2 —

STC.L RO_BANK,@-Rn Rn-4 - Rn, 0100nnnn10000011 v 2 —
RO_BANK - (Rn)

STC.L R1_BANK,@-Rn Rn-4 - Rn, 0100nnnn10010011 v 2 —
R1_BANK - (Rn)

STC.L R2_BANK,@-Rn Rn-4 - Rn, 0100nnnn10100011 vV 2 —
R2_BANK - (Rn)

STC.L R3_BANK,@-Rn Rn-4 - Rn, 0100nnnn10110011 vV 2 —
R3_BANK - (Rn)

STC.L R4 BANK,@-Rn Rn-4 - Rn, 0100nnnn11000011 vV 2 —
R4_BANK - (Rn)

STC.L R5 _BANK,@-Rn Rn-4 - Rn, 0100nnnn11010011 V 2 —
R5_BANK - (Rn)

STC.L R6_BANK,@-Rn Rn-4 - Rn, 0100nnnn11100011 v 2 —
R6_BANK - (Rn)

STC.L R7_BANK,@-Rn Rn-4 - Rn, 0100nnnn11110011 v 2 —
R7_BANK - (Rn)

STS FPSCR, Rn*? FPSCR - Rn 0000nnNnn01101010 — 1 —

STS FPUL, Rn *3 FPUL - Rn 0000nnNNn01011010 — 1 —

STS MACH,Rn MACH - Rn 0000nnnn00001010 — 1 —

STS MACL,Rn MACL - Rn 0000nnNNn00011010 — 1 —

STS PR,Rn PR - Rn 0000nnNnn00101010 — 1 —

STS DSR,Rrt®° DSR - Rn 0000nnNNn01101010 — 1 —

STS AO0,Rn*® A0 - Rn 0000nnNnn01111010 — 1 —

STS X0,Rn*° X0 - Rn 0000nnNnn10001010 — 1 —

STS X1,Rn*® X1 - Rn 0000nnNnn10011010 — 1 —

STS YO,Rn*° YO - Rn 0000nnNNn10101010 — 1 —

STS Y1,Rn*® Y1l -~ Rn 0000nnNnn10111010 — 1 —

STS.L FPSCR,@-Rn*®* Rn-4 - Rn, 0100nnnn01100010 — 1 —
FPSCR - @Rn

STS.L FPUL,@-Rn*3 Rn-4 - Rn, 0100nnnn01010010 — 1 —
FPUL - @Rn

STS.L MACH,@-Rn Rn—4 - Rn, MACH - 0100nnnn00000010 — 1 —
(Rn)

STS.L MACL,@-Rn Rn-4 - Rn, MACL - 0100nnnn00010010 — 1 —
(Rn)

STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — 1 —

STS.L DSR,@-Rn*° Rn-4 - Rn,DSR - (Rn) 0100nnnn01100010 — 1 —

RENESAS

121

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit
STS.L A0,@-Rn *° Rn-4 - Rn, A0 - (Rn) 0100nnnn01110010 — 1 —
STS.L X0,@-Rn *° Rn-4 - Rn, X0 - (Rn) 0100nnnn10000010 — 1 —
STS.L X1,@-Rn *° Rn-4 - Rn, X1 - (Rn) 0100nnnn10010010 — 1 —
STS.L YO0,@-Rn *° Rn-4 - Rn, YO - (Rn) 0100nnnn10100010 — 1 —
STS.L Y1,@-Rn*° Rn-4 - Rn, Y1 - (Rn) 0100nnnn10110010 — 1 —
SUB Rm,Rn Rn-Rm - Rn 0011nnnnmmmm1000 — 1 —
SUBC Rm,Rn Rn-Rm-T - Rn, 0011nnnnmmmm1010 — 1 Borrow
Borrow - T
SUBV Rm,Rn Rn—Rm - Rn, Underflow 001lnnnnmmmm1011l — 1 Under-
- T flow
SWAP.B Rm,Rn Rm - Swap the two 0110nnnnmmmm1000 — 1 —
lowest-order bytes — Rn
SWAP.W Rm,Rn Rm - Swap two 0110nnnnmmmm31001 — 1 —
consecutive words —» Rn
TAS.B @Rn If(Rn)is0,1 - T;1 - 0100nnnn00011011 — 3/4%7 Test
MSB of (Rn) result
TRAPA #imm PC/SR - SPC/SSR, 1100001 Liiiiiiii — 6/8*8 —
(#imm) <<2 - TRA
VBR + H'0100 - PC
TST #imm,R0O RO & imm; if the resultis ~ 11001000iiiiiiii — 1 Test
0,1-T result
TST Rm,Rn Rn & Rm; if the result is 0, 0010nnnnmmmm1000 — 1 Test
1-T result
TST.B #imm, (RO + GBR) & imm; 110012100iiiiiiii — 3 Test
@(RO,GBR) iftheresultis0,1 - T result
XOR #imm,R0O RO~ imm - RO 1100101 iiiiiiii — 1 —
XOR Rm,Rn Rn”~*Rm - Rn 0010nnnnmmmm1010 — 1 —
XOR.B #imm, (RO + GBR) “imm - (RO 11001110Qiiiiiiii — 3 —
@(RO,GBR) + GBR)
XTRCT Rm,Rn Rm: Middle 32 bits of Rn 0010nnnnmmmm1101 — 1 —
- Rn

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the

122

w

©oNoGaA

number of cycles when there is contention with following instructions.

One state when it does not branch.

Indicates floating point instructions and FPU related CPU instructions. These
instructions can only be used with the SH-3E.

Three cycles on the SH3-DSP.

Five cycles on the SH3-DSP.

Two cycles on the SH3-DSP.

Four cycles on the SH3-DSP.

Eight cycles on the SH3-DSP.

CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

RENESAS

7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)

Table 7-13 shows the DSP data transfer instructions by category.

Table 7-13 DSP Data Transfer Instruction Categories

Instruction ~ Operation No. of
Category Types Code Function Instructions
Double data transfer 4 NOPX X memory no operation 14
instructions
MOVX X memory data transfer
NOPY Y memory no operation
MOVY Y memory data transfer
Single data transfer 1 MOVS Single data transfer 16
instructions
Total 5 Total 30

The data transfer instructions are divided into two groups, double data transfers and single data
transfers. Double data transfers are combined with DSP operation instructions to create DSP
parallel processing instructions. Parallel processing instructions are 32 bits long and include a
double data transfer instruction in field A. Double data transfers that are not parallel processing
instructions and single data transfer instructions are 16 bits long.

In double data transfers, X memory and Y memory can be accessed simultaneously in parallel.
One instruction is specified each for the respective X and Y memory data accesses. The Ax
pointer is used for accessing X memory; the Ay pointer is used for accessing Y memory. Double
data transfers can only access X and Y memory.

Single data transfers can be accessed from any area. In single data transfers, the Ax pointer an
two other pointers are used as the As pointer.

123
RENESAS

7.3.1 Double Data Transfer Instructions (X Memory Data)

Table 7-14 Double Data Transfer Instructions (X Memory Data)

Instruction Operation Code Cycles T Bit
NOPX No Operation 1111000*0*0*00** 1 —
MOVX.W (AX) - MSW of Dx,0 » LSW of 111100A*D*0*01** 1 —
@AXx,Dx Dx

MOVX.W (Ax) -~ MSW of Dx,0 - LSW of 111100A*D*0*10** 1 —
@AXx+,Dx Dx,Ax+2 - AX

MOVX.W (AX) - MSW of Dx,0 » LSW of 111100A*D*0*11** 1 —
@AX+Ix,Dx Dx,Ax+Ix — Ax

MOVX.W MSW of Da - (Ax) 111100A*D*1*01** 1 —
Da,@AX

MOVX.W MSW of Da - (Ax),Ax+2 - AX 111100A*D*1*10** 1 —
Da,@Ax+

MOVX.W MSW of Da - (Ax),Ax+Ix - AX 111100A*D*1*11** 1 —
Da,@AX+Ix

7.3.2 Double Data Transfer Instructions (Y Memory Data)

Table 7-15 Double Data Transfer Instructions (Y Memory Data)

Instruction Operation Code Cycles T Bit
NOPY No Operation 111100*0*0*0*00 1 —
MOVY.W (Ay) - MSW of Dy,0 . LSW of 111100*A*D*0*01 1 —
@Ay,Dy Dy

MOVY.W (Ay) - MSW of Dy,0 - LSW of 111100*A*D*0**10 1 —
@Ay+,Dy Dy, Ay+2 - Ay

MOVY.W (Ay) - MSW of Dy,0 . LSW of 111100*A*D*0**11 1 —
@Ay+ly,Dy Dy, Ay+ly - Ay

MOVY.W MSW of Da - (Ay) 111100*A*D*1*01 1 —
Da,@Ay

MOVY.W MSW of Da - (Ay),Ay+2 - Ay 111100*A*D*1**10 1 —
Da,@Ay+

MOVY.W MSW of Da— (Ay),Ay+ly Ay 111100*A*D*1*11 1 —
Da,@Ay+ly

124

RENESAS

7.3.3

Table 7-16 Single Data Transfer Instructions

Single Data Transfer Instructions

Instruction Operation Code Cycles T Bit

MOVS.W As-2 - As,(As) - MSW of 111101AADDDD0000 1 —

@-As,Ds Ds,0 - LSW of Ds

MOVSW @As,Ds (As) -MSW of Ds,0-LSW of 111101AADDDDO0100 1 —
Ds

MOVS.W @As+,Ds (As) -~MSW of Ds,0-LSW of 111101AADDDD1000 1 —
Ds, As+2 - As

MOVS.W (As) -MSW of Ds,0-LSW of 111101AADDDD1100 1 —

@As+Ix,Ds Ds, As+Ix —» As

MOVS.W As-2 - As,MSW of Ds - (As)* 111101AADDDDO0001 1 —

Ds,@-As

MOVSW Ds,@As MSW of Ds - (As)* 111101AADDDDO0101 1 —

MOVS.W Ds,@As+ MSW of Ds - (As),As+2 - As* 111101AADDDD1001 1 —

MOVS.W MSW of Ds - (As),As+Is - As* 111101AADDDD1101 1 —

Ds,@As+Is

MOVS.L As—4 - As,(As) »Ds 111101AADDDDO0010 1 —

@-As,Ds

MOVS.L @As,Ds (As) »Ds 111101AADDDDO0110 1 —

MOVS.L @As+Ds (As)-Ds,As+4 - As 111101AADDDD1010 1 —

MOVS.L (As) - Ds,As+ls - As 111101AADDDD1110 1 —

@As+Is,Ds

MOVS.L Ds, As—4 - As,Ds - (As) 111101AADDDDO0011 1 —

@-As

MOVS.L Ds,@As Ds - (As) 111101AADDDDO0111 1 —

MOVS.L Ds,@As+ Ds- (As),As+4 - As 111101AADDDD1011 1 —

MOVS.L Ds - (As),As+ls - As 111101AADDDD1111 1 —

Ds,@As+Is

Note: * When guard bit registers AOG and A1G are specified for the source operand Ds, data is

output to the LDB[7:0] bus and the sign bit is output to the top bits [31:8].

RENESAS

125

Table 7-17 lists the correspondence between DSP data transfer operands and registers. CPU co
registers are used as pointer addresses to indicate memory addresses.

Table 7-17 Correspondence between DSP Data Transfer Operands and Registers

SuperH (CPU Core) Registers

R4 R5
Oper- R2 R3 (Ax0) (Ax1) R6 R7 R8 R9
and RO R1 (As2) (As3) (As0) (Ax0) (Ay0) (Ay1) (Ix) (ly)

AX — — — — Yes Yes — — — —

Ix(Is) — — — — — — — — Yes —

DX = - = = === ===

Ay S — — — — Yes Yes — —

Dy - - - = === ===

pa - - - - = = = = = =

As — — Yes Yes Yes Yes — — — —

5 —

Oper- DSP Registers
and X0 X1 YO Y1 MO M1 A0 Al AOG AlG

AX = = = = = = = = = =

Ix(s) — — — — — — — — — _

Dx Yes Yes — — — — — — — —

S —

12—

Dy — — Yes Yes — — — — — —

Da — — — — — — Yes Yes — —

AS @ = = = = = = = = = =

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes indicates that the register can be set.

7.4 DSP Operation Instruction Set (SH3-DSP Only)

DSP operation instructions are digital signal processing instructions that are processed by the DS
unit. Their instruction code is 32 bits long. Multiple instructions can be processed in parallel. The
instruction code is divided into two fields, A and B. Field A specifies a parallel data transfer

instruction and field B specifies a single or double data operation instruction. Instructions can be

126
RENESAS

specified independently, and their execution is independent and in parallel. Parallel data transfe
instructions specified in field A are exactly the same as double data transfer instructions.

The data operation instructions of field B are of three types: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instructior
Table 7-18 shows the format of DSP operation instructions. The operands are selected
independently from the DSP register. Table 7-19 shows the correspondence of DSP operation
instruction operands and registers.

Table 7-18 Instruction Formats for DSP Operation Instructions

Classification Instruction Forms Instruction
Double data operation instructions (6 operands) ALUop. Sx, Sy, Du PADD PMULS,
MLTop. Se, Sf, Dg PSUB PMULS

Conditional single 3 operands ALUop. Sx, Sy, Dz PADD, PAND, POR,
data operation DCT ALUop. Sx, Sy PSHA, PSHL, PSUB,
instructions Dz T PXOR
DCF ALUop. Sx, Sy,
Dz
2 operands ALUop. Sx, Dz PCOPY, PDEC,
DCT ALUop. Sx, Dz PDMSB, PINC, PLDS,
' PSTS, PNEG
DCF ALUop. Sx, Dz
ALUop. Sy, Dz
DCT ALUop. Sy, Dz
DCF ALUop. Sy, Dz
1 operand ALUop. Dz PCLR, PSHA #imm,
DCT ALUop. Dz PSHL #mm
DCF ALUop. Dz
Unconditional single 3 operands ALUop. Sx, Sy, Du PADDC, PSUBC,
data operation MLTop. Se, Sf, Dg PWADD, PWSB, PMULS
instructions U
2 operands ALUop. Sx, Dz PCMP, PABS, PRND
ALUop. Sy, Dz

127
RENESAS

Table 7-19 Correspondence between DSP Operation Instruction Operands and Registers

ALU and BPU Instructions Multiplication Instructions
Register Sx Sy Dz Du Se Sf Dg
AO Yes — Yes Yes — — Yes
Al Yes — Yes Yes Yes Yes Yes
MO — Yes Yes — — — Yes
M1 — Yes Yes — — — Yes
X0 Yes — Yes Yes Yes Yes —
X1 Yes — Yes — Yes — —
YO — Yes Yes Yes Yes Yes —
Y1 — Yes Yes — — Yes —

When writing parallel instructions, first write the field B instruction, then the field A instruction.
The following is an example of a parallel processing program.

PADD A0,M0,A0 PMULSX0,YO,MO MOVX.W @R4+X0 MOVY.W @R6+,YO[]
DCF PINC X1,A1 MOVX.W AO,@R5+R8 MOVY.W@R7+,YO[]
PCMP X1,M0 MOVX.W @R4 [NOPYT[]

Text in brackets ([]) can be omitted. The no operation instructions NOPX and NOPY can be
omitted. Semicolons (;) are used to demarcate instruction lines, but can be omitted. If semicolons
are used, the space after the semicolon can be used for comments.

The individual status codes (DC, N, Z, V, GT) of the DSR register is always updated by
unconditional ALU operation instructions and shift operation instructions. Conditional instructions
do not update the status codes, even if the conditions have been met. Multiplication instructions
also do not update the status codes. DC bit definitions are determined by the specifications of the
CS bits in the DSR register.

128
RENESAS

Table 7-20 shows the DSP operation instructions by category.

Table 7-20 DSP Operation Instruction Categories

Instruction ~ Operation No. of In-
Classification Types Code Function structions
ALU ALU fixed decimal 11 PABS Absolute value 28
arith- point operation operation
metic instructions PADD Addition
opera- — -
tion PADD Addition and signed
instruc- PMULS multiplication
tions PADDC Addition with carry
PCLR Clear
PCMP Compare
PCOPY Copy
PNEG Invert sign
PSUB Subtraction
PSuUB Subtraction and signed
PMULS multiplication
PSUBC Subtraction with borrow
ALU integer 2 PDEC Decrement 12
operation
instructions PINC Increment
MSB detection 1 PDMSB MSB detection 6
instruction
Rounding operation 1 PRND Rounding 2
instruction
ALU logical operation 3 PAND Logical AND
instructions POR Logical OR 9
PXOR Logical exclusive OR
Fixed decimal point 1 PMULS Signed multiplication 1
multiplication instruction
Shift Arithmetic shift 1 PSHA Arithmetic shift 4
operation instruction
Logical shift 1 PSHL Logical shift 4
operation instruction
System control instructions 2 PLDS System register load 12
PSTS Store from system
register
Total 23 Total 78

129
RENESAS

7.4.1

ALU Arithmetic Operation Instructions

ALU Fixed Decimal Point Operation Instructions

Table 7-21 ALU Fixed Decimal Point Operation Instructions

Instruction Operation Code Cycles DC Bit
PABS Sx,Dz If Sx=0,Sx - Dz B O il 1 Update
If Sx<0,0— Sx - Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0,Sy - Dz e O il 1 Update
If Sy<0,0-Sy - Dz 1010100000yyzzzz
PADD Sx,Sy,Dz Sx+Sy Dz 11171 Qrkiakick 1 Update
10110001xxyyzzzz
DCT PADD if DC=1,Sx+Sy - Dz if O,nop 11111 (Qrerieieik 1 —
SxSy.Dz 10110010xxyyzzzz
DCF PADD if DC=0,Sx+Sy Dz if 1,nop 11111 (Qrerieieik 1 —
SxSy,Dz 10110011xxyyzzzz
PADD Sx,Sy,Du Sx+Sy - Du 11171 Qrkiariex 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of 0111eeffxxyygguu
Sf-Dg
PADDC Sx,Sy,Dz Sx+Sy+DC - Dz 11171 Qrkiariex 1 Update
10110000xxyyzzzz
PCLR Dz H'00000000 - Dz I O il 1 Update
100011010000zzzz
DCT PCLR Dz if DC=1,H'00000000 - Dz e O il 1 —
if 0,nop 100011100000zzzz
DCF PCLR Dz if DC=0,H'00000000 - Dz e T il 1 —
if 1,nop 100011110000zzzz
PCMP Sx,Sy Sx-Sy O i 1 Update
10000100xxyy0000
PCOPY Sx,Dz Sx Dz T i 1 Update
11011001xx00zzzz
PCOPY Sy,Dz Sy-Dz 1177 1 Qperiereroniox 1 Update
1111100100yyzzzz
DCT PCOPY if DC=1,Sx - Dz if O,nop 11111 Qperioreroniox 1 —
Sxbz 11011010xx00zzzz
130

RENESAS

Table 7-21 ALU Fixed Decimal Point Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
DCT PCOPY if DC=1,Sy - Dz if 0,nop 11111 Qrwtaork 1 —
Sy.bz 1111101000yyzzzz
DCF PCOPY if DC=0,Sx Dz if 1,nop 11117 Qrrbebork 1 —
Sx.bz 11011011xx00zzzz
DCF PCOPY if DC=0,Sy - Dz if 1,nop 11111 Qb 1 —
Sy.Dz 1111101100yyzzzz
PNEG Sx,Dz 0-Sx - Dz 11117 Qe 1 Update
11001001xx00zzzz
PNEG Sy,Dz 0-Sy Dz 11111 Qrktork 1 Update
1110100100yyzzzz
DCT PNEG Sx,Dz if DC=1,0-Sx-Dz 11111 Qrtoork 1 —
if 0,nop 11001010xx00zzzz
DCTPNEG Sy,Dz if DC=1,0-Sy-Dz 11111 Qe 1 —
if 0,nop 1110101000yyzzzz
DCF PNEG Sx,Dz if DC=0,0-Sx Dz 11117 Qrrbebork 1 —
if 1,nop 11001011xx00zzzz
DCFPNEG Sy,Dz if DC=0,0-Sy - Dz 11111 Qb 1 —
if 1,nop 1110101100yyzzzz
PSUB Sx,Sy,Dz Sx-Sy-Dz 11171 Qrkarek 1 Update
10100001xxyyzzzz
DCT PSUB if DC=1,Sx—Sy —» Dz if 0,nop 11111 Q¥rtwrikiaex 1 —
Sx.Sy,bz 10100010xxyyzzzz
DCF PSUB if DC=0,Sx—Sy -~ Dz if 1,nop 11111 Q#rtrikiex 1 —
Sx.Sy,bz 10100011xxyyzzzz
PSUB Sx,Sy,Du Sx—Sy - Du I e O il 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of 0110eeffxxyygguu
Sf-Dg
PSUBC Sx,Sy,Dz = Sx-Sy-DC - Dz 112110k 1 Update
10100000xxyyzzzz

RENESAS

131

ALU Integer Operation Instructions

Table 7-22 ALU Integer Operation Instructions

Instruction Operation Code Cycles DC Bit

PDEC Sx,Dz MSW of Sx— 1 — MSW of 11111(0wwesemen: 1 Update
Dz, clear LSW of Dz 10001001xx002222

PDEC Sy,Dz MSW of Sy —1 - MSW of 111110%wesemen: 1 Update
Dz, clear LSW of Dz 10101001xx007z22

DCTPDECSxDz If DC=1, MSW Of Sx =1 — 11111Qwsmmencc 1 —
'I\D"ZS‘{‘f’ (c)’yf rli)zp’ clear LSW of 10001010xx007222

DCTPDECSyDz IfDC=1, MSW Of Sy —1 - 11111Qwssmence 1 —
'\D"f"l‘f’ g'f rli)zp, clearLSWof 10101010xx002222

DCFPDECSxDz If DC=0, MSW Of Sx =1 - 11111Qwssemne 1 —
'\D"f‘f}’ f’f ri)zr; clear LSW of 10001011xx007222

DCFPDECSy,Dz If DC=0, MSW Of Sy =1 — 11111Qwsmmence 1 —
'I\D"ZS‘{‘f’ f’f rli)zp’ clear LSW of 10101011xx007272

PINC Sx,Dz MSW Of Sx + 1 MSW of 1111 1(wseseseses 1 Update
Dz, clear LSW of Dz 10011001xx002222

PINC Sy,Dz MSW Of Sy + 1 MSW of 1111 1(wsereseres 1 Update
Dz, clear LSW of Dz 1011100100yyzzzz

DCTPINCSxDz IfDC=1, MSW Of Sx + 1 - 11111(wssemee 1 —
'\D"f‘f}’ g’f ri)zr; clear LSW of 10011010xx002222

DCTPINCSy,Dz IfDC=1, MSW Of Sy + 1 — 11111Qwsrmeecc 1 —
'I\D"ZS‘{‘f’ (c)’yf rli)zp’ clear LSW of 1011101000yyzzzz

DCFPINCSxDz If DC=0, MSW Of Sx + 1 — 11111Qwssmence 1 —
'\D"f"l‘f’ f’f rli)zp, clearLSWof 10011011xx002222

DCFPINCSyDz IfDC=0, MSW Of Sy + 1 - 11111Qwssnne 1 —
'\D"f‘f}’ f’f ri)zr; clear LSW of 1011101100yyzzzz

132

RENESAS

MSB Detection Instructions

Table 7-23 MSB Detection Instructions

Instruction Operation Code Cycles DC Bit
PDMSB Sx,Dz Sx data MSB position - 112110k 1 Update
'E)AZSW of Dz, clear LSW of 10011101xx00zzzz
PDMSB Sy,Dz Sy data MSB position — 11111 Qrierikk 1 Update
,|\3/IZSW of Dz, clear LSW of 1011110100yyzzzz
DCT PDMSB If DC=1, Sx data MSB 11117 Qrwekioek 1 —
Sx,Dz position - MSW pf Dz, 10011110xx002222
clear LSW of Dz; if 0, nop
DCT PDMSB If DC=1, Sy data MSB 11171 Qrkirik 1 —
Sy,Dz position - MSW pf Dz, 1011111000yyzzzz
clear LSW of Dz; if 0, nop
DCF PDMSB If DC=0, Sx data MSB 11111 Qrkikick 1 —
Sx,Dz position - MSW pf Dz, 100111113¢002222
clear LSW of Dz; if 1, nop
DCF PDMSB If DC=0, Sy data MSB 11117 Qreekiieek 1 —
Sy,Dz position - MSW pf Dz, 1011111100yyzzzz
clear LSW of Dz; if 1, nop
Rounding Operation Instructions
Table 7-24 Rounding Operation Instructions
Instruction Operation Code Cycles DC Bit
PRND Sx,Dz Sx+H'00008000 - Dz 11117 Qrwekiaek 1 Update
clear LSW of Dz 10011000xx00zzzz
PRND Sy,Dz Sy+H'00008000 - Dz 11171 Qrkirek 1 Update
clear LSW of Dz 1011100000yyzzzz

RENESAS

133

7.4.2

ALU Logical Operation Instructions

Table 7-25 ALU Logical Operation Instructions

Instruction Operation Code Cycles DC Bit

PAND Sx,Sy,Dz SX & Sy - Dz, clear LSW 112170k 1 Update
of Dz 10010101xxyyzzz2

DCT PAND If DC=1, Sx & Sy - Dz, B O i 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10010110xxyyzzzz

DCF PAND If DC=0, Sx & Sy - Dz, B O i 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10010111xxyyzz72

POR Sx,Sy,Dz Sx | Sy — Dz, clear LSW of = 11111 (Q#rkeriakioer 1 Update
Dz 10110101xxyyzzzz

DCT POR If DC=1, Sx | Sy - Dz, 11171 Qrkiarx 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110xxyyzzzz

DCF POR If DC=0, Sx | Sy - Dz, 11171 Qekiarik 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzzz2

PXOR Sx,Sy,Dz Sx”* Sy - Dz, clear LSW 11111 Qtwrkakk 1 Update
of Dz 10100101xxyyzzzz

DCT PXOR If DC=1, Sx* Sy - Dz, B O i 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10100110xxyyzzzz

DCF PXOR If DC=0, Sx " Sy - Dz, B O i 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10100111xxyyzzz2

7.4.3 Fixed Decimal Point Multiplication Instructions

Table 7-26 Fixed Decimal Point Multiplication Instructions

Instruction Operation Code Cycles DC Bit

PMULS Se,Sf,Dg MSW of Se x MSW of B O i 1 —
Sf-Dg 0100eeff0000gg00

134

RENESAS

7.4.4 Shift Operation Instructions

Arithmetic Shift Instructions

Table 7-27 Arithmetic Shift Instructions

Instruction Operation Code Cycles DC Bit
PSHA Sx,Sy,Dz if Sy=0,Sx<<Sy - Dz O i 1 Update
if Sy<0,Sx>>Sy - Dz 10010001xxyyzzzz
DCT PSHA if DC=1 & 11711 Qporiorieroriox 1 —
Sx,Sy,Dz Sy=0,Sx<<Sy Dz 10010010xxyyzzzz
if DC=1 &
Sy<0,Sx>>Sy - Dz
if DC=0,nop
DCF PSHA if DC=0 & O il 1 —
Sx,Sy,Dz Sy=0,Sx<<Sy - Dz 10010011xxyyzzzz
if DC=0 &
Sy<0,Sx>>Sy - Dz
if DC=1,nop
PSHA #imm,Dz if imm=0,Dz<<imm - Dz 11111 Qb 1 Update
if imm<0,Dz>>imm - Dz 0000Qiiiiiiizzzz

135
RENESAS

Logical Shift Operation Instructions

Table 7-28 Logical Shift Operation Instructions

Instruction

Operation

Code

Cycles

DC Bit

PSHL Sx,Sy,Dz

if Sy=0,Sx<<Sy - Dz, clear
LSW of Dz

if Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

e B O il
10000001xxyyzzzz

Update

DCT PSHL
Sx,Sy,Dz

if DC=1 &
Sy=0,Sx<<Sy - Dz, clear
LSW of Dz

if DC=1 &

Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

if DC=0,nop

1177 1 Qperierieroniox
10000010xxyyzzzz

DCF PSHL
Sx,Sy,Dz

if DC=0 &
Sy=0,Sx<<Sy - Dz, clear
LSW of Dz

if DC=0 &

Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

if DC=1,nop

1177 1 Qperiereroniox
10000011xxyyzzzz

PSHL #imm,Dz

if imm=0,Dz<<imm - Dz,
clear LSW of Dz

if imm<0,Dz>>imm - Dz,
clear LSW of Dz

112170k

Update

136

RENESAS

7.4.5 System Control Instructions

Table 7-29 System Control Instructions

Instruction Operation Code Cycles DC Bit
PLDS Dz - MACH 11111 (womtmn 1 —
Dz,MACH 111011010000zzzz

PLDS Dz MACL 11111 0¥k 1 —
Dz MACL 111111010000zzzz

DCT PLDS if DC=1,Dz — MACH 11111 0Fwememsk 1 —
Dz MACH if 0,nop 111011100000zzzz

DCT PLDS if DC=1,Dz - MACL 11111 0Frememnk 1 —
Dz MACL if 0,nop 111111100000zzzz

DCF PLDS if DC=0,Dz — MACH 11111 0wemtmnk 1 —
Dz MACH if 1,nop 1110111100002z27

DCF PLDS if DC=0,Dz — MACL 11111 (wemtmns 1 —
Dz MACL if 1,nop 111111110000zz2z

PSTS MACH - Dz 11111 (womtmn 1 —
MACH.Dz 110011010000zzzz

PSTS MACL . Dz 11111 0¥k 1 —
MACL.Dz 110111010000zzzz

DCT PSTS if DC=1,MACH - Dz 11111 0Fwememsk 1 —
MACH,Dz if 0,nop 110011100000zzzz

DCT PSTS if DC=1,MACL - Dz 11111 0Fwemmnk 1 —
MACL,Dz if 0,nop 110111100000zzzz

DCF PSTS if DC=0,MACH - Dz 11111 0wemtrnk 1 —
MACH,Dz if 1,nop 1100111100002z27

DCF PSTS if DC=0,MACL — Dz 11111 (wemtmns 1 —
MACL,Dz if 1,nop 110111110000zzzz

7.4.6 NOPX and NOPY Instruction Code

When there is no data transfer instruction to be processed in parallel with the DSP operation
instruction, a NOPX or NOPY instruction can be written as the data transfer instruction or the
instruction can be omitted. The operation code is the same in either case. Table 7-30 shows the
NOPX and NOPY instruction code.

137
RENESAS

Table 7-30 Sample NOPX and NOPY Instruction Code

Instruction Code

PADD X0, YO, AO MOVX. W @R4+, X0 MOVY.W @R6+R9, YO 1111100010110000
1000000010100000

PADD X0, YO, AO NOPX MOVY.W @R6+R9, YO 1111100000110000
1000000010100000

PADD X0, YO, A0 NOPX NOPY 1111100000000000
1000000010100000

PADD X0, YO, A0 NOPX

PADD X0, YO, AO

MOVX. W @R4+, X0 MOVY.W @R6+R9, YO 1111000010110000
MOVX. W @R4+, X0 NOPY 1111000010000000
MOVS. W @R4+, X0 1111011010000000
NOPX MOVY.W @R6+R9, YO 1111000000110000
MOVY.W @R6+R9, YO
NOPX NOPY 1111000000000000
NOP 0000000000001001

138
RENESAS

Section 8 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in sectiol
8.1. The actual descriptions begin at section 8.2.

8.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit

Assembler input format; A brief description Displayed in Number of The value of
imm and disp are numbers, of operation order MSB - cycles when T bit after the
expressions, or symbols LSB there is no instruction is

wait state executed

Note: Section 8.2 contains an description of CPU instructions common to the SH-3, SH-3E, and
SH3-DSP, section 8.3 covers floating point instructions that can only be used with the SH-
3E, and section 8.4 covers DSP data transfer instructions that can only be used with the
SH3-DSP.

The number of execution cycles required for floating point instructions is determined by the
latency and pitch values. "Latency" refers to the number of cycles required to generate the
result value for the operation, and "pitch" indicates the number of wait cycles required
before execution of the next instruction can begin. The latency and pitch values are the
same for most CPU instructions, indicating that they each require one execution cycle.

Description: Description of operation
Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding c
an operation. The following resources should be used.

» Reads data of each length from address Addr. An address error will occur if word data is reac
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char ~ Read_Byte(unsigned long Addr);
unsigned short Read_Word(unsigned long Addr);
unsigned long Read_Long(unsigned long Addr);

» Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char ~ Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short ~ Write_Word(unsigned long Addr, unsigned long Data);
unsigned long ~ Write_Long(unsigned long Addr, unsigned long Data);

139
RENESAS

 Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as having illegal slots (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF
Delay_Slot(unsigned long Addr);
* List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR,;
unsigned long MACH,MACL,PR;
unsigned long PC;

» Definition of SR structures:

struct SRO {
unsigned long dummyO:4;
unsigned long RC0:12;
unsigned long dummy1:4;
unsigned long DMYO:1;
unsigned long DMXO0:1;
unsigned long MO0:1;
unsigned long QO0:1;
unsigned long 10:4;
unsigned long RF10:1;
unsigned long RF00:1;
unsigned long S0:1;
unsignedlong TO:1;

%
» Definition of bits in SR:

#define M ((*(struct SRO *)(&SR)).M0)
#define Q ((*(struct SRO *)(&SR)).Q0)
#define S ((*(struct SRO *)(&SR)).S0)
#define T ((*(struct SRO *)(&SR)).TO)
#define RF1 ((*(struct SRO *)(&SR)).RF10)
#define RFO ((*(struct SRO *)(&SR)).RF00)

140
RENESAS

 Error display function:
Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instructi
ThereforePC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics suclalag are assembler control instructions
(listed below). For more information, see thwss Assembler User Manual.

.org Location counter set

.data.w Securing integer word data

.data. Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Notes: The SH series cross assembler version 1.0 does not support the conditional assembler
functions.

1. For the following addressing modes involving displacement (disp), the assembler
descriptors in this manual indicate values before scaling ((1, (2, (3, (4) to match the
operand size. This is done to clarify the operation of the LSI device. Refer to the
applicable assembler notation rules for the actual assembler descriptors.

@(disp: 4, Rn); Register indirect with displacement
@(disp: 8, GBR); GBR indirect with displacement
@(disp: 8, PC); PC relative with displacement
disp: 8, disp: 12; PC relative

2. Of the 16 bits of the instruction code, codes not assigned as instructions or privileged
instructions in the user mode (excluding instructions that access GBR) are treated as
general invalid instructions and invalid instruction exception processing is performed.
Example: H'FFFF [general invalid instruction]

3. If the instruction following a delayed branching instruction such as BRA and BT/S is &
general invalid instruction or a PC overwrite instruction (branching instruction, etc.)
(such instructions are referred to as "slot invalid instructions"), slot invalid instruction
exception processing is performed.

4. Inthe SH3-DSP, if a general invalid instruction, a PC overwrite instruction (branching
instruction, etc.), or an instruction (SETRC, LDRS, LDRE, LDC) that overwrites the
SR, RS, or RE register is contained within a repeating program (loop) consisting of

141
RENESAS

three or fewer instructions or within the final three instructions of a repeating program
(loop) consisting of four or more instructions, invalid instruction exception processing
is performed. For details, refer to 5.12 DSP Repeat (Loop) Control.

142
RENESAS

8.2 Instruction Description (Listing and Description of Instructions
Common to the SH-3, SH-3E and SH3-DSP)

8.2.1 ADD (Add Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADD Rm,Rn Rm+ Rn - Rn 0011nnnnmmmmZ1100 1 —
ADD #imm,Rn Rn +imm - Rn 0111nnnniiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extenc
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) * ADD Rm,Rn */

{
R[n}+=R[m];
PC+=2,

}

ADDI(long i,longn) /* ADD #mm,Rn */

{
if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFFOO | (long)i);
PC+=2;

}

Examples:
ADD RO,R1 ; Before execution RO =H'7FFFFFFR1 = H'00000001

: After execution R1 = H'80000000

ADD #H01,R2 ; Before execution R2 =H'00000000
: After execution R2 = H'00000001

ADD #HFER3 ; Before execution R3 = H'00000001
; After execution R3 = H'FFFFFFFF

143
RENESAS

8.2.2 ADDC (Add with Carry): Arithmetic Instruction
Format Abstract Code Cycle TBIt
ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 0011lnnnnmmmm21110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bit

Operation:

ADDC (long m,long n) ¥ ADDC Rm,Rn */

{
unsigned long tmpO,tmp1;

tmp1=R[n}+R[m];
tmpO=R[n];
RINJ=tmpl1+T;
if (tmpO>tmp1) T=1;
else T=0;
if tmp1>R[n]) T=1;
PC+=2;
}
Examples:
CLRT ;RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC R3R1 ;Before execution T =0, R1 =H'00000001, R3 = H'FFFFFFFF
; After execution T =1, R1 =H0000000
ADDC R2,RO ;Before execution T =1, RO = H'00000000, R2 = H'00000000
; After execution T =0, RO = H'00000001
144

RENESAS

8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction
Format Abstract Code Cycle T Bit

ADDV Rm,Rn Rn + Rm - Rn, overflow -~ T 0011lnnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overfloy
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) FADDV Rm,Rn */
{

long dest,src,ans;

if (long)R[N]>=0) dest=0;

else dest=1;

if (long)R[M]>=0) src=0;

else src=1;

src+=dest;

R[n+=R[m];

if (long)R[N[>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV ROR1 :Before execution RO = H'00000001, R1 =H'7FFFFFFE, T=0
: After execution R1 =H7FFFFFFF, T=0

ADDV ROR1 :Before execution RO = H'00000002, R1 = H'7FFFFFFE, T=0
: After execution R1 =H'80000000, T=1

145
RENESAS

8.2.4 AND (AND Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 1 —

AND #mm,RO RO & imm - RO 11001001iiiiiiii 1 —

AND.B #mm,@(RO,GBR) (RO + GBR) & imm - 11001 101iiiiiii 3 —
(RO + GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result ir
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate

data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.

Operation:

AND(long m,long n)
{

/* AND Rm,Rn */

R[n]&=R[m]
PC+=2;

}

ANDI(longi) / AND #mm,R0 */

{
R[0]&=(0x000000FF & (long)i);
PC+=2;

}

ANDM(longi) /* AND.B #imm,@(RO,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

146

RENESAS

Examples:

AND RO,R1 : Before execution
: After execution
AND #H'OF,RO ;. Before execution

: After execution

AND.B #H80,@(R0O,GBR) ; Before execution

: After execution

RENESAS

RO = HAAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = H'FFFFFFFF
RO = H'0000000F

@(RO,GBR) = HA5
@(RO,GBR) = H'80

147

8.2.5 BF (Branch if False): Branch Instruction
Format Abstract Code Cycle TBIt

BF label When T =0, disp x2 + PC - PC; 10001011ddddddadd 3/1 —
When T =1, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reac
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle. If this instruction is located
in a delayed slot immediately following a delayed branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BF(long d) /*BF disp */

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==0) PC=PC-+(disp<<1)+4;
else PC+=2;
}
Example:
CLRT ;T is always cleared to 0
BT TRGET_T :Does not branch, because T =0
BF TRGET_F Branches to TRGET_F, because T=0
NOP
NOP ;« The PC location is used to calculate the branch destination
; address of the BF instruction
TRGET_F: ; « Branch destination of the BF instruction
148

RENESAS

8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

BF label When T =0, disp x2 + PC - PC; 10001111dddddddd 2/1 —
When T =1, nop

Description: Reads the T bit, and if T = 1, BF executes the next instruction. If T = 0, it branches
after executing the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to ree
the branch destination, use BF with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.

149
RENESAS

Operation:

BFS(long d) [* BFS disp */

{
long disp;
unsigned long temp;
temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==0){
PC=PC+(disp<<1)+4;
Delay_Slot(temp+2);
}
else PC+=2;
}
Examples:
SETT ;Tis always 1
BF/S TARGET F ;Does not branch, because T =1
NOP
BT/S TARGET T ;Branchesto TARGET, because T =1
ADD ROR1 ; Executed before branch
NOP ;< The PC location is used to calculate the branch destination
; address of the BT/S instruction
TRGET_T: ;. « Branch destination of the BT/S instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

150
RENESAS

8.2.7 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

BRA label dispx2+PC - PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC point
the starting address of the second instruction after this BRA instruction. The 12-bit displacemen
sign-extended and doubled. Consequently, the relative interval from the branch destination is —
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the ne
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

BRA(ongd) #~BRAdisp*
{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF0Q0 | d);

temp=PC;

PC=PC+(disp<<1)+4;
Delay_Slot(temp+2);

151
RENESAS

Examples:

BRA
ADD
NOP

TRGET:

TRGET Branches to TRGET
RORL ;Executes ADD before branching

:— The PC location is used to calculate the branch destination
: address of the BRA instruction

: « Branch destination of the BRA instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

152

RENESAS

8.2.8 BRAF (Branch Far): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt
BRAF Rm Rm + PC - PC 0000nNNN00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction. If this instruction is located in a delayed slot immediately following a delayed branch
instruction, it is acknowledged as an illegal slot instruction.

Operation:

BRAF(ongm) /¥ BRAFRm*

{
unsigned long temp;
temp=PC;
PC+=R[m];
Delay_Slot(temp+2);
}
Examples:
MOV.L #TARGET-BSRF _PC)R0 ; Sets displacement.
BRAF TRGET Branches to TARGET
ADD RO,R1 ; Executes ADD before branching
BRAF_PC: ; < The PC location is used to calculate the
; branch destination address of the BRAF
; instruction
NOP
TARGET: ; < Branch destination of the BRAF instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching

153
RENESAS

destination address is stored, the contents of the register before updating will be used as
the branching destination address.

8.2.9 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

BSR label PC - PR, dispx2+PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address o
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be usec
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure cal

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the nex
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

154
RENESAS

Operation:

BSR(long d) F*BSR disp */

{
long disp;
if ((d8&0x800)==0) disp=(0XO0000FFF & d);
else disp=(0xFFFFF000 | d);
PR=PC,
PC=PC+(disp<<1)+4;
Delay_Slot(PR+2);
}
Examples:
BSR TRGET Branches to TRGET
MOV R3R4 ;Executes the MOV instruction before branching
ADD RORL ; « The PC location is used to calculate the branch destination
; address of the BSR instruction (return address for when the
; subroutine procedure is completed (PR data))
TRGET: ; — Procedure entrance
MOV R2,R3
RTS ;Returns to the above ADD instruction
MOV #1,R0 ; Executes MOV before branching
Note: In delayed branching, the branching operation itself takes place after the slot instruction

has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

155
RENESAS

8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

BSRF Rm PC - PR,Rm+PC - PC 0000NNNN00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the nex
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

Operation:

BSRF(longm) /*BSRFRm*

{
PR=PC;
PC+=R[m];
Delay_Slot(PR+2);
}
156

RENESAS

Examples:

MOV.L #TARGET-BSRF_PC),R0 ; Sets displacement.
BRSF @RO Branches to TARGET
MOV R3R4 :Executes the MOV instruction before
; branching
BSRF_PC: ; « The PC location is used to calculate the
; branch destination with BSRF
ADD RO,R1
TARGET: ; — Procedure entrance
MOV R2,R3
RTS ;Returns to the above ADD instruction
MOV #1,R0 ; Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

157
RENESAS

8.2.11 BT (Branch if True): Branch Instruction
Format Abstract Code Cycle TBIt

BT label WhenT=1,dispx2+PC - PC; 10001001dddddddd 3/1 —
When T =0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reac
the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle. If this instruction is
located in a delayed slot immediately following a delayed branch instruction, it is acknowledged
as an illegal slot instruction.

Operation:

BT(long d) /*BT disp */

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==1) PC=PC-+(disp<<1)+4;
else PC+=2;
}
Examples:
SETT ; Tis always 1
BF TRGET_F ;Does notbranch, because T =1
BT TRGET_T Branchesto TRGET_ T, because T=1
NOP
NOP ;« The PC location is used to calculate the branch destination
; address of the BT instruction
TRGET_T: ; — Branch destination of the BT instruction
158

RENESAS

8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction
Format Abstract Code Cycle TBIt

BT/S label WhenT=1,dispx2+PC - PC; 10001101dddddddd 2/1 —
When T =0, nop

Description: Reads the T bit, and if T = 1, BT/S branches after the following instruction executes
If T = 0, BT/S executes the next instruction. The branch destination is an address specified by P
+ displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to ree
the branch destination, use BT/S with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.

Operation:

BTS(ongd) /*BTSdisp*

{
long disp;
unsigned long temp;
temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==1) {
PC=PC+(disp<<1)+4;
Delay_Slot(temp+2);
}
else PC+=2;
}

159
RENESAS

Examples:

SETT ;Tis always 1
BF/S TARGET F ;Does not branch, because T =1
NOP
BT/S TARGET T ;Branches to TARGET, because T=1
ADD RORL1 ; Executes before branching.
NOP ;— The PC location is used to calculate the branch destination
; address of the BT/S instruction
TARGET T: ; — Branch destination of the BT/S instruction
Note: In delayed branching, the branching operation itself takes place after the slot instruction

160

has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

RENESAS

8.2.13 CLRMAC (Clear MAC Register): System Control Instruction
Format Abstract Code Cycle TBIt

CLRMAC 0 - MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.
Operation:

CLRMAC() /*CLRMAC?

{
MACH=0;
MACL=0;
PC+=2;

}

Examples:

CLRMAC ;Initializes the MAC register
MACW @RO+@R1+ Multiply and accumulate operation
MACW @RO+@R1+

161
RENESAS

8.2.14 CLRS (Clear S Bit): System Control Instruction
Format Abstract Code Cycle TBIt

CLRS 0-5S 0000000001001000 1 —

Description: Clears the S hit.
Operation:

CLRS() #CLRS*

{
S=0;
PC+=2,
}
Examples:
CLRS :Before execution S=1
; After execution S=0
162

RENESAS

8.2.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code Cycle TBit
CLRT 0-T 0000000000001000 1 0
Description: Clears the T bit.
Operation:
CLRT() /*CLRT?¥
{
T=0;
PC+=2;
}
Examples:
CLRT :Before execution T=1
; After execution
163

RENESAS

8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code Cycle TBIit
CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnNnnmmmmO000 1 Comparison
result
CMP/GE Rm,Rn When signed and Rn = 0011nnnnmmmmO011 1 Comparison
Rm,1 T result
CMP/GT Rm,Rn When signed and Rn > 001lnnnnmmmmoO0111 1 Comparison
Rm,1 T result
CMP/HI Rm,Rn When unsigned and Rn > 0011nnnnmmmmO0110 1 Comparison
Rm,1 T result
CMP/HS Rm,Rn When unsigned and Rn > 0011nnnnmmmmO0010 1 Comparison
Rm,1 T result
CMP/PL Rn WhenRn>0,1 - T 0100nnnn00010101 1 Comparison
result
CMP/PZ Rn WhenRn=0,1 - T 0100nnnNN00010001 1 Comparison
result
CMP/STR Rm,Rn When a byte in Rn 0010nnnnmmmm1100 1 Comparison
equals a byte in Rm, 1 - result
T
CMP/EQ #mm,RO WhenRO=imm,1 - T 10001000iiiiiii 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specifie
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied, and the Rn
data does not change. The nine conditions in table 8-1 can be specified. Conditions PZ and PL a
the results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 8-1 shows the
mnemonics for the conditions.

164
RENESAS

Table 8-1

CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn IfRN=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm with signed data, T =1
CMP/GT Rm,Rn If Rn > Rm with signed data, T=1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T =1
CMP/HS Rm,Rn If Rn = Rm with unsigned data, T =1
CMP/PL Rn IfRN>0,T=1

CMP/PZ Rn IfRN=0,T=1

CMP/STR Rm,Rn If a byte in Rn equals a byte inRm, T=1
CMP/EQ #imm,R0O IfRO=imm, T=1

Operation:

CMPEQ(long m,long n)

*CMP_EQ Rm,Rn */

CMP_GE Rm,Rn/

¥ CMP_GT Rm,Rn */

{
if (R[n]==R[m]) T=1,
else T=0;
PC+=2;
}
CMPGE(long m,long n)
{
if (long)R[n}>=(long)R[m]) T=1;
else T=0;
PC+=2;
}
CMPGT (long m,long n)
{
if (long)R[n]>(long)R[m]) T=1;
else T=0;
PC+=2;
}

RENESAS

165

CMPHI(long m,long n) [*CMP_HIRm,Rn */

{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;
PC+=2;
}
CMPHS(long m,long n) f*CMP_HS Rm,Rn */
{
if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2;
}
CMPPL(long n) /*CMP_PL Rn*/
{
if ((long)R[n]>0) T=1;
else T=0;
PC+=2;
}
CMPPZ(longn) /*CMP_PZRn*/
{
if (long)R[n}>=0) T=1;
else T=0;
PC+=2;
}

CMPSTR(long m,long n) / CMP_STR Rm,Rn */
{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]"R[m];

HH=(temp&O0xFF000000)>>12;
HL=(temp&O0x00FF0000)>>8;
LH=(temp&0x0000FF00)>>4; LL=temp&Ox000000FF;
HH=HH&&HL &&I H&&LL;

if (HH==0) T=1,

else T=0;

166
RENESAS

PC+=2,

}

CMPIM(long i) ¥ CMP_EQ #imm,R0 */

{
long imm;
if ((i&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFFOO | (long i));
if (R[O]==imm) T=1;
else T=0;
PC+=2;

}

Examples:

CMP/GE RO,R1 ;RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ;Does not branch because T =0
CMP/HS RO,R1 ;RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T Branches because T=1
CMP/STR R2,R3 ;R2 =“ABCD”", R3 = “XYCZ"
BT TRGET_T Branches because T=1

RENESAS

167

8.2.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code Cycle TBit
DIVOS RmRn MSBofRn - Q, 0010NnnNnnmmmmO0111 1 Calculation
MSB of Rm - M,M"Q - T result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOS(long m,long n) f*DIVOS Rm,Rn */
{

if (R[N]&0x80000000)==0) Q=0;

else Q=1;

if (R[m]&0x80000000)==0) M=0;

else M=1,;

T=(M==Q);

PC+=2;
}

Examples: See DIV1.

168
RENESAS

8.2.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction
Format Abstract Code Cycle TBIt

DIVoU 0 - M/IQIT 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU ¥/

{
M=Q=T=0;
PC+=2;

}

Example: See DIV1.

169
RENESAS

8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code Cycle TBIt
DIVl RmRRn 1 step division (Rn + Rm) 0011nnnnmmmmO2100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
orthe M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(remainder) = (dividend) — (divisoR) (quotient)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

170
RENESAS

Operation:

DIV1(long m,long n) *DIV1Rm,Rn*

{

unsigned long tmp0;
unsigned char old_qg,tmp1,;

old_g=Q;
Q=(unsigned char)((0x80000000 & R[n])!=0);
R[nj<<=1;
R[n]|=(unsigned long)T;
switch(old_qg){
case 0:switch(MY{
case 0:tmpO=R]n];
R[n}-=R[m];
tmpl=(R[n[>tmp0);
switch(QX
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmpO=R[n];
R[n}+=R[m];
tmpl=(R[n]<tmpO);
switch(QX
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1.Q=tmp1;
break;

break;

break;

RENESAS

171

case 1:switch(M){
case 0:tmpO=R]n];
R[n}+=R[m];
tmpl=(R[n]<tmp0);
switch(QX
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmpO=R[n];
Rn}-=R[m];
tmpl=(R[n]>tmp0);
switch(QX
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1.Q=tmp1;
break;

}
break;

}
break;
}
T:(::M);
PC+=2;

172
RENESAS

Example 1:

; R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned

SHLL16 RO ; Upper 16 bits = divisor, lower 16 bits = 0

TST RO,RO ; Zero division check

BT ZERO_DIV

CMP/HS RO,R1 ; Overflow check

BT OVER_DIV

DIVOU ; Flag initialization

.arepeat 16

DIV1 RO,R1 ; Repeat 16 times

.aendr

ROTCL R1

EXTUW R1,R2 ; R1 = Quotient
Example 2:

: R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits): Unsigned

TST RO,RO ; Zero division check
BT ZERO DIV

CMP/HS RO,R1 ; Overflow check

BT OVER_DIV

DIVOU ; Flag initialization
.arepeat 32

ROTCL R2 Repeat 32 times
DIVl RO,R1

.aendr

ROTCL R2 R2 = Quotient

173
RENESAS

Example 3:

; R1 (16 bits)/R0 (16 bits) = R1 (16 bits): Signed

SHLL16 RO ; Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 : Sign-extends the dividend to 32 bits

XOR R2,R2 R2=0

MOV R1,R3

ROTCL R3

SUBC R2,R1 :Decrements if the dividend is negative

DIVOS RO,R1 ; Flag initialization

.arepeat 16

DIV1 RO,R1 ; Repeat 16 times

.aendr

EXTS.W R1,R1

ROTCL R1 R1 = quotient (ones complement)

ADDC R2,R1 ;Increments and takes the twos complement if the MSB of the

; quotient is 1

EXTS.W R1,R1 ; R1 = quotient (two’s complement)

Example 4:

; R2 (32 bits) / RO (32 bits) = R2 (32 bits): Signed

MOV R2,R3

ROTCL R3

SUBC R1,R1 ; Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 ;R3=0

SUBC R3,R2 ;Decrements and takes the ones complement if the dividend is
; hegative

DIVOS RO,R1 ; Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIVl RO,R1

.aendr

ROTCL R2 R2 = Quotient (one’s complement)

ADDC R3,R2 ;Increments and takes the two’s complement if the MSB of the
; quotient is 1. R2 = Quotient (two’s complement)

174

RENESAS

8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULS.L Rm,Rn With sign, Rn x Rm - MACH, 0011nnnnmmmm1101 2 —
MACL (to 5)

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,longn) /DMULS.L Rm,Rn*/

{
unsigned long RnL,RNH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[NJ*R[m])<0) fnLmL=-1;
else fnLmL=0;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH,;
temp3=RmH*RnH,;

175
RENESAS

Res2=0
Resl=templ+temp2;
if (Res1<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,
if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {
Res2=~Res2;
if (Res0==0)
Res2++,
else
Res0=(~Res0)+1;

}
MACH=Res2;
MACL=Res0;
PC+=2;
}
Examples:
DMULS RO,R1 :Before execution RO = H'FFFFFFFE, R1 = H'00005555

; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,RO Operation result (top)
STS MACL,RO :Operation result (bottom)

176
RENESAS

8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULUL Rm,Rn Without sign, Rn xRm - 0011nnnnmmmm0101 2 (to 5) —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmet
operation.

Operation:

DMULU(long m,longn) /~DMULU.L Rm,Rn */

{
unsigned long RnL,RNH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;

RNL=R[n]&0X0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0X0000FFFF;
RmH=(R[m]>>16)8&0x0000FFFF;

tempO=RmL*RnL;

templ=RmH*RnL;
temp2=RmL*RnH,;
temp3=RmH*RnH,;

Res2=0

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;

if (ResO<tempO0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;

177
RENESAS

MACL=Res0;
PC+=2;
}

Examples:

DMULU ROR1

STS MACH,RO
STS MACL,RO

178

;Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
Operation result (top)

:Operation result (bottom)

RENESAS

8.2.22 DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DT Rn Rn-1 - Rn; 0100nnNnNN00010000 1 Comparison
WhenRnis0,1 - T, result

when Rnis nonzero, 0 - T

Description: Decrements the contents of general register Rn by 1 and compares the results to 0
(zero). When the resultis 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n) /DT Rn*

{
RIn}-;
if (R[n]==0) T=1;
else T=0;
PC+=2,
}
Example:
MOV #4,R5 ; Sets the number of loops.
LOOP:
ADD RO,R1
DT RS ;Decrements the R5 value and checks whether it has become 0
BF LOOP Branches to LOOP is T=0. (In this example, loops 4 times.)

179
RENESAS

8.2.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code Cycle TBIt
EXTSB RmRn Sign-extend Rm from byte -» Rn 0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Sign-extend Rm from word - Rn 0110nnnnmmmm21111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) *EXTS.BRm,Rn*/

{
R[n[=R[m];
if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFQO;

PC+=2;
}
EXTSW(long m,long n) *EXTS.W Rm,Rn */
{
RIn=RIm;
if (R[mM]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;
}
Examples:
EXTSB ROR1 . Before execution RO = H'00000080
: After execution R1 = H'FFFFFF80
EXTSW ROR1 : Before execution RO = H'00008000
: After execution R1 = H'FFFF8000
180

RENESAS

8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTUB Rm,Rn Zero-extend Rm from byte -~ Rn 0110nnnnmmmmZ1100 1 —

EXTUW Rm,Rn Zero-extend Rm from word — Rn 0110nnnnmmmm21101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, Os are written in bits 8 to 31 of Rn. If word length is specified, Os are written in bits 16

to 31 of Rn.

Operation:

EXTUB(long m,longn) /*EXTU.B Rm,Rn*/

{
Rn}=R[m];
R[n]&=0x000000FF;
PC+=2;

}

EXTUW(long m,ongn) /EXTU.W Rm,Rn*

{
R[n}=R[m;
R[N]&=0x0000FFFF;
PC+=2;

}

Examples:

EXTUB ROR1 ; Before execution RO =HFFFFFF80
; After execution R1 = H'00000080

EXTUW ROR1 ;Before execution RO =HFFFF8000
; After execution R1 = H'00008000

181
RENESAS

8.2.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

JMP @Rm Rm - PC 0100nnnn00101011 2 —

Description: Branches unconditionally after executing the instruction following this IMP
instruction. The branch destination is an address specified by the 32-bit data in general register F

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the nex
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

JMP(long m) *IMP @Rm */

{
unsigned long temp;
temp=PC;
PC=R[m]+4;
Delay_Slot(temp+2);
}
Examples:
MOV.L JMP_TABLE,RO ;Address of RO = TRGET
JMP @RO Branches to TRGET
MOV RO,R1 ;Executes MOV before branching
.align 4
JMP_TABLE: .datal TRGET Jump table
TRGET: ADD #1,R1 ; — Branch destination
182

RENESAS

Note:

In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

183
RENESAS

8.2.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

JSR @Rm PC -~ Rm,Rm - PC 0100nnnn00001011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this JSR instruction. The PC value is stored in the PR. The jump destination
is an address specified by the 32-bit data in general register Rn. The PC points to the starting
address of the second instruction after JSR. The JSR instruction and RTS instruction are used fo
subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the nex
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

Operation:

JSR(long m) ISR @Rm */

{
PR=PC;
PC=R[m]+4,
Delay_Slot(PR+2);
}
184

RENESAS

Examples:

MOV.L JSR_TABLE,RO ; Address of RO = TRGET

JSR @RO Branches to TRGET

XOR R1,R1 ; Executes XOR before branching

ADD RO,R1 ; « Return address for when the subroutine

; procedure is completed (PR data)

.align 4
JSR TABLE: .datal TRGET Jump table
TRGET: NOP :— Procedure entrance
MOV R2,R3
RTS ;Returns to the above ADD instruction
MOV #70,R1 ; Executes MOV before RTS

Note:

In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

185
RENESAS

8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only)
Format Abstract Code Cycle T Bit
LDC Rm,SR Rm - SR 0100mmmmO00001110 5 LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 1 —
LDC Rm,VBR Rm - VBR 0100mmmmO00101110 1 —
LDC Rm,SSR Rm - SSR 0100mmmmo00111110 1 —
LDC Rm,SPC Rm - SPC 0100mmmm01001110 1 —
LDC Rm,MGCD Rm - MOD 0100mmmm01011110 3 —
LDC Rm,RE Rm - RE 0100mmmm01111110 3 —
LDC Rm,RS Rm - RS 0100mmmmO01101110 3 —
LDC Rm,RO_BANK Rm - RO_BANK 0100mmmm10001110 1 —
LDC Rm,R1_BANK Rm - R1_BANK 0100mmmm10011110 1 —
LDC Rm,R2_BANK Rm - R2_BANK 0100mmmm10101110 1 —
LDC Rm,R3_BANK Rm - R3_BANK 0100mmmm10111110 1 —
LDC Rm,R4_BANK Rm - R4_BANK 0100mmmm11001110 1 —
LDC Rm,R5_BANK Rm - R5_BANK 0100mmmm11011110 1 —
LDC Rm,R6_BANK Rm - R6_BANK 0100mmmm11101110 1 —
LDC Rm,R7_BANK Rm - R7_BANK 0100mmmm11111110 1 —
LDCL @Rm+SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 7 LSB
LDCL @Rm+GBR (Rm) - GBR,Rm+4 - Rm 0100mmmmO00010111 1 —
LDCL @Rm+VBR (Rm) - VBR,Rm+4 - Rm 0100mmmm00100111 1 —
LDCL @Rm+SSR (Rm) - SSR,Rm+4 - Rm 0100mmmmO00110111 1 —
LDCL @Rm+SPC (Rm) - SPC,Rm+4 -~ Rm 0100mmmmO01000111 1 —
LDCL @Rm+MCD (Rm) - MOD,Rm +4 - Rm 0100mmmm01010111 5 —
LDCL @Rm+RE (Rm) - RE,Rm+4 - Rm 0100mmmmO01110111 5 —
LDCL @Rm+RS (Rm) - RS,Rm+4 - Rm 0100mmmmO01100111 5 —
LDCL @Rm+R0 BANK (Rm) — RO_BANK, 0100mmmm10000111 1 —
Rm+4 - Rm
LDCL @Rm+R1 BANK (Rm) - R1_BANK, 0100mmmm10010111 1 —
Rm+4 - Rm
LDCL @Rm+R2 BANK (Rm) — R2_BANK, 0100mmmm10100111 1 —
Rm+4 - Rm
LDCL @Rm+R3 BANK (Rm) - R3_BANK, 0100mmmm10110111 1 —
Rm+4 - Rm

Note: * SH3-DSP only.

186

RENESAS

Format Abstract Code Cycle T Bit

LDC.L @Rm+R4 BANK (Rm) —» R4_BANK, 0100mmmm11000111 1 —
Rm+4 - Rm

LDC.L @Rm+R5 BANK (Rm) —» R5_BANK, 0100mmmm11010111 1 —
Rm+4 - Rm

LDCL @Rm+R6 BANK (Rm) —» R6_BANK, 0100mmmm11100111 1 —
Rm+4 - Rm

LDC.L @Rm+R7 BANK (Rm) —» R7_BANK, 0100mmmm11110111 1 —
Rm+4 - Rm

Notes: 1. Three cycles on the SH3-DSP.

Description: Stores source operand in control registers SR, GBR, VBR, SSR, SPC, MOD, RE,

2. Five cycles on the SH3-DSP.

and RS, or RO_BANK to R7_BANK. LDC and LDC.L, except for LDC Rm, GBR and LDC.L

@RM+, GBR, are privileged instructions and can be used in privileged mode only. If used in use
mode, they can cause illegal instruction exceptions. Note that LDC Rm, GBR and LDC.L @RMH-

GBR can be used in user mode.

The Rm_BANK operand is designated by the RB bit of the SR register. When the value of the R
bit is 1, the RO_BANK1 to R7_BANK1 registers and the R8 to R15 registers are used as the Rn
operand, and the RO_BANKO to R7_BANKaO registers are used as the Rm_BANK operand. Whe
the value of the RB bit is 0, the RO_BANKO to R7_BANKO registers and the R8 to R15 registers

are used as the Rn operand, and the RO_BANK1 to R7_BANKI1 registers are used as the
Rm_BANK operand.

If the LDC Rm, SR instruction or LDC.L @RM+, SR instruction is located in a delayed slot
immediately following a delayed branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

LDCSR(long m)

{

}

f*LDC Rm,SR */

SR=R[M]&OXOFFFOFFF;
PC+=2;

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];
PC+=2;

RENESAS

187

LDCVBR(long m) /* LDC Rm,VBR */

{
VBR=R[m];
PC+=2;
}
LDCSSR(long m) ¥ LDC Rm,SSR */
{
SSR=R[m]&0x700003F3;
PC+=2;
}
LDCSPC(longm) /*LDC Rm,SPC ¥/
{
SPC=R[m];
PC+=2;
}
LDCRn_BANK(longm) /*LDC Rm,Rn_BANK */
{ Fn=0-7,%
Rn_BANK=R[m];
PC+=2;
}

LDCMSR(long m) /* LDC.L @Rm+,SR */

{
SR=Read_Long(R[m])&0x0FFFOFFF;
R[m]+=4;
PC+=2;

}

LDCMGBR(longm) /*LDC.L @Rm+,GBR */
{

GBR=Read_Long(R[m]);

RIm]+=4;

PC+=2;

188
RENESAS

LDCMVBR(longm) /*LDC.L @Rm+,VBR */
{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2,
}

LDCMSSR(longm) /*LDC.L @Rm+,SSR*/
{
SSR=Read_Long(R[m])&0x700003F3;
R[m]+=4;
PC+=2;
}

LDCMSPC(longm) /*LDC.L @Rm+,SPC *

{
SPC=Read_Long(R[m]);

R[m[+=4;
PC+=2;
}
LDCMRn_BANK(longm) /*LDC.L @Rm+,Rn_BANK */
Fn=0-7*
{
Rn_BANK=Read_Long(R[m]);
R[m+=4,
PC+=2;
}
LDCMOD(longm) ~ /*LDC Rm,MOD *
{
MOD=R[m];
PC+=2,
}
LDCRE(long m) /*LDC Rm,RE */
{
RE=R[m];
PC+=2;
}

RENESAS

189

LDCRS(long m) /*LDC Rm,RS*
{

RS=R[m];
PC+=2;
}
LDCMMOD(longm) /*LDC.L @Rm+MOD *
{
MOD=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDCMRE(long m) /* LDC.L @Rm+,RE */
{
RE=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDCMRS(long m) /* LDC.L @Rm+,RS */
{
RS=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
Examples:
LDC RO,SR ; Before execution RO = H'FFFFFFFF, SR = H'00000000

: After execution SR = H'700003F3

LDCL @R15+GBR ;Before execution R15 = H'10000000, @R15 + H'12345678,
GBR = H'EDCBA987
; After execution R15 = H'10000004, GBR = @H'10000000

190
RENESAS

8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit
LDRE @(disp,PC) dispx2+PC - RE 10001110dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat end register RE. T
effective address is an address specified by PC + displacement. The PC is the address four byt
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: The effective address value designated for the RE reregister is different from the actual
repeat end address. Refer to table 8.23, RS and RE Design Rule, for more information.
When this instruction is arranged immediately after the delayed branch instruction, PC
becomes the "first address +2" of the branch destination.

Operation:

LDRE(ongd) /* LDRE @(disp, PC) */

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
RE=PC+(disp<<1);
PC+=2,
}
Example:
LDRS STA : Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.E ;

191
RENESAS

8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit
LDRS @(disp,PC) dispx2+PC - RS 10001100dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat start register RS. Tl
effective address is an address specified by PC + displacement. The PC is the address four byte
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: When the instructions of the repeat (loop) program are below 3, the effective address valt
designated for the RS register is different from the actual repeat start address. Refer to
Table 8-23. "RS and RE setting rule", for more information. If this instruction is arranged
immediately after the delayed branch instruction, the PC becomes "the first address +2" o
the branch destination.

Operation:

LDRS(longd) /LDRS @(disp, PC) *

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
RS=PC+(disp<<1);
PC+=2;
}
Example:
LDRS STA ; Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.D ;
192

RENESAS

8.2.30 LDS (Load to System Register): System Control Instruction

Format Abstract Code Cycle T Bit
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmm00011010 1 —
LDS Rm,PR Rm - PR 0100mmmm00101010 1 —
LDS Rm,DSR Rm - DSR 0100mmmmO01101010 1 —
LDS Rm,ACr Rm - AO 0100mmmm01111010 1 —
LDS Rm, X0 Rm - XO 0100mmmm10001010 1 —
LDS Rm, X¥ Rm - X1 0100mmmm10011010 1 —
LDS Rm,YC®r Rm - YO 0100mmmm10101010 1 —
LDS Rm,Y ¥ Rm - Y1 0100mmmm10111010 1 —
LDSL @Rm+MACH (Rm) - MACH,Rm+4 - Rm 0100mmmmO00000110 1 —
LDSL @Rm+MACL (Rm) - MACL,Rm+4 - Rm 0100mmmm00010110 1 —
LDSL @Rm+PR (Rm) - PR,Rm+4 - Rm 0100mmmm00100110 1 —
LDSL @Rm+DSR (Rm) - DSR,Rm+4 - Rm 0100mmmm01100110 1 —
LDSL @Rm+A8 (Rm) - AO,Rm+4 - Rm 0100mmmm01110110 1 —
LDS.L @Rm+,X® (Rm) —» XO0,Rm+4 - Rm 0100nnNnNn10000110 1 —
LDS.L @Rm+,X1 (Rm) - X1,Rm+4 - Rm 0100nnNnn10010110 1 —
LDS.L @Rm+,Y® (Rm) - YO,Rm+4 - Rm 0100nnnNn10100110 1 —
LDS.L @Rm+,Y1 (Rm) - Y1,Rm+4 - Rm 0100nnnNn10110110 1 —

Note: * SH3-DSP only.

Description: Stores the source operand into the system registers MACH, MACL, PR, DSR, AQ,
X0, X1, YO, or Y1.

Operation:

LDSMACH(long m) /¥ LDS Rm,MACH */
{
MACH=R[m];
if ((MACH&0x00000200)==0) MACH&=0x000003FF;
else MACH|=0xFFFFFCOQO;
PC+=2,

193
RENESAS

LDSMACL (long m) *LDS Rm,MACL */
{

MACL=R[m];
PC+=2;
}
LDSPR(long m) LDS Rm,PR */
{
PR=R[m];
PC+=2;
}
LDSMMACH(long m) [+ LDS.L @Rm+,MACH */
{
MACH=Read_Long(R[m]);
if (MACH&0x00000200)==0) MACH&=0x000003FF;
else MACH|=0xFFFFFCQO;
RImpH+=4,
PC+=2;
}
LDSMMACL(long m) /< LDS.L @Rm+,MACL */
{
MACL=Read_Long(R[m]);
R[m[+=4;
PC+=2;
}
LDSMPR(long m) /* LDS.L @Rm+,PR */
{
PR=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDSDSR(long m) /*LDS Rm,DSR */
{
DSR=R[m]&0x0000000F;
PC+=2,
}
194

RENESAS

LDSAO(long m) f*LDS Rm,AQ */
{

AO=R[m];

if(A0&0x80000000)==0) AOG=0x00;

else AOG=0xFF;

PC+=2;
}
LDSXO0(long m) [*LDS Rm, X0 */
{
X0=R[m];
PC+=2;
}
LDSX1(long m) [*LDS Rm, X1 %
{
X1=R[m];
PC+=2;
}
LDSYO(long m) /*LDS Rm, YO */
{
YO=R[m];
PC+=2;
}
LDSY1(long m) LDS Rm, Y1 %
{
Y1=R[m];
PC+=2;
}
LDSMDSR(long m) *LDS.L @Rm+,DSR */
{
DSR=Read_Long(R[m])&0x0000000F;
R[mJ+=4;
PC+=2;
}
LDSMAO(long m) /* LDS.L @Rm+,A0 */
{

AO0=Read_Long(R[m]);
if(A0&0x80000000)==0) AOG=0x00;
else AOG=0xFF;

RENESAS

195

R[m]+=4;

PC+=2;
}
LDSMX0(long m) [*LDS.L @Rm+,X0 */
{
X0=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDSMX1(long m) [*LDS.L @Rm+,X1 %/
{
X1=Read_Long(R[m]);
R[mJ+=4;
PC+=2;
}
LDSMYO(long m) [*LDS.L @Rm+,YO */
{
YO=Read_Long(R[m]);
R[m[+=4;
PC+=2;
}
LDSMY1(long m) [*LDS.L @Rm+,Y1*/
{
Y1=Read_Long(R[m]);
Rlm}+=4;
PC+=2;
}
Examples:
LDS RO,PR ; Before execution RO = H'12345678, PR = H'00000000

: After execution

PR = H'12345678

LDSL @R15+MACL :Before execution R15 = H'10000000

; After execution R15 = H'10000004, MACL = @H'10000000

196
RENESAS

8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Only)
Format Abstract Code Cycle T Bit

LDTLB PTEH/PTEL - TLB 0000000000111000 1 —

Description: Loads PTEH/PTEL registers to the translation lookaside buffer (TLB). The TLB is
indexed by the virtual address held in the PTEH register. The loaded set is designated by the
MMUCR.RC (MMUCR is an MMU control register and RC is a two bit field for a counter).
LDTLB is a privileged instruction and can be used in privileged mode only. If used in user mode
it causes an illegal instruction exception.

Note: As LDTLB is for loading PTEH and PTEL to the TLB, the instruction should be issued
when MMU is off (MMUCR.AT = 0) or should be placed in the P1 or P2 space with MMU
enabled (see the MMU section of the applicable hardware manual for details). If the instruction i
issued in an exception handler, it should be at least two instructions prior to an RTE instruction
that terminates the handler.

Operation:

LDTLB() ALDTLB*

{
TLB_tag=PTEH,;
TLB_data=PTEL;

PC+=2,
}
Examples:
MOV L @RO, R1 . Load upper bits of page table entry to R1
MOV LR1, @R2 ; Load R1 to PTEH, R2 is PTEH address (H'FFFFFFFO)
MOV L @R3, R4 ; Load lower bits of page table entry to R4
MOV L R4, @R5 ; Load R4 to PTEL, R5 is PTEL address (H'FFFFFFF4)
LDTLB ;Load PTEH and PTEL registers to TLB

197
RENESAS

8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

Format Abstract Code Cycle TBIit
MACL @Rm+@Rn+ Signed operation, (Rn) x (Rm) + 0000nnnnmmmm1111 2 (to5) —
MAC - MAC

Rn+4 - Rn,Rm+4 - Rm

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, ar
the final result is stored in the MAC register. Every time an operand is read, RM and Rn are
incremented by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to between H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long mJongn) /*MAC.L @Rm+,@Rn+*/

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
RIn}+=4;
tempm=(long)Read_Long(R[m]);
RIm]+=4;

if ((long)(tempn”~tempm)<0) fnLmL=-1;
else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

198
RENESAS

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF,
RmH=(temp2>>16)&0x0000FFFF;

tempO=RmL*RnL;

templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0
Resl=templ+temp?2;
if (Res1<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;
if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0)
Res2=~Res2;
if (Res0==0) Res2++;
else ResO=(~Res0)+1;

}
if(S==1){
ResO=MACL+Res0;
if MACL>Res0) Res2++;

Res2+=(MACH&O0x0000FFFF);
if(((long)Res2<0)&&(Res2<0xFFFF8000)Y{

Res2=0x00008000;
Res0=0x00000000;

RENESAS

199

if((long)Res2>0)&&(Res2>0x00007FFF)){
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

%
MACH={Res2;
MACL=Res0;
}
else {
ResO=MACL+ResO0;
if (MACL>Res0) Res2++;
Res2+=MACH
MACH=Res2;
MACL=ResO0;
}
PC+=2;
}
Examples:
MOVA TBLM,RO Table address
MOV RO,R1
MOVA TBLN,RO ;Table address
CLRMAC MAC register initialization
MAC.L @RO+,@R1+
MAC.L @RO+,@R1+
STS MACL,RO ;Store result into RO
.align 2
TBLM .datal H'1234ABCD
.data.l H'5678EF01
TBLN .data.l H'0123ABCD
.data.l H'4567DEFO
200

RENESAS

8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction

Format Abstract Code Cycle T Bit
MACW @Rm+@Rn+With sign, (Rn) x (Rm) + MAC - 0100nnnnmmmm1111 2 —
MAC (to 5)

MAC @RmM+,@Rn+Rn+2 . Rn, Rm+2 —~ Rm

Description: Multiplies with sign 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to the contents of the MAC register, and th
final result is stored in the MAC register.

Each time an operand is read, Rm and Rn are each incremented by 2.

When the S bit is cleared to 0, the 64-bit result of the 16-bit (16-bit + 64-bit = 64-bit multiply anc
accumulate calculation is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the 16-bit (16-bit + 32-bit = 32-bit multiply and accumulate calculatiol
involves addition to the MAC register using a saturation operation. For the saturation operation,
only the MACL register is enabled, and the result is limited to between H'80000000 (minimum)
and H'7FFFFFFF (maximum). If an overflow occurs, the LSB of the MACH register is set to 1. If
the overflow is in the negative direction, H'80000000 (the minimum value) is stored in the MACL
register, and if the overflow is in the positive direction, H'7FFFFFFF (the maximum value) is
stored in the MACL register.

Note: The normal number of cycles for execution is 3; however, succeeding instructions can be
executed in two cycles.

Operation:

MACW(ong mlongn) /* MAC.W @Rm+,@Rn+*/
{
long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n[+=2;
tempm=(long)Read_Word(R[m]);
R[M[+=2;
templ=MACL,;
tempm=((long)(shorttempn*(long)(short)tempm);
if ((long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0 {

201
RENESAS

src=0;
tempn=0;
}
else {
src=1;
tempn=0xFFFFFFFF,
}
src+=dest;
MACL+=tempm;
if (long)MACL>=0) ans=0;
else ans=1;
ans+=dest;
if (S==1) {
if (ans==1) {
if (src==0 || src==2) MACH|=0x00000001;
if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1,
if (MACH&0x00000200)==0) MACH&=0x000003FF;
else MACH|=0xFFFFFCOO;

}
PC+=2;

202
RENESAS

Examples:

TBLM

TBLN

MOVA
MOV
MOVA
CLRMAC
MAC.W
MAC.W

TBLM,RO
RO,R1
TBLN,RO

@RO+,@R1+
@RO+,@R1+
MACL,RO

2

H'1234
H'5678
H'0123
H'4567

Table address
Table address

MAC register initialization

:Store result into RO

RENESAS

203

8.2.34 MOV (Move Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOV ~ RmRn Rm - Rn 0110nnnnmmmmO011 1 —
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmmmO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nNnnmmmmO0010 1 —
MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO000 1 —
MOV.W @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmmmO001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmm0010 1 —
MOV.B Rm,@-Rn Rn—-1 - Rn, Rm - (Rn) 0010nnnnmmmmO0100 1 —
MOV.W Rm,@-Rn Rn—-2 - Rn, Rm - (Rn) 0010nnnnmmmmO0101 1 —
MOV.L Rm,@-Rn Rn—-4 - Rn, Rm - (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmmO0100 1 —
Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmmO0101 1 —
Rm+2 - Rm
MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmmO0110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmMmO100 1 —
MOV.W Rm@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmmmO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNmMmmmO0110 1 —
MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension - 0000nhNnnmmmm1100 1 —
Rn
MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension — 0000nnnnmmmm1101 1 —
Rn
MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000NnNNnmmmm1110 1 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n) MOV Rm,Rn */
{

R[n]=R[m[;

PC+=2;

204
RENESAS

MOVBS(long m,long n) *MOV.B Rm,@Rn */

{
Write_Byte(R[n],R[m]);

PC+=2;
}
MOVWS(long m,long n) *MOV.W Rm,@Rn*/
{

Write_ Word(R[n],R[m]);

PC+=2;
}
MOVLS(long m,long n) *MOV.L Rm,@Rn */
{

Write_Long(R[n],R[m]);

PC+=2,
}
MOVBL(long m,long n) *MOV.B @Rm,Rn */
{

R[n]=(long)Read_Byte(R[m]);

if (R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFOO;

PC+=2;
}
MOVWL(long m,long n) fMOV.W @Rm,Rn */
{

R[n]=(long)Read_Word(R[m]);

if ((R[N]&0x8000)==0) R[n]&0X0000FFFF;

else R[n]|=0xFFFFO000;

PC+=2;
}
MOVLL(long m,long n) *MOV.L @Rm,Rn*/
{

R[n]=Read_Long(R[m]);

PC+=2;
}

RENESAS

205

MOVBM(long m,long n) [MOV.B Rm,@-Rn */

{
Write_Byte(R[n}-1,R[m]);

R[n}=1,;
PC+=2;
}
MOVWM(long m,long n) ¥ MOV.W Rm,@-Rn */
{
Write_ Word(R[n]-2,R[m]);
RIn=2;
PC+=2;
}
MOVLM(long m,long n) *MOV.L Rm,@-Rn */
{
Write_Long(R[n}-4,R[m]);
RIn}=4;
PC+=2;
}

MOVBP(long m,long n) /*MOV.B @Rm+,Rn*/
{

R[n]=(long)Read_Byte(R[m]);

if (R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFQO;

if (n'=m) R[m[+=1,

PC+=2;
}
MOVWP(long m,long n) MOV.W @Rm+,Rn *
{
R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF0000;
if (n'=m) R[m]+=2;
PC+=2;
}
206

RENESAS

MOVLP(long m,long n) MOV.L @Rm+,Rn*/
{

R[n]=Read_Long(R[m]);

if (nl=m) R[m]+=4;

PC+=2,
}

MOVBSO0(long m,long n) *MOV.B Rm,@(RO,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;
}

MOVWS0(long m,long n) *MOV.W Rm,@(RO,Rn) */
{

Write_ Word(R[n]+R[0],R[m]);

PC+=2;
}

MOVLSO0(long m,long n) #MOV.L Rm,@(RO,Rn) */
{

Write_Long(R[n]+R[0],R[m]);

PC+=2;
}

MOVBLO(long m,long n) /* MOV.B @(RO,Rm),Rn */
{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFQO;

PC+=2;
}

MOVWLO(long m,long n) /* MOV.W @(RO,Rm),Rn */
{

RIn]=(long)Read_Word(R[m}+R[O]);

if (R[N)&0x8000)==0) R[n]&0X0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

RENESAS

207

MOVLLO(long m,long n) /MOV.L @(RO,Rm),Rn */

:Before execution
: After execution

Before execution
: After execution

Before execution
: After execution

Before execution
: After execution

:Before execution
: After execution

: Before execution
: After execution

: Before execution
: After execution

{
R[n]=Read_Long(R[m]+R[0]);
PC+=2;

}

Examples:

MOV RO,R1

MOV.W RO,@R1

MOV.B @RO,R1

MOV.W RO,@-R1

MOV.L @RO+,R1

MOV.B R1,@(ROR2)

MOVW @(ROR2)R1

208

RO = HFFFFFFFF, R1 = H'00000000
R1 = HFFFFFFFF

RO = H'FFFF7F80
@R1 = H'7F80

@RO = H'80, R1 = H'00000000
R1 = HFFFFFF80

RO = H'AAAAAAAA, R1 = HFFFF7F80
R1 = HFFFF7F7E, @R1 = HAAAA

RO = H'12345670
RO = H'12345674, R1 = @H'12345670

R2 = H'00000004, RO = H'20000000
R1 = @H'10000004

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

RENESAS

8.2.35 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code Cycle TBit

MOV #imm,Rn imm - sign 1120nnnniiiiiii 1 —
extension - Rn

MOV.W @(disp,PC),Rn (disp x 2 + PC) - sign 1001lnnnndddddddd 1 —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 +PC) -~ Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displaceme
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, th
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction ¢
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditiol
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specifit
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the tabl
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) ¥ MOV #mm,Rn */

{
if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xFFFFFFOO | (long)i);
PC+=2;

209
RENESAS

MOVWiI(long d,long n) *MOV.W @(disp,PC),Rn */

{
long disp;

disp=(0x000000FF & (long)d);
R[n]=(long)Read_Word(PC+(disp<<1));

if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFFO00O0;

. R1=HFFFFFF80

; R2 = H'FFFFOABC, IMM means @(H'08,PC)

: « PC location used for address calculation for
: the MOV.W instruction

Delayed branch instruction
R3 = H'12345678

Branch destination of the BRA instruction

. — PC location used for address calculation for
: the MOV.L instruction

PC+=2,
}
MOVLI(long d,long n) *MOV.L @(disp,PC),Rn */
{
long disp;
disp=(0x000000FF & (long)d);
R[n]=Read_Long((PC&OXFFFFFFFC)+(disp<<2));
PC+=2;
}
Examples:
Address
1000 MOV #H'80,R1 ;
1002 MOV.W IMM,R2
1004 ADD #-1,RO
1006 TST RO,RO
1008 MOVT R13
100A BRA NEXT
100C MOV.L @(4,PC),R3 ;
100E IMM .dataw H'9ABC
1010 .data.w H1234
1012 NEXT JMP @R3
1014 CMP/EQ #0,RO
.align 4
1018 .data.l H'12345678
210

RENESAS

8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B @(disp,GBR),RO (disp + GBR) - sign 11000100dddddddd 1 —
extension — RO

MOV.W @(disp,GBR),RO (disp x 2 + GBR) - 11000101dddddddd 1 —

sign extension — RO

MOVL @(disp,GBR)RO (disp x4 + GBR) — RO 11000110dddddddd

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd

MOVW RO,@(disp,GBR) RO — (disp x2 + GBR) 11000001dddddddd

RPlRr| R |,

MOVL RO,@(disp,GBR) RO — (disp x4 + GBR) 11000010dddddddd

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but ol
the RO register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte
the only change made is to zero-extend the 8-bit displacement. Consequently, an address withil
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacemen
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. Whe
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
guadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBF
data is transferred to a general register. When the source operand is in memory, the loaded dat
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 8-1 will give
better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 8-1 Using RO after MOV

211
RENESAS

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[O]=(long)Read_Byte(GBR+disp);
if (R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFQO;
PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Word(GBR+(disp<<1));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}

MOVLLG(long d) * MOV.L @(disp,GBR),R0*/

{
long disp;

disp=(0x000000FF & (long)d);
R[0]-Read_Long(GBR+(disp<<2));
PC+=2,

212
RENESAS

MOVBSG(long d) * MOV.B RO,@(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write_Byte(GBR+disp,R[0]);

PC+=2,
}
MOVWSG(long d) # MOV.W RO,@(disp,GBR) */
{
long disp;
disp=(0x000000FF & (long)d);
Write_Word(GBR+(disp<<1),R[0]);
PC+=2;
}

MOVLSG(long d) /* MOV.L RO,@(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;

}

Examples:

MOVL @(2,GBR),RO

MOV.B RO,@(1,GBR)

. Before execution
; After execution

. Before execution
: After execution

@(GBR + 8) = H'12345670
RO = @H'12345670

RO = H'FFFF7F80
@(GBR + 1) = HFFFF7F80

213

RENESAS

8.2.37 MOV (Move Structure Data): Data Transfer Instruction
Format Abstract Code Cycle T Bit

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.W RO,@(disp,Rn) RO - (disp x2 + Rn) 10000001nnnndddd

1
MOV.L Rm,@(disp,Rn) Rm - (disp x4 + Rn) 0001nnnnmmmmdddd 1 —
1

MOV.B @(disp,Rm),RO (disp + Rm) - sign 10000100mmmmdddd
extension — RO

MOV.W @(disp,Rm),RO (disp x 2+ Rm) - sign ~ 10000101mmmmdddd 1 —
extension —» RO

MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a |
or word is selected, only the RO register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can b
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementior
@(R0O,Rn) mode must be used. When the source operand is in memory, the loaded data is store
the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. RO cannot be
accessed by the next instruction until the load instruction is finished. The instruction order in
figure 8-2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 8-2 Using RO after MOV

214
RENESAS

Operation:

MOVBS4(long d,long n) / MOV.B R0O,@(disp,Rn) */

{
long disp;
disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;
}
MOVWS4(long d,long n) /* MOV.W RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Word(R[n]+(disp<<1),R[0]);
PC+=2;
}
MOVLS4(long m,long d,long n)
*MOV.L Rm,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;
}
MOVBL4(long m,long d) # MOV.B @(disp,Rm),R0 */
{
long disp;
disp=(0x0000000F & (long)d);
R[0]-Read_Byte(R[m]+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;
PC+=2,
}

215
RENESAS

MOVWL4(long m,long d) # MOV.W @(disp,Rm),RO */

{
long disp;
disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}

MOVLL4(long m,long d,long n)
*MOV.L @(disp,Rm),Rn */

{
long disp;
disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));
PC+=2;

}

Examples:
MOV.L @(2,R0),R1 ; Before execution @(RO + 8) = H'12345670

: After execution R1 = @H'12345670

MOV.L RO,@(H3CR1) ; Before execution RO = H'FFFF7F80
; After execution @(R1 + 60) = H'FFFF7F80

216
RENESAS

8.2.38 MOVA (Move Effective Address): Data Transfer Instruction
Format Abstract Code Cycle TBIt

MOVA @(disp,PC),RO disp x 4 + PC - RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register RO. The 8-
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction afte
this MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(ongd) /* MOVA @(disp,PC),RO *

{
long disp;
disp=(0x000000FF & (long)d);
R[0]=(PC&OXFFFFFFFC)+(disp<<2);
PC+=2;
}
Examples:

Address.og H1006

1006 MOVA STR,RO ;Address of STR- RO

1008 MOV.B @ROR1 :R1="“X" « PC location after correcting the lowest
; two bits

100A ADD R4,R5 ; « Original PC location for address calculation for

: the MOVA instruction
.align 4
100C STR: .sdata “XYZP12"

2002 BRA TRGET Delayed branch instruction
2004 MOVA @(O,PC)RO ; Address of TRGET + 2, RO
2006 NOP

217
RENESAS

8.2.39 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code Cycle T Bit

MOVT Rn T - Rn 0000NnNNN00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

Operation:

MOVT(ongn) /*MOVT Rn*

{
R[n]=(0x00000001 & SR);
PC+=2;
}
Examples:

XOR R2R2 ;R2=0

CMP/PZ R2 ;T=1

MOVT RO RO=1

CLRT ;T=0

MOVT R1 R1=0
218

RENESAS

8.2.40 MUL.L (Multiply Long): Arithmetic Instruction
Format Abstract Code Cycle T Bit

MULL Rm,Rn Rn xRm - MACL 0000nNNNmMmMmMmO111 2 (to 5) —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long mlongn) /~MUL.L Rm,Rn*
{

MACL=R[n*R[m];

PC+=2;
}

Examples:

MULL ROR1 : Before execution RO = H'FFFFFFFE, R1 = H'00005555
: After execution MACL = H'FFFF5556
STS MACLRO ;Operation result

219
RENESAS

8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction
Format Abstract Code Cycle TBit

MULSW Rm,Rn Signed operation, Rn x Rm - MACL 0010nnnnmmmm1111 1 (to3) —
MULS Rm,Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register date
does not change.

Operation:

MULS(long m,longn) *MULS Rm,Rn*/

{
MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2;
}
Examples:
MULS RO,R1 ;Before execution RO = H'FFFFFFFE, R1 = H'00005555

; After execution MACL = H'FFFF5556
STS MACLRO ;Operation result

220
RENESAS

8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
Format Abstract Code Cycle TBit

MULUW Rm,Rn Unsigned, Rn xRm — MACL 0010nnnnmmmm21110 1(to3) —
MULU Rm,Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,longn) /~MULU Rm,Rn*/
{
MACL=((unsigned long)(unsigned short)R[n]
*(unsigned long)(unsigned short)R[m]);
PC+=2;
}

Examples:

MULU RO,R1 :Before execution RO = H'00000002, R1 = H'FFFFAAAA
: After execution MACL = H'00015554
STS MACL,RO ;Operation result

221
RENESAS

8.2.43 NEG (Negate): Arithmetic Instruction

Format Abstract Code Cycle TBIt
NEG Rm,Rn 0—-Rm - Rn 0110nnnhmmmm21011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) *NEG Rm,Rn */

{
RIn]=0-R[m];
PC+=2;
}
Examples:

NEG ROR1 ;Before execution RO = H'00000001
; After execution R1 = H'FFFFFFFF

222
RENESAS

8.2.44 NEGC (Negate with Carry): Arithmetic Instruction
Format Abstract Code Cycle T Bit

NEGC Rm,Rn 0-Rm-T - Rn,Borrow - T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sigr
of a value that has more than 32 bits.

Operation:

NEGC(long m,Jongn) /*NEGC Rm,Rn*/
{

unsigned long temp;

temp=0-R[m];
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R[n]) T=1;
PC+=2;

}

Examples:

CLRT ; Sign inversion of R1 and RO (64 bits)

NEGC R1,R1 ;Before execution R1=H'00000001, T=0
; After execution R1 =H'FFFFFFFF, T=1

NEGC RORO ;Before execution RO =H'00000000,T=1
; After execution RO = H'FFFFFFFF, T=1

223
RENESAS

8.2.45 NOP (No Operation): System Control Instruction
Format Abstract Code Cycle T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /*NOP¥

{
PC+=2;
}
Examples:
NOP ;Executes in one cycle
224

RENESAS

8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction
Format Abstract Code Cycle TBIt

NOT Rm,Rn Rm - Rn 0110nnnnmmmmO0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in R
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) NOT Rm,Rn*/

{
R[n[=~R[m[;
PC+=2;
}
Examples:

NOT RO,R1 ;Before execution RO = HAAAAAAAA
; After execution R1 = H'55555555

225
RENESAS

8.2.47 OR (OR Logical) Logic Operation Instruction

Format Abstract Code Cycle T Bit

OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 —

OR #imm,RO RO | imm - RO 1100101 iiiiii 1 —

ORB #imm,@(RO,GBR) (RO + GBR) | imm - (RO + 1100111 Ziiiiiii 3 —
GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed wi
8-bit immediate data.

Operation:

OR(long m,long n) /*OR Rm,Rn */

{
RIn]|=R[m];
PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{
R[0]|=(0xO00000FF & (long)i);
PC+=2;

}

ORM(longi) /*OR.B #imm,@(RO,GBR)*

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

226

RENESAS

Examples:

OR RO,R1 : Before execution
; After execution

OR #H'FO,RO ;. Before execution
; After execution

ORB #H50,@(RO,GBR) ; Before execution

: After execution

RENESAS

RO = H'AAAA5555, R1 = H'55550000
R1 = HFFFF5555

RO = H'00000008
RO = H'000000F8

@(RO,GBR) = HA5
@(RO,GBR) = HF5

227

8.2.48 PREF (Prefetch Data to the Cache)

Format

Abstract Code Cycle TBit

PREF @Rn

(Rn &Oxfffffff0) — Cache 0000nNNn10000011 1 —
(Rn &Oxfffffff0+4) - Cache
(Rn &Oxfffffff0+8) - Cache
(Rn &Oxfffffff0+C) - Cache

Description: Loads data to cache on software prefetching. 16-byte data containing the data
pointed by Rn (Cache 1 line) is loaded to the cache. Address Rn should be on longword boundar

No address related error is detected in this instruction. In case of an error, the instruction operate

as NOP.

The destination is on-chip cache, therefore this instruction functions as an NOP instruction in
effect, that is, it never changes registers or processor status.

Operation:

PREF(ongn) /PREFY

{
PC+=2;
}
Examples:

MOV.L
PREF
align 4

SOFT_PF. .data.l
data.1
data.1
data.l

228

SOFT_PF,R1 ;Address of R1 is SOFT_PF
@R1 Load data from SOFT_PF to on-chip cache

H'12345678
H'9QABCDEFO
HAAAAS555
H'5555AAAA

RENESAS

8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction
Format Abstract Code Cycle TBIt

ROTCL Rn T<Rn T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-3).

MSB LSB

ROTCL <—| }‘_‘

Figure 8-3 Rotate with Carry Left
Operation:

ROTCL(longn) /*ROTCLRn*
{

long temp;

if ((R[n}&:0x80000000)==0) temp=0;
else temp=1,;
R[nj<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Examples:

ROTCL RO Before execution RO = H'80000000, T=0
; After execution RO = H'00000000, T=1

229
RENESAS

8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction
Format Abstract Code Cycle T Bit

ROTCR Rn ToRn->T 0100nnnNn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-4).

MSB LSB

ROTCR ﬂ .

Figure 8-4 Rotate with Carry Right

Operation:

ROTCR(longn) /*ROTCRRn*
{

long temp;

if (R[N]&0x00000001)==0) temp=0;
else temp=1;
R[n>>=1;
if (T==1) R[n]|=0x80000000;
else R[N|&=0x7FFFFFFF;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Examples:

ROTCR RO Before execution RO = H'00000001, T=1
: After execution RO = H'80000000, T=1

230
RENESAS

8.2.51 ROTL (Rotate Left): Shift Instruction
Format Abstract Code Cycle TBIt

ROTL Rn T -« Rn -« MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the res
in Rn (figure 8-5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB
ROTL .<—r{ }4—‘

Figure 8-5 Rotate Left

Operation:

ROTL(longn) /~ROTLRn*

{
if (R[]&:0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[N|&=0xFFFFFFFE;
PC+=2;

}

Examples:
ROTL RO :Before execution RO = H'80000000, T=0

; After execution RO = H'00000001, T=1

231
RENESAS

8.2.52 ROTR (Rotate Right): Shift Instruction

Format Abstract Code Cycle T Bit
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 8-6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB
ROTR

Figure 8-6 Rotate Right

Operation:

ROTR(ongn) *ROTRRn*

{
if ((R[n]&0x00000001)==0) T=0;
else T=1,;
R[n>>=1;
if (T==1) R[n]|=0x80000000;
else R[N|&=0x7FFFFFFF,
PC+=2;

}

Examples:

ROTR RO Before execution RO = H'00000001, T=0
; After execution RO = H'80000000, T=1

232
RENESAS

8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only)

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

RTE SSR - SR, SPC - PC 0000000000101011 4 —

Description: Returns from an exception routine. The PC and SR values are loaded from SPC an
SSR. The program continues from the address specified by the loaded PC value. RTE is a
privileged instruction and can be used in privileged mode only. If used in user mode, it causes a
illegal instruction exception.

Note: Since this is a delayed branch instruction, the instruction after RTE is executed before
branching.

No interrupts are accepted between this instruction and the one immediately following it. If the
instruction immediately following is a branch instruction, it is acknowledged as an illegal slot
instruction.

If this instruction is located in a delayed slot immediately following a delayed branch instruction,
it is acknowledged as an illegal slot instruction.

An instruction executed in a delayed slot immediately following this instruction uses the SR
restored by this instruction.

Make sure that an instruction executed in a delayed slot immediately following this instruction
does not cause an exception. Also, an instruction that manipulates the MD and BL bits of the SF
register, as well as the instruction following it, should be used with the multiplier disabled or with
fixed physical address space (P1 and P2).

Operation:

RTE() F~ARTEY

{
unsigned long temp;
temp=PC;
PC=SPC;
SR=SSR;
Delay_Slot(temp+2);
}

233
RENESAS

Examples:

RTE

; Returns to the original routine

ADD #8,R15 ; Executes ADD before branching

Note:

234

In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

RENESAS

8.2.54 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle TBIt

RTS PR - PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, anc
the program continues from the address specified by the restored PC value. This instruction is
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the ne
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction. An instruction restoring the PR should be prior to an
RTS instruction. That restoring instruction should not be the delay slot of the RTS.

Operation:

RTS) F#ARTSY

{
unsigned long temp;
temp=PC;
PC=PR+4;
Delay_Slot(temp+2);
}

235
RENESAS

Examples:

MOV.L
JSR
NOP
ADD

TABLE: .data.l

TRGET: MOV

Note:

236

RTS
MOV

TABLE,R3
@R3

RO,R1

TRGET

R1,RO

#12,R0

; R3 = Address of TRGET
Branches to TRGET
:Executes NOP before branching

; — Return address for when the subroutine
; procedure is completed (PR data)

Jump table
;— Procedure entrance

;PR data- PC
; Executes MOV before branching

In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

RENESAS

8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction (SH3-DSP Only)
Format Abstract Code Cycle TBIt

SETRC Rm LSW of Rm - RC (MSW of SR), 0100mmmm00010100 3 —
Repeat control flag - RF1, RFO

SETRC #mm imm - RC (MSW of SR), 1000001 Ciiiiiiii 3 —
Repeat control flag - RF1, RFO

Description: Sets the repeat count to the SR register’s RC counter. When the operand is a regis
the bottom 12 bits are used as the repeat count. When the operand is an immediate data value,
bits are used as the repeat count. Set repeat control flags to RF1, RFO bits of the SR register. U
of the SETRC instruction is subject to any limitations. Refer to section 5.12, DSP Repeat (Loop)
Control, for more information.

Operation:

SETRC(longm) /*SETRC Rm*/
{

long temp;

temp=(R[m] & 0x00000FFF)<<16;
SR&=0xFO00FFF3;
SR|=temp;
RF1=Repeat_Control_Flag1;
RFO=Repeat_Control_Flag0;
PC+=2;

}

SETRCI(long i) /* SETRC #mm */
{

long temp;

temp=((long)i & 0XO00000FF)<<16;
SR&=0xFO00FFFF;

SR|=temp;
RF1=Repeat_Control_Flag1;
RFO=Repeat_Control_Flag0;
PC+=2;

237
RENESAS

SETRC #imm SETRC Rn

7 0 31 12 11 0

imm Rn| | 12 bits |

/ Repeat control flag / Repeat control flag
31 27 23 16 15 3 ‘20/ 31 27 16 15 /

3% 0
SR 0| sbis 5R| | 12 bits | | ||

1<imm <255 1<Rm[11:0] <4095

Figure 8-7 SETRC Instruction

Example:
LDRS STA ; Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.D ;
238

RENESAS

8.2.56 SETS (Set S Bit): System Control Instruction

Format Abstract Code Cycle TBIt
SETS 1S 0000000001011000 1 —
Description: Sets the S bit to 1.
Operation:
SETT() /SETS*
{
S=1;
PC+=2;
}
Examples:
SETS ;Before execution S=0
; After execution S=1
239

RENESAS

8.2.57 SETT (Set T Bit): System Control Instruction

Format Abstract

Code

Cycle

T Bit

SETT 1T

0000000000011000

1

1

Description: Sets the T bit to 1.
Operation:

SETT() MSETT¥

{
T=1;
PC+=2;
}

Examples:

SETT
: After execution

240

: Before execution T=0
T=1

RENESAS

8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction
Format Abstract Code Cycle TBIt

SHAD Rm,Rn Rn << Rm - Rn (Rm=0) 0100nNNnMmmMmMmZ1100 2 —
Rn >>Rm - [MSB - Rn]

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and the number of bits to be shifted.

« If the value of the Rm register is positive, the shift is to the left, if it is negative the shift is to th
right.

» The number of bits to be shifted is indicated by the five lower bits (bits 4 to 0) of the Rm
register. If the value is negative (MSB = 1), the Rm register is indicated with a complement of
2. The magnitude of left shift may be 0 to 31, and the magnitude of right shift may be 1 to 32.

MSB LSB
Rm=0 | |
‘///
o
MSB LSB
Rm<0 |

Figure 8-8 Shift Arithmetic Dynamically

241
RENESAS

Operation:

SHAD(long m,n) /* SHAD Rm,Rn */

{
long cont, sgn;
sgn = R[m] &0x80000000;
cnt = R[m] &0x0000001F;
if (sgn==0) R[n]<<=cnt;
else R[n]=(signed long)R[n]>>((~cnt+1) & Ox1F); /*shift

arithmetic right*/

PC+=2,

}

Examples:

SHAD R1,R2 ;Before execution R1=H'FFFFFFEC, R2 = H'80180000
; After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3R4 ;Before execution R3=H'00000014, R4 = H'FFFFF801
: After execution R3 = H'00000014, R4 = H'80100000

242
RENESAS

8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction
Format Abstract Code Cycle TBIt

SHAL Rn T<Rn-0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-9).

MSB LSB

SHAL l+—o0

Figure 8-9 Shift Arithmetic Left
Operation:

SHAL(ongn) /*SHAL Rn (Same as SHLL) */

{
if (R[N}&0x80000000)==0) T=0;
else T=1;
R[nj<<=1;
PC+:2;

}

Examples:
SHAL RO ;Before execution RO = H'80000001, T=0

: After execution RO =H'00000002, T=1

243
RENESAS

8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction
Format Abstract Code Cycle TBIt

SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-10).

MSB LSB

SHAR Iil

Figure 8-10 Shift Arithmetic Right
Operation:

SHAR(ongn) /*SHARRn?*

{
long temp;
if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[N]&0x80000000)==0) temp=0;
else temp=1;
R[n}>>=1,
if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;
}
Examples:
SHAR RO Before execution RO = H'80000001, T=0
; After execution RO = H'C0000000, T=1
244

RENESAS

8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction

Format Abstract Code Cycle TBit
SHLD Rm,Rn Rn << Rm - Rn (Rm=0) 0100nnnnmmmmZ1101 1 —
Rn>>Rm - [0 - Rn]
(Rm<0)

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and the number of bits to be shifted. The T bit is the last shifted bit o
Rn. If the value of the Rm register is positive, the shift is to the left, if it is negative the shift is to
the right. If the shift is to the right, a top bit of 0 is added.

The number of bits to be shifted is indicated by the five lower bits (bits 4 to 0) of the Rm register
If the value is negative (MSB = 1), the Rm register is indicated with a complement of 2. The
magnitude of left shift may be 0 to 31, and the magnitude of right shift may be 1 to 32.

MSB LSB
Rm=0
- -
MSB LSB
Rm<0 |
\\\x
o

Figure 8-11 Shift Logical Dynamically

245
RENESAS

Operation:

SHLD(long m,n) /* SHLD Rm,Rn */

{
long cont, sgn;
sgn = R[m]&0x80000000;
cnt = R[m]&0x0000001F);
if (sgn==0) R[n]<<=cnt;
else R[N[=R[n]>>((~cnt+1)&0x1F);
PC+=2,

}

Examples:

SHLD R1R2 ;Before execution R1=H'FFFFFFEC, R2 = H'80180000

; After execution R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3,R4 ;Before execution R3 =H'00000014, R4 = H'FFFFF801

246

: After execution R3 = H'00000014, R4 = H'80100000

RENESAS

8.2.62 SHLL (Shift Logical Left): Shift Instruction
Format Abstract Code Cycle TBIt

SHLL Rn T<Rn-0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 8-12).

MSB LSB

SHLL |<—0

Figure 8-12 Shift Logical Left

Operation:

SHLL(longn) /SHLL Rn (Same as SHAL) */

{
if (R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
PC+=2,

}

Examples:
SHLL RO :Before execution RO = H'80000001, T=0

: After execution RO = H'00000002, T=1

247
RENESAS

8.2.63 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code Cycle T Bit
SHLL2 Rn Rn<<2 - Rn 0100nNNn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nNNN00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnNN00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 8-13).

MSB LSB
SHLL2 |
Y
o
MSB LSB
SHLLS
- -
MSB LSB
SHLL16 | |
| -

Figure 8-13 Shift Logical Left n Bits

Operation:

SHLL2(long n) /*SHLL2 Rn*

{
R[n]<<=2;
PC+=2;
}
248

RENESAS

SHLL8(longn) /*SHLL8 Rn*/
{

R[n]<<=8§;
PC+=2;
}
SHLL16(long n) /* SHLL16 Rn */
{
R[n]<<=16;
PC+=2;
}
Examples:
SHLL2 RO : Before execution RO = H'12345678
; After execution RO = H'48D159E0
SHLL8 RO : Before execution RO = H'12345678
: After execution RO = H'34567800
SHLL16 RO : Before execution RO = H'12345678
: After execution RO = H'56780000

249
RENESAS

8.2.64 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code Cycle TBIt
SHLR Rn 0O-Rn-T 0100nnNN00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 8-14).

MSB LSB

SHLR 0—>|

Figure 8-14 Shift Logical Right

Operation:

SHLR(ongn) /*SHLRRn*

{
if (R[n]&0x00000001)==0) T=0;
else T=1;
R[n[>>=1,
R[N]&=0x7FFFFFFF;
PC+=2;
}
Examples:
SHLR RO :Before execution RO = H'80000001, T=0
: After execution RO = H'40000000, T=1
250

RENESAS

8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code Cycle TBit
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnNn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnNnNn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 8-15).

MSB LSB
SHLR2
0]
MSB LSB
SHLRS8 |
o —
MSB LSB
SHLR16 | |
\\
- |

Figure 8-15 Shift Logical Right n Bits

Operation:

SHLR2(longn) /* SHLR2 Rn*/

{
RIn[>>=2;
R[n]&=0x3FFFFFFF;
PC+=2,

}

251
RENESAS

SHLR8(long n) /* SHLR8 Rn*/

{
R[n]>>=8;
R[n]&=0x00FFFFFF;
PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */
{

R[n]>>=16;
R[Nn]&=0x0000FFFF;
PC+=2;
}
Examples:
SHLR2 RO :Before execution
; After execution
SHLR8 RO :Before execution
: After execution
SHLR16 RO :Before execution
: After execution
252

RO = H'12345678
RO = H'048D159E

RO = H'12345678
RO = H'00123456

RO = H'12345678
RO = H'00001234

RENESAS

8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)
Format Abstract Code Cycle TBit

SLEEP Sleep 0000000000011011 4 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module status is maintained, and the CPU waits for an interrupt request. If a
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

SLEEP is a privileged instruction and can be used in privileged mode only. If used in user mode
causes an illegal instruction exception.

Note: The number of cycles given is for the transition to sleep mode.

Operation:
SLEEP() /* SLEEP */
{
PC=2;
Error(“Sleep Mode.”);
}
Examples:
SLEEP ;Enters power-down mode

253
RENESAS

8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit
STC SR,Rn SR - Rn 0000NNNN00000010 1 —
STC GBR,Rn GBR - Rn 0000nnNN00010010 1 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 1 —
STC SSR,Rn SSR - Rn 0000nNNn00110010 1 —
STC SPC,Rn SPC - Rn 0000nnNN01000010 1 —
STC MOD,Rrf* MOD - Rn 0000nNNN01010010 1 —
STC RE,Rn** RE - Rn 0000nNnn01110010 1 —
STC RS,Rn** RS - Rn 0000nNNN01100010 1 —
STC RO_BANK,Rn RO_BANK - Rn 0000nNNN10000010 1 —
STC R1_BANK,Rn R1_BANK - Rn 0000nNNN10010010 1 —
STC R2_BANK,Rn R2_BANK - Rn 0000nnNNN10100010 1 —
STC R3_BANK,Rn R3_BANK - Rn 0000nnNNn10110010 1 —
STC R4_BANK,Rn R4_BANK - Rn 0000nNNN11000010 1 —
STC R5_BANK,Rn R5 BANK - Rn 0000nnNNn11010010 1 —
STC R6_BANK,Rn R6_BANK - Rn 0000nNNN11100010 1 —
STC R7_BANK,Rn R7_BANK - Rn 0000nNNN11110010 1 —
STCL SR,@-Rn Rn—-4 - Rn, SR - (Rn) 0100nnNNN00000011 1/2** —
STCL GBR@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnNnNn00010011 1/2** —
STCL VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 1/2*2 —
STCL SSR,@-Rn Rn—-4 - Rn, SSR - (Rn) 0100nnnNn00110011 1/2** —
STCL SPC@-Rn Rn—-4 - Rn, SPC - (Rn) 0100nnNnNn01000011 1/2** —
STCL MOD,@-RA! Rn—-4 - Rn, MOD - (Rn) 0100nnnn01010011 2 —
STCL RE@-Rr+! Rn—-4 - Rn,RE - (Rn) 0100nnnNn01110011 2 —
STCL RS,@-Rr+! Rn—-4 - Rn, RS - (Rn) 0100nnnNn01100011 2 —
STCL RO_BANK@-Rn Rn-4 - Rn, RO_BANK - 0100nNnn10000011 2 —
(Rn)
STCL R1 BANK@-Rn Rn-4 - Rn,R1_BANK - 0100nnnNn10010011 2 —
(Rn)
STCL R2_ BANK@-Rn Rn-4 - Rn, R2_BANK - 0100nNnn10100011 2 —
(Rn)
STC.L R3 BANK@-Rn Rn-4 - Rn, R3_BANK - 0100nnnn10110011 2 —
(Rn)
254

RENESAS

Format Abstract Code Cycle T Bit

STCL R4 BANK@-Rn Rn-4 - Rn, R4_BANK - 0100nnnn11000011 2 —
(Rn)

STCL R5_BANK@-Rn Rn-4 - Rn, R5_BANK - 0100nnnn11010011 2 —
(Rn)

STCL R6 BANK@-Rn Rn-4 - Rn, R6_BANK - 0100nnnn11100011 2 —
(Rn)

STCL R7_BANK@-Rn Rn-4 - Rn, R7_BANK - 0100nnnn11110011 2 —
(Rn)

Notes: 1. SH3-DSP only.
2. Two cycles on the SH3-DSP.

Description: Stores data from control registers SR, GBR, VBR, SSR, SPC, MOD, RE and RS, ol
RO_BANK to R7_BANK to a specified location. STC and STC.L, except for STC GBR, Rn and
STC.L GBR, @-Rn, are privileged instructions and can be used in privileged mode only. If used
user mode, they can cause illegal instruction exceptions. Note that STC GBR, Rn and STC.L
GBR, @-Rn can be used in user mode.

The Rm_BANK operand is designated by the RB bit of the SR register. When the value of the R
bit is 1, the RO_BANK1 to R7_BANK1 registers and the R8 to R15 registers are used as the Rn
operand, and the RO_BANKO to R7_BANKaO registers are used as the Rm_BANK operand. Whe
the value of the RB bit is 0, the RO_BANKO to R7_BANKO registers and the R8 to R15 registers
are used as the Rn operand, and the RO_BANK1 to R7_BANKI1 registers are used as the
Rm_BANK operand.

Operation:

STCSR(long n) [*STC SR,Rn*/

{
RIN=SR;
PC+=2;
}
STCGBR(long n) /* STC GBR,Rn */
{
R[N]=GBR;
PC+=2;
}

255
RENESAS

STCVBR(long n) /* STC VBR,Rn */

{
R[N]=VBR;
PC+=2;
}
STCSSR(long n) /* STC SSR,Rn*/
{
R[N]=SSR;
PC+=2;
}
STCSPC(long n) /* STC SPC,Rn */
{
R[n]=SPC;
PC+=2;
}
STCRn_BANK(long n) /* STC Rn_BANK,Rm */
{ Fn=0-7%
R[n]=Rn_BANK;
PC+=2;
}

STCMSR(long n) /* STC.L SR, @-Rn */

{
RIn}-=4;
Write_Long(R[n],SR);
PC+=2;

}

STCMGBR(longn) /*STC.L GBR,@-Rn *
{

RIn}-=4;

Write_Long(R[n],GBR);

PC+=2;
}

STCMVBR(longn) /*STC.L VBR,@-Rn*/
{

256
RENESAS

Rln]-=4;
Write_Long(R[n],VBR);
PC+=2;
}
STCMSSR(longn) /*STC.L SSR,@-Rn*/
{
R[n]-=4;
Write_Long(R[n],SSR);
PC+=2;
}

STCMSPC(longn) /*STC.L SPC,@-Rn*/
{

R[n]-=4;
Write_Long(R[n],SPC);
PC+=2;
}
STCMRm(long n) # STC.L Rm_BANK,@-Rnn */
Fn=0-7%
{
R[n]-=4;
Write_Long(R[n],Rm_BANK);
PC+=2,
}
STCMOD(long n) [STC MOD,Rn */
{
R[N]=MOD;
PC+=2;
}
STCRE(longn) /*STC RE,Rn*/
{
R[N]=RE;
PC+=2,
}

RENESAS

257

STCRS(longn) /*STC RS,Rn*/

{
R[N=RS;
PC+=2;
}
STCMVBR(longn) /*STC.L VBR,@-Rn*/
{
Rn]-=4;
Write_Long(R[n],VBRY);
PC+=2;
}
STCMMOD(longn) /STC.L MOD,@-Rn */
{
RIn}-=4;
Write_Long(R[n],MOD);
PC+=2;
}

STCMRE(long n) /¥ STC.L RE,@-Rn */
{

Rn}-=4;

Write_Long(R[n],RE);

PC+=2,
}

STCMRS(long n) /* STC.L RS,@-Rn*/
{

Rn]-=4;

Write_Long(R[n],SR);

PC+=2,
}

Examples:

STC SR,RO : Before execution
: After execution
: Before execution

: After execution

STCL GBR@-R15

258

RO = H'FFFFFFFF, SR = H'00000000
RO = H'00000000

R15 = H'10000004

R15 = H'10000000, @R15 = GBR

RENESAS

8.2.68 STS (Store System Register): System Control Instruction

Format Abstract Code Cycle TBIt
STS MACH,Rn MACH - Rn 0000nNNN00001010 1 —
STS MACL,Rn MACL - Rn 0000nnNNN00011010 1 —
STS PR,Rn PR - Rn 0000nnnn00101010 1 —
STS DSR,Rrt¥ DSR - Rn 0000nnNNn01101010 1 —
STS AO,Rn* A0 - Rn 0000nnNnNn01111010 1 —
STS XO0,Rn* X0-Rn 0000nnnNn10001010 1 —
STS X1,Rn* X1-Rn 0000nNNN10011010 1 —
STS YO,Rn* YO-Rn 0000nNNn10101010 1 —
STS Y1,Rn* Y1-Rn 0000nnnn10111010 1 —
STSL MACH@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnNN00000010 1 —
STSL MACL@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnNnNn00010010 1 —
STSL PR,@-Rn Rn—-4 - Rn, PR - (Rn) 0100nnnNN00100010 1 —
STSL DSR,@-RhA Rn-4 - Rn,DSR - (Rn) 0100nnnNn01100010 1 —
STSL AO0,@-Rr¥ Rn—-4 - Rn, A0 - (Rn) 0100nnNnNn01100010 1 —
STSL X0,@-Rn* Rn—4 - Rn, X0 - (Rn) 0100nnNN10000010 1 —
STSL X1,@-Rn* Rn—4 - Rn, X1 - (Rn) 0100nnnNn10010010 1 —
STSL YO0,@-Rn* Rn—4 - Rn,YO - (Rn) 0100nnNnNn10100010 1 —
STSL Y1,@-Rn* Rn—4 - Rn,Y1 - (Rn) 0100nnnNn10110010 1 —

Note: * SH3-DSP only.

Description: Stores system registers MACH, MACL, PR, DSP, A0, X0, X1, YO, and Y1 data into

a specified destination.

Note: In the case of system register MACH, the 32-bit contents is stored unchanged.

Operation:

STSMACH(long n)

{

R[N=MACH;

¥ STS MACH,Rn ¥/

if ((R[n]&0x00000200)==0)
R[Nn]&=0x000003FF;
else R[n]|=0xFFFFFCOO;

PC+=2,

RENESAS

259

STSMACL(longn) /*STS MACL,Rn?*

{
R[N=MACL;
PC+=2;
}
STSPR(long n) *STSPR,Rn*
{
R[n]=PR;
PC+=2;
}

STSMMACH(longn) /* STS.L MACH,@-Rn*/
{
R[n}=4;
if (MACH&0x00000200)==0)
Write_Long(R[n], MACH&0X000003FF);
else Write_Long (R[n], MACH|OxFFFFFCOO)
PC+=2;
}

STSMMACL(longn) /* STS.L MACL,@-Rn *
{

R[n}=4;
Write_Long(R[n],MACL);
PC+=2;
}
STSMPR(long n) /* STS.L PR,@-Rn */
{
R[n}=4;
Write_Long(R[n],PR);
PC+=2;
}
STSDSR(long n) /¥ STS DSR,Rn */
{
R[N]=DSR;
PC+=2,
}
260

RENESAS

STSAO(long n)
{
R[N]=AQ;
PC+=2;
}
STSXO0(long n)
{
R[n]=X0;
PC+=2,
}
STSX1(long n)
{
R[n]=X1,;
PC+=2,
}
STSYO(long n)
{
RIN=YO;
PC+=2;
}
STSY1(long n)
{
R[n]=Y1;
PC+=2;
}
STSMDSR(long n)
{
R[n}=4;

¥ STS AO,Rn */

¥ STS XO,Rn */

¥ STS X1L,Rn*/

¥ STS YO,Rn*/

FSTSYLRn*

[+ STS.L DSR,@-Rn */

Write_Long(R[n],DSR);

PC+=2;

RENESAS

261

STSMAQ(long n) /* STS.L A0,@—Rn */

{
Rlnk=4;
Write_Long(R[n],A0);
PC+=2;
}
STSMXO0(long n) / STS.L X0,@—-Rn*/
{
R[n}=4;
Write_Long(R[n],X0);
PC+=2;
}
STSMX1(long n) /¥ STS.L X1,@-Rn*
{
R[n}=4;
Write_Long(R[n],X1);
PC+=2;
}
STSMYO(long n) /* STS.L YO,@—Rn */
{
R[n}=4;
Write_Long(R[n],YO);
PC+=2;
}
STSMY1(long n) / STS.L Y1,@-Rn*
{
R[n}=4;
Write_Long(R[n],Y1);
PC+=2;
}
262

RENESAS

Examples:
STS MACH,RO Before execution RO = H'FFFFFFFF, MACH = H'00000000
; After execution RO = H'00000000

STSL PR,@-R15 : Before execution R15 = H'10000004
; After execution R15 = H'10000000, @R15 = PR

263
RENESAS

8.2.69 SUB (Subtract Binary): Arithmetic Instruction
Format Abstract Code Cycle TBIt

SuB Rm,Rn Rn—-Rm - Rn 0011nnnhmmmmZ1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) f*SUB Rm,Rn */

{
RIn-=R[m[;
PC+=2;
}
Examples:

SUB ROR1 ; Before execution RO = H'00000001, R1 = H'80000000
; After execution R1 = H'7FFFFFFF

264
RENESAS

8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction
Format Abstract Code Cycle T Bit

SUBC Rm,Rn Rn—RmM-T - Rn, Borrow —» T 0011nnnnmmmm31010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(long m,jongn) /*SUBC Rm,Rn */

{
unsigned long tmp0,tmp1;
tmp1=R[n]-R[m];
tmpO=R[n];
R[N]=tmp1-T;
if (tmpO<tmpl) T=1;
else T=0;
if tmp1<R[n]) T=1;
PC+=2;
}
Examples:
CLRT ;R0O:R1(64 bits) — R2:R3(64 bits) = R0:R1(64 bits)
SUBC R3R1 ;Before execution T =0, R1 =H'00000000, R3 = H'00000001
; After execution T =1, R1 = HFFFFFFFF
SUBC R2RO ;Before execution T =1, RO = H'00000000, R2 = H'00000000

; After execution T =1, RO = HFFFFFFFF

265
RENESAS

8.2.71 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
Format Abstract Code Cycle T Bit

SuUBV RmRn Rn-Rm - Rn, Underflow - T 0011nnnnmmmm21011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long mlongn) /*SUBV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n}>=0) dest=0;

else dest=1;

if ((long)R[M]>=0) src=0;

else src=1;

src+=dest;

R[n-=R[m[;

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {
if (ans==1) T=1,
else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV ROR1 : Before execution RO = H'00000002, R1 = H'80000001
: After execution R1 =H7FFFFFFF, T=1

SUBV R2R3 : Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE
: After execution R3 = H'80000000, T=1

266
RENESAS

8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction
Format Abstract Code Cycle T Bit

SWAP.B RmRn Rm - Swap upper and lower 0110nnNnmmmmZ1000 1 —
halves of lower 2 bytes - Rn

SWAPW RmRn Rm - Swap upper and lower 0110nnnnmmmmZ1001 1 —
word - Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 b
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,longn) #* SWAP.B Rm,Rn */

{
unsigned long temp0,temp1;
tempO=R[M]&OXffff0000;
temp1=(R[m]&0x000000ff)<<8;
R[n]=(R[m]&0x0000ff00)>>8;
RIn=R[n]itempl|tempoO;
PC+=2,

}

SWAPW(long mJlong n) /¥ SWAP.W Rm,Rn */

{
unsigned long temp;
temp=(R[M]>>16)&0x0000FFFF;
R[n]=R[m]<<16;
R[n]|=temp;
PC+=2;

}

Examples:

SWAP.B ROR1 ;Before execution RO = H'12345678
: After execution R1 =H'12347856

SWAPW ROR1 ;Before execution RO = H'12345678
: After execution R1 =H'56781234

267
RENESAS

8.2.73 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code Cycle T Bit
TASB @Rn When (Rn)is0,1 - T,1 - MSB of (Rn) 0100nnnn00011011 3/4* Test
results

Note: * Four cycles on the SH3-DSP.

Description: Reads byte data from the address specified by general register Rn, and setsthe T b
to 1 if the data is O, or clears the T bit to O if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Note: The destination of the TAS instruction should be placed in a non-cacheable space when
the cache is enabled.

Operation:

TAS(long n) [*TAS.B @Rn*/

{
long temp;
temp=(long)Read_Byte(R[n]); [*Bus Lock enable */
if (temp==0) T=1;
else T=0;
temp|=0x00000080;
Write_Byte(R[n],temp); [* Bus Lock disable */
PC+=2;
}
Example:
_LOOP TASB @R7 R7 =1000
BF _LOOP ;Loops until data in address 1000 is 0
268

RENESAS

8.2.74 TRAPA (Trap Always): System Control Instruction

Format Abstract Code Cycle T Bit
TRAPA #imm imm - TRA, 1100001 Liiiiiii 6/8* —
PC - SPC,
SR - SSR,

1 - SR.MD/BL/RB
0x160 — EXPEVT
VBR + H'00000100 - PC

Note: * Eight cycles on the SH3-DSP.

Description: Starts the trap exception processing. The PC and SR values are saved in SPC and
SSR. Eight-bit immediate data is stored in the TRA registers (TRA9 to TRA2). The processor
goes into privileged mode (SR.MD = 1) with SR.BL =1 and SR.RB = 1, that is, blocking
exceptions and masking interrupts, and selecting BANK1 registers (RO_BANK1 to R7_BANK1).
Exception code 0x160 is stored in the EXPEVT register (EXPEVT11 to EXPEVTO). The progran
branches to an address (VBR+H'00000100). TRAPA and RTE are both used together for syster

calls.

Note: If this instruction is located in a delayed slot immediately following a delayed branch

instruction, it is acknowledged as an illegal slot instruction.

Operation:

TRAPA(long i) /* TRAPA #mm */

{

long imm;
imm=(0x000000FF & i);
TRASIMM<<2;
SSR=SR;

SPC=PC;

SR.MD=1

SR.BL=1

SR.RB=1
EXPEVT=0x00000160;
PC=VBR+H'00000100;

RENESAS

269

8.2.75 TST (Test Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit
TST Rm,Rn Rn & Rm, when resultis 0, 0010nnnnmmmm1000 1 Test
1T results
TST #imm,RO RO & imm, when result is 0, 11001000iiiiiiii 1 Test
1T results
TST.B #mm,@(R0,GBR) (RO + GBR) & imm, 1100110Qiiiiiiii 3 Test
whenresultis0,1 - T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bitto 1
if the result is O or clears the T bit to O if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, ort
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bi
immediate data. The RO and memory data do not change.

Operation:

TST(long m,long n) *TST Rm,Rn*/

{
if (R[N]&R[M])==0) T=1;
else T=0;
PC+=2;
}
TSTI(longi) /*TEST #imm,R0*/
{
long temp;
temp=R[0]&(0x000000FF & (long)i);
if (temp==0) T=1,
else T=0;
PC+=2;
}
270

RENESAS

TSTM(longi) /* TST.B #mm,@(RO,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
if (temp==0) T=1;
else T=0;
PC+=2,
}
Examples:
TST RO,RO ; Before execution RO = H'00000000
; After execution T=1
TST #H'80,R0 ; Before execution RO = H'FFFFFF7F
; After execution T=1
TST.B #HA5@(RO,GBR) ; Before execution @(RO,GBR) = H'A5

; After execution T=0

271
RENESAS

8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code Cycle TBit

XOR Rm,Rn Rn”~"Rm - Rn 0010nnNnnmmmm21010 1 —

XOR #mm,R0 RO~ imm - RO 11001010iiiiiii 1 —

XOR.B #mm,@(RO,GBR) (RO + GBR) "imm — 110011 1Qiiiiiiii 3 —
(RO + GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /¥ XOR Rm,Rn */

{
R[J*=R[m];
PC+=2;

}

XORI(longi) /*XOR #imm,R0 */

{
R[0]"=(0x000000FF & (long)i);
PC+=2;

}

XORM(longi) /XOR.B #mm,@(RO,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp”=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

272

RENESAS

Examples:
XOR RO,R1 :Before execution RO = HAAAAAAAA, R1 = H'55555555
; After execution R1 = H'FFFFFFFF

XOR #H'FO,RO ;. Before execution RO = H'FFFFFFFF
; After execution RO = H'FFFFFFOF

XORB #HA5@(R0O,GBR) ; Before execution @(R0,GBR) =H'A5
; After execution ~ @(R0O,GBR) = H'00

273
RENESAS

8.2.77 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code Cycle TBIt
XTRCT Rm,Rn Rm: Center 32 bits of Rn -~ Rn 0010nnnnmmmm21101 1 —

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 8-16).

MSB LSB MSB LSB
T e | n

Rn

Figure 8-16 Extract
Operation:

XTRCT(long mlong n) /* XTRCT Rm,Rn */

{
unsigned long temp;
temp=(R[m]<<16)&0xFFFF0000;
RIn]=(R[n]>>16)&0x0000FFFF;
R[n]|=temp;
PC+=2;

}

Example:

XTRCT ROR1 : Before execution RO = H'01234567, R1 = H'89ABCDEF
: After execution R1 = H'456789AB

274
RENESAS

8.3 Floating Point Instructions and FPU Related CPU Instructions

(SH-3E Only)

The functions used in the descriptions of the operation of FPU calculations are as follows.

long FPSCR;
intT;

intload_long(long *adress, *data)

{
/* This function is defined in CPU part */
}
int store_long(long *adress, *data)
{
/* This function is defined in CPU part */
}
int sign_of(long *src)
{
return(*src >> 31);
}
int data_type_of(long *src)
{
float abs;
abs = *src & OX7ffffff;
if(abs < 0x00800000) {
if(sign_of (src) == 0) return(PZERO);
else return(NZERO);
}
else if((0x00800000 <= abs) && (abs < 0x7f800000))
return(NORM);

else if(0x7f800000 == abs) {
if(sign_of (src) == 0) return(PINF);

else return(NINF);
}
else if(0x00400000 & abs) return(sNaN);
else return(gNaN);
}

RENESAS

275

clear_cause VZ(){ FPSCR &= (~CAUSE_V & ~CAUSE_2);}
set VO{FPSCR Q= (CAUSE_V QFLAG V);}
set Z){FPSCR Q= (CAUSE_Z QFLAG_2);}

invalid(float *dest)

{
set V();
if((FPSCR & ENABLE_V) == 0) gnan(dest);
}
}
dz(float *dest, int sign)
{
set Z();
if((FPSCR & ENABLE_Z) == 0) inf (dest,sign);
}
zero(float *dest, int sign)
{
if(sign == 0) *dest = 0x00000000;
else *dest = 0x80000000;
}
int(float *dest, int sign)
{
if(sign == 0) *dest = 0x7f800000;
else *dest = 0xff800000;
}
gnan(float *dest)
{
*dest = Ox7fbfffff;
}
276

RENESAS

8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FABS FRn [FRn| - FRn 1111nnnNn01011101 2 1 —

Description: Obtains arithmetic absolute value (as a floating point number) of the contents of
floating point register FRn. The calculation result is stored in FRn.

Operation:

FABS(float *Frn) /* FABS FRn*/

{
clear_cause_VZ();
case(data_type_of(FRn)) {
NORM: if(sign_of(FRn) ==0) *FRn=*FRn;
else *FRn = -*FRn;
break;
PZERO:
NZERO : zero(FRn,0); break;
PINF :
NINF : inf(FRn,0); break;
gnan : gnan(FRn); break;
sNaN : invalid(FRn); break;
}
pc+=2;
}

FABS Special Cases

FRn NORM +0 -0 +INF —INF qNaN sNaN

FABS(FRn) ABS +0 +0 +INF +INF gNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:

FABS FR2 ; Floating point absolute value
;. Before executioffR2=H'C0800000/* —4 in base 19
; After executionFR2=H'40800000/* 4 in base 1%

277
RENESAS

8.3.2 FADD (Floating Point Add): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FADD FRm,FRn FRn+FRm - FRn 1111nnnnmmmmOQO000 2 1 —

Description: Arithmetically adds (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FADD (float *FRm,FRn) ¥ FADD FRm,FRn */
{

clear_cause VZ();
if(data_type_of(FRm)==sNaN) ||

(data_type_of(FRn) = =sNaN)) invalid(FRn);
else if((data_type_of(FRm) ==qgNaN) ||
(data_type_of(FRn) == gNaN)) gnan(FRn);
else case(data_type_of(FRm)) {
NORM:
case(data_type_of(FRn)) {
PINF inf(FRn,0); break;
NINF inf(FRn,1); break;
default : *FRn =*FRn + *FRm; break;
} break;
PZERO:
case(data_type_of(FRn)) {
NORM : *FRn =*FRn + *FRm; break;
PZERO
NZERO : zero(FRn,0); break;
PINF inf(FRn,0); break;
NINF inf(FRn,1); break;
} break;
NZERO:
case(data_type_of(FRn)){
NORM *FRn =*FRn + *FRm,; break;
PZERO : zero(FRn,0); break;
NZERO : zero(FRn,1); break;
PINF inf(FRn,0); break;
NINF inf(FRn,1); break;

278
RENESAS

} break;

RENESAS

PINF:
case(data_type_of(FRn)) {
NINF invalid(FRn); break;
default : inf(FRn,0); break;
} break;
NINF:
case(data_type_of(FRn)){
PINF invalid(FRn); break;
default : inf(FRn,1); break;
} break;
}
pc+=2;
}
FADD Special Cases
FRm FRn
NORM | +0 | -0 +INF ~INF gNaN sNaN
NORM ADD —INF
+0 +0
-0 -0
+INF +INF Invalid
~INF ~INF | Invalid ~INF
gNaN gNaN
sNaN Invalid
Note: Non-normalized values are treated as zero.
Exceptions: Invalid operation
279

Examples:

FADD FR2,FR3

FADD FR5,FR4

280

Floating point add

Before execution: FR2=H'40400000/*
FR3=H'3F800000/*

After execution:
FR3=H'40800000/*

FR2=H'40400000

Before execution: FR5=H'40400000/*
FR4=H'C0000000/*

After execution:
FR4=H'3F800000/*

FR5=H'40400000

RENESAS

3in base 19
1in base 19

4 in base 19

3in base 19
—2 in base 19

1in base 19

8.3.3 FCMP (Floating Point Compare): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FCMP/EQ FRm,FRn (FRn==FRm)? 1111nnnnmmmmO0100 2 1 Comparison
10T result

FCMP/GT FRm,FRn (FRn> FRm)? 1111nnnnmmmmQ0101 2 1 Comparison
10T result

Description: Arithmetically compares (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result (true/false) is written to the T bit.

Operation:

FCMP_EQ(float *FRm,FRn) ¥ FCMP/EQ FRm,FRn */

{
clear_cause VZ();
if (fcmp_chk(FRm,FRN) = = INVALID) {fcmp_invalid(0); }
else if(fcmp_chk(FRm,FRn) = = EQ) T=1;
else T=0;
pc+=2;
}
FCMP_GT(float *FRm,FRn) /* FCMP/GT FRm,FRn */
{
clear_cause_VZ();
if (fcmp_chk(FRm,FRN)==INVALID)||{fcmp_chk(FRm,FRn)==UO)X{
femp_invalid(0):}
else if(fcmp_chk(FRm,FRn) = = GT) T=1,
else T=0;
pc+=2;
}
femp_chk(float *FRm,*FRn)
{

if((data_type_of(FRm) == sNaN) ||
(data_type_of(FRn) ==sNaN)) return(INVALID);
else if((data_type_of(FRm) == gNaN) ||
(data_type_of(FRn) ==gNaN)) return(UO);
else case(data_type_of(FRm)) {
NORM :case(data_type_of(FRn)) {
PINF return(GT); break;

281
RENESAS

NINF return(NOTGT); break;

default : break;

} break;

PZERO :

NZERO : case(data_type of(FRn)) {
PZERO
NZERO retum(EQ); break;
PINF return(GT); break;
NINF return(NOTGT); break;
default : break;

} break;

PINF : case(data_type of(FRn)) {
PINF return(EQ) break;
default return(NOTGT); break;

} break;

NINF : case(data_type of(FRn)) {
NINF relun(EQ); break;
default return(GT); break;

} break;

}
if*FRn = = *FRm) return(EQ);
else if*FRn > *FRm) return(GT);
else return(NOTGT);
}
femp_invalid(int cmp_flag)
{
set_V();

if(FPSCR & ENABLE_V) ==0) T =cmp_flag;
}

282
RENESAS

FCMP Special Cases

FRm FRn
NORM ‘ +0 -0 +INF —INF gqNaN sNaN

NORM CMP GT IGT

+0 EQ

-0
+INF IGT EQ
—INF GT EQ
gNaN uo
sNaN Invalid

Notes: 1. UO if result is FCMP/EQ, invalid if result is FCMP/GT.
2. Non-normalized values are treated as zero.

Exceptions: Invalid operation

Note: Four comparison operations that are independent of each other are defined in the IEEE
standard, but the SH-3E supports FCMP/EQ and FCMP/GT only. However, all
comparison conditions can be supported by using these two FCMP instructions in
combination with the BT and BF instructions.

(FRm ==FRn) fcmp/eq FRm, FRn ; bt
(FRm!=FRn) femp/eq FRm, FRn ; bf

(FRm <FRn) femp/gt FRm, FRn ; bt
(FRm <=FRn) femp/gt FRn, FRm ; bt
(FRm > FRn) femp/gt FRn, FRm ; bt
(FRm >=FRn) femp/gt FRm, FRn ; bf
Unorder FRm, FRn fcmp/eq FRm, FRm ; bf
Examples:
FCMP/EQ:

FLDI1 FR6 ;FR6=H'3F800000/* 1 in base 19
FLDI1 FR7 ;FR7=H'3F800000
CLRT ;TBit=0
FCMP/EQ FR6,FR7 ; Floating point comparexqual
BF TRGET_F ; Don't branciT=1)
NOP

BT/S TRGET_T
FADD FR6,FR7

; Branch
; Delay slotFR7=H'40000000/* 2 in base 19

283
RENESAS

NOP

TRGET_FFCMP/EQ FR6,FR7
BT/S TRGET_T
FLDI1 FR7
TRGET_TFCMP/EQ FR6,FR7
BF TRGET_F
NOP
.END
FCMP/GT:
FLDI1 FR2
FLDI1 FR7
FADD FR2,FR7
CLRT
FCMP/GT FR2,FR7
BT/S TRGET_T
FLDI1 FR7
TRGET_T FCMP/GT FR2,FR7
BT TRGET_T
.END

284

; Don't brancHT=0)
; Delay slot
; Thit=0
; Branch first time only
;FR6=FR7=H'3F800000/* 1in base 19

;FR2=H'3F800000/* 1 in base 19

;FR7=H'40000000/* 2 in base 19
; Thit=0
; Floating point compargyreater than
; Branch (T=1)

; Thit=0
Don't branch (T=0)

RENESAS

8.3.4

Format

FDIV (Floating Point Divide): Floating Point Instruction

Abstract Code

Latency Cycles T Bit

FDIV FRm, FRn

FRn/FRm - FRn

111InnnnmmmmO011 14 13 —

Description: Arithmetically divides (as floating point numbers) the contents of floating point

register FRn by the contents of floating point register FRm. The calculation result is stored in FR

Operation:

FDIV(float *FRm,*FRn) /*FDIV FRm,FRn %/

{

clear_cause_VZ();

if((data_type_of(FRm) ==sNaN) | |
(data_type_of(FRn)==sNaN)) invalid(FRn);

else if((data_type_of(FRm) ==qgNaN) | |
(data_type_of(FRn) = = gNaN))

else case((data_type_of(FRm) {

gnan(FRn);

NORM :
case(data_type_of(FRn)) {
PINF
NINF : inf(FRn,sign_of(FRm)"sign_of(FRn));
default : *FRn =*FRn/*FRm;
}
PZERO :
NZERO:
case(data_type_of(FRn)) {
PZERO
NZERO : invalid(FRn);
PINF
NINF : inf(Fn,Sign_of(FRm)"sign_of(FRn));
default : dz(FRn,sign_of(FRm)"sign_of(FRn));
}
PINF :
NINF :
case(data_type_of(FRn)) {
PINF
NINF : invalid(FRn);

default :zero (FRn,sign_of(FRm)"sign_of(FRn));

RENESAS

break;
break;
break;
break;
break;
break;
break;
break;
break

285

break;

}
pc+=2;
}
FDIV Special Cases
FRm FRn
NORM +0 -0 +INF —INF gNaN sNaN
NORM DIV 0
+0 Dz Invalid INF
-0
+INF 0 +0 -0 Invalid
—INF -0 +0
gNaN gNaN
sNaN Invalid
Note: Non-normalized values are treated as zero.
Exceptions: Invalid operation, divide by zero
Examples:
FDIV FR6, FR5 Floating point divide
;. Before execution: :FR5=H'40800000/* 4 in base 19
; ;FR6=H'40400000/* 3in base 19
. After execution: :FR5=H'3FAAAAAA/* 1.33...in base ¥0
; ;FR6=H'40400000
286

RENESAS

8.3.5 FLDIO (Floating Point Load Immediate 0): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FLDIO FRn H'00000000 -~ FRn 1111nnnn10001101 2 1 —

Description: Loads the floating point number 0 (0x00000000) in floating point register FRn.
Operation:

FLDIO(float *FRn) /¥ FLDIO FRn */

{
*FRn = 0x00000000;
pc+=2;

}

Exceptions: None
Examples:

FLDIO FR1 ; Load immediate O
; Before execution: FR1=x (don't care)
After execution: FR1=00000000

287
RENESAS

8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit
FLDI1 FRn H'3F800000 - FRn 1111nnnNn10011101 2 1 —

Description: Loads the floating point number 1 (0x3F800000) in floating point register Frn.
Operation:

FLDI1(float *FRn) ¥ FLDI1 FRn */

{
*FRn = 0x3F800000;
pc+=2;

}

Exceptions: None

Examples:
FLDI1 FR2 ; Load immediate 1
; Before execution: FR2=x (don't care)
; After execution: FR2=H'3F800000/* 1 in base 1%
288

RENESAS

8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit
FLDS FRm,FPUL FRm - FPUL 1111nnnNn00011101 2 1

Description: Loads the contents of floating point register FRm to system register FPUL.

Operation:

FLDS(float *FRm,*FPUL) /* FLDS FRm,FPUL */
{

*FPUL = *FRm;

pc+=2;
}

Exceptions: None

Examples:
; Before execution of FLDS and FSTS:
FLDI1 FR6 ; FR6=H'3F800000/* 1 in base 1%
FLDIO FR2 ; FR2=0

; After execution of FLDS and FSTS:
FLDS FR6, FPUL ; FPUL=H'3F800000
FSTS FPUL, FR2 ; FR2= H'3F800000

289
RENESAS

8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FLOAT FPULFRn (float)FPUL — FRn 1111nnnn00101101 2 1 —

Description: Interprets the contents of FPUL as an integer value and converts it into a floating
point number. The result is stored in floating point register FRn.

Operation:

FLOAT(int,*FPUL,float *FRn) ¥ FLOAT FRn */
{

clear_cause_VZ();
*FRn = (float)*FPUL;
pc+=2;

}

Exceptions: None

Examples:
; Floating Point Convert from Integer
: Before execution of FLOAT instruction:
MOV.L #H'00000003,R1 ; R1=H'00000003
FLDIO FR2 ; FR2=0
; After execution of FLOAT instruction:
LDS R1,FPUL ; FPUL=H'00000003
FLOAT FPUL, FR2 ; FR2=H'40400000/* 3 in base 19
290

RENESAS

8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FMAC FRO, FRO x FRm+FRn - FRn 111lnnnnmmmm1110 2 1 —
FRmM,FRn

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRO and FRm. To this calculation result is added the contents of floating point register
FRn, and the result is stored in FRn.

Operation:

FMAC(float *FRO,*FRm,*FRn) * FMAC FRO,FRm,FRn */
{
long tmp_FPSCR;
float *tmp_FMUL =*FRm;
FMUL(FO,tmp_FMUL);
pc-=2; [*correctpc
tmp_FPSCR = FPSCR; * save cause field for FRO*FRm */
FADD(tmp_FMUL,FRn);
FPSCR |=tmp_FPSCR,; [* reflect cause field for FO*FRm %/

291
RENESAS

FMAC Special Cases

FRn FRO FRm
+NORM | -NORM| 40 | -0 +INF | -INF | gNaN | sNaN
NORM | NORM MAC INF
0 Invalid
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
+0 NORM MAC INF
0 +0 Invalid
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
-0 +NORM | MAC +0 -0 +INF —INF
—NORM -0 +0 —INF +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
+INF | +NORM | +INF Invalid
—NORM +INF
0 Invalid
+INF Invalid +INF
—INF Invalid +INF +INF
—INF | +NORM | -INF ‘ —INF
—NORM
0
+INF | Invalid | Invalid ~INF
—INF —INF —INF Invalid
gNaN 0 Invalid
INF | Invalid
IsNaN
INaN gNaN gNaN
All types| sNaN
sNaN | All types Invalid

Note: Non-normalized values are treated as zero.

292
RENESAS

Exceptions: Invalid operation

Examples:
FMAC FRO, FR3, FR5 ; Floating point multiply accumulate
FRO*FR3+FR5->FR5

; Before execution: FRO=H'40000000/*
; FR3=H'40800000/*
; FR5=H'3F800000/*
;. After execution: FRO=H'40000000/*
; FR3=H'40800000/*
; FR5=H'41100000/*

FMAC FRO, FRO, FR5 :FRO*FRO+FR5->FR5
; Before execution: FRO=H'40000000/*
; FR5=H'3F800000/*
; After execution: FRO=H'40000000/*
; FR5=H'40A00000/*

FMAC FRO, FR5, FRO :FRO*FR5+FRO->FR5

; Before execution:

1

; After execution:

l

RENESAS

FRO=H'40000000/*
FR5=H'40A00000/*
FRO=H'41400000/*
FR5=H'40A00000/*

2 in base 19
4 in base 19
1in base 19
2 in base 19
4in base 19
9in base 19

2 in base 19
1in base 19
2 in base 19
5in base 19

2 in base 19
5in base 19
12 in base 19
5in base 19

293

8.3.10 FMOV (Floating Point Move): Floating Point Instruction

Latency

Format Abstract Code (Wait Time) Cycles T Bit

1.FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 2 1 —

2.FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmm1000 2 1 —

3.FMOV.S FRm, @Rn FRm - (Rn) 1111nnnnmmmm1010 2 1 —

4. FMOV.S @Rm+,FRn (Rm) - FRn, 1111nnnnmmmm1001 2 1 —

Rm+=4
5.FMOV.S FRm,@-Rn Rn-=4, 1111nnnnmmmm1011 2 1 —
FRm - (Rn)
6.FMOV.S (RO+Rm) - FRn 1111nnnnmmmm0110 2 1 —
@(RO,Rm),FRn
7.FMOV.S FRm, FRm - (RO+Rn) 1111nnnnmmmmO0111 2 1 —
@(RO,RN)

Description:

1. Moves the contents of floating point register FRm to floating point register FRn.

2. Loads the contents of the memory addresses specified by general-use register Rm to floatin
point register FRn.

3. Stores the contents of floating point register FRm in the memory address position specified t
general-use register Rm.

4. Loads the contents of the memory addresses specified by general-use register Rm to floatin
point register FRn. After the load completes successfully, increments the value of Rm by 4.

5. Stores the contents of floating point register FRm in the memory address position specified t
general-use register Rn-4. After the store completes successfully, the decremented value (R
4) becomes the value of Rm.

6. Loads the contents of the memory addresses specified by general-use registers Rm and RO
floating point register FRn.

7. Stores the contents of floating point register FRm in the memory address position specified t
general-use registers Rn and RO.

294

RENESAS

Operation:

FMOV(float *FRm,*FRn) /¥ FMOV.S FRm,FRn */

{
*FRn =*FRm,;
pc+=2;
}
FMOV_LOAD(long *Rm,float *FRn) * FMOV @Rm,FRn */

{ if(load_long(Rm,FRn) '=Address_Error)
load_long(Rm,FRn);
pc+=2;
}
FMOV_STORE(float *FRm,long *Rn) *FMOV.S FRm,@Rn */
{ if(store_long(FRm,tmp_address) !=Address_Error)
store_long(FRm,Rn);

pc+=2;
}
FMOV_RESTORE(long *Rm,float *FRn) * FMOV.S @Rm+,FRn */
{ if(load_long(Rm,FRn) '=Address_Error)
*Rm+=4;
pc+=2;
}
FMOV_SAVE (float *FRm,long *Rn) FFMOV.S FRm,@-Rn */
{

long *mp_address =*Rn -4;
if(store_long(FRm,tmp_address) !=Address_Error)
Rn =tmp_address;
pc+=2;
}
FMOV_LOAD_index(long *Rm, long *R0, float *FRn)* FMOV.S @(R0,Rm),FRn*/
{
if load_long(&(*Rm+*R0),FRn), ! = Address_Etrror);
pc+=2;
}
FMOV_STORE_index(float *FRm,long *R0, long *Rn)/* FMOV.S FRm,@(RO,Rn)*/

295
RENESAS

if (store_long(FRm,&((*Rn+*R0)), ! = Address_Error);

pc+=2;
}

Exceptions: Address error
Examples:

FMOV.S @R1, FR2

FMOV.S FR2, @R3

FMOV.S @R3+FR3

FMOV.S FR4, @-R3

FMOV.S @(RO, R3), FR4

296

: Load

; Before execution:

; After execution:

)

; Store

; Before execution:

; After execution:

)

. Restore

; Before execution:

; After execution:

;. Save

: Before execution:

; After execution:

Load with index

: Before execution:

RENESAS

@R1=-H'00ABCDEF
FR2=0

@R1=-H'00ABCDEF
FR2=HOOABCDEF

@R3=0
FR2=H'40800000

@R3=H'40800000
FR2=H'40800000

R3=H'0C700028
@R3=H'40800000
FR3=0

R3=H'0C70002C
FR3=H'40800000

R3=H'0C700044
@R3=0
FR4=H01234567

R3=H'0C700040
@R3=H01234567
FR4=H'01234567

RO=H'00000004
R3=H'0C700040

FMOV.S FRS5, @(RO,R3)

FMOV.S FRS5, FR6

)

After execution:

Store with index
Before execution:

; After execution:

Register file contents
Before execution:

After execution:

RENESAS

@H0C700044=H0O0ABCDEF
FR=4

RO=H'00000004
R3=H'0C700040
FR4=HOOABCDEF

R0O=H'00000028
R3=H'0C700040
@H0C700068=0
FR5=H76543210

R0O=H'00000028
R3=H'0C700040
@H0C700068=H"76543210

FR5=H76543210
FR6=x(don't care)

FR5=H"76543210
FR6=H"76543210

297

8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FMUL FRm,FRn FRn x FRm - FRn 1111nnnnmmmmO010 2 1 —

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FMUL(float *FRm,*FRn) * FMUL FRm,FRn */
{
clear_cause_VZ();
if((data_type_of(FRm)==sNaN) ||
(data_type_of(FRn) ==sNaN)) invalid(FRn);
else if((data_type_of(FRm) ==qNaN) ||
(data_type_of(FRn) ==qgNaN)) gnan(FRn);
else case(data_type_of(FRm) {

NORM
case(data_type_of(FRn)) {
PINF :
NINF :inf(FRn,sign_of(FRm)"sign_of(FRn)); break;
default: *FRn=*FRn)*(*FRm); break;
} break;
PZERO
NZERO
case(data_type_of(FRn)) {
PINF :
NINF : invalid(FRn); break;
default: zero(FRn,sign_of(FRm)"sign_of(FRn)); break;
} break;
PINF
NINF
case(data_type_of(FRn)) {
PZERO :
NZERO : invalid(FRn); break;
defaultinf (FRn,sign_of(FRm)"sign_of(FRn)); break
} break;
}
298

RENESAS

pc+=2;
}

FMUL Special Cases

FRm FRn
NORM +0 -0 +INF —INF gqNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
gNaN gNaN
sNaN Invalid
Note: Non-normalized values are treated as zero.
Exceptions: Invalid operation
Examples:
FMUL FR2, FR3 Floating point multiply
: Before execution: FR2=H'40000000/* 2 in base 1%
; FR3=H'40800000/* 4 in base 19
; After execution: FR2=H'40000000
; FR3=H'41000000/* 8 in base 19
299

RENESAS

8.3.12 FNEG (Floating Point Negate): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FNEG FRn -FRn - FRn 1111nnnn01001101 2 1 —

Description: Arithmetically negates (as a floating point number) the contents of floating point
register FRn. The calculation result is stored in FRn.

Operation:

FNEG(float *FRn) ¥ FNEG FRn */

{
clear_cause_VZ();
case(data_type_of(FRn)) {
gNaN : gnan(FRn); break;
sNaN : invalid(FRn); break;
default : *FRn = -(*Frn); break;
}
pc+=2;
}

FNEG Special Cases

FRn NORM +0 -0 +INF —INF gNaN sNaN

FNEG(FRn) NEG -0 +0 —INF +INF gNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:
FNEG FR2 ; Floating point negate
: Before execution: FR2=H'40800000/* 4 in base 1%
; After execution: FR2=H'C0800000/* —4 in base 19
300

RENESAS

8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit
FSQRT FRn YFRn - FRn 1111nnnn01101101 14 13 —

Description: Arithmetically obtains (as a floating point number) the square root of the contents ¢
floating point register FRn. The calculation result is stored in FRn.

Operation:

FSQRT(float *FRn) /* FSQRT FRn*/

{
clear_cause_VZ();
case(data_type_of(FRn)) {
NORM : if(sign_of(FRn) ==0)
*FRn = sqrt(*FRn);
else invalid(FRn); break;
PZERO
NZERO
PINF *FRn =*FRn; break;
NINF invalid(FRn); break;
gNaN gnan(FRn); break;
sNaN : invalid(FRn); break;
}
pc+=2;
}
FSQRT Special Cases
FRn +NORM | —-NORM +0 -0 +INF —INF gNaN sNaN
FSQRT(FRn)| SQRT Invalid +0 -0 +INF Invalid gNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:
FSORT FR4 ; Floating point square root
: Before execution: :FR4=H'40400000/* 3 in base 19
; After execution: :FR4=H'3FDDB3D7/* 1.7320 in base *0

301
RENESAS

8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FSTS FPUL,FRn FPUL - FRn 1111nnnNn00001101 2 1 —

Description: Copies the contents of system register FPUL to floating point register FRn.
Operation:

FSTS(float *FRn,*FPUL) ~ * FSTS FPUL,FRn */

{
*FRn =*FPUL;
pc+=2;

}

Exceptions: None
Examples:

MOV.L #H00000002, R2 ; Before execution of FSTS instructionR2=H'00000002

FLDIO FR5 ;FR5=0

LDS R2,FPUL ; After execution of FSTS instruction: ;R2=H'00000002

FSTS FPUL,R5 ;FR5= H'00000002
302

RENESAS

8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction
Format Abstract Code Latency Cycles T Bit

FSUB FRm, FRn FRn-FRm - FRn 1111nnnnmmmmO001 2 1 —

Description: Arithmetically subtracts (as floating point numbers) the contents of floating point
register FRm from contents of floating point register FRn. The calculation result is stored in FRn

Operation:

FSUB(float *FRm,FRn) ¥ FSUB FRm,FRn */
{

clear_cause_VZ();
if((data_type_of(FRm)==sNaN) ||

(data_type_of(FRn) == sNaN)) invalid(FRn);
else if((data_type_of(FRm) ==qNaN) | |
(data_type_of(FRn) == qgNaN)) gnan(FRn);
else case(data_type_of(FRm)) {

NORM

case(data_tyoe_of(FRn)) {
PINF inf(FRn,0); break;
NINF inf(FRn,1); break;
default : *FRn =*FRn - *FRm; break;

} break;

PZERO

case(data_type_of(FRn)) {
NORM *FRn =*FRn-*FRm; break;
PZERO : zero(FRn,0); break;
NZERO : zero(FRn,1); break;
PINF inf(FRn,0); break;
NINF inf(FRn,1); break;

} break;

NZERO

case(data_type_of(FRn)) {
NORM *FRn = *FRn - *FRm; break;
PZERO
NZERO : zero(FRn,0); break;
PINF inf(FRn,0); break;

303
RENESAS

NINF inf(FRn,1); break;

} break;
PINF
case(data_type_of(FRn)) {
NINF invalid(FRn); break;
default : inf(FRn,1); break;
} break;
NINF
case(data_type_of(FRn)) {
PINF invalid(FRn); break;
default : inf(FRn,0); break;
} break;
}
pc+=2;
}
FSUB Special Cases
FRm FRn
NORM ‘ +0 ‘ -0 +INF —INF gNaN sNaN
NORM SUB +INF —INF
+0 -0
-0 +0
+INF —INF Invalid
—INF +INF Invalid
gNaN gNaN
sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

304
RENESAS

Examples:

FSUB FRO, FR3 ; Floating point subtract

; Before execution:
; After execution:

FSUB FR3, FR2 ;
; Before execution:
; After execution:

;FRO=H'3F800000/*
;FR3=H'40E00000/*
;FRO=H'3F800000/*
;FR3=H'40C00000/*

;FR2=H'40800000/*
;FR3=H'40C00000/*

;FR2=H'C0000000/*
;FR3=H'40C00000/*

RENESAS

1in base 19
7 in base 19
1in base 19
6 in base 19

4 in base 19
6 in base 19
-2 in base 19
6 in base 19

305

8.3.16 FTRC (Floating Point Truncate And Convert To Integer): Floating Point
Instruction

Format Abstract Code Latency Cycles T Bit

FTRC FRm, FPUL (long)FRm - FPUL 1111nnnn00111101 2 1 —

Description: Interprets the contents of floating point register FRm as a floating point number and
converts it to an integer by truncating everything after the decimal point. The calculation result is
stored in FRn.

Operation:
#define N_INT_RANGE 0xCF000000 +01.000000 * 216 */
#define P_INT_RANGE 0x47FFFFFF [* 1 fffffe * 2730 */
FTRC(float *FRm,int *FPUL) f*FTRC FRm,FPUL */
{

clear_cause_VZ();
case(ftrc_type_of(FRm)) {

NORM : *FPUL = (long)(*FRm); break;
PINF : ftrc_invalid(0); break;
NINF : ftrc_invalid(1); break;
}

pc+=2;

}

int ftrc_type_of(long *src)

{

long abs;

abs = *src & OX7FFFFFF;
if(sign_of(src) ==0) {
if(@bs > 0x7F800000) return(NINF); f* NaN*/
else if(abs > P_INT_RANGE) return(PINF); [*out of range,+INF %/

else return(NORM); /*+0,+NORM X

}

else {
if(*src > N_INT_RANGE) return(NINF);/* out of range ,+INF,NaN*/
else return(NORM); /*-0,-NORM*/

}

}
306

RENESAS

ftrc_invalid(long *dest,int sign)

{

set_V();

if(FPSCR & ENABLE_V) ==0) {
if(sign==0) *dest = OX7FFFFFFF;

else *dest = 0x80000000;
}
}
FTRC Special Cases
FRn NORM +0 -0 positive | negative | +INF -INF gNaN sNaN
out of out of
range rarge
FTRC TRC 0 0 7FFFFFFR 80000000| Invalid | —MAX -MAX | —-MAX
(FRn) +MAX | Invalid | Invalid | Invalid
Invalid
Note: Non-normalized values are treated as zero.
Exceptions: Invalid operation
Examples:
MOV.L #H402ED9EB, R2
LDS R2,FPUL
FSTS FPUL, FR6 ;FR6=H'402ED9EB/* 2.7320 in base ¥0
FTRC FR6, FPUL
STS FPUL,R2 ;R2=H'00000002/* 2 in base 1%
; Before execution of FTRC and STS:
i R2=H402ED9EB
. FR6=H'402ED9EB
; After execution of FTRC and STS:
;. R2=H'00000002
;. FR6=H'402ED9EB
307

RENESAS

8.3.17 LDS (Load to System Register): FPU Related CPU Instruction

Format Abstract Code Latency Cycles T Bit

1LDS Rm, FPUL Rm - FPUL 0100nnnn01011010 2 1 —

2.LDS.L@Rm+,FPUL (Rm) - FPUL, 0100nnnn01010110 2 1 —
Rm+=4

3.LDS Rm,FPSCR Rm - FPSCR 0100nnnNn01101010 3 1 —

41DS.L @Rm+FPSCR (Rm) - FPSCR, 0100nnnn01100110 3 1 —
Rm+=4

Description:

1. Moves the contents of general-use register Rm to system register FPUL.

2. Loads the contents of the memory addresses specified by general-use register Rm to systen
register FPUL. After the load completes successfully, increments the value of Rm by 4.

3. Moves the contents of general-use register Rm to system register FPSCR. Previously define
bits in FPSCR are not changed.

4. Loads the contents of the memory addresses specified by general-use register Rm to systen
register FPSCR. After the load completes successfully, increments the value of Rm by 4.
Previously defined bits in FPSCR are not changed.

Operation:

#define FPSCR_MASK 0x00018C60

LDS(long *Rm,*FPUL) /¥ LDS Rm,FPUL */
{
*FPUL = *Rm;
pc+=2;
}
LDS_RESTORE(long *Rm, *FPUL) [*LDS.L @Rm+,FPUL */
{
if(load_long(Rm,FPUL) = Address_Etrror) *Rm +=4;
pc+=2;
}
LDS(long *Rm,*FPSCR) /¥ LDS Rm,FPSCR */
{
*FPSCR =*Rm & FPSCR_MASK;
pc+=2;
308

RENESAS

}
LDS_RESTORE(long *Rm, *FPSCR) /¥ LDS.L @Rm+,FPSCR */
{
long *tmp_FPSCR;
ifload_long(Rm, tmp_FPSCR) = Address_Error){
*FPSCR =*tmp_FPSCR & FPSCR_MASK;
*Rm+=4;
}
pc+=2;
}

Exceptions: Address error

Examples:
e LDS
Example 1
MOV.L #H'12345678, R2 ; Before execution of LDS and FSTS instructions:
; R2=H'12345678
FLDIO FR3 ; FR3=0
LDS R2, FPUL ; After execution of LDS and FSTS instructions:

; R2=H'12345678

FSTS FPUL,FR3 ; FR3=H12345678

Example 2
MOV.L #H'00040801, R4 ; After execution of LDS instruction:
LDS R4,FPSCR :FPSCR=00040801
« LDS.L
Example 1
LDI0 FRO ; Before execution of LDS.L and FSTS instructions:
MOV.L #H87654321, R4 ; FRO=0
MOV.L #H'0C700128, R8 ; R8=0C700128
MOV.L R4,@RS8 . After execution of LDS.L and FSTS instructions:
LDS.L @R8+, FPUL ; FR0=87654321
FSTS FPUL, FRO ; R8=0C70012C

309
RENESAS

Example 2

MOV.L #H00040CO01, R4 ; Before execution of LDS.L instruction:
MOV.L #H0C700134, R8 ; R8=0C700134
MOV.L R4,@RS8 ;. After execution of LDS.L instruction:
; R8=0C700138
LDS.L @R8+, FPSCR ; FPSCR=00040C01
310

RENESAS

8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction

Latency
Format Abstract Code (Wait Time) Cycles T Bit
1.STS FPUL,Rn FPUL - Rn 0000nnNnNn01011010 2 1 —
2.STS.L FPUL,@-Rn Rn -=4, 0100nnnNn01010010 2 1 —
FPUL - @(Rn)
3.STS FPSCR,Rn FPSCR - Rn 0000nNNN01101010 3 1 —
4.STS.L FPSCR,@-Rn Rn -=4, 0100nnnNn01100010 3 1 —

FPSCR - @(Rn)

Description:

1. Moves the contents of system register FPUL to general-use register Rn.

Stores contents of system register FPUL at the memory address position specified by gene
use register Rn-4. After the store completes successfully, the decremented value becomes
value of Rn.

3. Moves the contents of system register FPSCR to general-use register Rn.

4. Stores contents of system register FPSCR at the memory address position specified by
general-use register Rn-4. After the store completes successfully, the decremented value
becomes the value of Rn.

Operation:

STS(long *FPUL,*Rn) f*STS.L FPUL,Rn*/
{
*Rn = *FPUL;
pc +=2;
}
STS_SAVE(long *FPUL,*Rn) / STS.L FPUL,@-Rn */
{

long *tmp_address = *Rn - 4;
if(store_long(FPUL,tmp_address) = Address_Etrror)
Rn =tmp_address;

pc +=2;
}
STS(long *FPSCR,*Rn) f*STS FPSCR,Rn */
{

*Rn =*FPSCR,;

311
RENESAS

pc+=2;

STS STore from FPU System register

STS_RESTORE long *FPSCR,*Rn) /¥ STS.L FPSCR,@-Rn*/

{

long *tmp_address =*Rn - 4;
if(store_long(FPSCR tmp_address) != Address_Etrror)
Rn =tmp_address
pc+=2;

}

Exceptions: Address error
Examples:

« STS

Example 1

MOV.L #H12ABCDEF, R12

LDS.L @R12, FPUL

STS FPUL,R13
: After execution of STS instruction:
; R13=12ABCDEF

Example 2

STS FPSCR,R2
; After execution of STS instruction:
: Contents of FPSCR at that point stored in R2 register

« STS.L
Example 1

MOV.L #H0C700148, R7

STS FPUL, @-R7
: Before execution of STS.L instruction:
; R7 =H0C700148
: After execution of STS.L instruction:

312
RENESAS

; R7 =H'0C700144, contents of FPUL saved at
addres$H'0C700144
; location H'0C700144

Example 2

MOV.L #HO0C700154, R8
STS.L FPSCR, @-R8
; After execution of STS.L instruction:
; Contents of FPSCR saved at address H'0C700150

313
RENESAS

8.4 DSP Data Transfer Instructions (SH3-DSP Only)

Table 8-1 lists the DSP data transfer instructions in alphabetical order.

Table 8-1 DSP Data Transfer Instructions in Alphabetical Order
DC
Instruction Operation Code Cycles Bit
MOVS.L As—4 5 As,(As) - Ds 111101AADDDD0010 1 —
@-As,Ds
MOVS.L @As,Ds (As)-Ds 111101AADDDDO0110 1 —
MOVS.L @As+Ds (As)-Ds,As+4 - As 111101AADDDD1010 1 —
MOVS.L (As) - Ds,As+Ix - As 111101AADDDD1110 1 —
@As+Ix,Ds
MOVS.L Ds, As—4 -, As,Ds - (As) 111101AADDDDO0011 1 —
@-As
MOVS.L Ds,@As Ds - (As) 111101AADDDDO0111 —
MOVS.L Ds,@As+ Ds- (As),As+4 . As 111101AADDDD1011 —
MOVS.L Ds - (As),As+Ix - As 111101AADDDD1111 1 —
Ds,@As+Ix
MOVS.W As—2 - As,(As) -MSW of 111101AADDDD0000 1 —
@-As,Ds Ds,0 - LSW of Ds
MOVS.W @As,Ds (As) -MSW of 111101AADDDD0100 1 —
Ds,0 - LSW of Ds
MOVS.W @As+,Ds (As) -MSW of 111101AADDDD1000 1 —
Ds,0 - LSW of Ds,
As+2 - As
MOVS.W (As) - MSW of 111101AADDDD1100 1 —
@As+Ix,Ds Ds,0 - LSW of Ds,
As+Ix - As
MOVS.W As—2 - As,MSW of 111101AADDDDO0001 1 —
Ds,@-As Ds - (As)
MOVS.W Ds,@As MSW of Ds - (As) 111101AADDDD0101 —
MOVS.W Ds,@As+ MSW of 111101AADDDD1001 1 —
Ds - (As),As+2 - As
MOVS.W MSW of 111101AADDDD1101 1 —
Ds,@As+Ix Ds - (As),As+Ix - As
MOVXW @Ax,Dx (AX) - MSW of 111100A*D*Q*01** 1 —
Dx,0 - LSW of Dx
MOVX.W @Ax+Dx (Ax) -»MSW of 111100A*D*0*10** 1 —
Dx,0 - LSW of
Dx,Ax+2 - AX
314

RENESAS

Table 8-1 DSP Data Transfer Instructions in Alphabetical Order (cont)

DC
Instruction Operation Code Cycles Bit
MOVX.W (AX) - MSW of 111100A*D*0*11** 1 —
@AX+IX,Dx Dx,0 -~ LSW of
Dx,Ax+Ix - AX
MOVX.W Da,@Ax MSW of Da - (Ax) 111100A*D*1*01** 1 —
MOVX.W Da,@Ax+ MSW of 111100A*D*1*10** 1 —
Da - (AX),Ax+2 - AX
MOVX.W MSW of 111100A*D*1*11** 1 —
Da,@Ax+Ix Da - (AX),Ax+Ix — Ax
MOVY.W @Ay,Dy (Ay) - MSW of 111100*A*D*0**01 1 —
Dy,0 - LSW of Dy
MOVY.W @Ay+,Dy (Ay)->MSW of 111100*A*D*0**10 1 —
Dy,0 - LSW of Dy,
Ay+2 - Ay
MOVY.W (Ay) - MSW of 111100*A*D*0**11 1 —
@Ay+ly,Dy Dy,0 - LSW of Dy,
Ay+ly - Ay
MOVY.W Da,@Ay MSW of Da - (Ay) 111100*A*D*1*01 1 —
MOVY.W Da,@Ay+ MSW of 111100*A*D*1**10 1 —
Da - (Ay),Ay+2 . Ay
MOVY.W MSW of 111100*A*D*1**11 1 —
Da,@Ay+ly Da - (Ay),Ay+ly » Ay
NOPx No Operation 1111000*0*0*00** 1 —
NOPY No Operation 111100*0*0*0**00 1 —

Note: MSW = High-order word of operand
LSW = Low-order word of operand

X and Y Data Transfers (MOVX.W and MOVY.W)

These instructions use the XDB and YDB buses to access X and Y memory. Areas other than X
and Y memory cannot be accessed. Memory is accessed in word units. Since independent bus
used, it does not create access contention with instruction fetches (using the LDB bus).

X and Y data transfer instructions are executed regardless of conditions even when the data
operation instruction executed in parallel has conditions.

Figure 8-17 shows the load and store operations in X and Y data transfers.

315
RENESAS

31 0 31 0
Instruction code R4 [AX] R6 [Ay] Instruction code
for X data transfer R5 [Ax] R7 [Ay] forY data transfer
operation operation
DSP data 2 15 1 15 1 v v DSP data
register register
XO/X1, AO/AL < iontrol for <—| ABXx | | ABy |—’ Control for > YO/Y1, AO/AL
input/output memory _,97 {7‘ Y memory input/output
control control
XAB 15 bits
YAB 15 bits
X_MEM Y_MEM
™ Xdata Y data [*
memory memory |
X RIW 4 kbytes 4 kbytes Y RIW
16 bits
XDB
YDB
16 bits
X_MEM, Y_MEM: Select signals for X and Y data memory

Figure 8-17 Load and Store Operations in X and Y Data Transfers
X memory data transfer operation is shown below. Y memory data transfers are the same.

if ('NOP){
X_MEM=1; XAB=ABx; X R\W=1;
if (load operation) {
DX[31:16]=XDB;
DX[15:0] =0x0000; /*Dx is X0 or X1 */
}
else {XDB=Dx[31:16];X RAW=0;} /*Dxis AO or A1 */

}
else { X_MEM=0; XAB=Unknown; }

316
RENESAS

Single Data Transfers (MOVS.W and MOVS.L)

Single data transfers are instructions that load to and store from the DSP register. They are like
system register load and store instructions. Data transfers between the DSP register and memao
use the LAB and LDB buses. Like CPU core instructions, data accesses can create access
contention with instruction memory accesses.

Single data transfers can use either word or longword data. Figure 8-18 shows the load and sto
operations in single data transfers.

31 0 Instruction code for single

R2 [As] data transfer operation
R3 [As] T T T T
R4 [As | | |W'-| '—S| ! !
R5 [As

81| O0<«— Contralis [¢

MAB SuperH core |
32 bi Yyvy
its < > <
LAB Control _
—— DSP data register

input/output control
Memory

LDB 7;|_

32 bits

Figure 8-18 Load and Store Operations in Single Data Transfers

Load and store operations in single data transfers are shown below.

317
RENESAS

LAB = MAB;
if (Ms!=NLS @@ WIL is word access {/* MOVS.W */
if (LS==load) {
if (DS!=A0G @@ Ds!=A1G)
Ds[31:16] = LDB[15:0]; Ds[15:0] = 0x0000;
if (Ds==A0) AOG[7:0] = LDB[15];
if (Ds==A1) A1G[7:0] = LDB[15];

}
else Ds[7:0] = LDB[7:0] [*Ds is AOG or A1G */
}
else { /* Store */
if (DS!=A0G @@ Ds!=A1G) LDB[15:0] = Ds[31:16];
[*Dsis AOG or A1G */
else LDB[15:0] = Ds[7:0] with 8-bit sign extension
}
}
else if(MAI=NLS @@ WIL is longword access) { * MOVS.L */
if (LS==load {
if (DSI=A0G @@ Ds!=A1G) {
Ds[31:0] = LDB[31:0];
if (Ds==A0) AOG[7:0] = LDB[31];
if (Ds==A1) A1G[7:0] = LDB[31];
}
else Ds[7:0] = LDB[7:0] * Ds is AOG or A1G ¥/
}
else {/* Store */
if (DSI=A0G @@ Ds!=A1G) LDB[31:0] = Ds[31:0]
[*Dsis AOG or A1G */
else LDB[31:0] = Ds[7:0] with 24-bit sign extension
}
}

This section explains the breakdown of instructions, descriptions, etc. given in the rest of this
section.

318
RENESAS

Table 8-2 Sample Description (Name): Classification

Format Abstract Code Cycle DC Bit
Assembler input A brief description of Displayed in All DSP The status of
format. operation order MSB - instructions the DC bit
LSB execute in 1 after the
cycle instruction is
executed
Format:

[if cc] OP.Sz SRC1,SRC2,DEST

[if cc]: Condition (unconditional, DCT, or DCF)
OP: Operation code

Sz: Size

SRC1: Source 1 operand

SRC2: Source 2 operand

DEST: Destination

Table 8-3 Operation Summary

Operation Description

S, e Direction of transfer

(xx) Memory operand

DC Flag bits in the DSR

& Logical AND of each bit

| Logical OR of each bit

A Exclusive OR of each bit

~ Logical NOT of each bit

<<n, >>n n-bit shift

MSW Most significant word (bits 16-31)
LSW Least significant word (bits 0-15)
[n1:n2] Bits n1 to n2

Instruction Code: Shows the source register and destination register.

319
RENESAS

X Data Transfer Instructions:

A(Ax): 0=R4, 1=R5
D(destination, Dx): 0=X0, 1=X1
D (source, Da): 0=A0, 1=A1

Y Data Transfer Instructions:

A(Ay): 0=R6, 1=R7
D(destination, Dy): 0=Y0, 1=Y1
D (source, Da): 0=A0, 1=A1

Single Data Transfer Instructions:

AA(As): 0=R4, 1=R5, 2=R2, 3=R3
DDDD(Ds): 5=Al, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=MO0, D=A1G, E=M1
F=A0G

DSP Operation Instructions:

ee(Se): 0=X0, 1=X1, 2=Y0, 3=A1

ff(Sf): 0=Y0, 1=Y1, 2=X0, 3=Al

xX(Sx): 0=X0, 1=X1, 2=A0, 3=A1

yy(Sy): 0=YO0, 1=Y1, 2=M0, 3=M1

gg(Dg): 0=M0, 1=M1, 2=A0, 3=A1

uu(Du): 0=X0, 1=Y0, 2=A0, 3=A1

zzzz(Dz): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=MO0, E=M1

DC Bit:

Update: Updated according to the operation result and the specifications of the CS (condition
select) bits.
—: Not updated.

Description: Description of operation
Notes: Notes on using the instruction
Operation: Operation written in C language.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction.

320
RENESAS

8.4.1 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer
Instruction

Format Abstract Code Cycle DC Bit

MOVS.W As-2 - As,(As) - MSW of 111101AADDDD0000 1 —

@-As,Ds Ds,0 - LSW of Ds

MOVS.W @As,Ds (As) -MSW of Ds,0 - LSW of Ds 111101AADDDD0100 1 —

MOVS.W @As+,Ds (As) - MSW of Ds,0 - LSW of 111101AADDDD1000 1 —
Ds, As+2 - As

MOVS.W @As+Ix,Ds (As) -~MSW of Ds,0 - LSW of 111101AADDDD1100 1 —
Ds, As+Ix - As

MOVS.W As—2 - As,MSW of Ds - (As) 111101AADDDDO0001 1 —

Ds,@-As

MOVS.W Ds,@As MSW of Ds - (As) 111101AADDDDO0101 1 —

MOVS.W Ds,@As+ MSW of Ds - (As),As+2 - As 111101AADDDD1001 1 —

MOVS.W Ds,@As+Ix MSW of Ds - (As),As+Ix - As 111101AADDDD1101 1 —

MOVS.L As—4 - As,(As) - Ds 111101AADDDD0010 1 —

@-As,Ds

MOVS.L @As,Ds (As)-Ds 111101AADDDDO0110 1 —

MOVS.L @As+,Ds (As) »Ds,As+4 - As 111101AADDDD1010 1 —

MOVS.L @As+Ix,Ds (As) - Ds,As+Ix - As 111101AADDDD1110 1 —

MOVS.L Ds, As—4 - As,Ds - (As) 111101AADDDDO0011 1 —

@-As

MOVS.L Ds,@As Ds - (As) 111101AADDDDO0111 1 —

MOVS.L Ds,@As+ Ds - (As),As+4 . As 111101AADDDD1011 1 —

MOVS.L Ds,@As+Ix Ds - (As),As+Ix - As 111101AADDDD1111 1 —

Description: Transfers the source operand data to the destination. Transfer can be from memon
to register or register to memory. The transferred data can be a word or longword. When a worc
transferred, the source operand is in memory, and the destination operand is a register, the wor
data is loaded to the top word of the register and the bottom word is cleared with zeros. When tt
source operand is a register and the destination operand is memory, the top word of the registe
stored as the word data . In a longword transfer, the longword data is transferred. When the

destination operand is a register with guard bits, the sign is extended and stored in the guard bi

Note: When one of the guard bit registers AOG and A1G is the source operand for store
processing, the data is output to the bottom 8 bits (bits 0—7) and the top 24 bits (bits 31—
become undefined.

321
RENESAS

Operation: See figure 8-19.

Word data transfer

Memory to register Register to memory
31 o 20, 31 0 -2,0,

| As D +2, +Ix | As @ +2, +Ix

4 \4
[Any memory area |POStupdate [any memory area | POSt update
3

LDB[15:0]
Sign extension ¢ Cleared ‘
le—S| Ds All0 | | | bs Ignored |
31 16 15 0 31 16 15 0
Longword data transfer
Memory to register Register to memory
31 o 40, 31 0 -4,0,

| As @ +4, +IX | As \D +4, +Ix

4 \ 4
[Any memory area |Postupdate [any memory area | POSt update

LDB[31:0]]

Sign extension v

le—|si Ds | L Ds |
31

Figure 8-19 The MOVS Instruction
Examples:

MOVSW @R4+,A0Before execution: R4=H'00000400, @R4=H'8765, A0O=H'123456789A
; After execution: R4=H'00000402, AO=H'FF87650000

MOVSL Al, @-R3 ; Before execution: R3=H'00000800, A1=H'123456789A
; After execution: R3=H'000007FC, @(H'000007FC)=H'3456789A

322
RENESAS

8.4.2 MOVX (Move between X Memory and DSP Register): DSP Data Transfer

Instruction

Format Abstract Code Cycle DC Bit

MOVX.W @AXx,Dx (AX) ~MSW of Dx,0 - LSW of Dx 111100A*D*0*01** 1 —

MOVX.W @Ax+,Dx (AX) -~ MSW of Dx,0 - LSW of 111100A*D*0*10** 1 —
Dx,Ax+2 - Ax

MOVX.W @Ax+Ix,Dx (Ax) -~MSW of Dx,0 - LSW of 111100A*D*0*11* 1 —
DX, AX+IX - AX

MOVX.W Da,@Ax MSW of Da - (Ax) 111100A*D*1*01** 1 —

MOVX.W Da,@Ax+ MSW of Da - (Ax),AX+2 - Ax 111100A*D*1*10** 1 —

MOVX.W Da,@Ax+Ix MSW of Da - (AX),Ax+Ix —» Ax 111100A*D*1*11** 1 —

Note: " of the instruction code is MOVY instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be fron
memory to register or register to memory. The transferred data can only be word length for X
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation: See figure 8-20.

Memory to register Register to memory
31 0 g,+2 31 0 0+
0
A4 A4
| X memory |Post update | X memory | Post update
XDB[15:0] 4
v Cleared i
| S| Dx | AllO | | | Da Ignored |
31 16 15 0 31 16 15 0

Figure 8-20 The MOVX Instruction

Examples:

MOVXW @R4+X0Before execution: R4=H'08010000, @R4=H'5555, X0=H'12345678
; After execution: R4=H'08010002, X0=H'55550000

323
RENESAS

8.4.3 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer

Instruction

Format Abstract Code Cycle DC Bit

MOVY.W @Ay,Dy (Ay) ~MSW of Dy,0 - LSW of 111100*A*D*0**01 1 —
Dy

MOVY.W @Ay+,Dy (Ay) -~ MSW of Dy,0 - LSW of 111100*A*D*0**10 1 —
Dy, Ay+2 - Ay

MOVY.W @Ay+ly,Dy (Ay) -MSW of Dy,0 - LSW of 111100*A*D*0**11 1 —
Dy, Ay+ly - Ay

MOVY.W Da,@Ay MSW of Da - (Ay) 111100*A*D*1*+01 1 —

MOVY.W Da,@Ay+ MSW of Da - (Ay),Ay+2 - Ay 111100*A*D*1**10 1 —

MOVY.W Da,@Ay+ly ~ MSW of Da - (Ay),Ay+ly - Ay 111100*A*D*1*11 1 —

Note: "*" of the instruction code is MOVX instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for Y
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is

stored in the top word of the register.
Operation:

See figure 8-21.

Memory to register Register to memory
31 0 0, +2, 31 0 0, +2,
| Ay \Dﬂy | Ay \D +ly
A 4 Y
| Y memory |Post update | Y memory | Post update
, YDB[15:0] !
v Cleared
| S| Dy | All O | | | Da Ignored |
31 16 15 0 31 16 15 0

Figure 8-21 The MOVY

324
RENESAS

Instruction

Examples:

MOVY.W A0, @R6+,R9 ; Before execution: R6=H'08020000, R9=H'00000006,
AO=H'123456789A

; After execution: R6=H'08020006, @(H'08020000)=H'3456

325
RENESAS

8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction
Format Abstract Code Cycle DC Bit

NOPX No Operation 1111000*0*0*00** 1 —

Description: No access operation for X memory.

8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction
Format Abstract Code Cycle DC Bit

NOPY No Operation 111100*0*0*0**00 1 —

Description: No access operation for Y memory.

326
RENESAS

8.5 DSP Operation Instructions

The DSP operation instructions are listed below in alphabetical order. See section 8.4, DSP Dat
Transfer Instructions: Classification, for an explanation of the format and symbols used in this

description.

Table 8-4 Alphabetical Listing of DSP Operation Instructions

Instruction Operation Code Cycles DC Bit
PABS Sx,Dz If Sx=0, Sx -» Dz e i 1 Update
If Sx<0, 0-Sx - Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0, Sy - Dz 112711 Qrrtanen 1 Update
If Sy<0, 0-Sy - Dz 1010100000yyzzzz
PADD Sx,Sy,Dz Sx+ Sy-Dz 11171 Qekieekiex 1 Update
10110001xxyyzzzz
DCT PADD If DC =1, Sx + Sy - Dz; 11117 Qwiokenk 1 —
Sx.Sy,bz if 0, nop 10110010xxyyzzzz
DCF PADD If DC = 0, SX + Sy-Dz; 11117 Qriorienk 1 —
Sx,Sy,Dz if 1, nop 1011001 1xxyyzzzz
PADD Sx,Sy,Du Sx + Sy -Du; I B 0 il 1 Update*
PMULS Se,Sf,Dg MSW of Se x MSW of Sf.Dg 0111eeffxxyygguu
PADDC Sx,Sy,Dz Sx + Sy + DC - Dz I i 1 Update
10110000xxyyzzzz
PAND Sx,Sy,Dz Sx & Sy - Dz; clear LSW of Dz = 11111 Q¥rkricrke 1 Update
10010101xxyyzzzz
DCT PAND IfDC =1, SX & SY Dz, clear 11111 (ki 1 —
Sx,Sy,Dz LSW of Dz; if 0, nop 10010110xxyyzzzz
DCF PAND If DC =0, SX & SY - Dz, clear 11111 Q*sesrireek 1 —
Sx,Sy,Dz LSW of Dz; if 1, nop 10010111xxyyzzzz
PCLR Dz H'00000000 - Dz B i 1 Update
100011010000zzzz
DCT PCLR Dz If DC = 1, H'00000000 - Dz; e i 1 —
if 0, nop 100011100000zzzz
DCF PCLR Dz If DC = 0, H'00000000 - Dz; I i 1 —
if 1, nop 100011110000zzzz
327

RENESAS

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
PCMP Sx,Sy Sx — Sy o O i 1 Update
10000100xxyy0000
PCOPY Sx,Dz Sx Dz 11211 Qekiex 1 Update
11011001xx00zzzz
PCOPY Sy,Dz Sy-Dz 11211 Qikiaex 1 Update
1111100100yyzzzz
DCT PCOPY Sx,Dz If DC =1, Sx-Dz; if 0, nop 11211 Qiaer 1 —
11011010xx00zzzz
DCT PCOPY Sy,Dz If DC =1, Sy-Dz; if 0, nop 11211 Qeiaen 1 —
1111101000yyzzzz
DCF PCOPY Sx,Dz If DC =0, Sx-Dz; if 1, nop 11211 Qpetnien 1 —
11011011xx00zzzz
DCF PCOPY Sy,Dz If DC =0, Sy-Dz; if 1, nop 11111 Qpeiien 1 —
1111101100yyzzzz
PDEC Sx,Dz MSW of Sx—1 -~ MSW of Dz, 11211 Qekiek 1 Update
clear LSW of Dz 10001001xx00zzz2
PDEC Sy,Dz MSW of Sy-1 - MSW of Dz, 11211 Qekiaex 1 Update
clear LSW of Dz 10101001xx00zzzz
DCTPDEC Sx,Dz IfDC =1, MSW of Sx-1 - 11211 Qeeiaer 1 —
MSW of Dz, clear LSW of Dz; 10001010xx002222
if 0, nop
DCTPDECSyDz If DC =1, MSW of Sy-1 - 11177 Q itk 1 —
MSW of Dz, clear LSW of Dz; 10101010xx002222
if 0, nop
DCFPDEC Sx,Dz If DC =0, MSW of Sx-1 - 11211 Qekik 1 —
MSW of Dz, clear LSW of Dz; 1000101 1xx002222
if 1, nop
DCFPDECSy,Dz If DC =0, MSW of Sy-1 - 11211 Qeeiaer 1 —
MSW of Dz, clear LSW of Dz; 10101011xx002222
if 1, nop
PDMSB Sx,Dz Sx data MSB position - MSW 11111 (#rrikierkx 1 Update
of Dz, clear LSW of Dz 10011101xx002222
PDMSB Sy,Dz Sy data MSB position - MSW 11111 (#rriekiariex 1 Update
of Dz, clear LSW of Dz 1011110100yyzzzz
328

RENESAS

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
DCT PDMSB Sx,Dz If DC =1, Sx data MSB 11111 Qketskakk 1 —
position — MSW of Dz, 10011110xx007227
clear LSW of Dz; if 0, nop
DCTPDMSB Sy,Dz If DC =1, Sy data MSB 11111 Qrkkiork 1 —
position -~ MSW of Dz, 1011111000yyzzzz
clear LSW of Dz; if 0, nop
DCF PDMSB Sx,Dz If DC = 0, Sx data MSB 11111 Qsiiakk 1 —
position -~ MSW of Dz, clear 1001111 1xx002222
LSW of Dz; if 1, nop
DCFPDMSB Sy,Dz If DC =0, Sy data MSB 11111 Qkkatskakk 1 —
position - MSW of Dz, clear 1011111100yyzzzz
LSW of Dz; if 1, nop
PINC Sx,Dz MSW of Sx + 1 - MSW of Dz, 11111 Q%o 1 Update
clear LSW of Dz 10011001xx007277
PINC Sy,Dz MSW of Sy + 1 - MSW of Dz, 1111]Q#+erkekirk 1 Update
clear LSW of Dz 1011100100yyzzzz
DCT PINC Sx,Dz IfDC=1, MSWof Sx + 1 11111 Qseiiakk 1 —
MSW of Dz, clear LSW of Dz; 10011010xx002222
if 0, nop
DCT PINC Sy,Dz IfDC=1, MSWofSy+1- 11111 Qketskakk 1 —
MSW of Dz, clear LSW of Dz; 1011101000yyzzzz
if 0, nop
DCF PINC Sx,Dz IfDC=0, MSWof Sx +1 - 11111 Qrkkiork 1 —
MSW of Dz, clear LSW of Dz; 10011011xx002222
if 1, nop
DCF PINC Sy,Dz IfDC=0,MSWofSy +1- 11111 Qsriakk 1 —
MSW of Dz, clear LSW of Dz; 1011101100yyzzzz
if 1, nop
PLDS Dz, MACH Dz -~ MACH 11111 Qkketskakk 1 —
111011010000zzzz
PLDS Dz,MACL Dz -~ MACL 11111 Qrkrkiork 1 —
111111010000zzzz
DCT PLDS If DC =1, Dz - MACH; 11111 Qrkwkiork 1 —
Dz MACH if 0, nop 111011100000zzzz
DCT PLDS If DC =1, Dz - MACL; 11111 Qs 1 —
Dz MACL if 0, nop 111111100000zzzz
DCF PLDS If DC =0, Dz - MACH; 11111 Qietiakk 1 —
Dz MACH if 1, nop 1110111100002z2z
329

RENESAS

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
DCF PLDS If DC =0, Dz - MACL; 11177 Qorenk 1 —
Dz MACL if 1, nop 111111110000zz2z
PMULS Se,Sf,Dg MSW of Se x MSW of Sf-Dg 11111 (ke 1 —
0100eeff0000gg00
PNEG Sx,Dz 0-Sx - Dz 11211 Qikiaex 1 Update
11001001xx00zzzz
PNEG Sy,Dz 0-Sy - Dz 1117 1Qperekx 1 Update
1110100100yyzzzz
DCTPNEGSx,Dz IfDC =1, 0-Sx-Dz; 11211 Qi 1 —
if 0, nop 11001010xx00zzzz
DCTPNEGSyDz IfDC=1,0-Sy-Dz; 11177tk 1 —
if 0, nop 1110101000yyzzzz
DCFPNEG Sx,Dz IfDC =0, 0 - Sx-Dz; 11177 Qerienk 1 —
if 1, nop 11001011xx00zzzz
DCFPNEGSyDz IfDC=0,0-Sy-Dz; 11211 Qekiex 1 —
if 1, nop 1110101100yyzzzz
POR Sx,Sy,Dz Sx | Sy—-Dz, clear LSW of Dz =~ 11111 (#xkiariariax 1 Update
10110101xxyyzzzz
DCT POR If DC = 1, Sx|Sy - Dz, 11211 Qeriair 1 —
Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110%xyyzz27
DCF POR If DC = 0, Sx|Sy - Dz, 11211 Qraiaen 1 —
Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzzzz
PRND Sx,Dz Sx + H'00008000 - Dz, 11177tk 1 Update
clear LSW of Dz 10011000xx00zz2z
PRND Sy,Dz Sy + H'00008000 - Dz, 11177 Qerienk 1 Update
clear LSW of Dz 1011100000yyzzzz
PSHA Sx,Sy,Dz If Sy=0, Sx<<Sy - Dz; O i 1 Update
if Sy<0, Sx>>Sy . Dz 10010001xxyyzzzz
DCT PSHA If DC = 1 & Sy=0, SX<<Sy - Dz; 111110k 1 —
Sx,Sy,Dz ?f DC =1 & Sy<0, Sx>>Sy - Dz; 10010010xxyyzzzz
if DC =0, nop
330

RENESAS

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
DCF PSHA If DC = 0 & Sy=0, SX<<Sy - Dz; 11111 Q#rerktkikk 1 —
Sx,Sy,Dz if DC =0 & Sy<0, Sx>>Sy - Dz; 1001001 1x0xyyzzzz
if DC =1, nop
PSHA #imm,Dz If imm=0, Dz<<imm - Dz; 11117 Qwioix 1 Update
ifimm<0, Dz>>imm - Dz 00001iilizzzz
PSHL Sx,Sy,Dz If Sy=0, Sx<<Sy - Dz, 11111 Qkiersiakk 1 Update
‘S")‘figfvi’ ‘gz?zv it Sy<0, 10000001xxyyz222
clear LSW of Dz
DCT PSHL If DC=1 & Sy=0, Sx<<Sy - 11171 Qekiekiex 1 —
Sx,Sy,Dz Dz, clear LSW of Dz; 10000010xxyyzzz2

if DC=1 & Sy<0, Sx>>Sy -
Dz, clear LSW of Dz; if DC=0,

nop
DCF PSHL If DC=0 & Sy=0, Sx<<Sy - 11111 Qo 1 —
Sx,Sy,Dz Dz, clear LSW of Dz; if DC=0 & 10000011xxyyzzz2

Sy<0, Sx>>Sy - Dz, clear

LSW of Dz; if DC=1, nop
PSHL #imm,Dz If imm=0, Dz<<imm - Dz, 11111 Qetskakk 1 Update

clear LSW of Dz; if imm<0, 0000Qiiiiiizzzz

Dz>>imm - Dz, clear LSW of

Dz
PSTS MACH,Dz MACH - Dz 11111 Qkketskakk 1 —

110011010000zzzz
PSTS MACL,Dz MACL - Dz 11111 Qkkerskakek 1 —
110111010000zzzz
DCT PSTS If DC=1, MACH - Dz; if 0, nop 111110k 1 —
MACH,Dz 110011100000zzzz
DCT PSTS If DC=1, MACL - Dz;if 0, nop 1111]1(Q#+kerkekirk 1 —
MACL,Dz 110111100000zz2z
DCF PSTS If DC =0, MACH - Dz; 11111 Qrkkkkk 1 —
MACH,Dz if 1, nop 110011110000zzzz
DCF PSTS If DC =0, MACL - Dz; 11111 Qkietskakk 1 —
MACL,Dz if 1, nop 110111110000zz2z
331

RENESAS

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

PSUB Sx,Sy,Dz Sx-Sy - Dz 11211 Qttkiek 1 Update
10100001xxyyzzzz

DCT PSUB If DC =1, Sx — Sy - Dz; I I e il 1 —

SxSy.Dz if 0, nop 10100010xxyyzzzz

DCF PSUB If DC =0, Sx — Sy - Dz; 11177tk 1 —

SxSy.Dz if 1, nop 10100011xxyyzzzz

PSUB Sx,Sy,Du Sx - Sy-Du; 11111 Q. 1 Update

PMULS Se,SfDg ~ MSW of Se x MSW of St-Dg 1 10eeffxxyygguu

PSUBC Sx,Sy,Dz Sx-Sy-DC - Dz 11177 Qb 1 Update
10100000xxyyzzzz

PXOR Sx,Sy,Dz SX " Sy Dz, clear LSW of Dz 11111 (ririekiorix 1 Update
10100101xxyyzzzz

DCT PXOR If DC =1, Sx * Sy - Dz, 11177 Qerienk 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10100110xxyyzzzz

DCF PXOR If DC =0, Sx * Sy - Dz, 11177 Qe 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10100111xxyyzzzz

Note: Updated based on the PADD operation results

The DC bit in the DSR register is updated in accordance with the result of a DSP instruction and
the specification of the status selection bit (CS). In addition to the DC bit, the DSR register also
contains four status indication flags (V, N, Z, and GT). The operation of each bit is described
below. In the later descriptions of instruction operation for each DSP operation, the following
operation contents are used as subroutine modules.

Operation contents (1) Fix-point borrow DC bit

P SH-DSP: DSP Engine: fixed_pt_dc_always_borrow.c
Set DSR's DC Bit to borrow bit regardless the status of CS[2:0] bits */

[* DC update policy: don't care the status of DSPCSBITS */
DSPDCBIT = borrow_hit;
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_hit;

DSPNBIT = negative_bit;
DSPVBIT = overflow_bit;

332

RENESAS

Operation contents (2) Fixed-point carry DC bit
P SH-DSP: DSP Engine: fixed_pt_dc_always_carry.c
Set DSR's DC Bit to carry bit regardless the status of CS[2:0] bits */

* DC update policy: don't care the status of DSPCSBITS */
DSPDCBIT = carry_bit;

DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bit;

DSPNBIT = negative_bit;

DSPVBIT = overflow_hit;

Operation contents (3) Fixed-point negative value DC bit
P SH-DSP: DSP Engine: fixed_pt_minus_dc_bit.c
Fixed Point Minus(-) Operation: Set DC Bit in DSR */

switch (DSPCSBITS) {

case 0x0: /* Borrow Mode */
DSPDCBIT = borrow_bit;
break;

case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_bit;
break;

case 0x2: /* Zero Value Mode */
DSPDCBIT = zero_bit;
break;

case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;
break;

case Ox4: /* Signed Greater Than Mode */
DSPDCBIT = ~((negative_bit ~ overflow_bit) | zero_bit);
break;

case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT = ~(negative_bit * overflow_bit);

RENESAS

333

break;
case Ox6: /* Reserved */
case Ox7: [*Reserved */
break;
}
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;

Operation contents (4) Fixed-point overflow prevention function (saturated operation)
P SH-DSP: DSP Engine: Set to maximum non-overflow value if overlow
fixed_pt_overflow_protection.c */

{
if(SBIT && overflow_bit) { * Overflow Protection Enable & overflow */
if(DSP_ALU_DSTG_BIT7==0) { /* positive value */
if(DSP_ALU_DSTG_LSB8!=0x0) || (DSP_ALU_DST_MSBI=0)) {
DSP_ALU_DSTG= Ox0;
DSP_ALU_DST = Ox7fffffff;
}
}
else { I* negative value */
if((DSP_ALU_DSTG_LSB8!=0xff) || (DSP_ALU_DST_MSB!=1)) {
DSP_ALU_DSTG= 0xff;
DSP_ALU_DST = 0x80000000;
}
}
overflow_bit = 0; /* No more overflow when protected */
}
}

Operation contents (5) Fixed-point positive value DC bit
P SH-DSP: DSP Engine: fixed_pt_plus_dc_bit.c
Fixed Point Plus(+) Operation: Set DC Bitin DSR /*

switch (DSPCSBITS) {

334
RENESAS

case 0x0: /*Carry Mode */
DSPDCBIT = carry_bit;
break;
case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_hit;
break;
case 0x2: [* Zero Value Mode */
DSPDCBIT = zero_bit;
break;
case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;
break;
case Ox4: /* Signed Greater Than Mode */
DSPDCBIT = ~((negative_bit * overflow_bit) | zero_bit);
break;
case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT = ~(negative_bit ~ overflow_bit);
break;
case Ox6: /*Reserved */
case Ox7: /*Reserved */
break;
}
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;

Operation contents (6) Fixed-point operation unconditional DC bit update
f* SH-DSP: DSP Engine: Fixed Point Unconditional Update
fixed_pt_unconditional_update.c
1. Write back to the Destination Register
2. update negative_bit and zero_bit. */
P negative_bit = MSB of ALU's 40-bit result.
zero_bit = if(ALU's 40-bit result==0)
sign-extend to A0/1G[31:8] */

335
RENESAS

DSP_REG[ex2_dz_no] = DSP_ALU_DST;
if (ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO0O000O0FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFQO;
}
else if (ex2_dz_no==1) {
Al1G =DSP_ALU _DSTG & MASKOOO00OO0OFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;
}
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

Operation contents (7) Integer negative value DC bit
F* SH-DSP: DSP Engine: integer_minus_dc_bit.c
Integer Minus(-) Operation: Set DC Bitin DSR */

#include "fixed_pt_minus_dc_bit.c"

Operation contents (8) Integer overflow prevention function (saturated operation)
F* SH-DSP: DSP Engine: Set to maximum non-overflow value if overlow
integer_overflow_protection.c */

#include "fixed_pt_overflow_protection.c"

Operation contents (9) Integer positive value DC bit
P SH-DSP: DSP Engine: integer_plus_dc_bit.c
Integer Plus(+) Operation: Set DC Bit in DSR */

#include "fixed_pt_plus_dc_bit.c"

Operation contents (10) Integer unconditional DC bit update
F* SH-DSP: DSP Engine: Integer Operation Unconditional Update
integer_unconditional_update.c
1. Write back to the Destination Register
2. update negative_bit and zero_hit.
negative_bit = MSB of ALU's 24-hit(g-bit and hw) resuilt.
zero_hit = if(ALU's g-bit & hw==0)

336
RENESAS

Spec 1.1: Clear ALU Integer operation's LSW. */

DSP_REG_WD[ex2_dz_no*2]= DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1] = Ox0; [* clear LSW */
if (ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOO00000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFQO;
}
else if (ex2_dz_no==1) {
Al1G =DSP_ALU _DSTG & MASKOO00000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

}
negative_bit=DSP_ALU_DSTG_BIT7;

zero_bit= (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

Operation contents (11) Logical operation DC bit
F* SH-DSP: DSP Engine: logical_dc_hit.c

Logical Operation: Set DC Bit in DSR */

switch (DSPCSBITS) {

case 0x0: /*Carry Mode */
DSPDCBIT =0;
break;

case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_hit;
break;

case 0x2: /* Zero Value Mode */
DSPDCBIT = zero_bit;
break;

case 0x3: /* Overflow Mode */
DSPDCBIT =0;
break;

case Ox4: /* Signed Greater Than Mode */
DSPDCBIT =0;
break;

RENESAS

337

case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT =0;
break;
case 0x6: /* Reserved */
case Ox7: ¥ Reserved */
break;
}
DSPGTBIT =0;
DSPZBIT =zero_hit;
DSPNBIT = negative_bit;
DSPVBIT =0;

Operation contents (12) Shift operation DC bit
F* SH-DSP: DSP Engine: Shift_dc_bit.c
Shift Operation: Set DC Bitin DSR */

switch (DSPCSBITS) {

case Ox0: /*Carry Mode */
DSPDCBIT = carry_bit;
break;

case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_hit;
break;

case 0x2: /* Zero Value Mode */
DSPDCBIT = zero_bit;
break;

case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;
break;

case Ox4: /* Signed Greater Than Mode */
DSPDCBIT =0;
break;

case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT =0;
break;

case Ox6: /* Reserved */

338
RENESAS

case Ox7: /*Reserved */
break;
}
DSPGTBIT =0;
DSPZBIT =zero_bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;

RENESAS

339

8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PABS Sx,Dz If Sx=0,Sx - Dz 11211 Qpkerrekx 1 Update
If Sx<0,0-Sx - Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0,Sy - Dz 1111 Qe 1 Update
If Sy<0,0-Sy - Dz 1010100000yyzzzz

Description: Finds absolute values. When the Sx and Sy operands are positive, the contents of tt
operands are transferred to the Dz operand. If the value is negative, the amounts of the Sx and S
operand contents are subtracted from 0 and stored in the Dz operand.

The DC bit of the DSR register are updated according to the specifications of the CS bits. The N,
Z,V, and GT bits of the DSR register are updated.

Operation:
{
DSP_ALU_SRC1=0;
DSP_ALU_SRC1G=0;
if (EX2_DSP_BIT13==0) { [*0+-Sx->Dz*
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC2 = X0;
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G =0x0;
break;
case Ox1: DSP_ALU SRC2 =X1;
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
break;
case 0x2: DSP_ALU_SRC2 =A0;
DSP_ALU_SRC2G = AQG;
break;
case 0x3: DSP_ALU_SRC2 =Al;
DSP_ALU_SRC2G =AlG;
break;

else { *0+/-Sy->Dz*

340
RENESAS

switch (EX2_SY){
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

if(DSP_ALU_SRC2G_BIT7==0) { [* positive value */
DSP_ALU_DST =0x0 + DSP_ALU_SRC2;
carry_hbit=0;
DSP_ALU_DSTG_LSB8=0x0+ DSP_ALU_SRC2G_LSB8 + carry_bit;
}
else{ * negative value */
DSP_ALU DST =0x0-DSP_ALU_SRC2;
borrow_bhit=1;
DSP_ALU DSTG_LSB8=0x0-DSP_ALU SRC2G_LSBS - borrow_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"
#include "fixed_pt_unconditional_update.c"

if(DSP_ALU_SRC2G_BIT7==0){
#include "fixed_pt_plus_dc_bit.c"
}
else {
overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_minus_dc_bit.c"

}

341
RENESAS

break;

X0 = H'33333333, MO = H'12345678
X0 = H'33333333, MO = H'33333333
X1 =H'DDDDDDDD

X1 =H'22222223

DC bit is updated depending on the state of CS [2:0].

Examples:
PABS X0, MO NOPX NOPY ; Before execution:
;. After execution:
PABS X1, X1 NOPX NOPY ; Before execution:
;. After execution:
342

RENESAS

8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DCBit

PADD Sx,Sy,Dz Sx+Sy Dz I o B O il 1 Update
10110001xxyyzzzz

DCT PADD Sx,Sy,Dz if DC=1,Sx+Sy Dz if O,nop 11111 (rseeees 1 —
10110010xxyyzzzz

DCF PADD Sx,Sy,Dz if DC=0,Sx+Sy - Dz if 1,nop I O il 1 —
10110011xxyyzzzz

Description: Adds the contents of the Sx and Sy operands and stores the result in the Dz operal
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. Th
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions &

TRUE.
Operation:

{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;

else DSP_ALU_SRC1G =0x0;
break;
case OxL1: DSP_ALU SRC1 =XI;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;

else DSP_ALU_SRC1G =0x0;
break;

case 0x2: DSP_ALU SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;

case 0x3: DSP_ALU_SRC1 =Al;
DSP_ALU SRC1G =A1G;
break;

}
switch (EX2_SY){

343

RENESAS

case 0x0: DSP_ALU SRC2 =YO0;
break;
case Oxl: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU SRC2 =MQ0;
break;
case 0x3: DSP_ALU SRC2 =M1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1+DSP_ALU_SRC2;
carry_bit= (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU_DSTG_LSB8=DSP_ALU SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
#include "fixed_pt_unconditional _update.c"
#include "fixed_pt_plus_dc_bit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG[ex2_dz_no]=DSP_ALU_DST;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO00000OFF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFOO;
}
else if(ex2_dz_no==1) {
A1G =DSP_ALU_DSTG & MASKOO0OOOFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFOO;

344
RENESAS

break;

Examples:

PADD X0,YO,A0 NOPX NOPY ; Before execution: X0 = H'22222222, YO = H'33333333,
A0 = H'123456789A

; After execution: X0 = H'22222222, YO = H'33333333,
A0 = H'0055555555

In case of unconditional execution, the DC bit is updated depending on
the state of the CS [2:0] bit immediately before the operation.

345
RENESAS

8.5.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation

Instruction
Format Abstract Code Cycle DC Bit
PADD Sx,Sy,Du Sx + Sy-Du 11171 Qerkiakick 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of Sf.Dg 011leeffxxyygguu

Description: Adds the contents of the Sx and Sy operands and stores the result in the Du operan
The contents of the top word of the Se and Sf operands are multiplied as signed and the result
stored in the Dg operand. These two processes are executed simultaneously in parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Note: Since the PMULS is fixed decimal point multiplication, the operation result is different
from that of MULS even though the source data is the same.

Operation:

{
DSP_ALU_DST =DSP_ALU_SRC1+DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8+ DSP_ALU_SRC2G_LSB8 + carry
bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OQV || NEG_NOT_OV);
#include "../d_3operand.dffixed_pt_overflow_protection.c”
switch (EX2_DU) {
case 0x0:
X0 =DSP_ALU_DST;
negative_bit=DSP_ALU_DSTG_BIT7
zero_bit = (DSP_ALU_DST==0)&(DSP_ALU_DSTG_LSB8==0);
break;
case Ox1:
YO =DSP_ALU_DST;
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0)&[DSP_ALU_DSTG_LSB8==0);

346
RENESAS

break;

case 0x2:
A0 =DSP_ALU_DST;
AOG =DSP_ALU_DSTG & MASKOO00000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFQO;
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG

_LSB8==0);

break;
case 0x3:

Al =DSP_ALU_DST;
Al1G =DSP_ALU_DSTG & MASKOO00O00OFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG

_LSB8==0);
break;

}

#include "../d_3operand.dffixed_pt_plus_dc_bit.c"

}

break;

Examples:

PADD A0,M0,A0 PMULS X0,YO,MO NOPX NOPY
; Before execution: X0 = H'00020000, YO = H'00030000,
MO = H'22222222, A0 = H'0055555555
; After execution: X0 = H'00020000, YO = H'00030000,
MO = H'0000000C, AO = H'0077777777

The DC bit is updated based on the result of the PADD operation,
depending on the state of CD [2:0].

347
RENESAS

8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PADDC Sx, Sy, Dz Sx+Sy+DC - Dz 11117 Qtwierenk 1 Carry
10110000xxyyzzzz

Description: Adds the contents of the Sx and Sy operands to the DC bit and stores the result in tt
Dz operand. The DC bit of the DSR register is updated as the carry flag. The N, Z, V, and GT bit:
of the DSR register are also updated.

Note: The DC bit is updated as the carry flag after execution of the PADDC instruction
regardless of the CS bits.

Operation:

{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRCI1G = AQG;
break;
case 0x3: DSP_ALU_SRC1 =A1,
DSP_ALU_SRC1G =AlG;
break;

}
switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2 =Y0;
break;

case Oxl: DSP_ALU SRC2 =Y1,
break;

case 0x2: DSP_ALU_SRC2 =MQ;
break;

348
RENESAS

case 0x3: DSP_ALU SRC2 =M1,

break;
}
if OSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1+DSP_ALU_SRC2 + DSPDCBIT;
carry_bit = (DSP_ALU_SRC1_MSB|DSP_ALU_SRC2 MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_unconditional_update.c"
#include "fixed_pt_dc_always_carry.c"
}

break;

Example:

CS[2:0]=*** Always operate as Carry or Borrow mode, regardless of the status
of the DC bit.

PADDC X0,YO,M0 NOPX NOPY ; Before execution: X0 = H'B3333333, Y0 = H'55555555
MO = H'12345678, DC =0
; After execution: X0 = H'B3333333, Y0 = H'55555555
MO = H'08888888, DC =1
PADDC X0,YO,M0 NOPX NOPY ; Before execution: X0 = H'33333333, Y0 = H'55555555
MO = H'12345678, DC =1
; After execution: X0 = H'33333333, Y0 = H'55555555
MO = H'88888889, DC =0
DC bit is updated depending on the state of CS [2:0].

349
RENESAS

8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction
Format Abstract Code Cycle DC Bit
PAND Sx,Sy,Dz SX & Sy - Dz; clear LSW of 11111 Qr+eriekekk 1

Dz 10010101xxyyzzzz
DCT PAND IfDC =1, SX & SY - Dz, 11171 Qrkiakick 1 —
Sx,Sy,Dz clear LSW of Dz; if 0, nop 10010110xxyyzzzz
DCF PAND If DC =0, SX & SY - Dz, 11171 Qerkiakick 1 —
Sx,Sy,Dz clear LSW of Dz; if 1, nop 10010111xxyyzz72

Description: Does an AND of the upper word of the Sx operand and the upper word of the Sy
operand, stores the result in the upper word of the Dz operand, and clears the bottom word of the
Dz operand with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed.

When conditions are specified for DCT and DCF, the instruction is executed when those

conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions ar

Note: The bottom word of the destination register and the guard bits are ignored when the DC b

TRUE.
is updated.
Operation:
{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 =XO0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
break;
case 0x3: DSP_ALU_SRC1 =Al;
break;
}
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =YO0;
break;
350

RENESAS

case Ox1: DSP_ALU SRC2 =Y1;
break;

case 0x2: DSP_ALU_SRC2 = MQ0;
break;

case 0x3: DSP_ALU SRC2 =M1,
break;

DSP_ALU_DST_HW=DSP_ALU_SRC1 HW &DSP_ALU_SRC2_HW;

if(DSP_UNCONDITIONAL_UPDATE) {/* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz no*2+1] =0x0; /*clear LSW*/

if (ex2_dz_no==0) AOG = 0x0; * clear Guard
bits */

else if (ex2_dz_no==1) Al1G = 0x0;

carry_bit =0x0;

negative_hit=DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = 0x0;
#include "logical_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) {/* conditional operation and match */
DSP_REG_WD[ex2_dz _no*2]=DSP_ALU_DST_HW,;
DSP_REG_WD[ex2_dz_no*2+1]=0x0; /*clear LSW*/

if (ex2_dz_no==0) AOG = 0x0; [* clear Guard
bits */
else if (ex2_dz_no==1) AlG =0x0;
}
}
break;

351
RENESAS

Example:

PAND X0,YO,A0 NOPX NOPY . Before executiorX0 = H'33333333, YO = H'55555555
AO0 = H'123456789A

: After execution: X0 = H'33333333, YO = H'55555555
A0 = H'0011110000

In case of unconditional execution, the DC bit is updated depending
on the state of the CS [2:0] bit immediately before the operation.

352
RENESAS

8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PCLR Dz H'00000000 - Dz I O il 1 Update
100011010000zzzz
DCT PCLR Dz if DC = 1, H'00000000 - Dz 11171 Qekioekiex 1 —
if 0, nop 100011100000zzzz
DCF PCLR Dz if DC = 0, H'00000000 - Dz 11171 Qekiakiex 1 —
if 1, nop 100011110000zzzz

Description: Clears the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The Z bit of the DSR register is setto 1. The N, V, and GT bits are
cleared to 0. The DC, N, Z, V, and GT bits are not updated when conditions are specified, even
the conditions are TRUE.

Operation:

{ FO0+0->Dz¥
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
DSP_REG[ex2_dz_no] = 0x0;
if (ex2_dz_no==0) AOG =0x0;
else if (ex2_dz_no==1) A1G = 0x0;

carry hit =0;
negative_bit =0;
zero_bit =1,
overflow_bit =0;

#include "fixed_pt_plus_dc_bit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG[ex2_dz_no] = 0x0;

353
RENESAS

break;

Example:
PCLR A0 NOPX NOPY . Before execution: A0 = H'FF87654321
; After execution: A0 = H'0000000000
In case of unconditional execution, the DC bit is updated
depending on the state of the CS [2:0].
354

RENESAS

8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PCMP Sx, Sy Sx-Sy 11117 Qrreetonk 1 Update
10000100xxyy0000

Description: Subtracts the contents of the Sy operand from the Sx operand. The DC bit of the
DSR register is updated according to the specifications for the CS bits. The N, Z, V, and GT bits
of the DSR register are also updated.

Operation:

{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if ODSP_ALU_SRC1 MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =A0;
DSP_ALU_SRC1G = AOG;
break;
case 0x3: DSP_ALU_SRC1 =A1l;
DSP_ALU_SRC1G = A1G;
break;
}
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 = MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;

355
RENESAS

if DSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = Oxff;
else DSP_ALU_SRC2G = 0x0;
DSP_ALU_DST =DSP_ALU_SRC1 -DSP_ALU_SRC2;
carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && IDSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);
borrow_bit = Icarry_bit;
DSP_ALU_DSTG_LSB8=DSP_ALU_SRCI1G_LSB8-DSP_ALU_SRC2G_LSBS - borrow_bit;

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);
overflow_bit= MINUS_OP_G_OV || (POS_NOT OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_minus_dc_bit.c"

}
break;
Examples:
PCMP X0, YO NOPX NOPY ; Before execution: X0 = H'22222222, YO = H'33333333
; After execution: X0 = H'22222222, YO = H'33333333
N=1,Z2=0,V=0,GT=0
DC bit is updated depending on the state of CS [2:0].
356

RENESAS

8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PCOPY Sx,Dz Sx - Dz 11111 Qe 1 Update
11011001xx00zzzz

PCOPY Sy,Dz Sy Dz 11111 Qe 1 Update
1111100100yyzzzz

DCT PCOPY if DC =1, Sx - Dz if 0, nop 11111 Qe 1 —

Sx.Dz 11011010xx002zzz

DCT PCOPY if DC =1, Sy-Dzif 0, nop 11111 Qe 1 —

Sy,bz 1111101000yyzzzz

DCF PCOPY if DC =0, Sx-Dzif 1, nop 11111 Qe 1 —

SxDz 11011011xx00222z

DCF PCOPY ifDC =0, Sy-Dzif 1, nop 11111 Qe 1 —

Sy.bz 1111101100yyzzzz

Description: Stores the Sx and Sy operands in the Dz operand. When conditions are specified fi
DCT and DCF, the instruction is executed when those conditions are TRUE. When they are
FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits are also updated. The DC, N, Z, V, and
GT bits are not updated when conditions are specified, even if the conditions are TRUE.

Operation:

{ FSx+0->Dz¥

if (EX2_DSP_BIT13==0){

[*Sx+0->Dz*

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1 = XO0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;
break;

DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;

DSP_ALU_SRC1G = AQG;

case Ox1.

RENESAS

357

break;

case 0x3: DSP_ALU SRC1 =Al;
DSP_ALU_SRC1G = AlG;
break;
}
DSP_ALU SRC2=0;
DSP_ALU_SRC2G=0;

}
else { F0+Sy->Dz*
DSP_ALU SRC1=0;
DSP_ALU_SRC1G=0;
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MQ0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
}

DSP_ALU_DST =DSP_ALU_SRC1+DSP_ALU_SRC2;
carry_bit= (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU_DSTG_LSB8=DSP_ALU SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { * unconditional operation */
#include "fixed_pt_unconditional_update.c"
#include "fixed_pt_plus_dc_bit.c"

358
RENESAS

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no]=DSP_ALU_DST:;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOO00000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFQO;
}
else if(ex2_dz_no==1) {
Al1G =DSP_ALU _DSTG & MASKOO000O0FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

break;

Examples:

PCOPY X0, AONOPXNOPY ; Before execution: X0 = H'55555555, AO = H'FFFFFFFF
; After execution: X0 = H'55555555, A0 = H'0055555555

In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

359
RENESAS

8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DCBit

PDEC Sx,Dz MSW of Sx—1 - MSW of Dz, 11111Qwmmn: 1 Update
clear LSW of Dz 10001001xx007222

PDEC Sy,Dz MSW of Sy—1 . MSW of Dz, 11111Qwseers 1 Update
clear LSW of Dz 1010100100yyzzzz

DCTPDEC SxDz If DC =1, MSW of Sx—1— 11111Qwsmmencc 1 —
'\é'zs‘f‘f’ é’f ri)zp; clear LSWof 10001010xx00zz22

DCTPDEC Sy,Dz I DC =1, MSW of Sy—1 . 11111Qwssmnx 1 —
I\D/Izs;\?f/(g),f IE)ZF; clear LSWof 1410101000yyzz22

DCFPDEC SxDz If DC = 0, MSW of Sx—1 . 11111Qwssemee 1 —
'\D"ZS‘:‘f’ ff r'?ozr; clear LSWof 14001011xx002z22

DCFPDEC Sy,Dz If DC = 0, MSW of Sy—1—. 11111Qwssmenec 1 —
MSW of Dz, clear LSW of 1010101100yyzzzz

Dz;if 1, nop

Description: Subtracts 1 from the top word of the Sx and Sy operands, stores the result in the
upper word of the Dz operand, and clears the bottom word of the Dz operand with zeros. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions ar
TRUE.

Note: The bottom word of the destination register is ignored when the DC bit is updated.
Operation:

{
DSP_ALU_SRC2 = Ox1;

DSP_ALU_SRC2G= 0x0;
if (EX2_DSP_BIT13==0) { /* MSW of Sx -1 ->Dz */
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;

360
RENESAS

break;

case Ox1: DSP_ALU SRC1 =X1;
if ODSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;
break;

case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU SRC1G = A0G;
break;

case 0x3: DSP_ALU SRC1 =Al,;
DSP_ALU_SRC1G=AlG;
break;

else{ *MSW of Sy -1 ->Dz*

switch (EX2_SY){

case 0x0: DSP_ALU_SRC1 =YO0;
break;

case Ox1: DSP_ALU SRC1 =Y1;
break;

case 0x2: DSP_ALU_SRC1 =MQ0;
break;

case 0x3: DSP_ALU_SRC1 =M1,
break;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G =0x0;

DSP_ALU DST HW=DSP_ALU_SRC1 HW-1;
carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);
borrow_bit = Icarry_bit;
DSP_ALU DSTG _LSB8=DSP_ALU SRC1G_LSB8-DSP_ALU SRC2G_LSBS -
borrow_bit;

overflow_bit= PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);

361
RENESAS

#include "integer_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
#include "integer_unconditional_update.c"
#include "integer_minus_dc_bit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz no*2+1]=0x0; /*clear LSW*/
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO000OOFF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFOO;

}

else if(ex2_dz_no==1) {
A1G =DSP_ALU_DSTG & MASKOOOOOOFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

}
}
}
break;
Example:
PDEC X0,M0 NOPX NOPY ; Before execution: X0 = H'0052330F, MO = H'12345678
; After execution: X0 = H'0052330F, MO = H'00510000
PDEC X1,X1 NOPX NOPY . Before execution: X1 = H'FC342855
; After execution: X1 = H'FC330000
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].
362

RENESAS

8.5.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DCBit

PDMSB Sx,Dz Sx data MSB position - 111120k 1 Update
MSW of Dz, clear LSW of Dz 10011101xx002222

PDMSB Sy,Dz Sy data MSB position - O i 1 Update
MSW of Dz, clear LSW of Dz 1011110100yyzzzz

DCT PDMSB Sx,Dz If DC = 1, Sx data MSB I I 0 i) 1 —
position —~ MSW of Dz, 10011110xx007222
clear LSW of Dz; if 0, nop

DCT PDMSB Sy,Dz If DC =1, Sy data MSB 11111 Qrrkiciex 1 —
position — MSW of Dz, 1011111000yyzzzz
clear LSW of Dz; if 0, nop

DCF PDMSB Sx,Dz If DC = 0, Sx data MSB 1117 1 Qoo 1 —

position - MSW of Dz, clear 1001111 1xx002222
LSW of Dz; if 1, nop

DCF PDMSB Sy,Dz If DC = 0, Sy data MSB 112110k 1 —

position - MSW of Dz, clear 1011111100yyzzzz
LSW of Dz; if 1, nop

Description: Finds the first position to change in the lineup of Sx and Sy operand bits and stores
the bit position in the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. Th
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions a
TRUE.

Operation:

{
DSP_ALU_SRC2 = 0x0;

DSP_ALU_SRC2G= 0x0;
if (EX2_DSP_BIT13==0) { # msb(Sx) -> Dz */
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = XO0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;
break;

363
RENESAS

case Ox1: DSP_ALU SRC1 =X1;
if DSP_ALU_SRC1_MSB) DSP_ALU_SRCI1G = Oxff;
else DSP_ALU_SRC1G =0x0;
break;
case 0x2: DSP_ALU SRC1 =AQ0;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU SRC1G = AlG;

break;
}
}
else { f*msb(Sy) -> Dz */
switch (EX2_SY){
case 0x0: DSP_ALU SRC1 = YO0;
break;
case Ox1: DSP_ALU SRC1 =YI1;
break;
case 0x2: DSP_ALU SRC1 =MO;
break;
case 0x3: DSP_ALU SRC1 =M1;
break;
}
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
}
{
shortinti;

unsigned char msb, srclg;
unsigned long src1=DSP_ALU_SRC1,;
msbh=DSP_ALU_SRC1G_BIT7;
srclg=(DSP_ALU_SRC1G_LSB8 << 1);
for(i=38;((msh==(src1g>>7))&&({>=32));i--) { srclg <<= 1, }
if(i==31) {

for(j;((msb==(src1>>31))&&(>=0));i--) { srcl <<=1; }

DSP_ALU_DST = 0x0;

364
RENESAS

DSP_ALU_DST_HW = (short int) (30-);

if ODSP_ALU_DST_MSB) DSP_ALU_DSTG_LSB8 = 0xff;
else DSP_ALU DSTG_LSB8 = 0x0;

}

carry_bit=0;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
overflow_bit=0;
#include "integer_unconditional_update.c"
#include "integer_plus_dc_bit.c"

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2]= DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1] = Ox0; [* clear LSW */
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOO00O00OFF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFQO;

}

else if(ex2_dz_no==1) {
Al1G =DSP_ALU_DSTG & MASKOO00OO0FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

break;

Example:
Before execution: X0 = H'0052330F, MO = H'12345678

PDMSB X0,M0 NOPX NOPY ;
; After execution: X0 = H'0052330F, MO = H'00080000

PDMSB X1,X1 NOPX NOPY ; Before execution: X1 = H'FC342855
; After execution: X1 = H'00050000
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

365
RENESAS

8.5.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation

Instruction

Format Abstract Code Cycle DC Bit

PINC Sx,Dz MSW of Sx + 1 MSW of 11111(#ssseeeees 1 Update
Dz, clear LSW of Dz 10011001xx002222

PINC Sy,Dz MSW of Sy + 1 MSW of 11111 (¥ 1 Update
Dz, clear LSW of Dz 1011100100yyzzzz

DCT PINC Sx,Dz IfDC =1, MSW Of SX + 1 11111 (psseeeccs 1 —
'\D"f"l‘f’ g'f rli)zp, clear LSWof 1001101000222z

DCT PINC Sy,Dz IfDC =1, MSW Of Sy + 1o 11111 (e 1 —
'\D"f‘f}’ g’f ri)zr; clear LSWof - 1011101000yyz222

DCF PINC Sx,Dz If DC =0, MSW Of SX + 1 11111 (¥seeeeeees 1 —
'I\D"ZS‘{‘f’ f’f rli)zp; clear LSWof 10011011xx002222

DCF PINC Sy,Dz If DC =0, MSW Of Sy + 1 11111 (e 1 —
MSW of Dz, clear LSW of 1011101100yyzzzz

Dz;if 1, nop

Description: Adds 1 to the top word of the Sx and Sy operands, stores the result in the upper wor
of the Dz operand, and clears the bottom word of the Dz operand with zeros. When conditions ar
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When

they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions ar

TRUE.

Note: The bottom word of the destination register is ignored when the DC bit is updated.

Operation:
{

DSP_ALU_SRC2 = 0x1;
DSP_ALU_SRC2G= 0x0;
if EX2_DSP_BIT13==0) { /* MSW of Sx +1 -> Dz */
switch (EX2_SX) {
case 0x0: DSP_ALU_SRCL1 = X0;

366

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;

RENESAS

else DSP_ALU_SRC1G =0x0;

break;
case0x1: DSP_ALU_SRC1 =X1;
if ODSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;
break;
case0x2: DSP_ALU_SRC1 =A0;
DSP_ALU SRC1G =A0G;
break;
case 0x3: DSP_ALU _SRC1 =Al
DSP_ALU_SRC1G =AlG;
break;
}
}
else{ *MSW of Sy +1 -> Dz */

switch (EX2_SY){
case 0x0: DSP_ALU_SRC1 =YO0;

break;
case Ox1: DSP_ALU SRC1 =Y1;
break;
case 0x2: DSP_ALU_SRC1 =MQ0;
break;
case 0x3: DSP_ALU_SRC1 =M1,
break;
}
if ODSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;

DSP_ALU DST HW=DSP_ALU SRC1 HW +1;
carry_hit= (DSP_ALU_SRC1_MSB |DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU DSTG_LSB8=DSP_ALU SRC1G_LSB8+DSP_ALU SRC2G_LSBS8 +
carry_bit;

overflow_bit= PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);

367
RENESAS

#include "integer_overflow_protection.c"
if(DSP_UNCONDITIONAL_UPDATE) { * unconditional operation */

#include "integer_unconditional_update.c"

#include "integer_plus_dc_bit.c"

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match
¥
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1] = Ox0; [* clear LSW */
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO000OOFF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFQO;

}

else if(ex2_dz_no==1) {
A1G =DSP_ALU_DSTG & MASKOO0OOOFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

}
}
}
break;
Example:
PINC X0,M0 NOPX NOPY ; Before execution: X0 = H'0052330F, MO = H'12345678
; After execution: X0 = H'0052330F, MO = H'00530000
PINC X1,X1 NOPX NOPY ;. Before execution: X1 = H'FC342855
; After execution: X1 = H'FC350000
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].
368

RENESAS

8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction

Format Abstract Code Cycle DC Bit
PLDS Dz, MACH Dz - MACH 11111 Qrkikik 1 —
111011010000zzzz
PLDS Dz,MACL Dz -~ MACL 11111 Qkerirkekk 1 —
111111010000zzzz
DCT PLDS Dz,MACH if DC =1, Dz -~MACH 11111 Qkerierkekk 1 —
if 0, nop 111011100000zzzz
DCT PLDS Dz,MACL if DC =1, Dz -MACL 11171 Qrarek 1 —
if 0, nop 111111100000zzzz
DCF PLDS Dz,MACH if DC =0, Dz -~ MACH 11171 Qrkiarek 1 —
if 1, nop 111011110000zzzz
DCF PLDS Dz,MACL if DC =0, Dz -MACL 11171 Qrkiakek 1 —
if 1, nop 111111110000zzzz

Description: Stores the Dz operand in the MACH and MACL registers. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

The DC, N, Z, V, and GT bits of the DSR register are not updated.

Note: Though PSTS, MOVX, and MOVY can be designated in parallel, their execution may
take two cycles.

Operation:

{ FDz->MACH?¥
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
MACH =DSP_REG[ex2_dz no];
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
MACH =DSP_REG[ex2_dz_no];

break;

P SH-DSP: DSP Engine: Local Data Move Operation: LoaD System register

369
RENESAS

plds_macl.c
rev 1.0 24 May 1995, EY */

{ /Dz->MACL*
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
MACL =DSP_REG[ex2_dz_no];
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
MACL = DSP_REG[ex2_dz_no];

break;

Example:

PLDS AO,MACH NOPX NOPY ; Before execution: A0 = H'123456789A, MACH = H'66666666
; After execution: A0 = H'123456789A, MACH = H'3456789A

370
RENESAS

8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PMULS MSW of Se x MSW of Sf- Dg 11111 Qrkakork 1 —
Se,Sf.Dg 0100eeff0000gg00

Description: The contents of the top word of the Se and Sf operands are multiplied as signed an
the result stored in the Dg operand. The DC, N, Z, V, and GT bits of the DSR register are not
updated.

Note: Since PMULS is fixed decimal point multiplication, the operation result is different from
that of MULS even thogh the source data is the same.

Examples:

PMULS X0,YO,M0 NOPX NOPY ; Before execution: X0 = H'00010000, YO = H'00020000,
MO = H'33333333

; After execution: X0 = H'00010000, Y0 = H'00020000,
MO = H'00000004

PMULS X1,Y1,A0 NOPX NOPY ; Before execution: X1 = H'FFFE2222, Y1 = H'O001AAAA,
A0 = H'4444444444

; After execution: X1 = H'FFFE2222, Y1 = H'0O001AAAA,
A0 = H'FFFFFFFFFC

371
RENESAS

8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PNEG Sx,Dz 0-Sx-Dz 112110k 1 Update
11001001xx00zzzz
PNEG Sy,Dz 0-Sy-Dz 1111 Qe 1 Update
1110100100yyzzzz
DCTPNEG SxDz ifDC=1,0-Sx-Dz 11211 Qkerirekx 1 —
if 0, nop 11001010xx00zzzz
DCTPNEGSyDz ifDC=1,0-Sy-Dz 11171 Qrrek 1 —
if 0, nop 1110101000yyzzzz
DCFPNEGSxDz ifDC=0,0-Sx-Dz 11117 Qrkerioek 1 —
if 1, nop 11001011xx00zzzz
DCFPNEGSyDz ifDC=0,0-Sy-Dz 11111 Qrkekoek 1 —
if 1, nop 1110101100yyzzzz

Description: Reverses the sign. Subtracts the Sx and Sy operands from 0 and stores the result ir
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions ar
TRUE.

Operation:

{

DSP_ALU_SRC1=0;

DSP_ALU_SRC1G=0;

if (EX2_DSP_BIT13==0) { F0-Sx->Dz*

switch (EX2_SX) {
case Ox0: DSP_ALU _SRC2 = X0;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
break;

case Ox1: DSP_ALU_SRC2 =X1;
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

372
RENESAS

else DSP_ALU_SRC2G =0x0;
break;
case 0x2: DSP_ALU SRC2 =AQ;
DSP_ALU_SRC2G = A0G;
break;
case 0x3: DSP_ALU_SRC2 =Al;
DSP_ALU SRC2G =A1G;

break;
}
}
else { [0-Sy->Dz*
switch (EX2_SY) {
case O0x0: DSP_ALU_SRC2 =YO0;
break;
case Oxl: DSP_ALU SRC2 =Y1,;
break;
case 0x2: DSP_ALU SRC2 =MQ0;
break;
case 0x3: DSP_ALU SRC2 =M1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
}

DSP_ALU_DST =DSP_ALU_SRC1 -DSP_ALU_SRC2;
carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB)
&& IDSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);
borrow_bit = Icarry_bit;

DSP_ALU DSTG _LSB8=DSP_ALU SRC1G_LSB8-DSP_ALU SRC2G_LSBS -
borrow_hit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
#include "fixed_pt_unconditional_update.c"
#include "fixed_pt_minus_dc_hit.c"

373
RENESAS

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no]=DSP_ALU_DST:;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO0000OFF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFOO;
}
else if(ex2_dz_no==1) {
Al1G =DSP_ALU _DSTG & MASKOOO00O0OFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

}
}
}
break;
Examples:
PNEG X0,A0 NOPX NOPY ; Before execution: X0 = H'55555555, A0 = H'A987654321
; After execution: X0 = H'55555555, A0 = H'FFAAAAAAAB
PNEG X1,Y1 NOPX NOPY : Before execution: Y1 = H'99999999
; After execution: Y1 =H'66666667
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].
374

RENESAS

8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction

Format Abstract Code Cycle DC Bit

POR Sx,Sy,Dz SX | Sy~ Dz, clear LSW of Dz = 11111Q**ririkiark 1 Update
10110101xxyyzzzz

DCT POR If DC =1, Sx | Sy - Dz, e O il 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110xxyyzzzz

DCF POR If DC =0, Sx | Sy - Dz, T i 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzz77

Description: Takes the OR of the top word of the Sx operand and the top word of the Sy operan
stores the result in the top word of the Dz operand, and clears the bottom word of Dz with zeros
When Dz is a register that has guard bits, the guard bits are also zeroed. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. Th
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions a
TRUE.

Note: The bottom word of the destination register and the guard bits are ignored when the DC
is updated.

Operation:

{
switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1 = X0;
break;

case Ox1: DSP_ALU_SRC1 =X1;
break;

case 0x2: DSP_ALU_SRC1 =A0;
break;

case 0x3: DSP_ALU_SRC1 =A1;
break;

switch (EX2_SY){
case Ox0: DSP_ALU_SRC2 =YO0;

375
RENESAS

break;

case Ox1: DSP_ALU_SRC2 =Y1;
break;

case 0x2: DSP_ALU_SRC2 =M0;
break;

case 0x3: DSP_ALU_SRC2 =M1;
break;

DSP_ALU_DST_HW =DSP_ALU_SRC1 HW |DSP_ALU_SRC2 HW:;

if(DSP_UNCONDITIONAL_UPDATE) { * unconditional operation */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1]=0x0; /*clear LSW*
if (ex2_dz_no==0) AOG =0x0; /* clear Guard
bits */
else if (ex2_dz_no==1) AlG =0x0;

carry_bit =0x0;
negative_bit =DSP_ALU_DST_MSB;
zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit =0x0;
#include "logical_dc_hit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz no*2+1]=0x0; /*clear LSW*/

if (ex2_dz_no==0) AOG = 0x0; * clear Guard
bits */
else if (ex2_dz_no==1) Al1G =0x0;
}
}
break;
376

RENESAS

Example:

POR X0,YO, A0 NOPXNOPY ; Before execution: X0 = H'33333333, Y0 = H'55555555
A0 = H'123456789A

; After execution: X0 = H'33333333, YO = H'55555555
A0 = H'127777789A

In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

377
RENESAS

8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PRND Sx,Dz Sx +H'00008000 - Dz o o B 0 il 1 Update
clear LSW of Dz 10011000xx00zzzz

PRND Sy,Dz Sy + H'00008000 - Dz 1111 Qe 1 Update
clear LSW of Dz 1011100000yyzzzz

Description: Does rounding. Adds the immediate data H'00008000 to the contents of the Sx and
Sy operands, stores the result in the upper word of the Dz operand, and clears the bottom word
Dz with zeros.

The DC bit of the DSR register is updated according to the specifications for the CS bits. The N,
Z,V, and GT bits of the DSR register are also updated.

Operation:

{
DSP_ALU_SRC2 = 0x00008000;

DSP_ALU_SRC2G=0x0;
if (EX2_DSP_BIT13==0) { /* Sx + H'00008000 -> Dz; clr Dz
LW #/
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;
if DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU SRC1 =X1;
if ODSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRCI1G = A0G;
break;
case 0x3: DSP_ALU SRC1 =Al;
DSP_ALU_SRC1G = AlG;
break;

378
RENESAS

else { f* Sy + H00008000 -> Dz; cIr Dz LW */
switch (EX2_SY){
case 0x0: DSP_ALU_SRC1 =YO0;

break;
case Ox1: DSP_ALU SRC1 =Y1;
break;
case 0x2: DSP_ALU_SRC1 =MQ0;
break;
case 0x3: DSP_ALU_SRC1 =M1,
break;
}
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0x0;

DSP_ALU_DST = (DSP_ALU_SRC1 + DSP_ALU_SRC2) & MASKFFFF0000;
carry_bit= ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB)|
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);
DSP_ALU DSTG_LSB8=DSP_ALU SRC1G_LSB8+DSP_ALU SRC2G_LSBS8 +
carry_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"
#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_plus_dc_bit.c"
}

break;

RENESAS

379

Example:
X0 = H'0052330F, MO = H'12345678

X0 = H'0052330F, M0 = H'00520000
PRND X1,X1 NOPX NOPY ;. Before execution: X1 = H'FC34C087

; After execution: X1 = H'FC350000

DC bit is updated depending on the state of CS [2:0].

PRND X0,M0 NOPX NOPY . Before execution:
; After execution:

380
RENESAS

8.5.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift

Instruction
Format Abstract Code Cycle DC Bit
PSHA Sx,Sy,Dz if Sy> =0, Sx<<Sy - Dz O i 1 Update
if Sy<0, Sx>>Sy—>Dz 10010001xxyyzzzz
DCT PSHA if DC =1 & Sy>=0, 11117 Qtriekterk 1 Update
SxSy.Dz Sx<<Sy - Dz 10010010xxyyzzzz
if DC =1 & Sy<0,
Sx>>Sy - Dz
if DC =0, nop
DCF PSHA if DC =0 & Sy> =0, 11117 Qrreeionk 1 —
SxSy,Dz Sx<<Sy—>Dz 10010011xxyyzzzz
if DC =0 & Sy<0,
Sx>>Sy - Dz
if DC =1, nop
PSHA #lmm,Dz if Imm> =0, 11117 Qtwiekenk 1 —
Dz<<Imm-Dz 00010Qiiilizzzz

if Imm<0, Dz>>Imm - Dz

Description: Arithmetically shifts the contents of the Sx or Dz operand and stores the result in th
Dz operand. The amount of the shift is specified by the Sy operand or the immediate value Imm
operand. When the shift amount is positive, it shifts left. When the shift amount is negative, it
shifts right. When conditions are specified for DCT and DCF, the instruction is executed when
those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. Th
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions a
TRUE.

Operation:

< When register operand is used >

{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 =X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;

381
RENESAS

caseOxl: DSP_ALU SRC1 =XI;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;

else DSP_ALU_SRC1G =0x0;
break;
case 0x2: DSP_ALU SRC1 =AQ;
DSP_ALU_SRC1G =A0G;
break;
case 0x3: DSP_ALU_SRC1 =Al;
DSP_ALU SRC1G =AlG;
break;
}
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =Y0 & MASKO007F0000;
break;
case Ox1: DSP_ALU SRC2 =Y1 & MASKO007F0000;
break;
case 0x2: DSP_ALU_SRC2 = MO0 & MASKO007F0000;
break;
case 0x3: DSP_ALU SRC2 =M1 & MASKO007F0000;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G =0x0;
if((DSP_ALU_SRC2_HW & MASK0040)==0) { /* Left Shift

O<=cnt<=32*
char cnt = (DSP_ALU_SRC2_HW & MASKO03F);
if(cnt > 32) {
printf("¥nPSHA Sz,Sy,Dz Error! Shift %2X exceed range.
¥n",cnt);
exit();
}
DSP_ALU_DST =DSP_ALU_SRC1 <<cnt;
DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt) |
(DSP_ALU_SRC1 >> (32-cnt))) & MASKO00000FF;
carry_bit = (DSP_ALU_DSTG & MASK00000001)==0x1);

382
RENESAS

else { /* Right Shift 0< cnt <=32*/
char cnt = (-DSP_ALU_SRC2_HW & MASKO03F)+1);

if(cnt > 32) {
printf("¥nPSHA Sz,Sy,Dz Error! shift -%62X exceed range.¥n",cnt);
exit();

}

if((cnt>8) && DSP_ALU_SRCI1G_BIT7) { * MSB copy */
DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<

(32-8)));
DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);
}
else {
DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<
(32-cnt)));
}

DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8>>cnt-—-;
carry_bit = ((DSP_ALU_SRC1 >> cnt) & MASK00000001)==0x1);

Foverflow_bit=!(POS_NOT_OV || NEG_NOT_QV); /* do overflow detection */

[* #include "fixed_pt_overflow_protection.c" /* do overflow protection; V=0
ki

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
#include "fixed_pt_unconditional_update.c"
#include "shift_dc_hit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG[ex2_dz_no]=DSP_ALU_DST;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO00000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFOO;
}
else if(ex2_dz_no==1) {
A1G =DSP_ALU_DSTG & MASKO000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFOO;

383
RENESAS

break;

<When according to immediate operand>
{
unsigned short tmp_imm;
DSP_ALU_SRC1=DSP_REG[ex2_dz_no];
switch (ex2_dz_no) {
case 0x0: DSP_ALU_SRC1G = AQG;
break;
case Oxl: DSP_ALU_SRCI1G =A1G;
break;
default: if (DSP_ALU_SRC1_MSB)DSP_ALU_SRCI1G = Oxff;

else DSP_ALU SRC1G=
0x0;

tmp_imm = (EX2_LW >> 4) & MASKO0000007F); /* bit[10:4] */

if((tmp_imm & MASK0040)==0) { /* Left Shift 0<=cnt <=32*/
char cnt = (tmp_imm & MASKOO03F);
ifcnt > 32) {
printf("¥nPSHA Dz,#imm,Dz Error! #imm=%7X exceed range
¥n" tmp_imm);
exit();
}
DSP_ALU_DST =DSP_ALU_SRC1 << cnt;
DSP_ALU_DSTG = ((DSP_ALU_SRC1G <<cnt) |
(DSP_ALU_SRC1 >> (32-cnt))) & MASKOOOOO0OFF;
carry_bit = (DSP_ALU_DSTG & MASK00000001)==0x1);

}

else { /* Right Shift 0< cnt <=32*/
char cnt = ((~tmp_imm & MASKO003F)+1);
if(cnt > 32) {

printf("¥nPSHL Dz,#imm,Dz Error! #imm=%7X exceed range
¥n",tmp_imm);

384
RENESAS

exit();
}
if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */
DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<
(32-8)));
DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);
}
else {
DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<
(32-cnt)));
}
DSP_ALU_DSTG_LSBS8 = (char) DSP_ALU_SRC1G_LSB8>> cnt-

carry_bit= (DSP_ALU_SRC1 >> cnt) & MASK00000001)==0xL1);

P overflow_bit =!(POS_NOT_OV || NEG_NOT_QV); /* do overflow detection */
* #include "fixed_pt_overflow_protection.c" /* do overflow
protection; V=0 */

{ /¥ unconditional operation */
#include "fixed_pt_unconditional_update.c"
#include "shift_dc_hit.c"

}

break;

385
RENESAS

Examples:

Before execution: X0 = H'88888888, YO = H'00020000,
AO0 = H'123456789A

; After execution: X0 = H'88888888, YO = H'00020000,
AO = H'FE22222222

PSHA X0,Y0,X0 NOPX NOPY ; Before execution: X0 = H'33333333, YO = H'FFFF0000

; After execution: X0 = H'19999999, YO = H'FFFE0000

PSHA X0,YO,A0 NOPX NOPY ;

PSHA #-5,A1 NOPX NOPY ; Before execution: Al = HAAAAAAAAAA
; After execution: Al = H'FD55555555
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

386
RENESAS

8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction
Format Abstract Code Cycle DCBit
PSHL Sx,Sy,Dz If Sy=0, Sx<<Sy - Dz, 1111 1Qrwkiorkiox 1 Update
clear LSW of Dz; if Sy<0, 10000001300/VZZZZ
Sx>>Sy - Dz,
clear LSW of Dz
DCT PSHL Sx,Sy,Dz If DC=1 & Sy=0, Sx<<Sy - 1111 1Qrrrioriox 1 —
Dz, clear LSW of Dz; 10000010xxyyzz27
if DC=1 & Sy<0, Sx>>Sy -
Dz, clear LSW of Dz;
if DC=0, nop
DCF PSHL Sx,Sy,Dz If DC=0 & Sy=0, Sx<<Sy - o I O i 1 —
Dz, clear LSW of Dz; if DC=0 10000011xxyyzzz2
& Sy<0, Sx>>Sy - Dz, clear
LSW of Dz; if DC=1, nop
PSHL #imm,Dz If imm=0, Dz<<imm - Dz, B O 1 Update
clear LSW of Dz; if imm<0, 00000iiiiiizzzz

Dz>>imm - Dz,
clear LSW of Dz

Description: Logically shifts the top word contents of the Sx or Dz operand, stores the result in
the top word of the Dz operand, and clears the bottom word of the Dx operand with zeros. Whel
Dz is a register that has guard bits, the guard bits are also zeroed. The amount of the shift is

specified by the Sy operand or the immediate value Imm operand. When the shift amount is
positive, it shifts left. When the shift amount is negative, it shifts right. When conditions are

specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When

they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. Th
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions a

TRUE.

Operation:

<When register operand is used>

{

switch (EX2_SX) {
case 0x0: DSP_ALU SRC1 =Xo;

case Ox1:

break;

DSP_ALU_SRC1 =X1;

break;

RENESAS

387

case 0x2: DSP_ALU_SRC1 =AQ;
break;
case 0x3: DSP_ALU_SRC1 =Al;
break;
}
switch (EX2_SY) {
case Ox0: DSP_ALU_SRC2 =Y0 & MASKO03F0000;

break;
case Ox1: DSP_ALU SRC2 =Y1 & MASKO003F0000;
break;
case 0x2: DSP_ALU_SRC2 = MO0 & MASK003F0000;
break;
case 0x3: DSP_ALU_SRC2 =M1 & MASK003F0000;
break;
}
if((DSP_ALU_SRC2_HW & MASK0020)==0) { * Left Shift

O<=cnt<=16 */
char cnt = (DSP_ALU_SRC2_HW & MASKO001F);
ifcnt > 16) {
printf("PSHL Sx,Sy,Dz Error! Shift %2X exceed range
¥n",cnt);
exit();
}
DSP_ALU_DST_HW =DSP_ALU_SRC1_HW << cnt--;
carry_bit = ((DSP_ALU_SRC1_HW << cnt) & MASK8000)==
0x8000);

}
else { * Right Shift O<cnt<=16 */
char cnt = (~DSP_ALU_SRC2_HW & MASKO000F)+1);
if(cnt > 16) {
printf("PSHL Sx,Sy,Dz Error! Shift -%62X exceed range
¥n",cnt);
exit();
}
DSP_ALU_DST_HW =DSP_ALU_SRC1 HW >>cnt-;
carry_bit = ((DSP_ALU_SRC1_HW >> cnt) & MASK0001)==0x1);
}

388
RENESAS

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
DSP_REG_WD[ex2_dz_no*2]= DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz no*2+1]=0x0; /*clear LSW*/
if (ex2_dz_no==0) AO0G = 0x0; * clear Guard bits */
else if (ex2_dz_no==1) A1G =0x0;

negative_bhit =DSP_ALU DST MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit =0x0;
#include "shift_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1] =0x0; /*clear LSW*/
if (ex2_dz_no==0) AO0G = 0x0; * clear Guard bits */
else if (ex2_dz_no==1) A1G = 0x0;

break;

<When according to immediate operand>
{
unsigned short tmp_imm;
DSP_ALU_SRC1=DSP_REG[ex2_dz_no];
switch (ex2_dz_no) {
case 0x0: DSP_ALU_SRCI1G = A0G;
break;
case Oxl: DSP_ALU SRCIG =AlG;
break;
default: if (DSP_ALU_SRC1_MSB)DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G=
0ox0;

tmp_imm = (EX2_LW >> 4) & MASKOO00003F); /* bit[9:4] */

if((tmp_imm & MASK0020)==0) { /* Left Shift 0<= cnt <16 */

RENESAS

389

char cnt = (tmp_imm & MASKOQ01F);
if(cnt > 16) {
printf("PSHL Dz,#Imm,Dz Error! #imm=%6X exceed range
¥n'" tmp_imm);
exit();
}
DSP_ALU DST HW=DSP_ALU_SRC1 HW <<cnt-;
carry_bit = ((DSP_ALU_SRC1_HW << cnt) & MASK8000)==
0x8000);
}

else { * Right Shift 0< cnt <=16 */
char cnt = ((~tmp_imm & MASKO001F)+1);
if(cnt > 16) {
printf("PSHL Dz,#Imm,Dz Error! #imm=%6X exceed range
¥n",tmp_imm);
exit();
}
DSP_ALU_DST_HW =DSP_ALU_SRC1 HW >>cnt-;
carry_bhit = (DSP_ALU_SRC1_HW >> cnt) & MASK0001)==0x1);

{/* unconditional operation */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz_no*2+1] = 0x0; [~ clear LSW ¥/
if (ex2_dz_no==0) AO0G = 0x0; [* clear Guard bits */
else if (ex2_dz_no==1) AlG =0x0;

negative_bit =DSP_ALU_DST_MSB;
zero_bit = (DSP_ALU_DST_HW==0);
overflow_bit =0x0;
#include "shift_dc_bit.c"
}

break;

390
RENESAS

Examples:

Before execution: X0 = H'22222222, YO = H'00030000,
AO0 = H'123456789A
; After execution: X0 = H'22222222, YO = H'00030000
A0 =H'0011100000
PSHL X1,Y1,X1 NOPXNOPY ; Before execution: X1 =H'CCCCCCCC, Y1 =H'FFFE0O000
; After execution: X1 = H'33330000, Y1 = H'FFFEOO000

PSHL X0,Y0,A0 NOPX NOPY ;

PSHL #7,A1 NOPX NOPY ; Before execution: Al = H'55555555
; After execution: Al = H'AA800000
In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

391
RENESAS

8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction

Format Abstract Code Cycle DCBit
PSTS MACH,Dz MACH - Dz 11111 Q%Hk*kkkckok 1 —
110011010000zzzz
PSTS MACL,Dz MACL - Dz 111710 rrkkkkkx 1 —
110111010000zzzz
DCT PSTS MACH,Dz if DC =1, MACH Dz 11111 Qrrkkkkx 1 —
if 0, nop 110011100000zzzz
DCT PSTS MACL,Dz if DC =1, MACL-Dz 1111 1Q%k*wkkkk 1 —
if 0, nop 110111100000zzzz
DCF PSTS MACH,Dz if DC =0, MACH -Dz 1111 1Q%H**rkkckk 1 —
if 1, nop 110011110000zzzz
DCF PSTS MACL,Dz if DC =0, MACL-Dz 1111 1Q%H**kkkckdk 1 —
if 1, nop 110111110000zzzz

Description: Stores the contents of the MACH and MACL registers in the Dz operand. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed. The DC, N, Z, V, and GT bits of
the DSR register are not updated.

Note: Though PSTS, MOVX and MOVY can be designated in parallel, their execution may take
2 cycles.

Operation:

*MACH ->Dz */

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
DSP_REG[ex2_dz_no] = MACH,;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOOOOO00FF;
if(DSP_ALU_DSTG_BIT7) A0G = A0OG | MASKFFFFFFOO;
}
else if(ex2_dz_no==1) {
A1G =DSP_ALU_DSTG & MASKO0000OFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

392
RENESAS

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG[ex2_dz_no] = MACH;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKO0O000O0FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFQO;
}
else if(ex2_dz_no==1) {
Al1G =DSP_ALU_DSTG & MASKOOO00OOFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

}
}
}
break;
*MACL -> Dz */
{

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
DSP_REG[ex2_dz_no] = MACL,;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOOO000FF;
if(DSP_ALU_DSTG_BIT7) A0G = AOG | MASKFFFFFFOO;
}
else if(ex2_dz_no==1) {
AlG =DSP_ALU_DSTG & MASK000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFOO;

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = MACL,;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOO00O000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFQO;
}
else if(ex2_dz_no==1) {
Al1G =DSP_ALU _DSTG & MASKO0O000OFF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFQO;

393
RENESAS

}
}
break;
Examples:
PSTS MACH,A0 NOPX NOPY ;Before execution: A0 = H'123456789A, MACH = H'88888888
; After execution: AO = H'FF88888888, MACH = H'88888888
394

RENESAS

8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DCBit
PSUB Sx,Sy,Dz Sx —Sy-Dz 11211 Qetkiek 1 Update
10100001xxyyzzzz
DCT PSUB Sx,Sy,Dz if DC =1, 11112 Qpeekiork 1 —
Sx—Sy- Dz if 0, nop 10100010xxyyzzzz
DCF PSUB Sx,Sy,Dz if DC =0, I O il 1 —
Sx - Sy-Dzif 1, nop 10100011xxyyzzzz

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the resul
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed

when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are updated. The DC
N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are

TRUE.
Operation:

{
switch (EX2_SX) {
case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G =0x0;

break;
case Ox1: DSP_ALU SRC1 =X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G =0x0;

break;
case 0x2: DSP_ALU SRC1 =AQ;

DSP_ALU_SRC1G = A0G;

break;
case 0x3: DSP_ALU_SRC1 =A1;

DSP_ALU_SRCIG = AlG;

break;

}
switch (EX2_SY){

395

RENESAS

case Ox0: DSP_ALU_SRC2 =YO0;

break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case Ox2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU SRC2 =ML1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

DSP_ALU DST=DSP_ALU SRC1-DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && IDSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;

DSP_ALU DSTG _LSB8=DSP_ALU SRC1G_LSB8-DSP_ALU SRC2G_LSBS - borrow_bit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
#include "fixed_pt_overflow_protection.c"
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
#include "fixed_pt_unconditional_update.c"
#include "fixed_pt_minus_dc_hit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG[ex2_dz_no]=DSP_ALU_DST;
if(ex2_dz_no==0) {
AOG =DSP_ALU_DSTG & MASKOO0000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | MASKFFFFFFOQO;
}
else if(ex2_dz_no==1) {
AlG =DSP_ALU_DSTG & MASK000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFOOQ;

break;

396
RENESAS

Examples:

PSUB X0,YO,AO NOPX NOPY ; Before execution: X0 = H'55555555, YO = H'33333333,
A0 = H'123456789A

; After execution: X0 = H'55555555, YO = H'33333333,
A0 = H'0022222222

In case of unconditional execution, the DC bit is updated depending on
the state of CS [2:0].

397
RENESAS

8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic
Operation Instruction

Format Abstract Code Cycle DC Bit
PSUB Sx,Sy,Du Sx — Sy -Du O il 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of 0110eeffxxyygguu

Sf-Dg

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result
the Du operand. The contents of the top word of the Se and Sf operands are multiplied as signed
and the result stored in the Dg operand. These two processes are executed simultaneously in
parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Operation:

{
DSP_ALU_DST =DSP_ALU_SRC1-DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB)&& IDSP_ALU_DST_MSB)|
(DSP_ALU_SRC1 _MSB & IDSP_ALU_SRC2_MSB);
borrow_bit = !carry_bit;
DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8-DSP_ALU_SRC2G_LSBS -
borrow_hit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_QV || NEG_NOT_OQV);
#include "../d_3operand.dffixed_pt_overflow_protection.c"
switch (EX2_DU) {
case 0x0:
X0 =DSP_ALU_DST;
negative_bit=DSP_ALU_DST_MSB;
zero_hit=(DSP_ALU_DST==0);
break;
case Ox1:
YO =DSP_ALU_DST;

negative_bit=DSP_ALU_DST_MSB;
zero_hit=(DSP_ALU_DST==0);

398
RENESAS

break;
case 0x2:
A0 =DSP_ALU _DST;
AOG =DSP_ALU_DSTG & MASKOOO000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | MASKFFFFFFOO;
negative_bit= DSP_ALU_DSTG_BIT7;
zero_hit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_
LSB8==0);
break;
case 0x3:
Al =DSP_ALU DST;
A1G =DSP_ALU_DSTG & MASKO000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFFOO;
negative_bit=DSP_ALU_DSTG _BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG
_LSB8==0);
break;

#include "../d_3operand.dffixed_pt_minus_dc_bit.c"
}

break;

Examples:

PSUB A0,M0,A0 PMULS X0,YO, MO NOPX NOPY

; Before execution: X0 = H'00020000, YO = H'FFFE0000,
MO = H'33333333, A0 = H'0022222222

; After execution: X0 = H'00020000, YO = H'FFFE0000,
MO = H'FFFFFFF8, A0 = H'55555555

399
RENESAS

8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit
PSUBC Sx—-Sy-DC-Dz 1117 1Qekiarkiex 1 Borrow
Sx,Sy,Dz 10100000xxyyzzzz

Description: Subtracts the contents of the Sy operand and the DC bit from the Sx operand and
stores the result in the Dz operand. The DC bit of the DSR register is updated as the borrow flag.
The N, Z, V, and GT bits of the DSR register are also updated.

Note: After the PSUBC instruction is executed, the DC bit is updated as the borrow flag without
regard to the CS bhit.

Operation:

{
switch (EX2_SX) {
case Ox0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G =A0G;
break;
case 0x3: DSP_ALU_SRC1 =AlL
DSP_ALU_SRC1G =AIlG;
break;
}
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =Y0,
break;
case Ox1l: DSP_ALU_SRC2 =Yl
break;
case 0x2: DSP_ALU_SRC2 =MQO;
break;

400
RENESAS

case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1-DSP_ALU_SRC2 - DSPDCBIT;
carry_bit =(DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && 'DSP_ALU

_DST_MSB)

| (DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;

DSP_ALU_DSTG_LSB8 =DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSBS8 -

borrow_hit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"
#include "fixed_pt_unconditional_update.c"
#include "fixed_pt_dc_always_borrow.c"

}

break;

Example:

CS[2:0]=***; Always Carry or Borrow Mode
PSUBC X0,YO,M0 NOPX NOPY ;

; After execution:

PSUBC X0,YO,M0 NOPX NOPY ;

; After execution:

RENESAS

Before execution:

Before execution:

X0 = H'33333333, Y0 = H'55555555
MO = H'0012345678, DC =0

X0 = H'33333333, YO = H'55555555
MO = H'FFDDDDDDDE, DC =1

X0 = H'33333333, YO = H'55555555
MO = H'0012345678, DC =1

X0 = H'33333333, YO = H'55555555
MO = H'FFDDDDDDDD, DC = 1

401

8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction

Format Abstract Code Cycle DC Bit

PXOR Sx,Sy,Dz SX " Sy Dz, clear LSW of = 11111 Q*rrtktkx 1 Update
Dz 10100101xxyyzzzz

DCT PXOR Sx,Sy,Dz if DC =1, Sx"Sy Dz, I B 0 il 1 —
clear LSW of Dz; if 0, nop 10100110%xyyzz72

DCF PXOR Sx,Sy,Dz if DC =0, Sx"Sy —»Dz clear 11111 Qrerkwkirk 1 —
LSW of Dz; if 1, nop 10100111xxyyzz77

Description: Takes the exclusive OR of the top word of the Sx operand and the top word of the
Sy operand, stores the result in the top word of the Dz operand, and clears the bottom word of D
with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions ar
TRUE.

Note: The bottom word of the destination register and the guard bits are ignored when the DC b
is updated.

Operation:

{
switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1 = X0;
break;
case Ox1: DSP_ALU SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
break;
case 0x3: DSP_ALU SRC1 =A1;
break;
}
switch (EX2_SY) {
case 0x0: DSP_ALU_SRC2 =YO0;
break;

402
RENESAS

case Oxl: DSP_ALU SRC2 =Y1;
break;

case 0x2: DSP_ALU SRC2 =MQ0;
break;

case 0x3: DSP_ALU SRC2 =M1;
break;

DSP_ALU_DST_HW=DSP_ALU_SRC1 HW~DSP_ALU_SRC2_HW;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;
DSP_REG_WD[ex2_dz no*2+1] =0x0; /*clear LSW*/
if (ex2_dz_no==0) AO0G = 0x0; * clear Guard bits */
else if (ex2_dz_no==1) A1G =0x0;

carry_hit =0x0;

negative_bit =DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit =0x0;

#include "logical_dc_bit.c"
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
DSP_REG_WD[ex2_dz_no*2]= DSP_ALU_DST_HW:

DSP_REG_WD[ex2_dz_no*2+1] = Ox0; [* clear LSW */
if (ex2_dz_no==0) AO0G = 0x0; [* clear Guard bits */
else if (ex2_dz_no==1) A1G = 0x0;
}
}
break;

403
RENESAS

Example:

PXOR X0,Y0,A0 NOPX NOPY ; Before execution: X0 = H'33333333, Y0 = H'55555555
AO = H'123456789A

; After execution: X0 = H'33333333, YO = H'55555555
A0 = H'0066660000

In case of unconditional execution, the DC bit is updated depending
on the state of CS [2:0].

404
RENESAS

Section 9 Processing States

9.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program executi
and power-down. The transitions between the states are shown in figure 9-1.

From any state except From any state when
when power-on reset* manual reset*

Power-on reset
State

RESET =1, RESET =1,
or RESETP =1 or RESETM =1

Exception-handling state

End of exception
transition
processing

Manual reset*
_—

-+
Power-on

reset*

Manual reset
State

Reset state

Interrupt

Exception
interrupt

Interrupt

SLEEP
instruction
with STBY
bit set

request
clearance

| |
: |
: Sleep mode Standby mode :

|
: |
! |
! |
! |

|

Hardware standby function
Power-down state

Note: SH-3 (SH7702, SH7707, SH7708), SH-3E:
Power-on reset: RESET =0, BREQ =1
Manual reset: RESET =0, BREQ =0
SH-3 (SH7709), SH3-DSP:

Power-on reset: RESETP =0
Manual reset: RESETM =0

Figure 9-1 Transitions between Processing States

405
RENESAS

9.1.1 Reset State

In the reset state, the CPU is reset. On the SH-3 (SH7702, SH7707, SH7708) and SH-3E, this
occurs when thBESET pin goes low. When thBREQ pin is high, the result is a power-on reset;
when it is low, a manual reset occurs. On the SH-3 (SH7709) and SH3-DSP, a power-on reset
occurs when thBRESETP pin is low, and a manual reset occurs wherRIBBETM pin is low.

9.1.2 Exception Processing State
The exception processing state is a transient state that occurs when the CPU’s processing state
flow is altered by exception processing sources such as resets, general exceptions, or interrupts.

For a reset, the CPU branches to H'A0000000 and starts executing the user-created exception
process program.

For a general exception or interrupt, the program counter (PC) is saved in the save program

counter (SPC), and the status register (SR) is saved in the save status register (SSR). The CPU
then branches to the starting address of the user-created exception service routine by adding the
content of the vector base address and the vector offset, thereby starting program execution stat

9.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

9.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has four modes and function: slee
mode, standby mode, hardware standby mode, and module standby function. See section 9.2 fol
more details.

9.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has reques
them.

9.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 9-1). There are four power-
down state modes and function: sleep mode, standby mode, hardware standby mode, and modu
standby function.

9.2.1 Sleep Mode

When the standby bit (STBY) of the standby control register (STBCR) is cleared to 0 and the
SLEEP instruction executed, the CPU enters the sleep mode. In sleep mode, the CPU halts but t

406
RENESAS

contents of the CPU and cache registers are maintained. Operation of the on-chip peripheral
modules continues.

Returning from the sleep mode is accomplished using a reset or an interrupt. The CPU first ente
the exception processing mode and then makes the transition to the normal program execution
mode.

9.2.2 Standby Mode

When the standby bit (STBY) of the standby control register (STBCR) is set to 1 and the SLEEF
instruction executed, the CPU enters the standby mode. In standby mode, the functioning of the
CPU, the on-chip peripheral modules, and oscillator halt. However, the contents of the CPU anc
cache registers are maintained.

Returning from the standby mode is accomplished using a reset or an interrupt. If a reset is usel
the CPU enters the exception processing mode after the oscillator stabilization time has elapsec
and then makes the transition to the normal program execution mode. If an interrupt is used, the
CPU enters the exception processing mode after the oscillator stabilization time set in WDT has
elapsed and then makes the transition to the normal program execution mode.

In this mode, power consumption drops markedly, since the oscillator stops.

9.2.3 Hardware Standby Mode

The CPU enters the hardware standby mode when the CA pin is set to low level. As with the
standby modes initiated using the SLEEP command, the hardware standby mode, all modules
other than those which function using the RTC clock halt.

9.2.4 Module Standby Function

The timer (TMU), real-time clock (RTC), and serial communication interface (SCI) each have a
module standby function.

When the module stop bit of the standby control register (STBCR) is set to 1, the supply of the
clock to the corresponding modules is halted. This function can be used to reduce power
consumption both in the normal program execution mode and in the sleep mode.

When the module standby function is being used, the status of the external pins of the on-chip
peripheral modules differs depending on the module. The external pins of the TMU maintain the
status prior to standby. The external pins of the SCI are reset.

To cancel the module standby function, either clear the MSTP bits to O or perform a reset.

407
RENESAS

Table 9-1

Power-Down State

State
CPU On-Chip

Entering Oscil- Reg- On-Chip Peripheral External Canceling
Mode Procedure lator CPU ister Memory Modules Pins Memory Procedure
Sleep Execute Run Halt Held Held Run Held Refresh 1. Interrupt
mode .SLEEP. 2. Reset

instruction

when STBY bit

of STBCR is

clearedto 0
Standby Execute Halt Halt Held Held Halt* Held Self- 1. Interrupt
mode .SLEEP. ' refresh 2 Reset

instruction with

STBY bit set

to 1in STBCR
Hardware Set CApinto Halt Halt Held Held Halt* Held Self-
standby low level refresh
mode
Module Set MSTP bit Run Run Held Held Specified Held Refresh 1. Set MSTP
standby of STBCRto 1 module halts bitto 0
function 2. Reset
Note: * Differs depending on the on-chip peripheral module. Refer to the Hardware Manual for

the SH-3, SH-3E, and SH3-DSP for details.
408

RENESAS

Section 10 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (systen
clock cycles).

10.1 Basic Configuration of Pipelines

10.1.1 Five-Stage Pipeline

Pipelines are composed of the following five stages:

* IF (Instruction fetch) Fetches instruction from the memory stored in the program.

ID (Instruction decode) Decodes the instruction fetched.

EX (Instruction execution) Does data operations and address calculations according to the
results of decoding.

MA (Memory access) Accesses data in memory in conjunction with instructions that
involve memory access.
For instructions that do not involve memory access, the resulting
data is maintained as is and MA is expressed in lowercase letters &

ma.

WB (Write back) Returns the results of the memory access (data) to a register in
conjunction with instructions that involve memory access.
For instructions that do not involve memory access, the data
maintained in the ma stage is returned to the register.

Instructions are executed using a pipeline consisting of five stages. The various instruction stag
flow with the execution of the instructions and form this pipeline. This means that at any given
moment, five instructions are being executed simultaneously. The basic flow of the pipeline is
shown in Figure 10-1. Each period during which a single stage is executed is called a slot and i

indicated using the & ” symbol.

All instructions have at least three stages: IF, ID, and EX. Some also have stages MA and WB.

Also, the way the pipeline flows varies with the type of instruction, with some containing two MA
stages, some including access to the multiplier (mm), and so on. There can also be contention,

example, between IF and MA. If contention occurs, the flow of the pipeline changes.

409
RENESAS

Slot 4> 4> 4> 4> 4> 4> > 4> D> <>

Instruction 1 IF ID EX MA WB .
Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB
E—
Time

Figure 10-1 Basic Structure of Pipeline Flow

10.1.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

Instruction Execution

Each stage (IF, ID, EX, MA, WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 10-2), with exception of WB and MA.

Slot > «—> 4> 4> 4> <> <> 4> <>
Instruction 1 IF ID EX
Instruction 2 IF ID EX MA WB

Note: * ID and EX of instruction 1 are being executed in the same slot.

Figure 10-2 Impossible Pipeline Flow 1

Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 10-3).

410
RENESAS

Slot
Instruction 1
Instruction 2
Instruction 3
Instruction 4

Instruction 5

“r 4> > >
IF ID EX MA
IF ID EX MA
IF ID EX

IF ID

IF ID

>
WB
wB
MA
EX
EX

+“r 4> O > >

WB
MA WB
MA WB

Note: * Same stage of another instruction is being executed in same slot.

Figure 10-3

Impossible Pipeline Flow 2

10.1.3 Number of Cycles Required for Execution of One Slot

The number of states (system clock cycles) S for the execution of one slot is calculated with the

following conditions:

« S = (the cycles of the stage with the highest number of cycles of all instruction stages contain

in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

» The number of execution cycles for each stage:

— IF

— ID Always one cycle
— EX Always one cycle
— MA

— WB Always one cycle

The number of memory access cycles for instruction fetch

The number of memory access cycles for data access

As an example, figure 10-4 shows the flow of a pipeline in which the IF (memory access for

instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction i
being stalled. Refer to the Hardware Manual for information on the number of clock cycles in ea

case.

Slot

Number of cycles
Instruction 1

Instruction 2

T > O > > >
)) (ORNC) @ @
IF IF ID — EX MA MA MA WB

IF IF ID EX — — MA WB

Figure 10-4 Slots Requiring Multiple Cycles

RENESAS

411

10.1.4 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted based on the interval between execution ¢
EX stages. The number of cycles between the start of the EX stage for instruction 1 and the start
the EX stage for the following instruction (instruction 2) is the execution time for instruction 1.
Figure 10-5 shows an example of the way in which the number of instruction execution cycles is
counted.

In this example, the flow of the pipeline is such that the EX stage interval between instructions 1
and 2 is two cycles. Therefore, the execution time for instruction 1 is two cycles. Also, the EX
stage interval between instructions 2 and 3 is three cycles, so the execution time for instruction 2
three cycles. If a program ends with instruction 3, the execution time for instruction 3 would be
calculated as the interval between the EX stage of instruction 3 and the EX stage of a hypothetic
instruction 4 following instruction 3, using MOV Rm, Rn. In this example, the execution time for
instruction 3 is two cycles. The execution time for instructions 1 through 3 is therefore seven
cycles(2+3+2=7).

In this example, the MA of instruction 1 and the IF of instruction 4 are in contention. For
information on operation when MA and IF are in contention, refer to section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

Slot > > > > 4> > >
Number of cycles 2 (2) @) 4) @ @O @
Instruction 1 IF IF ID — — MA MA MA WB
Instruction 2 IF IF ID — — — ma WB
Instruction 3 IF IF D — — MA WB
(Instruction 4: MOV Rm, Rn — — — IF D [EX])

Figure 10-5 How Instruction Execution Cycles Are Counted

412
RENESAS

10.2 Contention

Contention occurs in the following seven situations. When contention occurs in a particular stag
that stage is stored and the next and subsequent slots are executed.

(1) Contention between instruction fetch (IF) and memory access (MA)

(2) Contention caused by a memory load instruction

(3) Contention caused by an SR update instruction

(4) Contention caused by accessing the multiplier

(5) FPU contention (SH-3E only)

(6) Contention between DSP data operation instruction and store instruction (SH3-DSP only)

(7) Contention between a transfer between DSP registers and a memory load or store operatio
(SH3-DSP only)

10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. If the IF ar
MA stages both try to access memory within the same slot, the IF stage is stored and the next s
is executed. However, if contention with another MA stage occurs in the next slot, the IF stage i
again stored and the next slot is executed. Figure 10-6 illustrates operation when IF and MA are
contention.

413
RENESAS

Instruction 4
Instruction 5

A B C
Slot = <> -
Instruction 1 if ID
Instruction 2 IF ID
Instruction 3 if

Instruction 4
Instruction 5

A B C
Slot - <> -
Instruction 1 if ID EX
Instruction 2 IF ID
Instruction 3 if

Instruction 4
Instruction 5

Instruction 5

ID

(a) When there is no subsequent MA stage

A B C D E
Slot -+ = > >
Instruction 1 if ID EX WB
Instruction 2 IF ID EX ma
Instruction 3 if

ID EX
o
i

f

D E

-~ —

EX [MA]ws

(b) When there is a subsequent MA stage

EX ma
ID EX
-
D E

- -

[mA | wa
EX

EX
ID
if

WB
ma
EX
ID

WB
ma
EX

WwB
EX

WB
ma
EX

A B C D E F G
Slot -» =+ «-> <> > <> <
Instruction 1 if ID EX MA | WB
Instruction 2 IF ID EX | MA | WB
Instruction 3 if — ID EX ma
Instruction 4 — - ID

* MA of instruction 1 and IF of
instruction 4 contend at D

wB

{ : (When MA and IFare in contention, the following occurs:)

¢ IF stored at D

ma WB
EX

¢ MA of instruction 1 and IF of
instruction 4 contend at D

WB

{ : (When MA and IFare in contention, the following occurs:)

¢ ID and IF stored at D
¢ |IF stored at E

WB
EX ma WB
ID EX

Figure 10-6 Operation when IF and MA Are in Contention

414

RENESAS

The operation when there is contention between IF and MA and no subsequent MA stage is shc
in (a) of Figure 10-6. IF and MA are in contention in slot D. In this case, the IF stage is stored ar
the following slot, E, is executed. In slot E ma and IF are in contention, but the IF stage is not
stored because the ma stage does not generate a bus cycle.

The operation when there is contention between IF and MA and there is a subsequent MA stag
shown in (b) of Figure 10-6. There are MA stages in slots D and E, and MA is in contention with
IF in slot D. In this case, the ID and IF of slot D are stored and then executed in slot E. Howevel
contention between IF and MA occurs again in slot E, so the IF stage is stored again and then
executed in the next slot, F.

Relationship between IF and the Location of Instructions in Memory

When the instruction is located in memory, the SuperH microcomputer accesses the memory in
32-bit units. The SuperH microcomputer instructions are all fixed at 16 bits, so basically 2
instructions can be fetched in a single IF stage access. Whether an IF fetches one or two
instructions depends on the memory location (word or longword boundary).

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in memory (the position when the bottom two bits of the instruction
address are 00 is A1 = 0 and AO = 0) also fetch two instructions. The IF of the next instruction
does not generate a bus cycle. IFs that do not generate bus cycles are written in lower case as
These ifs always take one cycle.

When branching results in a fetch from an instruction located so it starts from the word boundari
(the position when the bottom two bits of the instruction address are 10is A1 =1, A0 =0), the b
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF 0
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 10-7 illustre
these operations.

415
RENESAS

< 32 bits > Slot 4> <4»> 4> <> 4> <> > > > >

Instru-1| Instru- | -+ Instruction 1 ID EX . Bus cycle
ction 1fiction 2 | nstruction 2 if ID EX generated
Instru-|| Instru- | -+ Instruction 3 ID EX if : No bus cycle
ction 3jiction 4 | nstruction 4 if ID EX
Instru-| Instru- |- Instruction 5 ID EX
ction 5jiction 6 | |nstruction 6 if ID EX

(Memory)

Fetching from an instruction (instruction 1) located on a long word boundary

Slot 4> 4> 4> <> 4> 4> > > > <>

: Bus cycle
In.stru- .- Instruction 2 [IF] ID EX generated
ction 2
-+ Instruction 3 ID EX if : No bus cycle
Instru- || Instru-))
ction 3| ction 4 Instruction 4 i ID EX
-+ Instruction 5 ID EX
Instru- || Instru- . .
ction 5| ction 6 Instruction 6 if ID EX

Fetching from an instruction (instruction 2) located on a word boundary

Figure 10-7 Relationship between IF and Location of Instructions in Memory

Relationship between Paosition of Instructions Located in Memory and Contention between
IF and MA

When an instruction is located in memory, there are instruction fetch stages (“if”, written in lower
case) that do not generate bus cycles as explained in section 10.4.2 above. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycle
the MA requires for memory access, as illustrated in figure 10-8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, E>
MA, (WB) prevent stalls when they are located, so they start from the longword boundaries in
memory (the position when the bottom 2 bits of instruction address are 00 is A1 = 0 and AO = 0)
because the MA of the instruction falls in the same slot as ifs that follow.

416
RENESAS

32 bits Slot - > “—> “—r “—> “—r >
[instruction 1 |+ nstruction2 | Instruction 1 IF 1D EX :MA_- WB ' IF | store
: Instruction 2 if ID EX wWB :;f__- Do not store
[instruction 3]} Instruction 4 | ~ Instruction 3 IF ID_ EX ma WB
; Instruction 4 P if 1D _EX ma WB
E Instruction 6 | Instruction 5 — ID EX ma WB
; Instruction 6 if ID EX

Notes: 1. MAin slot A is in contention with if, so no store occurs; MA in slot B is in contention with IF,
SO a store occurs.
2. Inslot C ma and IF are in contention, so no store occurs.

Figure 10-8 Relationship between the Location of Instructions in Memory and Contention
between IF and MA

10.2.2 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory access data in memory at the MA stage of the
pipeline. In the case of a load instruction (instruction 1) and the following instruction (instruction
2), the EX stage of instruction 2 starts before the MA stage of instruction 1 ends.

When instruction 2 uses the same data that instruction 1 is loading, the contents of that register
will not be ready, so any slot containing the MA of instruction and EX of instruction 2 will split.
No split occurs, however, when instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm
and load instruction 1 were the same.

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as illustrated in figure 10-9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

Slot - - w w w .
Load instruction 1 (MOV.W @RO,R1) IF ID EX WB

Instruction 2 (ADD R1,R2) IF ID — ma WB
Instruction 3 IF — ID EX e
Instruction 4 — IF D e

Figure 10-9 Effects of Memory Load Instructions on the Pipeline

417
RENESAS

10.2.3 Contention due to SR Update Instructions

Instructions (SR update instructions) that overwrite the M, Q, S, and T bits of the status register
(SR) use the WB stage of the pipeline. If an instruction (instruction 2) that reads SR comes
immediately after such an instruction, the data to be read is not yet ready and the EX stage of
instruction 2 is stalled until the overwriting of the data in SR is complete. However, in the case of
instructions that overwrite all the bits of SR, such as LDC Rm,SR; LDC.L@Rm+,SR; or RTE, no
stall occurs due to the contention. The instructions that reads SR are STC SR,Rn; STC.L SR,@-
Rn; and TRAPA. The status of the pipeline when a stall occurs is shown in Figure 10-10.

As the above makes clear, writing a program in such a way that an instruction that reads SR occt
immediately after an instruction that updates SR will cause the speed of execution to be reduced
If the instruction that reads SR occurs at least three instructions after the instruction that updates
SR, no slowdown results.

A B C
Slot €4» <4» 4> <> <> <>

SR update instruction 1 (SETT) IF ID EX ma

Instruction 2 (STC SR, R1) IF ID — — ma WB
Instruction 3 IF — — ID EX
Instruction 4 — — IF ID

Figure 10-10 Affect on Pipeline of SR Update Instructions

10.2.4 Multiplier Access Contention

A multiplier-type instruction (multiply/accumulate calculations, multiplier instructions), an
instruction in which the multiply and accumulate registers (MACH, MACL) are accessed, can
cause a contention in the multiplier access.

In the multiplier instruction, the multiplier takes action regardless of the slots after the ending of
the last MA. In the double precision (64 bytes) type multiplier instruction and the
multiply/accumulate calculations instruction, the multiplier takes action in three states. In the
single precision (32 bytes) type multiplier instruction, the action is taken in two states.

When MA (when there are two, the first MA takes precedence) of the multiplier instruction
(multiply/accumulate calculations, multiplier instruction) contends with the multiplier access

(mm) of the preceding multiplier instruction, the MA bus cycle is extended until the mm ends. The
extended MA then becomes one slot.

The MA instruction which accesses the multiply/accumulate register (MACH, MACL) also
accesses the multiplier. Similar to the multiplier instruction, the MA bus cycle is extended until
the mm of the preceding multiplier-type instruction ends, and the extended MA becomes one slot
In particular, in the instruction (STS, STS.L), which reads out the multiply/accumulate register

418
RENESAS

(MACH, MACL,MA) is extended until one slot has elapsed after the ending of the mm, the
extended MA becomes one slot.

On the other hand, when the instruction has two MAs, the succeeding ID instruction is stalled fo
one-slot period.

Because the multiplier-type instruction and the multiply/accumulate register access instruction
both have MA cycles, a contention with IF may develop.

Examples of multiplier access contention are shown in figures 10-10 and 10-11. In these cases,
contention between MA and IF is not taken into consideration.

Slot > 4> 4> 4> 4> 4«———p 4> 4> 4> <>

MACL IF ID EX MA MA . mm_ mm_ mm;:

MAC.L IF — ID EX: M

Next instruction IF — — — ID EX

Figure 10-11 Contention between Two MAC.L Instructions

Slot > 4> 4> 4> 4> «———p 4> <> <>

MAC.L IF ID EX MA MA ‘mm_ mm mm:;

STS.L F — ID EX M ———A.

Next instruction IF b — — — EX

Figure 10-12 Contention between the MAC.L and STS.L Instructions

419
RENESAS

10.2.5 FPU Contention (SH-3E Only)

In addition to the LDS and STS instructions, which move data between the CPU and FPU, loadin
and storing floating point numbers also uses the MA stage of the pipeline. Consequently, such
instructions create contention with the IF stage.

If the register to which the result of a floating point arithmetic calculation instruction, the FMOV
instruction, or a floating point number load instruction is stored is read by the next instruction, the
execution of this instruction (the next instruction) is delayed by one slot cycle (Figure 10-13).

Slot 4> 4> 4> 4> 4> <> <> <> <>

Floating point arithmetic
calculation instruction
(FADD FR1, FR2)

Next floating point instruction IF DF — E1 E2 SF
(FMOV FR2, FR2)

IF ID E1 E2 SF

Figure 10-13 FPU Contention 1

If the LDS or LDS.L instruction is used to change the value of FPSCR, the execution of the next
instruction (if it is a floating point instruction) is delayed by one slot cycle (Figure 10-14).

Slot 4> 4> 4> <> <> > 4> <> <>
Instruction 1
(LDSR2,FPscr) 'F 1D El E2 SF

Floating point arithmetic IF DF — — El1 E2 SF
calculation instruction
(FADD FR4, FR5)

Figure 10-14 FPU Contention 2

If the preceding instruction was a floating point arithmetic calculation instruction (using the STS
or STS.L instruction), the execution of an instruction that reads the value of FPSCR is delayed by
one slot cycle (Figure 10-15).

Slot 4> 4> 4> 4> 4> <> <> > <>

Floating point arithmetic
calculation instruction
(FADD FR6, FR9)

Instruction 2 IF DF — — E1 E2 SF
(STS FPSCR, R3)

IF ID E1 E2 SF

Figure 10-15 FPU Contention 3

420
RENESAS

The FDIV and FSQRT instructions require 13 cycles in the E1 stage. During this period, no othe
floating point instruction may enter the E1 stage. If another floating point instruction is
encountered before the FDIV or FSQRT instruction has finished using the E1 stage, the fixed sl
duration for the execution of that instruction is delayed, and the instruction enters the E1 stage
only after the FDIV or FSQRT instruction has entered the E2 stage (Figure 10-16).

Slot €« €4» <> 4> <> > > > >

Instruction 1

Floating point instruction IF DF -+ -+ E1 E2 SF
(FMOV FR8, FR10)

Figure 10-16 FPU Contention 4

However, if contention arises because the preceding FDIV or FSQRT instruction and the FPU
calculation which follows it use the same register, the FDIV or FSQRT instruction enters the E1
stage after the execution of the SF instruction.

Slot 4> 4> 4> 4> 4> <> 4> <> <>

Instruction 1

Floating point instruction IF DF -+ .-+ -+ E1 E2 SF
(FADD F1, F3)

Figure 10-17 FPU Contention 5

421
RENESAS

10.2.6 Contention between DSP Data Operation Instructions and Store Instructions (SH3-
DSP Only)

When DSP operations are executed by the DSP unit and the results are stored in memory by the
next instruction, contention occurs just as with memory load instructions. In such cases, the data
store of the MA stage of the following instruction is extended until the data operation of the
WB/DSP stage of the previous instruction ends. Since the operation is executed in the EX stage
the CPU core, however, no stall cycle is produced. Figure 10-18 shows the relationship between

DSP unit data operation instructions and store instructions; figure 10-19 shows the relationship tc
the CPU core.

P 4 4> 4“——r 4P 4> <> <> : Slot
Instruction 1 (PADD X0,Y0,A0) IF ID EX MA

Instruction 2 (MOVX AO,@Ra) IF ID EX — W/D
Instruction 3 IF ID — EX MA W/D
Instruction 4 IF — ID EX MA W/D

Figure 10-18 Relationship between DSP Engine Operation Instructions and Store
Instructions

> 4> 4> 4> 4> 4> 4> 4> 4> <> ; Sot
Instruction 1 (ADD Ra,Rb) IF D MA W/D

Instruction 2 (MOV Rb,@Rc) IF ID MA W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 10-19 Relationship between CPU Core Operation Instructions and Store
Instructions

422
RENESAS

10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only)

When data is loaded from memory to the destination register and the register is then specified a
the source operand for a following store instruction, the preceding instruction’s load is executed
the WB/DSP stage and the following instruction’s store is executed in the MA stage. These stag
are executed in exactly the same cycle. Nevertheless, they do not contend. The CPU core and |
unit use the same data transfer method. In this case, when the data input to the internal bus is
stored to the destination register, the same data is simultaneously output again to the internal bi
In the end, the store instruction’s output operation never actually happens.

4> 4> 4> 4> 4> 4> 4> 4> <> <> Sot
Instruction 1 (MOV.L @Ra,Rn) IF ID EX MA

Instruction 2 (MOV.L Rn,@Rb) IF ID EX W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 10-20 Relationship between Load and Store Instructions in the CPU Core

> 4 > 4> > > <> > <> <> Sot
Instruction 1 (MOVS.L @R4,Ds) IF ID EX MA

Instruction 2 (MOVS.L Ds,@R5) IF ID EX W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 10-21 Relationship between Load and Store Instructions in the DSP Unit

423
RENESAS

10.3 Programming Guidelines

10.3.1 Correspondence between Contention and Instructions

The

@)
)
®3)
(4)
(5)
(6)

()

(8)

424

types of correspondence between contention and instructions can be summarized as follows

Instructions that do not cause contention

Instructions where a memory access (MA) causes contention with an instruction fetch (IF)
Instructions where a write back (WB) to SR causes contention with a SR update
Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a write back (WB) to memory causes contention with a memory load
Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a write back (WB) to SR causes contention with a SR update

Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a multiplier access (mm) causes contention with the multiplier.

Instructions where a memory access (MA) causes contention with an instruction fetch (IF), a
multiplier access (mm) causes contention with the multiplier, and in addition a write back
(WB) causes contention with a memory load

Instructions that cause contention with the MOVX.W, MOVS.W, or MOVS.L instruction

RENESAS

Table 10-1 shows the correspondence between types of contention and instructions.
Table 10-1 Types of Contention and Instructions

Contention Cycles Stages Instructions

None 1 5 Inter-register transfer instructions

1 5 Inter-register operations (except
multiplier type instructions)

1 5 Inter-register logic operation
instructions

Shift instructions

3/1
2/1

Conditional branch instructions

Delayed conditional branch instruction

Unconditional branch instructions

Unconditional branch instructions (PR)

System control instructions

NOP instruction
LDC instruction (SR)
LDC.L instruction

RTE instruction

TRAP instruction
SLEEP instruction

G| oo 0| N g w 0 g w| w|w|u

RNl dMN|lO|lR|[R|INM|N

DSP data operation instructions
MOVX.W (load) and MOVY.W (load)
instructions

* MA contends with IF 1 4 Memory store instructions

[EnY
9]

Memory store instructions (pre-
decrement)

Cache instruction

Memory logic operation instruction
LDTLB instruction
STS.L instruction (PR)

STC.L instruction (excluding bank
registers)

RPlRr| R Wk
gala|s~| o s

N
(o2}

STC.L instruction (bank registers)

1 5 MOVS.W (load) and MOVS.L (load)
instructions

» Causes DSP operation 1 4 MOVX.W (store) and MOVS.L (store)
contention instructions

425
RENESAS

Table 10-1 Types of Contention and Instructions (cont)

Contention Cycles Stages Instructions
» Contention caused by SR 1 5 Arithmetic calculation instructions
update between SR updated registers
(excluding instructions involving
multiplication)
1 5 Logical calculation instructions
between SR updated registers
1 5 SR update shift instructions
1 5 SR update system control instructions
* MA contends with IF 1 5 Memory load instructions
» Causes memory load contention 4 5 LDS.L instruction (PR)
1 5 LDC.L instruction
* MA contends with IF 3 7 SR update memory logical calculation
» Contention caused by SR instructions
update 3 7 TAS instruction
* MA contends with IF 2(to5)* 8 Multiply and accumulate calculation
» Causes multiplier contention instructions
2(to5)* 8 Double-length multiply and accumulate
calculation instructions
1(to3)* 6 Multiplication instructions (excluding
PWULS)
2(to5)* 8 Double-length multiplication
instructions
1 4 Register to MAC transfer instructions
1 4 Memory to MAC transfer instructions
1 5 MAC to memory transfer instructions
* MA contends with IF 1 4 MOVS.W (store) and MOVS.L (store)
» Causes DSP operation instructions
contention
* MA contends with IF 1 5 MAC/DSP to register transfer
» Causes multiplier contention instructions
» Causes memory load contention
» Causes DSP operation
contention
* Causes MOVX.W, MOVS.W,or 1 5 PLDS and PSTS instructions

MOVS.L instruction

Note: *

Indicates the normal number of cycles. The figures in parentheses are the cycles when

contention also occurs with the previous instruction.

426

RENESAS

10.3.2 Increasing Instruction Execution Speed

To improve instruction execution speed, consider the following when programming:

« To prevent contention between MA and IF, locate instructions that have MA stages so they st
from the longword boundaries of on-chip memory (the position when the bottom two bits of thi
instruction address are 00 is A1 = 0 and AO = 0) wherever possible.

» The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction. This will avoid causing contention with tf
memory load triggered by the write back (WB).

» Locate two instructions that do not read SR immediately after any instruction that overwrites t
M, Q, S, and T bits of SR. This will prevent contention with SR update instructions from
occurring.

 Locate instructions that use the multiplier nonconsecutively (excluding PWULS).

« Immediately following a data operation using the DSP unit, do not use an instruction that
transfers data to memory or the CPU core from the register where the operation result is store
By placing some other instruction in between, contention can be avoided.

* Do not use MOVX.W, MOVS.W, or MOVS.L to perform a memory store immediately
following a PLDS or PSTS instruction using the DSP unit. Also, do not specify a PLDS or
PSTS instruction in parallel with a memory store instruction using MOVX.W.

10.3.3 Number of Cycles

These instructions are designed to require only one cycle for execution. Of these one-cycle
instructions, some never cause contention and some can cause contention.

Some instructions may require two or more cycles even if no contention occurs. Instructions tha
require two or more cycles include instructions that execute access memory twice or more, suct
branching instructions that update the branching destination address, memory logical calculatiol
instructions, and certain system control instructions. Further examples include instructions that
access both memory and the multiplier, such as multiplication instructions and accumulate-and-
add instructions.

Among instructions that require two or more cycles, some never cause contention and some cal
cause contention.

In order to create efficient programs, it is essential to keep in mind the need to increase executic
speed by avoiding contention and also to use instructions that require few cycles to execute.

427
RENESAS

10.4 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rule
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, “Instruction A” refers to the instruction being discussed. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if". When there is contention
between IF and MA, the slot will split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 10.2, Contention between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation give
there.

Table 10-2 shows the number of instruction stages and number of execution cycles as follows:

» Type: Given by function

« Category: Categorized by differences in instruction operation

« Instructions: Gives a mnemonic for the instruction concerned

» Cycles: The number of execution cycles when there is no contention
» Stages: The number of stages in the instruction

« Contention: Indicates the contention that occurs

428
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles

Type Category Instruction Cycles Stages Contention
Data Register- MOV #imm,Rn 1 5 —
transfer register MOV RmM.RN
instructions transfer !
instructions MOVA @(disp,PC),RO
MOVT Rn
SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT RmRn
Memory MOV.W @(disp,PC),Rn 1 5 « Contention occurs
!oad . MOV.L @(disp,PC),Rn if the instruction
instructions placed
MOVB Rm,@Rn immediately after
MOVW Rm,@Rn this one uses the
MOV L RM,@Rn same destination
’ ’ register
. +, .
MOV.B @Rm+Rn * MA contends with
MOV.W @Rm+,Rn =
MOV.L @Rm+,Rn
MOV.B @(disp,Rm),RO
MOV.W @(disp,Rm),RO
MOV.L @(disp,Rm),Rn
MOV.B @(RO,Rm),Rn
MOV.W @(RO,Rm),Rn
MOV.L @(RO,Rm),Rn
MOV.B @(disp,GBR),RO
MOVW @(disp,GBR),R0O
MOV.L @(disp,GBR),RO
Memory MOV.B @Rm,Rn 1 4 * MA contends with
store MOVW @RmRn IF
instructions
MOV.L @Rm,Rn
MOV.B RO,@(disp,Rn)
MOV.W RO,@(disp,Rn)
MOV.L Rm,@(disp,Rn)

RENESAS

429

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Contention
Data Memory MOV.B Rm,@(RO,Rn) ¢ MA contends
transfer store MOVW Rm,@(RO,RN) with IF
instructions instructions ' '
(cont) (cont) MOV.L Rm,@(RO,Rn)
MOV.B RO,@(disp,GBR)
MOVW RO,@(disp,GBR)
MOV.L RO,@(disp,GBR)
Memory MOV.B Rm,@-Rm * MA contends
store MOVW Rm@-Rm with IF
instructions ’
(pre- MOV.L Rm@-Rm
decrement)
Cache PREF @Rn * MA contends
instruction with IF
Arithmetic Arithmetic ADD Rm,Rn —
instructions operation ADD #HmmRn
instruction '
between EXTSB Rm,Rn
registers EXTSW Rm,Rn
(excluding gy RmRn
multiply ’ ’
instructions) EXTUW RmRn
NEG Rm,Rn
SUB Rm,Rn
SR update ADDC Rm,Rn < Contention
arithmetic ADDV RM.RN occurs if the
operation o instruction
instruction ~ CMP/EQ #mm,R0 following this
between CMP/EQ RmRn instruction, or
registers the instruction
. MP/H Rm,Rn
(excluding CMPHS after that, reads
multiply CMP/GE RmRn from SR.
instructions) CcMP/HI Rm,Rn
CMP/GT Rm,Rn
CMP/PL Rn
CMP/PZ Rn
CMP/STR Rm,Rn
430

RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
Arithmetic SR update DIV1 Rm,Rn 1 5 » Contention
instructions arithmetic DIVOS RM.RN occurs if the
(cont) operation ' instruction
instruction ~ PIVOU following this
between DT RN instruction, or
registers the instruction
. NEGC Rm,Rn
(excluding after that, reads
multiply susC Rm,Rn from SR.
instructions) suBv Rm,Rn
Multiply/ MAC.W @Rm+,@Rn+ 2 (to5)** 8 » Causes
accumulate multiplier
instruction contention
* MA contends
with IF
Double MAC.L @Rm+,@Rn+ 2 (to5)** 8 « Causes
length/ multiplier
multiply contention
gccumL_lIate * MA contends
instruction with IE
Multiplic- MULSW Rm,Rn 1(to3)** 6 + Causes
ation MULUW RmRn multiplier
instruction ' contention
¢ MA contends
with IF
Double DMULS.L Rm,Rn 2 (to5)** 8 » Causes
length DMULU.L Rm.Rn multiplier
multipli- ' contention
cation « MA contends
instructions

with IF

RENESAS

431

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
Logic Registerto AND Rm,Rn 1 5 —
operation register AND #Hmm.RO
instructions logic '
operation NOT Rm,Rn
instructions OR Rm,Rn
OR #imm,RO
XOR Rm,Rn
XOR #imm,R0
Logical TST Rm,Rn 1 5 * Contention
.calculatllon TST #mm RO pccurs !f the
instructions instruction
between following this
SR updated instruction, or
registers the instruction
after that, reads
from SR
Memory AND.B #mm@(RO,GBR) 3 6 » MA contends
logic ORB #mm,@(RO,GBR) with IF
operations)
instructions XORB #imm,@(RO,GBR)
SR update TST.B #mm,@(R0,GBR) 3 7 « Contention
memory occurs if the
logical instruction
calculation following this
instructions instruction, or

the instruction
after that, reads

from SR
* MA contends
with IF
TAS TASB @Rn 3/4%3 7 « MA contends
instruction with IF

432
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
Shift Shift SHLL2 Rn 1 5 —
instructions instructions gy po Rpy

SHLLS Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

SHAD Rm,Rn
SHLD Rm,Rn

SR update ROTL Rn 1 5 « Contention
;hift _ ROTR Rn _occurs ifthe
instructions instruction
ROTCL ~ Rn following this
ROTCR Rn instruction, or
the instruction
SHAL Rn after that, reads
SHAR Rn from SR
SHLL Rn
SHLR Rn
Branch Conditional BF label 3/1%* 3 —
instructions _branch. BT label
instructions
Delayed BF/S label 2/1%* 3 —
conditional BT/S label
branch
instructions
Uncondi- BRA label 2 3 —
tional BRAF RmM
branch
instructions IMP @Rm
RTS
Uncondi- BSR label 2 5 —
tional BSRF Rm
branch
instructions ISR @Rm
(PR)
433

RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System System LDC Rm,GBR 1/3*> 5 —
control _control ALU LDC Rm,VBR
instructions instructions

LDC Rm,SSR

LDC Rm,SPC

LDC Rm,MOD

LDC Rm,RE

LDC Rm,RS

LDC Rm,RO_BANK

LDC Rm,R1_BANK

LDC Rm,R2_BANK

LDC Rm,R3_BANK

LDC Rm,R4 BANK

LDC Rm,R5_BANK

LDC Rm,R6_BANK

LDC Rm,R7_BANK

SETRC Rm 3 5

SETRC #imm

LDRE @(disp,PC)

LDRS @(disp,PC)

LDS Rm,PR 1 5
STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC SSR,Rn

STC SPC,Rn

STC MOD,Rn

STC RE,Rn

STC RS,Rn

STC RO_BANK,Rn
STC R1_BANK,Rn
STC R2_BANK,Rn
STC R3_BANK,Rn
STC R4 _BANK,Rn

434
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System System STC R5_BANK,Rn 1 5 —
control control ALU sTC R6 BANKRN
instructions instructions - '
(cont) STC R7_BANK,Rn
STS PR,Rn
SR update CLRS 1 5 « Contention occurs
system CLRT if the instruction
control following this
instructions SETS instruction, or the
SETT instruction after
that, reads from
SR
LDTLB LDTLB 1 4 * MA contends with
instruction IF
NOP NOP 1 3 —
instruction
LDC LDC Rm,SR 5 5 —
instructions
(SR)
LDC.L LDCL @Rm+SR 7 7 —
instructions
(SR)
LDS.L LDS.L @Rm+,PR 1 5 « Contention occurs
instructions when an
(PR) instruction that
uses the same
destination

register is placed
immediately after
this instruction

* MA contends with

IF
STS.L STSL PR,@-Rn 1 5 * MA contends with
instruction IF

(PR)

435
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System LDC.L LDCL @Rm+GBR 1/5*8 5 « Contention occurs

_control _ instructions | p @Rm+VBR yvhen a_n

instructions instruction that

(cont) LDCL ~ @Rm+SSR uses the same
LDCL @Rm+SPC destination

register is placed

LDC.L Rm+,MOD . .

C @Rm+MO immediately after
LDCL @Rm+RE this instruction
LDCL @Rm+RS * MA contends with
LDCL @Rm+R0O BANK IF

LDCL @Rm+R1 BANK
LDCL @Rm+R2 BANK
LDCL @Rm+R3 BANK
LDCL @Rm+R4 BANK
LDCL @Rm+R5 BANK
LDCL @Rm+R6 _BANK
LDCL @Rm+R7_BANK

STC.L STC.L SR,@-Rn 1/2** 5 *« MA contends with
instructions sSTCL GBR,@—Rn IF

STCL VBR,@-Rn

STCL SSR,@-Rn

STCL SPC,@-Rn

STCL MOD,@-Rn

STCL RE@-Rn

STCL RS,@-Rn

STC.L RO_BANK,@-Rn 2 6 * MA contends with
STCL RL1 BANK,@-Rn IF

STCL R2_BANK,@-Rn

STCL R3_BANK,@-Rn

STCL R4 _BANK,@-Rn

STCL R5_BANK,@-Rn

STCL R6_BANK,@-Rn

STCL R7_BANK,@-Rn

436
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System Register -~ CLRMAC 1 4 « Contention occurs
control MAC/DSP LDS RmM.MACH with multiplier
instructions transfer ' -
¢ MA contends with
(cont) instruction ~ LDPS Rm,MACL IE
LDS Rm,DSR
LDS Rm,A0
LDS Rm, X0
LDS Rm, X1
LDS Rm,YO
LDS Rm,Y1
Memory - LDS.L @Rm+,MACH 1 4 « Contention occurs
MAC/DSP LDSL @Rm+MACL with multiplier
transfer ' ' :
¢ MA contends with
instructions LPSL ~ @Rm+DSR g
LDSL @Rm+A0
LDSL @Rm+X0
LDSL @Rm+X1
LDSL @Rm+YO
LDSL @Rm+Y1
MAC/DSP STS MACH,Rn 1 5 « Contention occurs
- register sTS MACL Rn with multiplier
transfer ' :
¢ Contention occurs
instruction ~ STS DSR,Rn when an
STS AORn instruction that
STS XO,Rn uses the same
STS X1Rn destination
' register is placed
STS YO,Rn immediately after
STS Y1,Rn this instruction
¢ MA contends with
IF
MAC/DSP STSL MACH,@-Rn 1 5 « Contention occurs
— Memory grg| MACL@-Rn with multiplier
transfer ' ' :
* MA contends with
instruction ~ STSL DSR,@-Rn IE
STSL A0,@-Rn
STSL X0,@-Rn
STSL X1,@-Rn
STSL Y0,@-Rn
STSL Y1,@-Rn

RENESAS

437

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System RTE RTE 4 5 _
control instruction
i(r;f)tr:t‘)"“‘)“s TRAP TRAPA #imm 6/8*7 6/g*T —
instruction
SLEEP SLEEP 4 6 —
instruction
Register -~ CLRMAC 4 1 « Causes multiplier
{\:IQ\CSZ]{ZSP LDS RmMMACH contention -
instruction DS RmM,MACL . :\|/I:A contends with
LDS Rm,DSR
LDS Rm,A0
LDS Rm,X0
LDS Rm,X1
LDS Rm,YO
LDS Rm,Y1
Memory -~ LDS.L @Rm+,MACH 4 1 ¢ Causes multiplier
:\r/IE;AnC':S]{eDrSP LDS.L @Rm+MACL contention -
instructions LDSL @Rm+DSR . :\'/:IA contends with

LDS.L @Rm+,A0
LDS.L @Rm+,X0
LDS.L @Rm+,X1
LDS.L @Rm+,Y0
LDS.L @Rm+,Y1

MAC/DSP STS MACH,Rn 5 1 ¢ Causes multiplier
- register STS MACL RN contention
transfer ' .
« Contention occurs
i i STS DSR,Rn
instruction when an
STS AORn instruction that
STS XO,Rn uses the same
STS X1Rn des_tlnatl_on
register is placed
STS YO,Rn immediately after
STS Y1,Rn this instruction
« MA contends with
IF

438
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System MAC/DSP STS.L MACH,@-Rn 4 1 e Causes multiplier
icnosr::[Jocltions t?arr:;?errsory STSL - MACL@-Rn contention ;
(cont) instruction ~ STSL DSR,@-Rn ’ mA contends with
STS.L A0,@-Rn
STSL X0,@-Rn
STS.L X1,@-Rn
STSL Y0,@-Rn
STS.L Y1,@-Rn
RTE RTE 5 4 —
instruction
TRAP TRAPA#Mmm 9 8 —
instruction
SLEEP SLEEP 3 3 —
instruction
Register -~ CLRMAC 1 4 e Causes multiplier
EasnF;fer LDS RmM,MACH contention -
instructions LDS Rm,MACL . II\'/I:A contends with
LDS Rm,DSR 1 4 —
LDS Rm,A0
LDS Rm,X0
LDS Rm,X1
LDS Rm,YO
LDS Rm,Y1
Memory - LDS.L @Rm+,MACH 1 4 e Causes multiplier
DSP LDS.L @Rm+MACL contention
transfer « MA contends with
instructions IE
DS.L @Rm+,DSR 1 4 —
DS.L @Rm+,A0
DS.L @Rm+,X0
DS.L @Rm+,X1
DS.L @Rm+,YO
DS.L @Rm+,Y1

439
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
System DSP - STS MACH,Rn 1 5 e Causes multiplier
control register sTS MACL RN contention
instructions transfer ' -
¢ Contention occurs
(cont) instructions STS DSR,Rn when an
STS AORn instruction that
STS XO,Rn uses the same
STS X1Rn des.tlnatl.on
register is placed
STS YO,Rn immediately after
STS Y1,Rn this instruction
* MA contends with
IF
¢ Causes
contention with
DSP operation.
DSP - STS.LMACH,@-Rn 1 4 ¢ Causes multiplier
memory STS.LMACL,@-Rn contention
transfer * MA contends with
instructions IF
STS.LDSR,@-Rn 1 4 —
STS.LAO,@-Rn
STS.LX0,@-Rn
STS.LX1,@-Rn
STS.LYO,@-Rn
STS.LY1,@-Rn
RTE RTE 4 5 —
instruction
TRAP TRAPA#Mmm 8 9 —
instruction
SLEEP SLEEP 3 3 —
instruction
DSP data X memory NOPX 1 5 —
transfer load MOVXW @Ax,Dx
instructions instructions ' ’
MOVXW @Ax+,Dx
MOVXW @Ax+x,Dx
X'memory MOVXW Da@Ax 1 4 e Causes
store MOVXW Da@Ax+ contention with
instructions ' DSP operation.
MOVX.W Da,@Ax+Ix
440

RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
DSPdata Y memory NOPY 1 5 —
transfer load MOVYW @Ay,Dy
instructions instructions ’
(cont) MOVY.W @Ay+Dy
MOVY.W @Ay+Ix,Dy
Y memory MOVY.W Da@Ay 1 4 e Causes
store MOVYW Da@Ay+ contention with
instructions ' ' DSP operation.
MOVYW Da,@Ay+ly
Single load MOVSW @-As,Ds 1 5 * MA contends with
instructions MOVSW @AsDs IF
MOVSW @As+,Ds
MOVSW @As+s,Ds
MOVS.L @-As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+ls,Ds
Single store MOVS.W Ds,@-As 1 5 * MA contends with
instructions MOVSW Ds@As IF
MOVSW Ds@As+ * Causes
contention with
MOVSW Ds@AsHs DSP operation.
MOVS.L Ds,@-As
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is
DSP PADD Sx,Sy,Dz(Du) 1 5 —
operation DCT PADD Sx,Sy,Dz
instructions

DCF PADD Sx,Sy,Dz
PSUB Sx,Sy,Dz(Du)

DCT PSUB Sx,Sy,Dz

DCF PSUB Sx,Sy,Dz
PCOPY Sx,Dz

DCT PCOPY Sx,Dz

DCF PCOPY Sx,Dz

RENESAS

441

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention
DSP PCOPY Sy,Dz 1 5 —
operation DCT PCOPY Sy,Dz
instructions
(cont) DCF PCOPY Sy,Dz

PDMSB Sx,Dz

DTC PDMSB Sx,Dz
DCF PDMSB Sx,Dz
PDMSB Sy,Dz
DCT PDMSB Sy,Dz
DCF PDMSB Sy,Dz
PINC Sx,Dz
DCT PINC Sx,Dz
DCF PINC Sx,Dz
PINC Sy,Dz
DCT PINC Sy,Dz
DCF PINC Sy,Dz
PNEG Sx,Dz
DCT PNEG Sx,Dz
DCF PNEG Sx,Dz
PNEG Sy,Dz
DCT PNEG Sy,Dz
DCF PNEG Sy,Dz
PDEC Sx,Dz
DTC PDEC Sx,Dz
DCF PDEC Sx,Dz
PDEC Sy,Dz
DTC PDEC Sy,Dz
DCF PDEC Sy,Dz
PCLR Dz
DCT PCLR Dz
DCF PCLR DZ

442
RENESAS

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type

Category

Instruction

Cycles Stages Contention

DSP
operation
instructions
(cont)

PADDC Sx,Sy,Dz
PSUBC Sx,Sy,Dz
PCMP Sx,Sy
PABS Sx,Dz
PABS Sy,Dz
PRNDSx,Dz
PRNDSy,Dz

1

5

POR Sx,Sy,Dz
DCT POR Sx,Sy,Dz
DCF POR Sx,Sy,Dz

PAND Sx,Sy,Dz
DCT PAND Sx,Sy,Dz
DCF PAND Sx,Sy,Dz

PXOR Sx,Sy,Dz
DCT PXOR Sx,Sy,Dz
DCF PXOR Sx,Sy,Dz

Shift
instructions

PSHA Sx,Sy,Dz
DCT PSHA Sx,Sy,Dz
DCF PSHA Sx,Sy,Dz
PSHA #imm,Dz
PSHL Sx,Sy,Dz
DCT PSHL Sx,Sy,Dz
DCF PSHL Sx,Sy,Dz
PSHL #imm,Dz

PMULS Se,Sf,Dg

RENESAS

443

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

DSP PSTS MACH,Dz 1 5 « Contends with

operation DTC PSTS MACH.Dz MOVX.W,

instructions MOVS.W, and

(COI’]t) DCF PSTS MACH,DZ MOVS.L
PSTS MACL,Dz

DCT PSTS MACL,Dz
DCF PSTS MACL,Dz

PLDS Dz, MACH
DCT PLDS Dz,MACH
DCF PLDS Dz, MACH

PLDS Dz, MACL
DCT PLDS Dz, MACL
DCF PLDS Dz,MACL

Notes: 1. Two cycles on the SH3-DSP.

2. Indicates the normal minimum number of execution states (the number in parentheses
is the number of cycles when there is contention with following instructions).

Four cycles on the SH3-DSP.

One state when there is no branch.

Three cycles on the SH3-DSP.

Five cycles on the SH3-DSP.

Eight cycles and eight stages on the SH3-DSP.

No oM~

444
RENESAS

10.4.1 Data Transfer Instructions

(1) Register to Register Transfer Instructions

Instruction Types:

MOV #imm, Rn

MOV Rm, Rn

MOVA @(disp, PC), RO
MOVT Rn

SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm,Rn

Pipeline:
Slot +=> => <> <> <> -
Instruction A IF ID EX ma WB
Next instruction IF ID EX e
Third instruction in series IF ID EX -

Figure 10-22 Register to Register Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, Ex, ma, and WB. In the ma stage nothing happens ai
the data is retained. The data is written to the register in the WB stage.

445
RENESAS

(2) Memory Load Instructions
Instruction Types:

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn
MOV.B @Rm,Rn
MOV.W @Rm,Rn
MOV.L @Rm,Rn

MOV.B @Rm+, Rn
MOVW @Rm+, Rn
MOV.L @Rm+, Rn
MOV.B @(disp, Rm), RO
MOV.W @(disp, Rm), RO
MOV.L @(disp, Rm), Rn
MOV.B @(RO, Rm), Rn
MOVW @(RO,Rm),Rn
MOV.L @(RO,Rm),Rn
MOV.B @(disp, GBR), RO
MOV.W @(disp, GBR), RO
MOV.L @(disp, GBR), RO

Pipeline:

Slot > <> <4»> <> <> <>
lInstruction A IF__ID EX MB WB|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-23 Memory Load Instruction Pipeline
Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 10-23). If an instruction that uses
the same destination register as this instruction is placed immediately after it, contention will
occur (see section 10.2.2, Effects of Memory Load Instructions on Pipelines). Also, see section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA), with reference to
contention between the MA and IF stages of these instructions.

446
RENESAS

(3) Memory Store Instructions

Instruction Types:

MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L

Pipeline:

Rm, @Rn
Rm, @Rn
Rm, @Rn
RO, @(disp, Rn)
RO, @(disp, Rn)
Rm, @(disp, Rn)
Rm, @(RO, Rn)
Rm, @(RO, Rn)
Rm, @(RO, Rn)
RO, @(disp, GBR)
RO, @(disp, GBR)
RO, @(disp, GBR)

Slot

“—r 4> > 4> > >

[Instruction A

ID EX MA]

Next instruction

Third instruction in series

ID EX -
IF ID EX -

Figure 10-24 Memory Store Instructions Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA (figure 10-24). Data is not returned to the
register so there is no WB stage. See section 10.2.1, Contention between Instruction Fetch (IF)
Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.

RENESAS

447

(4) Memory Store Instruction (Pre-decrement)

Instruction Types:

MOV.B Rm,@-Rn
MOV.W Rm,@-Rn
MOV.L Rm,@-Rn
Pipeline:
Slot - - - - -
[InstructonA IF ID EX MA WB
Next instruction IF ID EX
Third instruction in series IF ID EX -

Figure 10-25 Memory Store Instruction (Pre—decrement) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA, and WB. In the WB stage the decremented
value is written to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and

Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.

448
RENESAS

(5) Cache Instruction

Instruction Types:

PREF @Rn
Pipeline:
Slot == <> > <>
PREF IF 1D EX MA
Next instruction IF ID EX e
Third instruction in series IF ID EX

Figure 10-26 Cache Instruction Pipeline

Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. There is no WB stage because no data
returned to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and

Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.

On the SH3-DSP, the ID of the next instruction is stored one slot behind.

449
RENESAS

10.4.2 Arithmetic Instructions

(1) Arithmetic Instructions between Registers (Except Multiplication Instructions)

Instruction Types:

ADD Rm, Rn EXTUB Rm,Rn
ADD #imm, Rn EXTUW Rm,Rn
EXTS.B Rm,Rn NEG Rm, Rn
EXTSW Rm,Rn SuUB Rm, Rn
Pipeline:
Slot «-» - - - -~

linstructionA IF ID EX ma WB
Next instruction IF ID EX

Third instruction in series IF ID EX

Figure 10-27 Arithmetic Instructions between Registers (Except Multiplication
Instructions) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens an
the calculation result is retained. The result is written to the register in the WB stage.

450
RENESAS

(2) Arithmetic Calculation Instructions between SR Updated Registers (Excluding
Instructions Involving Multiplication)

Instruction Types:

ADDC Rm,Rn CMP/PZ Rn
ADDV Rm,Rn CMP/STR Rm,Rn
CMP/EQ #mm,RO DIV1 Rm,Rn
CMP/EQ Rm,Rn DIVOS Rm,Rn
CMP/HS Rm,Rn DIVoU
CMP/GE Rm,Rn DT Rn
CMP/HI Rm,Rn NEGC Rm,Rn
CMP/GT Rm,Rn SUBC Rm,Rn
CMP/PL Rn SUBV Rm,Rn
Pipeline:
Slot =+ <> <> <= <>
|InstructionA IF ID EX ma WB
Next instruction IF ID EX e
Third instruction in series IF ID EX -

Figure 10-28 Pipeline for Arithmetic Calculation Instructions between SR Updated
Registers (Excluding Instructions Involving Multiplication)

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens a
the calculation result is retained. The result is written to the register in the WB stage. Contentior
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR. (See section 10.2.3, Contention due to SR Update Instructions.)

451
RENESAS

(3) Multiply/Accumulate Instruction

Instruction Type:
MACW @Rm+, @Rn+

Pipeline:

Slot > <> <> 4> > > P> >
[MACW IF ID EX MA MA mm mm_ mm]
Next instruction IF — ID EX MA WB
Third instruction in series IF ID EX MA WB

Figure 10-29 Multiply/Accumulate Instruction Pipeline

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-29). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier i
operating. The mm operates for three cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operat
normally. When an instruction that uses the multiplier comes after the MAC instruction,
contention occurs with the multiplier, so operation is not as normal (see 10.2.4 Multiplier Access
Contention).

Note: * On the SH3-DSP there are seven stages: IF, ID, EX, MA, MA, mm, and mm.

452
RENESAS

(4) Double-Length Multiply/Accumulate Instruction
Instruction Type:

MAC.L @Rm+, @Rn+

Pipeline:
Slot 4> 4> 4> 4> 4> <> <> > 4> <> <>
[MACL IF ID EX MA MA mm mm_ mm]|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 10-30 Multiply/Accumulate Instruction Pipeline

Operation Description:

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-30). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier
operating. The mm operates for three cycles after the final MA ends, regardless of slot. The ID c
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline opera
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is not as normal (see 10.2.4 Multiplier Access
Contention).

Note: * On the SH3-DSP there are nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm.

453
RENESAS

(5) Multiplication Instructions
Instruction Types:

MULS.W Rm,Rn
MULUW Rm,Rn

Pipeline:

Slot 4> 4> 4> 4> <> > <> <>
[Instruction A IF ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 10-31 Multiplication Instruction Pipeline
Operation Description:

The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 10-31). The MA accesses the
multiplier. The mm indicates that the multiplier is operating. The mm operates for two cycles aftel
the MA ends, regardless of the slot. The MA of the MULS.W instruction, if it contends with IF,
operates as described in section 10.2.1, Contention between Instruction Fetch (IF) and Memory
Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
come after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal (see 10.2.4 Multiplier Access Contention).

454
RENESAS

(6) Double-Length Multiplication Instructions
Instruction Types:

DMULS.L Rm,Rn
DMULU.L Rm,Rn
MULL Rm,Rn

Pipeline:

Slot <> 4> 4> <> 4> <> <> D> <>
[InstructonA IF ID EX MA MA mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 10-32 Multiplication Instruction Pipeline
Operation Description:

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-32). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
three cycles after the MA ends, regardless of slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 10.2.1, Contention between Instruction Fetch (IF) and Memory Acce
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
S0 operation is not as normal (see 10.2.4 Multiplier Access Contention).

Note: * On the SH3-DSP there are nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm.

455
RENESAS

10.4.3 Logic Operation Instructions

(1) Register to Register Logic Operation Instructions
Instruction Types:

AND Rm, Rn
AND #imm, RO
NOT Rm, Rn
OR Rm, Rn
OR #mm, RO
XOR Rm, Rn
XOR #imm, RO

Pipeline:

[Instructon A IF~ ID EX ma WB
Next instruction IF ID EX .

Third instruction in series IF ID EX -

Figure 10-33 Register to Register Logic Operation Instruction Pipeline
Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens an
the calculation result is retained. The result is written to the register in the WB stage.

456
RENESAS

(2) Logical Calculation Instructions between SR Updated Registers

Instruction Types:

TST Rm,Rn
TST #mm,RO

Pipeline:

Slot 4> 4> 4> <> <>
[TST IF ID EX ma WB |
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-34 Pipeline for Logical Calculation Instructions between SR Updated Registers

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens a
the calculation result is retained. The result is written to the register in the WB stage. Contentior
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).

457
RENESAS

(3) Memory Logic Operations Instructions

Instruction Types:

AND.B #mm, @(RO, GBR)
OR.B #imm, @(RO, GBR)
XOR.B #imm, @(RO, GBR)

Pipeline:

Slot 4> 4> 4> 4> 4> > > > >
lInstruction A IF_ID EX MA EX MA]|
Next instruction IF — — ID EX -
Third instruction in series IF ID EX -

Figure 10-35 Memory Logic Operation Instruction Pipeline

Operation Description:

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 10-35). The ID of the next

instruction stalls for 2 slots. The MAs of these instructions contend with IF (see 10.2.1 Contentior
between Instruction Fetch (IF) and Memory Access (MA).

458
RENESAS

(4) SR Update Memory Logical Calculation Instructions
Instruction Type:
TST.B #mm,@(RO,GBR)

Pipeline:

Slot <€» <> <> 4> > > > >
[TSTB IF ID EX MA EX MA WB|
Next instruction IF — — ID EX -
Third instruction in series IF ID EX -

Figure 10-36 SR Updated Memory Logical Calculation Instruction Pipeline
Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, EX, MA, and WB. The result is written to
the T bit of SR in the WB stage. The MA of the TST instruction contends with IF. (See section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA).) Also, contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).

459
RENESAS

(5) TAS Instruction

Instruction Type:

TASB @Rn
Pipeline:
Slot <> <> <> <> > > > > D>
[TASB IF ID EX MA MA MA WB|]
Next instruction IF — — ID EX -
Third instruction in series IF ID EX -

Figure 10-37 TAS Instruction Pipeline
Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, MA, MA, and WB. The result is written to
the T bit of SR in the WB stage. The MA of the TST instruction contends with IF (see section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)). Also, contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).

On the SH3-DSP, the ID of the next instruction is stored three slots behind.

460
RENESAS

10.4.4 Shift Instructions
(1) Shift Instructions

Instruction Types:

SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn

SHAD Rm,Rn
SHLD Rm,Rn

Pipeline:

Slot 4> 4> 4> 4> <> <>
[Instrucion A IF ID EX ma WB |
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-38 Shift Instruction Pipeline
Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens a
the shift result is retained. The result is written to the register in the WB stage.

461
RENESAS

(2) SR Update Shift Instructions

Instruction Types:

ROTL Rn
ROTR Rn
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHLR Rn
Pipeline:

Slot <> <> <> <> <> <>
[InstructonA IF ID EX ma WB |
Next instruction IF ID EX -

Third instruction in series IF ID EX -

Figure 10-39 SR Updated Shift Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens an
the result is retained. The result is written to the register in the WB stage. Contention occurs if the
instruction immediately following this instruction, or the instruction after that, reads from SR (see

section 10.2.3, Contention due to SR Update Instructions).

462
RENESAS

10.4.5 Branch Instructions

(1) Conditional Branch Instructions
Instruction Types:

BF label
BT label

Pipeline/Operation Description:

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage
Conditionally branched instructions are not delay branched.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stag
of instruction A (figure 10-40).

Slot > 4> 4> 4> <> 4> <> 4> <>
[Instructon A IF_ ID EX]

Next instruction IF — (Fetched but discarded)
Third instruction in series IF — (Fetched but discarded)
Branch destination — IF ID EX -
..... IE ID EX -

Figure 10-40 Branch Instruction when Condition is Satisfied

463
RENESAS

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 10-41).

Slot 4> 4> 4> 4> <> <> 4> <> <>
[Instruction A IF_ ID EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
..... IE ID EX -

Figure 10-41 Branch Instruction when Condition is Not Satisfied

464
RENESAS

(2) Delayed Conditional Branch Instructions

Instruction Types:

BF/S label
BT/S label

Pipeline/Operation Description:
The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage
1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction afte
that is fetched and discarded. The branch destination instruction begins its fetch from the sl
following the slot which has the EX stage of instruction A (figure 10-42).

Slot > 4> 4> > 4> 4> > > <>
[Instruction A IF__ID__EX]

Next instruction IF — ID EX .-
Third instruction in series IF — (Fetched but discarded)
Branch destination IF ID EX o
..... IE ID EX -

Figure 10-42 Branch Instruction when Condition is Satisfied

465
RENESAS

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 10-43).

Slot 4> 4> 4> 4> 4> <> 4> <> <>
[Instruction A IF__ ID__EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
..... IF ID EX -

Figure 10-43 Branch Instruction when Condition is Not Satisfied

466
RENESAS

(3) Unconditional Branch Instructions

Instruction Types:

BRA label
BRAF Rm
JMP @Rm
RTS

Pipeline:

linstrucion A IF ID EX

Next instruction IF — ID EX -
Third instruction in series IF — (Fetch but then data is discarded)
Branch destination IF ID EX e
..... 1= 1D EX

Figure 10-44 Unconditional Branch Instruction Pipeline
Operation Description:

The pipeline has three stages: IF, ID, and EX (figure 10-44). Unconditionally branched
instructions are delay branched. The branch destination address is calculated in the EX stage.
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is not fetched and discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of
instruction A.

467
RENESAS

(4) Unconditional Branch Instructions (PR)

Instruction Types:

BSR label

BSRF Rm

JSR @Rm

Pipeline:
Slot - - - - -
Instructon A IF ID EX ma WB]
Next instruction IF — ID EX
Third instruction in series IF — (Fetch but then data is discarded)

..... IF ID EX

Figure 10-45 Unconditional Branch Instruction (PR) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. Unconditionally branched
instructions are delay branching. The instruction following the unconditional branch instruction
(instruction A), that is, the delay slot instruction, is fetched and executed. However, the instructiol
after that is fetched and discarded. The branch destination instruction starts its fetch from the slo
after the slot that has the EX stage of instruction A.

468
RENESAS

10.4.6 System Control Instructions

(1) System Control ALU Instructions

Instruction Types:

LDC Rm, GBR STC SR,Rn LDRE @(disp,PC) (SH3-DSP only)
LDC Rm,VBR STC GBR,Rn LDRS @(disp,PC) (SH3-DSP only)
LDC Rm, SSR STC VBR,Rn SETRC Rm (SH3-DSP only)
LDC Rm, SPC STC SSR,Rn SETRC #imm (SH3-DSP only)
LDC Rm, MOD STC SPC,Rn
LDC Rm,RE STC MOD, Rn
LDC Rm,RS STC RE,Rn
LDC Rm, RO_BANK STC RS, Rn
LDC Rm,R1_BANK STC RO_BANK, Rn
LDC Rm, R2_BANK STC R1 BANK,Rn
LDC Rm, R3_BANK STC R2_BANK,Rn
LDC Rm, R4_BANK STC R3 _BANK,Rn
LDC Rm,R5_BANK STC R4 _BANK,Rn
LDC Rm, R6_BANK STC R5 BANK,Rn
LDC Rm, R7_BANK STC R6_BANK,Rn
LDS Rm, PR STC R7_BANK,Rn
STS PR,Rn
Pipeline:

Slot =« <> <> <=
Instruction A IF ID EX ma WB
Next instruction IF ID EX .
Third instruction in series IF ID EX -

Figure 10-46 System Control ALU Instruction Pipeline
Operation Description:

The pipeline ends after five stages: IF, TD, EX, ma, and WB. In the EX stage, the data calculati
is completed via ALU. In the ma stage nothing happens and the result is retained. The result is
written to the register in the WB stage.

On the SH3-DSP, the ID of the instruction following the LDC, LDRE, LDRS, and SETRC
instruction is stored two slots behind.

469
RENESAS

(2) SR Update System Control Instructions

Instruction Types:

CLRS
CLRT
SETS
SETT
Pipeline:

Slot =« <= <« >

Instruction A IF ID EX ma WB

Next instruction IF ID EX

Third instruction in series IF ID EX
----- IF ID EX

Figure 10-47 SR Update System Control Instruction Pipeline
Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens an
the data to be transferred is retained. The data is written to the register in the WB stage.
Contention occurs if the instruction immediately following this instruction, or the instruction after
that, reads from SR (see section 10.2.3, Contention due to SR Update Instructions).

470
RENESAS

(3) LDTLB Instruction
Instruction Type:
LDTLB

Pipeline:

Slot <> - - - -

LDTLB IF ID EX MA
Next instruction IF ID EX

Third instruction in series IF ID EX

Figure 10-48 LDTLB Instruction Pipeline

Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. There is no WB stage because no data
returned to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA), with reference to contention between the MA and IF stages of these

instructions.
(4) NOP Instruction
Instruction Type:

NOP

Pipeline:

NOP IF 1D EX
Next instruction IF ID EX e

Third instruction in series IF ID EX

Figure 10-49 NOP Instruction Pipeline

Operation Description:

The pipeline ends after three stages: IF, ID, and EX.

471
RENESAS

(5) LDC Instruction (SR)

Instruction Type:

LDC Rm,SR
Pipeline:
LDC |IF 1D EX EX EX
Next instruction IF ID EX -
Third instruction in series IF ID EX

Figure 10-50 LDC Instruction (SR) Pipeline
Operation Description:

The pipeline ends after five stages: IF, ID, EX, EX, and EX. The data is written to SR in the last
EX stage. The IF of the next instruction starts from the slot after the slot that has the EX stage of
instruction A.

(6) LDC.L Instructions (SR)
Instruction Type:

LDCL @Rm+, SR

Pipeline:
Slot 4> 4> 4> 4> 4> 4> 4> <> <> <>
[LDCL IF ID EX MA EX EX EX|
Next instruction IF ID EX -
Third instruction in series IF ID -

Figure 10-51 LDC.L Instruction (SR) Pipeline
Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, EX, EX, and EX. The data is written to SR
in the last EX stage. The IF of the next instruction starts from the slot after the slot that has the
final EX stage of instruction A.

472
RENESAS

(7) LDS.L Instruction (PR)
Instruction Type:

LDSL @Rm+, PR

Slot 4> 4> 4> 4> <> <> 4> 4> <>
[LDS.L IF _ID EX MA WB]|
Next instruction IF ID EX -

Third instruction in series IF ID EX

Figure 10-52 LDS.L Instructions (PR) Pipeline
Operation Description:
The pipeline ends after five stages: IF, ID, EX, MA and WB. Contention occurs if this instruction
is followed by an instruction that uses the same destination register (see section 10.2.2, Effects

Memory Load Instructions on Pipelines). Also, The MA of this instruction contends with IF (see
section 10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)).

(8) STS.L Instruction (PR)
Instruction Type:

STSL PR, @-Rn

Slot 4> 4> 4> 4> 4> <> 4> <> <>
[STSL IF ID EX MA]
Next instruction IF ID EX

Third instruction in series IF ID EX

Figure 10-53 STS.L Instruction (PR) Pipeline
Operation Description:
The pipeline ends after five stages: IF, ID, EX, MA and WB. The WB stage writes the

decremented value to the register. The MA of this instruction contends with IF (see section 10.2
Contention between Instruction Fetch (IF) and Memory Access (MA)).

473
RENESAS

(9) LDC.L Instructions

Instruction Types:

LDCL @Rm+ GBR LDCL @Rm+ RO_BANK
LDCL @Rm+, VBR LDCL @Rm+ R1_BANK
LDCL @Rm+, SSR LDCL @Rm+, R2_BANK
LDCL @Rm+, SPC LDCL @Rm+ R3_BANK
LDCL @Rm+ MOD (SH3-DSP only) LDCL @Rm+ R4 BANK
LDCL @Rm+ RE (SH3-DSP only) LDCL @Rm+ R5 BANK
LDCL @Rm+ RS (SH3-DSP only) LDCL @Rm+ R6_BANK

LDCL @Rm+, R7_BANK

Pipeline:

Slot > <> <4» <> <> <>
[LDC.L IF _ID EX MA WB]
Next instruction IF ID EX v e
Third instruction in series IF ID EX -

Figure 10-54 LDC.L Instruction Pipeline
Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. Contention occurs if this instruction
is followed by an instruction that uses the same destination register (see section 10.2.2, Effects c
Memory Load Instructions on Pipelines). Also, The MA of this instruction contends with IF (see
section 10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)).

On the SH3-DSP, the ID of the instruction following the LDC instruction is stored four slots
behind.

474
RENESAS

(10) STC.L Instructions (Excluding Bank Registers)

Instruction Types:

STC.L
STCL
STC.L
STCL
STC.L

Pipeline:

SR, @-Rn

GBR, @-Rn
VBR, @-Rn
SSR, @-Rn
SPC, @-Rn

STC.L MOD,@-Rn (SH3-DSP only)
STC.L RE,@-Rn (SH3-DSP only)
STC.L RS,@-Rn (SH3-DSP only)

Slot

“r 4 OO O O OO O OO >

[sTC.L

IF ID EX MA WB]

Next instruction

Third instruction in series

Operation Description:

Figure 10-55 STC.L Instruction (Excluding Bank Register) Pipeline

The pipeline ends after five stages: IF, ID, EX, MA and WB. The WB stage writes the
decremented value to the register. The MA of this instruction contends with IF (see section 10.2
Contention between Instruction Fetch (IF) and Memory Access (MA)).

On the SH3-DSP, the ID of the instruction following the LDC instruction is stored one slot

behind.

475
RENESAS

(11) STC.L Instructions (Bank Registers)
Instruction Types:

STC.L RO_BANK,@-Rn
STC.L R1_BANK@-Rn
STC.L R2_BANK@-Rn
STC.L R3_BANK,@-Rn
STC.L R4 _BANK@-Rn
STC.L R5 _BANK,@-Rn
STC.L R6_BANK@-Rn
STC.L R7_BANK,@-Rn

Pipeline:

Slot 4> 4> <> <> <>
[STCL IF ID EX EX MA]
Next instruction IF — ID EX -
Third instruction in series IF ID EX -

Figure 10-56 STC.L Instruction (Bank Register) Pipeline
Operation Description:

The pipeline ends after six stages: IF, ID, EX, EX, MA and WB. The ID of the next instruction is
stalled one cycle. These instructions cause contention with IF (see section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA)).

476
RENESAS

(12) Register— MAC/DSP Transfer Instructions
Instruction Types:

CLRMAC
LDS Rm, MACH
LDS Rm, MACL

LDS Rm, DSR (SH3-DSP only)

LDS Rm, AO (SH3-DSP only)

LDS Rm, X0 (SH3-DSP only)

LDS Rm, X1 (SH3-DSP only)

LDS Rm, YO (SH3-DSP only)

LDS Rm, Y1 (SH3-DSP only)
Pipeline:

Slot <> <> 4> <> > > > > >
lInstruction A IF__ID EX_ MA|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-57 Register- MAC Transfer Instruction Pipeline
Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier Access
Contention).

477
RENESAS

(13) Memory — MAC Transfer Instructions
Instruction Types:

LDSL @Rm+, MACH

LDSL @Rm+, MACL

LDS.L @Rm+, DSR (SH3-DSP only)
LDSL @Rm+, A0 (SH3-DSP only)
LDSL @Rm+, X0 (SH3-DSP only)
LDSL @Rm+, X1 (SH3-DSP only)
LDSL @Rm+, Y0 (SH3-DSP only)
LDSL @Rm+, Y1 (SH3-DSP only)

Slot 4> 4> 4> 4> <> > > > <>
[LDSL IF D EX MA|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-58 Memory - MAC Transfer Instruction Pipeline

The pipeline ends after four stages: IF, ID, EX, and MA. The MA stage is used to access memaory
and the multiplier. This MA contends with IF. (See section 10.2.1, Contention between Instructior
Fetch (IF) and Memory Access (MA).) Also, if one of these instructions is followed by an
instruction that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier
Access Contention).

478
RENESAS

(14) MAC/DSP - Register Transfer Instructions

Instruction Types:

STS MACH, Rn

STS MACL, Rn

STS DSR, Rn (SH3-DSP only)

STS A0, Rn (SH3-DSP only)

STS X0, Rn (SH3-DSP only)

STS X1, Rn (SH3-DSP only)

STS Y0, Rn (SH3-DSP only)

STS Y1, Rn (SH3-DSP only)

Pipeline:
Slot 4> 4> 4> <> <> > > > >
[STS IF ID EX MA WB]|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-59 MAC - Register Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the same destination register or an instruction that uses the multiplier, multiplier
contention will result (see section 10.2.2, Effects of Memory Load Instructions on Pipelines, and
section 10.2.4, Multiplier Access Contention).

479
RENESAS

(15) MAC - Memory Transfer Instructions

Instruction Types:

STSL MACH, @-Rn

STSL MACL, @-Rn

STS.L DSR, @-Rn (SH3-DSP only)

STSL A0, @-Rn (SH3-DSP only)

STSL X0, @-Rn (SH3-DSP only)

STSL X1, @-Rn (SH3-DSP only)

STSL Y0, @-Rn (SH3-DSP only)

STSL Y1, @-Rn (SH3-DSP only)

Pipeline:
Slot <> 4> 4> <> <> <> <> <> <>
[STSL IF _ID EX MA WB]
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 10-60 MAC - Memory Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier Access

Contention).

480

RENESAS

(16) RTE Instruction
Instruction Type:
RTE

Pipeline:

“—r 4> > > O > > D> >

Slot
[RTE__IF_ID EX EX EX]
Delay slot IF — — — ID EX -
— (Fetch but then data is discarded)

Branch destination IF — —

IF ID EX -

Figure 10-61 RTE Instruction Pipeline

Operation Description:
The pipeline ends after five stages: IF, ID, EX, EX, and EX. RTE is a delayed branch instruction
The instruction following the RTE instruction, that is, the delay slot instruction, is fetched and
executed. However, the instruction after that is fetched and discarded. The IF of the branch
destination instruction starts from the slot after the slot that has the final EX stage of RTE.

481

RENESAS

(17) TRAP Instruction

Instruction Type:

TRAPA #imm
Slot 4> <> 4> <> 4> 4> > > > > > > >
[TRAPA IF _ID EX EX EX EX]
Next instruction IF (Fetch but then data is discarded)
Third instruction in series IF (Fetch but then data is discarded)
Branch destination IF ID EX o e e
...... IE ID cever ceren e eenn

Figure 10-62 TRAP Instruction Pipeline

The pipeline has six stages*: IF, ID, EX, EX, EX, and EX (figure 10-62). TRAP is not a delayed
branch instruction. The two instructions after the TRAP instruction are fetched, but they are
discarded without being executed. The IF of the branch destination instruction starts from the ne
slot of the last EX of the TRAP instruction.

Note: * On the SH3-DSP there are eight stages: IF, ID, EX, EX, EX, EX, EX, and EX.

482
RENESAS

(18) SLEEP Instruction
Instruction Type:
SLEEP

Pipeline:

Slot 4> 4> 4> 4> 4> > > > <>
[SLEEP IF ID EX EX EX EX]
Next instruction IF

Figure 10-63 SLEEP Instruction Pipeline
Operation Description:

The pipeline has three stages: IF, ID, and EX (figure 10-63). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mot

483
RENESAS

10.4.7 Exception Processing

(1) Interrupt Exception Processing
Instruction Type:

Interrupt exception processing

Pipeline:
Slot 4> 4> 4> > O > D D G D D D> D>
[Interrupt IF ID EX EX EX EX]
Next instruction IF
Branch destination IF ID EX e e
...... IE ID coeer eeene

Figure 10-64 Interrupt Exception Processing Pipeline
Operation Description:

The interrupt is received during the ID stage of the instruction and everything after the ID stage is
replaced by the interrupt exception processing sequence. The pipeline has six stages: IF, ID, EX
EX, EX, and EX (figure 10-64). Interrupt exception processing is not a delayed branch. In
interrupt exception processing, an overrun fetch (IF) occurs. In branch destination instructions, th
IF starts from the slot following the final EX in the interrupt exception processing.

Interrupt sources are NMI, IRL, and on-chip peripheral module interrupts. ReferHauttheare
Manualfor details.

484
RENESAS

(2) Address Error Exception Processing
Instruction Type:

Address error exception processing

Pipeline:
Slot €> 4> 4> <> 4> <> <> > > <> > <> >
[Interrupt IF ID EX EX EX EX|
Next instruction IF
Branch destination IF ID EX o oo
....... |F ID e e

Figure 10-65 Address Error Exception Processing Pipeline
Operation Description:

The address error is received during the ID stage of the instruction and everything after the ID
stage is replaced by the address error exception processing sequence. The pipeline has six sta
IF, ID, EX, EX, EX, and EX (figure 10-65). Address error exception processing is not a delayed
branch. In address error exception processing, an overrun fetch (IF) occurs. In branch destinatic
instructions, the IF starts from the slot following the final EX in the address error exception
processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundar
accessing longword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error. Refer to the
Hardware Manualfor details.

485
RENESAS

(3) TLB Related Exception Processing
Instruction Type:

TLB related exception processing

Pipeline:
Slot =-> <> <> <« > > > > >
TLB related exception IF ID EX EX EX EX
Next instruction IF
Branch destination IF ID EX o
..... IE ID ID

Figure 10-66 TLB Related Exception Processing Pipeline
Operation Description:

If a TLB related exception is received in the instruction's ID stage, the portion following the ID
stage is replaced by the TLB related exception processing sequence.

The pipeline ends after six stages: IF, ID, EX, EX, EX, and EX. TLB related exception processing
is not a delayed branch. In TLB related exception processing, an overrun fetch (IF) occurs. In
branch destination instructions, the IF starts from the slot after the slot that has the final EX stage
of the TLB related exception processing.

TLB related exceptions include TLB error, TLB invalid, TLB initial write, and TLB protection
exceptions. Refer to the Hardware Manual for details.

486
RENESAS

(4) lllegal Instruction Exception Processing
Instruction Type:

lllegal instruction exception processing

Siot 4> <> 4> 4> > > > > > > D> D> >
[llegal instruction IF_ID EX EX EX EX]
Next instruction IF
Branch destination IE ID EX e veeer oo

...... IE ID coeee eer oo

Figure 10-67 lllegal Instruction Exception Processing Pipeline

The illegal instruction is received during the ID stage of the instruction and everything after the |
stage is replaced by the illegal instruction exception processing sequence. The pipeline has six
stages: IF, ID, EX, EX, EX, and EX (figure 10-67). lllegal instruction exception processing is not
a delayed branch. In illegal instruction exception processing, an overrun fetch (IF) occurs.
Whether there is an IF only in the next instruction or in the one after that as well depends on the
instruction that was to be executed. In branch destination instructions, the IF starts from the slot
following the final EX in the illegal instruction exception processing.

lllegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot direct
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs. Refer to tihtardware Manualffor details.

487
RENESAS

10.4.8 Pipeline for FPU Instructions (SH-3E Only)

Slot 4> 4> 4> 4> 4> <> 4> <> <>
lInstruction A IF_DF__E1 E2]
Next instruction IF ID EX -

Subsequent instruction IF ID EX -

Figure 10-68 FPU Pipeline During Data Transfer between Floating Point Register and
Register

Slot 4> 4> 4> 4> 4> 4> <> 4> <>
[Instruction A IF_DF _E1 E2 SF]
Next instruction IF ID EX -

Subsequent instruction IF ID EX -

Figure 10-69 FPU Pipeline During Floating Point Load

Slot 4> 4> <> 4> <> 4> <> <> <>
[Instructon A IF_DF _E1 E2]
Next instruction IF ID EX -

Subsequent instruction IF ID EX -

Figure 10-70 FPU Pipeline During Floating Point Store

Slot €4»> 4> 4> 4> 4> > 4> <> <>
[Instruction A IF_DF _E1 |
Next instruction IF ID EX
Subsequent instruction IF ID EX -

Figure 10-71 FPU Pipeline During Floating Point Compare

488
RENESAS

Slot €»> <4»> <> 4> <> 4> <> <> <>
[Instructon A IF_DF__E1 E2]
Next instruction IF ID EX .-

Subsequent instruction IF ID EX -

Figure 10-72 FPU Pipeline During Floating Point Arithmetic Calculation Instruction
(Excluding FDIV and FSQRT)

Case 1: Next Instruction is FPU Instruction

Slot 4> 4> 4> 4> 4> P> > > D> D> >

[Instructon A IF DF E1 E1 E1 - El E2 SF|
Next instruction F DF — — — — E1 E2 SF
Subsequent instruction IF DF E1 E2 SF

Case 2: Next Instruction is CPU Instruction and Subsequent Instruction is FPU Instruction

Slot 4> 4> 4> <> > > > > > > >

[Instructon A IF DF E1 E1 E1 - El E2 SF|
Next instruction IF DF
Subsequent instruction IF bDF — — — E1 E2 SF

Notes: 1. FDIV and FSQRT require 13 cycles in the E1 stage.
2. The next instruction enters the CPU pipeline, it is deleted from the FPU pipeline after the DF stage.
3. Even if there are two to twelve CPU instructions between FDIV (or FSQRT) and the next FPU
instructions, the situation is still interpreted in the same way as Case 2.

Figure 10-73 FPU Pipeline During FDIV and FSQRT Instructions

489
RENESAS

10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)

(1) X Memory and Y Memory Load Instructions
Instruction Types:

NOPX

MOVXW @Ax,Dx
MOVX.W @Ax+,Dx
MOVXW @AXx+Ix,Dx

Pipeline:

Slot o o o o e e o e
[InstructionA IF EX MA WB/DSP|
Next instruction 1D 1D EX MA WB/DSP

Subsequent instruction IF IF ID EX MA WB/DSP

Figure 10-74 X Memory and Y Memory Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, IF, EX, MA, and WB/DSP. Data is transferred via the X bus, so
there is no contention with the IF of other instructions.

490
RENESAS

(2) Y Memory Load Instructions

Instruction Types:

NOPY

MOVY.W @Ay,Dy
MOVY.W @Ay+,Dy
MOVY.W @Ay+ly,Dy

Pipeline:

Slot o o o o o o o e

[Instruction A IF 1D EX MA WB/DSP]
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

Figure 10-75 Y Memory Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. Data is transferred via the Y bus, so
there is no contention with the IF of other instructions.

(3) X Memory Store Instructions

Instruction Types:

MOVXW Da,@Ax
MOVXW Da,@Ax+
MOVX.W Da,@Ax+Ix

Pipeline:

Slot o eb s e es es e e
LInstruction A IF ID EX MA]

Next instruction IF ID EX MA -

Subsequent instruction IF ID EX MA

Figure 10-76 X Memory Store Instruction Pipeline

491
RENESAS

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to access the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP

Only)).

492
RENESAS

(4) Y Memory Store Instructions
Instruction Types:

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+ly

Pipeline:

Slot Ch e e e e e e s e

LInstruction A IF ID EX MA]
Next instruction IF ID EX MA ..
Subsequent instruction IF ID EX MA e

Figure 10-77 Y Memory Store Instruction Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to access the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP

Only)).

493
RENESAS

(5) Single Load Instructions
Instruction Types:

MOVSW @-As,Ds
MOVS.W @As,Ds
MOVSW @As+,Ds
MOVS.W @As+ls,Ds
MOVS.L @-As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+ls,Ds

Pipeline:

Slot o o o o o o o e

[Instruction A IF ID EX___MA WB/DSP]
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

Figure 10-78 Single Load Instruction Pipeline
Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. No contention occurs even if another
instruction uses the destination register of this instruction.

494
RENESAS

(6) Single Store Instructions
Instruction Types:

MOVS.W Ds,@-As
MOVS.W Ds,@As
MOVS.W Ds,@As+
MOVS.W Ds,@As+Is
MOVS.L Ds,@-As
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+

Pipeline:

Slot Co e e e e s e e

lInstruction A __IF ID EX__MA]
Next instruction IF ID EX MA .o
Subsequent instruction IF ID EX MA e

Figure 10-79 Single Store Instruction Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to store the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP
Only)).

495
RENESAS

10.4.10 DSP Operation Instructions (SH3-DSP Only)

(1) ALU Arithmetic Operation Instructions

Instruction Types:

PADD Sx, Sy,Dz(Du) PNEG Sx,Dz
DCT PADD Sx, Sy,Dz DCT PNEG Sx,Dz
DCF PADD Sx, Sy,Dz DCF PNEG Sx,Dz
PSUB Sx, Sy,Dz(Du) PNEG Sy,Dz
DCT PSUB Sx, Sy,Dz DCT PNEG Sy,Dz
DCF PSUB Sx, Sy,Dz DCF PNEG Sy,Dz
PCOPY Sx,Dz PDEC Sx,Dz
DCT PCOPY Sx,Dz DCT PDEC Sx,Dz
DCF PCOPY Sx,Dz DCF PDEC Sx,Dz
PCOPY Sy,Dz PDEC Sy,Dz
DCT PCOPY Sy,Dz DCT PDEC Sy,Dz
DCF PCOPY Sy,Dz DCF PDEC Sy,Dz
PDMSB Sx,Dz PCLR Dz
DCT PDMSB Sx,Dz DCT PCLR Dz
DCF PDMSB Sx,Dz DCF PCLR Dz
PDMSB Sy,Dz PADDC Sx,Sy,Dz
DCT PDMSB Sy,Dz PSUBC Sx,Sy,Dz
DCF PDMSB Sy,Dz PCMP Sx,Sy
PINC Sx,Dz PABS Sx,Dz
DCT PINC Sx,Dz PABS Sy,Dz
DCF PINC Sx,Dz PRND Sx,Dz
PINC Sy,Dz PRND Sy,Dz
DCT PINC Sy,Dz
DCF PINC Sy,Dz
Pipeline:
Slot e PN
Linstructon A IF ID EX _MA WB/DSP|
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP
Figure 10-80 ALU Arithmetic Operation Instruction Pipeline
496

RENESAS

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.

(2) ALU Logical Operation Instructions
Instruction Types:

POR Sx,Sy,Dz
DCT POR Sx,Sy,Dz
DCF POR Sx,Sy,Dz

PAND Sx,Sy,Dz
DCT PAND Sx,Sy,Dz
DCF PAND Sx,Sy,Dz

PXOR Sx,Sy,Dz
DCT PXOR Sx,Sy,Dz
DCF PXOR Sx,Sy,Dz

Pipeline:

Slot CH e e e e e e

lInstruction A IF ID EX _ MA WB/DSP]
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

— —

Figure 10-81 ALU Logical Operation Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional

operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.

497
RENESAS

(3) ALU Logical Operation Instructions
Instruction Types:

PSHA Sx,Sy,Dz
DCT PSHA Sx,Sy,Dz
DCF PSHA Sx,Sy,Dz

PSHA #Imm,Dz

PSHL Sx,Sy,Dz
DCT PSHL Sx,Sy,Dz
DCF PSHL Sx,Sy,Dz

PSHL #imm,Dz

Pipeline:

Slot o e e s e e e e

[Instruction A IF 1D EX MA WB/DSP]
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

Figure 10-82 ALU Logical Operation Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.

498
RENESAS

(4) Signed Multiplication Instruction

Instruction Types:

PMULS Se,Sf,Dg
Pipeline:
Slot o e e e e e e e
[Instruction A IF ID EX _MA WB/DSP]
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

Figure 10-83 Signed Multiplication Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP.

RENESAS

499

(5) Register Transfer Instructions

Instruction Types:

PSTS MACH,Dz
DCT PSTS MACH,Dz
DCF PSTS MACH,Dz
PSTS MACL,Dz
DCT PSTSMACL,Dz
DCF PSTS MACL,Dz
PLDS Dz, MACH
DCT PLDS Dz,MACH
DCF PLDS Dz,MACH
PLDS Dz,MACL
DCT PLDS Dz,MACL
DCF PLDS Dz,MACL
Pipeline:
Slot Cco e e e e e e e
Linstructon A IF ID EX MA WB/DSP|
Next instruction IF ID EX MA WB/DSP
Subsequent instruction IF ID EX MA WB/DSP

Figure 10-84 Register Transfer Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change. If a memory load is performed in parallel with this instruction using
MOVX.W, MOVS.W, or MOVX.L, contention occurs. Contention also occurs if a memory store
is performed immediately after this instruction using MOVX.W, MOVS.W, or MOVX.L (see
section 10.2.7, Contention between DSP Register Transfer and Memory Load/Store Operations

(SH3-DSP Only)).

500

RENESAS

Appendix A Instruction Code

A.1 Instruction Set by Addressing Mode
Table A-1 Instruction Set by Addressing Mode

Types
SH3-
Addressing Mode Category Sample Instruction SH-3 SH-3E DSP
No operand — NOP 11 11 11
Direct register Destination operand only MOVT Rn 18 23 18
addressing Source and destination operand ADD Rm,Rn 36 44 36
Transfer to control register or system LDC Rm,SR 16 19 26
register
Transfer from control register or STS MACH,Rn 16 19 25
system register
Indirect register Source operand only JMP @Rn 3 3 3
addressing Destination operand only TAS.B @Rn 1 1 1
Data transfer direct from register MOV.L Rm,@Rn 6 8 6
Post-increment indirect Multiply/accumulate operation MAC.W @Rm+,@Rn+ 2 2 2
register addressing Data transfer direct from register MOV.L @Rm+,Rn 3 4 3
Load to control register or system LDC.L @Rm+,SR 16 18 25
register
Pre-decrement indirect Data transfer direct from register MOV.L Rm,@-Rn 3 4 3
register addressing Store from control register or system STC.L SR,@-Rn 16 18 25
register
Indirect register addressing Data transfer direct to register MOV.L Rm, 6 6 6
with displacement @(disp,Rn)
Indirect indexed register Data transfer direct to register MOV.L Rm,@(RO,Rn) 6 8 6
addressing
Indirect GBR addressing Data transfer direct to register MOV.L RO, 6 6 6
with displacement @(disp,GBR)
Indirect indexed GBR Immediate data transfer AND.B #imm, 4 4 4
addressing @(RO,GBR)
PC relative addressing with Data transfer direct to register MOV.L @(disp,PC), 3 3 5
displacement Rn
PC relative addressing Branch instruction BRAF Rn 2 2 2
with Rn
PC relative addressing Branch instruction BRA disp 6 6 6
Immediate addressing Load to register FLDIO FRn
Arithmetic logical operations direct ~ ADD #imm,Rn
with register
Specify exception processing vector TRAPA #imm 1 1 1
Load to control register SETRC #imm 0 0 1

Total: 189 220 227

501
RENESAS

A.1.1 No Operand
Table A-2 No Operand

Instruction Operation Code Cycles T Bit
CLRS 0-S 0000000001001000 1 —
CLRT 0-T 0000000000001000 1 0
CLRMAC 0 - MACH, MACL 0000000000101000 1 —
DIVOU 0 - M/QIT 0000000000011001 1 0
LDTLB PTEH/PTEL - TLB 0000000000111000 1 —
NOP No operation 0000000000001001 1 —
RTE Delayed branching, 0000000000101011 4 —
SSR/SPC - SR/PC

RTS Delayed branching, PR -~ PC 0000000000001011 2 —
SETS 1-5S 0000000001011000 1 —
SETT 1T 0000000000011000 1 1
SLEEP Sleep 0000000000011011 4 —
502

RENESAS

A.1.2 Direct Register Addressing
Table A-3 Destination Operand Only
Instruction Operation Code Cycles T Bit
CMP/PL Rn Rn>0,1-T 0100nnnNn00010101 1 Comparison
result
CMP/PZ Rn Rn=0,1-T 0100nnnn00010001 1 Comparison
result
DT Rn Rn—-1 - Rn,when Rnis 0, 1 0100nnnn00010000 1 Comparison
- T. When Rn is nonzero, 0 result
> T
FABS FRr abs(FRn - FRn 1111nnnn01011101 1 —
FLOAT FPUL, (float)FPUL - FRn 1111nnnn00101101 1 —
FRn*
FNEG FRA -1.0xFRn - FRn 1111nnnn01001101 1 —
FSQRT FRh sqrt(FRn) — FRn 1111nnnn01101101 13 —
FTRC FRm, (long)FRm - FPUL 1111mmmmO00111101 1 —
FPUL*
MOVT Rn T - Rn 0000nNNN00101001 1 —
ROTL Rn T « Rn « MSB 0100nnNN00000100 1 MSB
ROTR Rn LSB - Rn - T 0100nnNNN00000101 1 LSB
ROTCL Rn T<«Rn T 0100nnnn00100100 1 MSB
ROTCR Rn T-Rn-T 0100nnNn00100101 1 LSB
SHAL Rn T<Rn~0 0100nnNNN00100000 1 MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB
SHLL Rn T<Rn<0 0100nnNN00000000 1 MSB
SHLR Rn O-Rn-T 0100nnNNNO0000001 1 LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnNNN00011000 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —
SHLL16 Rn Rn << 16 - Rn 0100nnNnn00101000 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnNNn00101001 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU. These
instructions are available only on the SH-3E.

RENESAS

503

Table A-4 Source and Destination Operand

Instruction Operation Code Cycles T Bit
ADD Rm,Rn Rn+Rm - Rn 0011nnNnnmmmm21100 1 —
ADDC RmRn Rn+Rm+T - Rn, 0011nnnnmmmm21110 1 Carry
carry - T
ADDV RmRn Rn+Rm - Rn, 0011nnnnmmmm1111 1 Overflow
overflow - T
AND Rm,Rn Rn& Rm - Rn 0010nNnNnmmmmZ1001 1 —
CMPEQ RmRn WhenRn=Rm,1-T 0011nnNNmMmmmO000 1 Comparison
result
CMPHS RmRn When unsigned and Rn = 0011nnnnmmmmQ010 1 Comparison
Rm,1-T result
CMP/GE Rm,Rn When signed and Rn = 0011nnNNnmmmmO011 1 Comparison
Rm,1-T result
CMPHI Rm,Rn When unsigned and Rn > 0011nnnnmmmm0110 1 Comparison
Rm,1-T result
CMP/GT Rm,Rn When signed and Rn > 0011nnNnnmmmmO0111 1 Comparison
Rm,1-T result
CMP/STR Rm,Rn When a byte in Rn equals 0010nnnnmmmm2100 1 Comparison
abytesinRm,1 - T result
DIV1 Rm,Rn 1 step division (Rn + Rm) 0011nnnnmmmmO0100 1 Calculation
result
DIVOS Rm,Rn MSB of Rn - Q, MSB of 0010nnnnmmmmO0111 1 Calculation
Rm - M,M*"Q - T result
DMULS.L Rm,Rn Signed operation of Rn x ~ 0011nnnnmmmm21101 2 —
Rm - MACH, MACL (to 5)*2
DMULUL Rm,Rn Unsigned operation of Rn 0011nnnnmmmmO0101 2 —
x Rm - MACH, MACL (to 5)*?
EXTSB Rm,Rn Sign — extend Rm from 0110nnnnmmmm21110 1 —
byte - Rn
EXTSW Rm,Rn Sign — extend Rm from 0110nnnnmmmm21111 1 —
word - Rn
EXTUB Rm_Rn Zero — extend Rm from 0110nnNnmmmm21100 1 —
byte - Rn
EXTUW RmRn Zero — extend Rm from 0110nnnnmmmm21101 1 —
word - Rn
FADD FRm, FRm + FRn - FRn 1111nNnNnmmmmO000 1 —
FRn**
504

RENESAS

Table A-4 Source and Destination Operand (cont)

Instruction Operation Code Cycles T Bit
FCMP/EQ FRm, FRn=FRm,1 - T 1111nnnnmmmmO0100 1 Comparison
FRn*! result
FCMP/GT FRm, FRn>FRm,1 - T 1111nnnnmmmmO0101 1 Comparison
FRr*! result
FDIV FRm, FRn/FRm - FRm 1111nnnnmmmmO0011 13 —
FRn*!
FMAC FROFrm (FRO x FRm) + FRn - FRn 1111lnnnnmmmm1110 1 —
FRr*!
FMOvV FRm, FRm - FRn 1111nnnnmmmm1100 1 —
FRn*!
FMUL FRm, FRn xFRm - FRn 1111nnnnmmmmO0010 1 —
FRr*!
FSuB FRm, FRn - FRm - FRn 1111nnnnmmmmO001 1 —
FRn*!
MOV Rm,Rn Rm = Rn 0110nnnnmmmmO0011 1 —
MUL.L Rm,Rn Rn xRm - MAC 0000NNnNNmmmmO0111 2 —
(to 5)*?2
MULSW RmRn With sign, Rn x Rm - MAC 0010nhnnmmmm1111 1 —
(to 3)*?
MULUW Rm,Rn Unsigned, Rn xRm - 0010nnnnmmmm1110 1 _
MAC (to 3)**
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 1 —
NEGC Rm,Rn 0-Rm-T - Rn, 0110nnnnmmmm1010 1 Borrow
Borrow - T
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 1 —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 —
SHAD Rm,Rn Rn>=0; Rn<<Rm - Rn 0100nnnnmmmm1100 1 —
Rn<0; Rhn>>Rm -
(MSB -)Rn
SHLD Rm,Rn Rn>=0; Rn<<Rm - Rn 0100nnnnmmmm1101 1 —
Rn<0; Rn>>Rm -
(0-)RnN
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm1000 1 —
SUBC Rm,Rn Rn—-Rm-T - Rn, 0011nnnnmmmm1010 1 Borrow
Borrow - T

RENESAS

505

Table A-4 Source and Destination Operand (cont)

Instruction Operation Code Cycles T Bit
SUBV Rm,Rn Rn-Rm - Rn, 0011nnnnmmmm1011 1 Underflow
Underflow - T
SWAPB RmRn Rm - Swap upper and 0110nnnnmmmm1000 1 —
lower halves of lower 2
bytes -~ Rn
SWAPW Rm,Rn Rm - Swap upper and 0110nnnnmmmm1001 1 —
lower word —» Rn
TST Rm,Rn Rn & Rm, when resultis 0, 0010nnnnmmmm1000 1 Test results
1-T
XOR Rm,Rn Rn~"Rm - Rn 0010nnnnmmmm1010 1 —
XTRCT Rm,Rn Rm: Center 32 bits of Rn -~ 0010nnnnmmmm1101 1 —
Rn

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).

506
RENESAS

Table A-5 Load and Store with Control Register or System Register

Instruction Operation Code Cycles T Bit
FLDS FRm,FPUL** FRm - FPUL 1112mmmm00011101 1 —
LDC Rm,SR Rm - SR 0100mmmmO00001110 5 LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 1/3*2 —
LDC Rm,VBR Rm - VBR 0100mmmm00101110 1/3*? —
LDC Rm,SSR Rm - SSR 0100mmmmO00111110 1/3*2 —
LDC Rm,SPC Rm - SPC 0100mmmm01001110 1/3*? —
LDC Rm,MOB Rm - MOD 0100mmmm01011110 3 —
LDC Rm,RE?® Rm - RE 0100mmmmO01111110 3 —
LDC Rm,RS? Rm - RS 0100mmmm01101110 3 —
LDC Rm,RO_BANK Rm - RO_BANK 0100mmmm10001110 1/3*?2 —
LDC Rm,R1_BANK Rm - R1_BANK 0100mmmm10011110 1/3*2 —
LDC Rm,R2_BANK Rm - R2_BANK 0100mmmm10101110 1/3*? —
LDC Rm,R3_BANK Rm - R3_BANK 0100mmmm10111110 1/3*? —
LDC Rm,R4_BANK Rm - R4_BANK 0100mmmm11001110 1/3*? —
LDC Rm,R5_BANK Rm - R5_BANK 0100mmmm11011110 1/3*2 —
LDC Rm,R6_BANK Rm - R6_BANK 0100mmmm11101110 1/3*? —
LDC Rm,R7_BANK Rm - R7_BANK 0100mmmm11111110 1/3*? —
LDS Rm,FPSCR* Rm - FPSCR 0100mmmm01101010 1 —
LDS Rm,FPU! Rm - FPUL 0100mmmm01011010 1 —
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmm00011010 1 —
LDS Rm,PR Rm - PR 0100mmmm00101010 1 —
LDS Rm,DSR? Rm - DSR 0100mmmm01101010 1 —
LDS Rm,AC 3 Rm - AO 0100mmmmO01111010 1 —
LDS RmX03 Rm - X0 0100mmmm210001010 1 —
LDS RmXZF3 Rm - X1 0100mmmm210011010 1 —
LDS RmYO3 Rm - YO 0100mmmm10101010 1 —
LDS RmYZF? Rm - Y1 0100mmmm210111010 1 —
SETRC R#t LSW of Rm - RC (MSW of SR), 0100mmmmQ00010100 3 —
Repeat control flag - RF1, RFO
Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

These instructions are available only on the SH-3E.
2. Three cycles on the SH3-DSP.

3. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

RENESAS

507

Table A-6 Load and Store from Control Register or System Register

Instruction Operation Code Cycles T Bit
FSTS FPUL,FRn*! FPUL - FRn 1111nnnn01011010 1 —
STC SR,Rn SR - Rn 0000nNNNO0000010 —
STC GBR,Rn GBR - Rn 0000nNnn00010010 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 —
STC SSR,Rn SSR - Rn 0000nNNN00110010 —
STC SPC,Rn SPC - Rn 0000nnNN01000010 —
STC MOD,Rrf? MOD - Rn 0000nnNn01010010 —
STC RE,Rn*? RE - Rn 0000nNNN01110010 —
STC RS,Rn*? RS - Rn 0000nnnn01100010 —

STC RO_BANK,Rn RO_BANK- Rn 0000NNNN10000010

STC R1 BANK,Rn R1 BANK- Rn 0000nNNNN10010010

STC R2 BANK,Rn R2_BANK- Rn 0000nNNN10100010

STC R3_BANK,Rn R3_BANK- Rn 0000nNnn10110010

STC R4 BANK,Rn R4 _BANK- Rn 0000nNNN11000010

STC R5 BANK,Rn R5_BANK- Rn 0000nnnNn11010010

STC R6_BANK,Rn R6_BANK- Rn 0000nnnn11100010

STC R7_BANK,Rn R7_BANK- Rn 0000nNNN11110010

RPlRr|RrIRP|RIP|IRPR[P|RPRIP|RPRIP|IRPRIP|RPIP|RPRIPIRPR|IRP|IRP|(RP|R|RP| R,

STS FPSCR,Rrt* FPSCR - Rn 1111nnnn01101010 —
STS FPUL,Rn** FPUL - Rn 1111nnnn01011010 —
STS MACH,Rn MACH - Rn 0000nNNN00001010 —
STS MACL,Rn MACL - Rn 0000nNnn00011010 —
STS PR,Rn PR - Rn 0000nNNN00101010 —
STS DSR,Rrt? DSR - Rn 0000nNNn01101010 —
STS AO,Rn*? A0 - Rn 0000nnNN01111010 —
STS X0,Rn*?2 X0-Rn 0000NNNN10001010 —
STS X1,Rn*? X1-Rn 0000nNNn10011010 —
STS YO,Rn*? YO-Rn 0000nnNN10101010 —
STS Y1,Rn*2 Y1-Rn 0000nNNn10111010 1 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.
2. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

508
RENESAS

A.13

Indirect Register Addressing

Table A-7 Source Operand Only

Instruction Operation Code Cycles T Bit

JMP @Rn Delayed branching, Rn - PC 0100nnnn00101011 2 —

JSR @Rn Delayed branching, 0100nnnn00001011 2 —
PC - Rn,Rn - PC

PREF @Rn (Rn) - cache 0000nNNN10000011 1 —

Note: * Two cycles on the SH3-DSP.

Table A-8 Destination Operand Only

Instruction Operation Code Cycles T Bit

TASB @Rn When (Rn)is 0,1 - T, 0100nnnn00011011 3 Test
1 - MSB of (Rn) results

Note: * Four cycles on the SH3-DSP.

Table A-9 Data Transfer Direct to Register

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@Rh FRm - (FRn) 1112nnnnmmmm1010 1 —

FMOV.S @Rm,FRh (Rm) - FRn 1111nnnnmmmm1000 1 —

MOV.B Rm,@Rn Rm - (Rn) 0010nnNNmmmmO000 1 —

MOV.W Rm,@Rn Rm - (Rn) 0010nnNnnmmmmO001 1 —

MOV.L Rm,@Rn Rm - (Rn) 0010nNnNNnmmmmO010 1 —

MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO000 1 —

MOVW @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO0001 1 —

MOV.L @Rm,Rn (Rm) - Rn 0110nNnNnmmmmO0010 1 —

Note:

These instructions are available only on the SH-3E.

RENESAS

* Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

509

A.1.4 Post-Increment Indirect Register Addressing

Table A-10 Multiply/Accumulate Operation

Instruction Operation Code Cycles T Bit

MACL @Rm+,@Rn+ Signed operation of (Rn) x 0000nnnnmmmm1111 2 (to 5)* —
(Rm) + MAC - MAC

MACW @Rm+,@Rn+ Signed operation of (Rn) x 0100nnnnmmmm1111 2 (to 5)* —
(Rm) + MAC - MAC

Note: * Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

Table A-11 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV.S @Rm+,FRh (Rm) - FRn,Rm+4 - Rm 1111nnnnmmmmZ1001 1 —

MOV.B @Rm+Rn (Rm) - sign extension — 0110nnnnmmmmO0100 1 —
Rn,Rm+1 -~ Rm

MOV.W @Rm+,Rn (Rm) - sign extension — 0110nnnnmmmm0101 1 —
Rn,Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnNnnmmmmO110 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

Table A-12 Load to Control Register or System Register

Instruction Operation Code Cycles T Bit
LDC.L @Rm+,SR (Rm) - SR,Rm+4 - Rm 0100mmmmO0000111 7 LSB
LDC.L @Rm+GBR (Rm) - GBR,Rm+4 - Rm 0100mmmm00010111 1/5*2 —
LDCL @Rm+VBR (Rm) -~ VBR,Rm+4 - Rm 0100mmmm00100111 1/5*? —
LDCL @Rm+SSR (Rm) - SSR, 0100mmmmO00110111 1/5*? —
Rm+4 - Rm
LDCL @Rm+SPC (Rm) -~ SPC, Rm+4 -~ Rm 0100mmmm01000111 1/5*2 —
LDCL @Rm+MCD (Rm) - MOD, Rm +4 - Rm 0100mmmm01010111 5 —
LDCL @Rm+RE (Rm) - RE,Rm+4 - Rm 0100mmmm01110111 5 —
LDCL @Rm+RS (Rm) -~ RS,Rm+4 - Rm 0100mmmmO01100111 5 —
LDCL @Rm+R0_ (Rm) - RO_BANK, 0100mmmm10000111 1/5*° —
BANK Rm+4 - Rm
510

RENESAS

Table A-12 Load to Control Register or System Register (cont)

Instruction Operation Code Cycles T Bit
LDCL @Rm+R1_ (Rm) - R1_BANK, 0100mmmm10010111 1/5*° —
BANK Rm+4 - Rm
LDCL @Rm+R2_ (Rm) - R2_BANK, 0100mmmm10100111 1/5*? —
BANK Rm+4 - Rm
LDC.L @Rm+R3_ (Rm) - R3_BANK, 0100mmmm10110111 1/5*° —
BANK Rm+4 - Rm
LDCL @Rm+R4_ (Rm) - R4_BANK, 0100mmmm11000111 1/5*? —
BANK Rm+4 - Rm
LDC.L @Rm+R5_ (Rm) - R5_BANK, 0100mmmm11010111 1/5*° —
BANK Rm+4 - Rm
LDCL @Rm+R6_ (Rm) - R6_BANK, 0100mmmm11100111 1/5*? —
BANK Rm+4 - Rm
LDC.L @Rm+R7_ (Rm) - R7_BANK, 0100mmmm11110111 1/5*° —
BANK Rm+4 - Rm
LDSL @Rm+FPSCR (Rm) - FPSCR, 0100mmmm01100110 1 —
Rm+4 - Rm
LDSL @Rm+FPUL! (Rm) - FPUL, 0100mmmm01010110 1 —
Rm+4 - Rm
LDS.L @Rm+MACH (Rm) —» MACH, 0100mmmmO00000110 1 —
@Rm+4 -~ Rm
LDS.L @Rm+MACL (Rm) - MACL, 0100mmmm00010110 1 —
@RmM+4 -~ Rm
LDS.L @Rm+PR (Rm) - PR, @Rm +4 -~ Rm 0100mmmmO00100110 1 —
LDS.L @Rm+,DSR (Rm) - DSR,Rm+4 - Rm 0100mmmm01100110 1 —
LDSL @Rm+A®° (Rm) - A0, Rm+4 - Rm 0100mmmmO01110110 1 —
LDS.L @Rm+X&° (Rm) - X0,Rm+4 -, Rm 0100nnnn10000110 1 —
LDSL @Rm+X1? (Rm) - X1,Rm+4 - Rm 0100nnnn10010110 1 —
LDSL @Rm+Y®? (Rm) - YO,Rm+4 -, Rm 0100nnnNn10100110 1 —
LDS.L @Rm+Y1® (Rm) - Y1,Rm+4 -, Rm 0100nnnn10110110 1 —

Notes: 1.

These instructions are available only on the SH-3E.
2. Five cycles on the SH3-DSP.

3. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

RENESAS

Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

511

A.l15

Pre-Decrement Indirect Register Addressing

Table A-13 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit
FMOV.S FRm,@-Rh Rn—-4 - Rn, FRm - (Rn) 1111nnnnmmmm1011 1 —
MOV.B Rm,@-Rn Rn—-1 - Rn,Rm - (Rn) 0010nnnnmmmmO0100 1 —
MOV.W Rm,@-Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnmmmmO101 1 —
MOV.L Rm,@-Rn Rn—-4 5 Rn,Rm - (Rn) 0010nnnnmmmmO0110 1 —

Note:

These instructions are available only on the SH-3E.

Table A-14 Store from Control Register or System Register

* Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

Instruction Operation Code Cycles T Bit

STCL SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 1/2** —

STCL GBR,@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnnn00010011 1/2** —

STCL VBR@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 1/2** —

STCL SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 1/2** —

STCL SPC,@-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 1/2%* —

STCL MOD,@-Rn® Rn—-4 -, Rn, MOD - (Rn) 0100nnnn01010011 2 —

STCL RE@-Rr*? Rn-4 -, Rn, RE - (Rn) 0100nnnn01110011 2 —

STCL RS,@-Rr+® Rn—-4 - Rn, RS - (Rn) 0100nnnn01100011 2 —

STC.L RO_BANK, Rn-4 - Rn, 0100nnnNn10000011 2 —
@-Rn RO_BANK - (Rn)

STCL R1 BANK, Rn-4 - Rn, 0100nnnn10010011 2 —
@-Rn R1_BANK - (Rn)

STCL R2 BANK, Rn-4 - Rn, 0100nnnn10100011 2 —
@-Rn R2_BANK - (Rn)

STC.L R3 BANK, Rn-4 - Rn, 0100nnnNn10110011 2 —
@-Rn R3_BANK - (Rn)

STCL R4 BANK, Rn-4 - Rn, 0100nnnn11000011 2 —
@-Rn R4 BANK - (Rn)

STC.L R5 BANK, Rn-4 - Rn, 0100nnnn11010011 2 —
@-Rn R5_BANK - (Rn)

STC.L R6_BANK, Rn-4 - Rn, 0100nnnNn11100011 2 —
@-Rn R6_BANK - (Rn)

STCL R7_BANK, Rn-4 - Rn, 0100nnnn11110011 2 —
@-Rn R7_BANK - (Rn)

512

RENESAS

Table A-14 Store from Control Register or System Register (cont)

Instruction Operation Code Cycles T Bit
STSLL FPSCR,@-Rh Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 1 —
STS.L FPUL,@-Rrt Rn-4 - Rn, FPUL - (Rn) 0100nnnNn01010010 1 —
STS.L MACH,@-Rn Rn—-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL,@-Rn Rn—-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR,@-Rn Rn—-4 - Rn, PR - (Rn) 0100nnNnNn00100010 1 —
STSL DSR,@-Rh® Rn—-4 - Rn, DSR - (Rn) 0100nnnNn01100010 1 —
STSL A0,@-Rr+? Rn—-4 - Rn, A0 - (Rn) 0100nnnNn01100010 1 —
STSL X0,@-Rn*? Rn—4 - Rn, X0 - (Rn) 0100nnnn10000010 1 —
STSL X1,@-Rn*3 Rn—4 - Rn,X1 - (Rn) 0100nnnNn10010010 1 —
STSL Y0,@-Rn*? Rn—4 - Rn,Y0 - (Rn) 0100nnnNn10100010 1 —
STSL Y1,@-Rn*? Rn—4 - Rn,Y1 - (Rn) 0100nnnn10110010 1 —
Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

A.1.6

These instructions are available only on the SH-3E.

Two cycles on the SH3-DSP.
CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.

Indirect Register Addressing with Displacement

Table A-15 Indirect Register Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.W RO,@(disp,Rn) RO - (disp + Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp,Rn) Rm - (disp + Rn) 0001lnnnnmmmmdddd 1 —

MOV.B @(disp,Rm),RO (disp + Rm) - sign 10000100mmmmdddd 1 —
extension - RO

MOV.W @(disp,Rm),RO (disp + Rm) - sign 10000101mmmmdddd 1 —
extension - RO

MOV.L @(disp,Rm),Rn (disp + Rm) - Rn 0101nnnnmmmmdddd 1 —

513

RENESAS

A.1.7 Indirect Indexed Register Addressing

Table A-16 Indirect Indexed Register Addressing

Instruction Operation Code Cycles T Bit

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmmMO100 1 —

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNhMmmmO101 1 —

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmMmMO110 1 —

FMOV.S FRm,@(RO,Rn) * FRm - (RO + Rn) 1111nnnnmmmmO0111 1 —

MOV.B @(RO,Rm),Rn (RO + Rm) - sign 0000NNNNMmMmm1100 1 —
extension - Rn

MOV.W @(RO,Rm),Rn (RO + Rm) - sign 0000NNNnNmMmmm1101 1 —
extension - Rn

MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000NNNnNmMmmm1110 1 —

FMOV.S @(RO,FRm),FRm* (RO + Rn) -~ FRNn 1111nnnnmmmmo0110 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

A.1.8 Indirect GBR Addressing with Displacement

Table A-17 Indirect GBR Addressing with Displacement

Instruction Operation Code Cycles TBit

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd 1 —

MOV.W RO,@(disp,GBR) RO - (disp + GBR) 11000001dddddddd 1 —

MOV.L RO,@(disp,GBR) RO - (disp + GBR) 11000010dddddddd 1 —

MOV.B @(disp,GBR),R0O (disp + GBR) - sign 11000100dddddddd 1 —
extension —» RO

MOV.W @(disp,GBR),R0O (disp x 2 + GBR) - 11000101dddddddd 1 —
sign extension —» RO

MOV.L @(disp,GBR),RO (disp x 4 + GBR) - 11000110dddddddd 1 —

RO

514

RENESAS

A.1.9

Indirect Indexed GBR Addressing

Table A-18 Indirect Indexed GBR Addressing

Instruction Operation Code Cycles T Bit

ANDB #mm@(RO,GBR) (RO + GBR) & imm — 1100110dijiiiii 3 —
(RO + GBR)

ORB #mm@(RO,GBR) (RO + GBR) |imm - 1100111 i 3 —
(RO + GBR)

TSTB #mm@(RO,GBR) (RO + GBR) & imm, 1100110Qiiiii 3 Test
whenresultis0,1 - T results

XORB #mm@RO,GBR) (RO +GBR)”Aimm - 1100111O0iiiii 3 —
(RO + GBR)

A.1.10 PC Relative Addressing with Displacement

Table A-19 PC Relative Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.W @(disp,PC),Rn (disp x2 + PC) - sign 1001nnnndddddddd 1 —

extension - Rn

MOV.L @(disp,PC),Rn (disp x4 +PC) - Rn 1101nnnndddddddd 1 —

MOVA @(disp,PC),RO disp x4 + PC - RO 11000111dddddddd 1 —

LDRS @(disp,pc) * disp x 2+PC - RS 10001100dddddddd 3 —

LDRE @(disp,pc) * disp x 2+PC - RE 10001110dddddddd 3 —

Note: * SH3-DSP instructions.

A.1.11 PC Relative Addressing

Table A-20 PC Relative Addressing with Rm

Instruction Operation Code Cycles T Bit

BRAF Rm Delayed branch, Rm + PC - PC 0000mmmmO00100011 2 —

BSRF Rm Delayed branch, PC - PR, Rm + PC - 0000mmmmO0000011 2 —

PC

RENESAS

515

Table A-21 PC Relative Addressing

Instruction Operation Code Cycles T Bit

BF label When T =0, disp x 2 + PC - PC; 10001011dddddddd 3/1 —
when T =1, nop

BF/S label If T=0,dispx2+PC - PC; 10001111dddddddd 2/1* —
if T=1, nop

BT label When T =1, disp x 2 + PC - PC; 10001001dddddddd 3/1 —
when T = 1, nop

BT/S label IfT=1,dispx2+PC - PC; 10001101dddddddd 2/1* —
if T =0, nop

BRA Ilabel Delayed branching, disp x 2 + PC -~ 1010dddddddddddd 2 —
PC

BSR label Delayed branching, PC - PR, 1011dddddddddddd 2 —

dispx2+PC - PC

Note: * One state when it does not branch.

A.1.12 Immediate
Table A-22 Load to Register

Instruction Operation Code Cycles T Bit
FLDIO FRn* 0.0 - FRn 1111nnnn10001101 1 —_
FLDI1 FRn* 1.0 - FRn 1111nnnn10011101 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

516
RENESAS

Table A-23 Arithmetic Logical Operations Direct with Register

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + #imm - Rn 011 1nnnniiiiiii 1 —

AND #imm,R0 RO & imm - RO 11001001iiiiiiii 1 —

CMP/EQ #mm,RO When RO =imm, 1 - 10001000iiiiiiii 1 Comparison
T result

MOV #imm,Rn #imm - sign extension 1110nnnniiiiiii 1 —
- Rn

OR #imm,R0 RO | imm - RO 11001021 iiiiiiii 1 —

TST #imm,R0 RO & imm, when result 11001000iiiiiiii 1 Test results
is0,1-T

XOR #imm,RO RO~ imm - RO 1100101 Qiiiiiiii 1 —

Table A-24 Specify Exception Processing Vector

Instruction Operation Code Cycles T Bit
TRAPA #mm imm - TRA, PC - SPC, SR - SSR, 1100001Jliiiiiiii 6/8* —
1 - SR.MD/BL/RB, 0x160 -
EXPEVT VBR + H'00000100 - PC
Note: * Eight cycles on the SH3-DSP.
Table A-25 Load to Control Register
Instruction Operation Code Cycles T Bit
SETRC #imm imm - RC(SR[23:16]), 10000010iiiiii 3 —
zeros - SR[27:24]
Note: * SH3-DSP instruction.
517

RENESAS

A2

Instruction Sets by Instruction Format

Tables A-26 to A-57 list instruction codes and execution cycles by instruction formats.

Table A-26 Instruction Sets by Format

Types
SH3-
Format Category Sample Instruction SH-3 SH-3E DSP
0 — NOP 11 11 11
n Direct register addressing MOVT Rn 18 18 18
Direct register addressing STS MACH,Rn 18 18 25
(store with control or system registers)
Indirect register addressing TAS @RnN 1 1 1
Pre-decrement indirect register addressing STC.L SR,@-Rn 16 18 25
Floating point instruction FABS FRn — 7 —
m Direct register addressing LDC Rm,SR 16 18 26
(load with control or system registers)
PC relative addressing with Rm BRAF Rm 2 2 2
Indirect register addressing JMP @Rm 2 2 2
Post-increment indirect register addressing LDC.L @Rm+,SR 16 18 25
Floating point instruction FLDS FRm,FPUL — 2 —
nm Direct register addressing ADD Rm,Rn 36 36 36
Indirect register addressing MOV.L Rm,@Rn 6 6 6
Post-increment indirect register addressing MAC.W @Rm+,@Rn+ 2 2 2
(multiply/accumulate operation)
Post-increment indirect register addressing MOV.L @Rm+,Rn 3 3 3
Pre-decrement indirect register addressing MOV.L Rm,@-Rn 3 3 3
Indirect indexed register addressing MOV.L Rm,@(RO,Rn) 6 6 6
Floating point instruction FADD FRm,FRn — 14 —
md Indirect register addressing with displacement MOV.B @(disp,Rm),R0 2 2 2
nd4 Indirect register addressing with displacement MOV.B RO,@(disp,Rn) 2 2 2
nmd Indirect register addressing with displacement MOV.L Rm,@(disp,Rn) 2 2 2
d Indirect GBR addressing with displacement MOV.L RO,@(disp,GBR) 6 6 6
Indirect PC addressing with displacement MOVA @(disp,PC),R0 1 1 3
PC relative addressing BF label 4 4 4
diz PC relative addressing BRA label 2 2 2
Note: * The figures in parentheses () are the totals excluding the SH-3E instructions.

518

RENESAS

Table A-26 Instruction Sets by Format (cont)

Types
SH3-

Format Category Sample Instruction SH-3 SH-3E DSP
nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2 2
i Indirect indexed GBR addressing AND.B #imm,@(R0,GBR) 4 4 4

Immediate addressing (arithmetic and logical ~ AND #imm,R0 5 5 5

operations direct with register)

Immediate addressing TRAPA #imm 1 1 1

(specify exception processing vector)

Load to control register (SH3-DSP only) SETRC #imm — — 1
ni Immediate addressing (direct register ADD #mm,Rn 2 2 2

arithmetic operations and data transfers)

Total: 189 220 227
A2.1 0O Format
Table A-27 0 Format
Instruction Operation Code Cycles T Bit
CLRS 0-5S 0000000001001000 1 —
CLRT 0-T 0000000000001000 1 0
CLRMAC 0 - MACH, MACL 0000000000101000 1 —
DIVOU 0 - M/IQIT 0000000000011001 1 0
LDTLB PTEH/PTEL - TLB 0000000000111000 1 —
NOP No operation 0000000000001001 1 —
RTE Delayed branch, 0000000000101011 4 —
SSR/SPC - SR/PC

RTS Delayed branching, PR -~ PC 0000000000001011 2 —
SETS 1-5S 0000000001011000 —
SETT 1-T 0000000000011000 1 1
SLEEP Sleep 0000000000011011 4* —
Note: * This is number of states until a transition is made to the Sleep state.

RENESAS

519

A.2.2 nFormat
Table A-28 Direct Register

Instruction Operation Code Cycles T Bit

CMPPL Rn Rn>0,1-T 0100nnnNn00010101 1 Comparison
result

CMPIPZ Rn Rn=0,1-T 0100nnnNn00010001 1 Comparison
result

DT Rn Rn-1 - Rn,whenRnis0,1 -~ 0100nnnn00010000 1 Comparison

T. When Rnis nonzero,0 - T result

MOVT R T - Rn 0000NNnNN00101001 1 —

ROTL Rn T~ Rn - MSB 0100nNNN00000100 1 MSB

ROTR Rh LSB - Rn - T 0100nnnNn00000101 1 LSB

ROTCL Rn T<«RnT 0100nnnNn00100100 1 MSB

ROTCR Rn T-Rn T 0100nnNNn00100101 1 LSB

SHAL Rn T<Rn<0 0100nNNN00100000 1 MSB

SHAR R MSB - Rn - T 0100nnnNn00100001 1 LSB

SHLL RN T<Rn-0 0100nNNN00000000 1 MSB

SHLR Rn 0-Rn T 0100nNNN00000001 1 LSB

SHLL2 Rn Rn<<2 - Rn 0100nnnNN00001000 1 —

SHLR2 Rn Rn>>2 - Rn 0100nNNn00001001 1 —

SHLL8 Rn Rn<<8 - Rn 0100nNNN00011000 1 —

SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —

SHLL16 Rn Rn<<16 - Rn 0100nNnNn00101000 1 —

SHLR16 Rn Rn>>16 - Rn 0100nnnNn00101001 1 —

520

RENESAS

Table A-29 Direct Register (Store with Control and System Registers)

Instruction Operation Code Cycles T Bit
STC SR,Rn SR - Rn 0000nNNN00000010 1 —
STC GBR,Rn GBR - Rn 0000nnnn00010010 1 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 1 —
STC SSR,Rn SSR - Rn 0000nnnn00110010 1 —
STC SPC,Rn SPC - Rn 0000nnNN01000010 1 —
STC MOD,Rrt? MOD - Rn 0000nnNN01010010 1 —
STC RE,Rn*? RE - Rn 0000nNNn01110010 1 —
STC RS,Rn*? RS - Rn 0000nnnn01100010 1 —
STC RO_BANK,Rn RO_BANK - Rn 0000nNNN10000010 1 —
STC R1 BANK,Rn R1 BANK- Rn 0000nNNN10010010 1 —
STC R2 BANK,Rn R2_BANK- Rn 0000nNNN10100010 1 —
STC R3 BANK,Rn R3 BANK- Rn 0000nNNN10110010 1 —
STC R4 BANK,Rn R4 _BANK- Rn 0000nNNN11000010 1 —
STC R5 BANK,Rn R5 BANK- Rn 0000nNNN11010010 1 —
STC R6_BANK,Rn R6_BANK- Rn 0000nNNN11100010 1 —
STC R7_BANK,Rn R7_BANK- Rn 0000nNNN11110010 1 —
STS FPSCR,Rrf! FPSCR- Rn 0000nNNn01101010 1 —
STS FPUL,Rn** FPUL- Rn 0000nNNN01011010 1 —
STS MACH,Rn MACH - Rn 0000nNNN00001010 1 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 1 —
STS PR,Rn PR - Rn 0000nNNN00101010 1 —
STS DSR,Rrt? DSR - Rn 0000nNNN01101010 1 —
STS AO,Rn*? A0 - Rn 0000nNNn01111010 1 —
STS XO0,Rn*? X0-Rn 0000nnnn10001010 1 —
STS X1,Rn*? X1-Rn 0000nnNNn10011010 1 —
STS YO,Rn*? YO-Rn 0000nNNN10101010 1 —
STS Y1,Rn*? Y1-Rn 0000nnNNn10111010 1 —
Notes: 1. SH-3E instructions.

2. SH3-DSP instructions.
Table A-30 Indirect Register
Instruction Operation Code Cycles T Bit
TASB @Rn When(Rn)is0,1 - T, 0100nnnn00011011 3/4* Test results

1 - MSB of (Rn)

Note: * Four cycles on the SH3-DSP.

RENESAS

521

Table A-31 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit
STCL SR@-Rn Rn—-4 - Rn, SR - (Rn) 0100nnNnNN00000011 1/2*2
STCL GBR,@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnNnNn00010011 /2% —
STC.L VBR,@-Rn Rn—-4 - Rn, VBR - (Rn) 0100nnnNN00100011 1/2%2 —
STCL SSR,@-Rn Rn—4 - Rn, SSR - (Rn) 0100nnnNn00110011 /2% —
STCL SPC,@-Rn Rn—-4 - Rn, SPC - (Rn) 0100nnNnNn01000011 /2% —
STCL MOD,@-Rn® Rn—-4 - Rn, MOD - (Rn) 0100nnnNn01010011 2 —
STCL RE@-Rr*? Rn—-4 - Rn, RE - (Rn) 0100nnnNn01110011 2 —
STCL RS,@-Rr+* Rn—-4 - Rn, RS - (Rn) 0100nnNnNn01100011 2 —
STCL RO BANK,@-Rn Rn-4 - Rn, RO_BANK - (Rn) 0100nnnn10000011 2 —
STCL R1 BANK@-Rn Rn-4 - Rn, R1_BANK - (Rn) 0100nnnn10010011 2 —
STCL R2 BANK,@-Rn Rn-4 - Rn, R2_BANK - (Rn) 0100nnnn10100011 2 —
STCL R3 BANK,@-Rn Rn-4 - Rn, R3 BANK - (Rn) 0100nnnn10110011 2 —
STCL R4 BANK@-Rn Rn-4 - Rn, R4_BANK - (Rn) 0100nnnn11000011 2 —
STCL R5 BANK,@-Rn Rn-4 - Rn, R5_BANK - (Rn) 0100nnnn11010011 2 —
STCL R6 BANK,@-Rn Rn-4 - Rn,R6_BANK - (Rn) 0100nnnn11100011 2 —
STCL R7_BANK,@-Rn Rn-4 - Rn, R7_BANK - (Rn) 0100nnnn11110011 2 —
STSL FPSCR,@-Rr* Rn—-4 - Rn, FPSCR - @Rn 0100nnNnNn01100010 1 —
STSL FPUL,@-Rn** Rn-4 - Rn, FPUL - @Rn 0100nnnn01010010 1 —
STSL MACH,@-Rn Rn—-4 - Rn, MACH - (Rn) 0100nnNNN00000010 1 —
STSL MACL,@-Rn Rn—-4 - Rn, MACL - (Rn) 0100nnNnNn00010010 1 —
STSL PR,@-Rn Rn—-4 - Rn, PR - (Rn) 0100nnNN00100010 1 —
STSL DSR,@-RAh® Rn—-4 - Rn,DSR - (Rn) 0100nnnNn01100010 1 —
STSL A0,@-Rr+? Rn—-4 - Rn, A0 - (Rn) 0100nnNnNn01100010 1 —
STSL X0,@-Rn*3 Rn—4 - Rn, X0 - (Rn) 0100nnNN10000010 1 —
STSL X1,@-Rn*? Rn—4 - Rn,X1 - (Rn) 0100nnnNn10010010 1 —
STSL Y0,@-Rn*® Rn—4 - Rn,Y0 - (Rn) 0100nnNnNn10100010 1 —
STSL Y1,@-Rn*3 Rn—4 5 Rn,Y1- (Rn) 0100nnNn10110010 1 —
Notes: 1. SH-3E instructions.

522

2. Two cycles on the SH3-DSP.
3. SH3-DSP instructions.

RENESAS

Table A-32 Floating Point Instructions (SH-3E Only)

Instruction Operation Code Cycles T Bit
FABS FRn [FRnO- FRn 1111nnnn01011101 1 —
FLDIO FRn H'00000000 - FRn 1111nnnNn10001101 1 —
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 1 —
FLOAT FPUL,FRn (float)FPUL - FRn 1111nnnn00101101 1 —
FNEG FRn —FRn - FRn 1111nnnn01001101 1 —
FSQRT FRn Vv FRn - FRn 1111nnnn01101101 13 —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —
A.2.3 m Format

Table A-33 Direct Register (Load from Control and System Registers)

Instruction Operation Code Cycles T Bit
LDC Rm,SR Rm - SR 0100mmmmO00001110 5 LSB
LDC Rm,GBR Rm - GBR 0100mmmmO0011110 1/3*? —
LDC Rm,VBR Rm - VBR 0100mmmm00101110 1/3*2 —
LDC RmM,SSR Rm - SSR 0100mmmm00111110 1/3*? —
LDC Rm,SPC Rm - SPC 0100mmmmO01001110 1/3*? —
LDC Rm,MOB Rm - MOD 0100mmmm01011110 3 —
LDC Rm,RE? Rm - RE 0100mmmm01111110 3 —
LDC Rm,RS? Rm - RS 0100mmmm01101110 3 —
LDC Rm,RO_BANK Rm - RO_BANK 0100mmmm210001110 1/3*2 —
LDC Rm,R1 BANK Rm - R1_BANK 0100mmmm210011110 1/3*? —
LDC Rm,R2_BANK Rm - R2_BANK 0100mmmm10101110 1/3*2 —
LDC Rm,R3_BANK Rm - R3_BANK 0100mmmm210111110 1/3*2 —
LDC Rm,R4_BANK Rm - R4_BANK 0100mmmm211001110 1/3*? —
LDC Rm,R5_BANK Rm - R5_BANK 0100mmmm11011110 1/3*2 —
LDC Rm,R6_BANK Rm - R6_BANK 0100mmmm11101110 1/3*2 —
LDC Rm,R7_BANK Rm - R7_BANK 0100mmmm11111110 1/3*? —
LDS Rm,FPSCR" Rm - FPSCR 0100nnnNn01101010 1 —
LDS Rm,FPUI! Rm - FPUL 0100nnnNn01011010 1 —
LDS Rm,MACH Rm - MACH 0100mmmm00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmmO0011010 1 —

RENESAS

523

Table A-33 Direct Register (Load from Control and System Registers) (cont)

Instruction Operation Code Cycles T Bit
LDS Rm,PR Rm - PR 0100mmmm00101010 1 —
LDS Rm,DSR? Rm - DSR 0100mmmm01101010 1 —
LDS Rm,AC 3 Rm - AO 0100mmmm01111010 1 —
LDS Rm,X0* Rm - XO 0100mmmmZ10001010 1 —
LDS Rm,XT* Rm - X1 0100mmmm210011010 1 —
LDS Rm,Y0 3 Rm - YO 0100mmmm10101010 1 —
LDS Rm,YT? Rm - Y1 0100mmmm210111010 1 —
SETRC #imn® imm - RC(SR[23:16]), 1000001 0iiiiii 3 —
zeros - SR[27:24]
Notes: 1. SH-3E instructions.
2. Three cycles on the SH3-DSP.
3. SH3-DSP instructions.
Table A-34 PC Relative Addressing with Rm
Instruction Operation Code Cycles T Bit
BRAF Rm Delayed branch, Rm + PC - PC 0000mmmmO00100011 2 —
BSRF Rm Delayed branch, PC - PR, 0000mmmmO0000011 2 —
Rm + PC - PC
Table A-35 Indirect Register
Instruction Operation Code Cycles T Bit
JMP @Rm Delayed branch, Rm - PC 0100mmmm00101011 2 —
JSR @Rm Delayed branch, PC -~ PR, Rm - PC 0100mmmmO00001011 2 —
Table A-36 Indirect Post-Increment Register
Instruction Operation Code Cycles T Bit
LDC.L @Rm+SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 7 LSB
LDC.L @Rm+GBR (Rm) - GBR,Rm+4 - Rm 0100mmmmO00010111 1/5*2 —
LDC.L @Rm+\VBR (Rm) - VBR,Rm+4 - Rm 0100mmmmO00100111 1/5*2 —
LDC.L @Rm+SSR (Rm) - SSR,Rm+4 - Rm 0100mmmm00110111 1/5*2 —
LDC.L @Rm+SPC (Rm) - SPC,Rm+4 - Rm 0100mmmm01000111 1/5*2 —

524

RENESAS

Table A-36 Indirect Post-Increment Register (cont)

Instruction Operation Code Cycles T Bit
LDCL @Rm+MOD (Rm) - MOD,Rm +4 - Rm 0100mmmmO01010111 5 —
LDCL @Rm+RE (Rm) - RE,Rm+4 - Rm 0100mmmmO01110111 5 —
LDCL @Rm+RS (Rm) - RS,Rm+4 - Rm 0100mmmmO01100111 5 —
LDC.L @Rm+R0_ (Rm) - RO_BANK, 0100mmmm10000111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+R1 (Rm) - R1_BANK, 0100mmmm10010111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+R2_ (Rm) -~ R2_BANK, 0100mmmm10100111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+,R3 _ (Rm) - R3_BANK, 0100mmmm10110111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+R4_ (Rm) - R4_BANK, 0100mmmm11000111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+,R5 (Rm) — R5_BANK, 0100mmmm11010111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+R6_ (Rm) — R6_BANK, 0100mmmm11100111 1/5*2 —
BANK Rm+4 - Rm
LDC.L @Rm+,R7_ (Rm) — R7_BANK, 0100mmmm11110111 1/5*2 —
BANK Rm+4 - Rm
LDSL @Rm+FPSCR @Rm - FPSCR, 0100nnnNn01100110 1 —
Rm+4 - Rm
LDSL @Rm+FPUL! @Rm - FPUL,Rm+4 - Rm 0100nnnn01010110 1 —
LDS.L @Rm+MACH (Rm) - MACH,Rm+4 - Rm 0100mmmmO00000110 1 —
LDS.L @Rm+MACL (Rm) - MACL,Rm+4 - Rm 0100mmmm00010110 1 —
LDS.L @Rm+PR (Rm) - PR,Rm+4 - Rm 0100mmmmO00100110 1 —
LDS.L @Rm+,DSR (Rm) - DSR,Rm +4 - Rm 0100mmmm01100110 1 —
LDSL @Rm+A®* (Rm) - AO,Rm+4 - Rm 0100mmmm01110110 1 —
LDS.L @Rm+,X6° (Rm) - X0,Rm+4 —. Rm 0100nnnNn10000110 1 —
LDS.L @Rm+,X12 (Rm) - X1,Rm+4 - Rm 0100nnnNn10010110 1 —
LDS.L @Rm+,Y®? (Rm) - YO,Rm+4 -, Rm 0100nnnNn10100110 1 —
LDS.L @Rm+,Y13? (Rm) - Y1,Rm+4 - Rm 0100nnnNn10110110 1 —
Notes: 1. SH-3E instructions.
2. Five cycles on the SH3-DSP.
3. The instruction of SH3-DSP.
525

RENESAS

Table A-37 Floating Point Instructions (SH-3E Only)

Instruction Operation Code Cycles T Bit

FLDS FRm[FPUL FRm - FPUL 1111nnnNn00011101 1 —

FTRC FRm,JFPUL (long)FRm - FPUL 1111nnnn00111101 1 —

A.2.4 nm Format

Table A-38 Direct Register

Instruction Operation Code Cycles T Bit

ADD RmRn Rm+Rn - Rn 001lnnnnmmmm1100 1 —

ADDC RmRn Rn+Rm+T - Rn, 0011nnNnnmmmm21110 1 Carry
carry - T

ADDV RmRn Rn+Rm - Rn, 0011nnNnnmmmm1111 1 Overflow
overflow — T

AND Rm,Rn Rn& Rm - Rn 0010nnNNmmmmZ1001 1 —

CMPEEQ RmRn WhenRn=Rm,1 - T 0011nnNNmMmmmO000 1 Comparison

result

CMPHS RmRn When unsigned and Rn = 0011nnNNmmmmO010 1 Comparison
Rm,1 T result

CMP/GE Rm,Rn When signed and Rn = 0011nnnnmmmmO0011 1 Comparison
Rm,1-T result

CMPHI Rm,Rn When unsigned and Rn > 0011nnNNnmmmmO0110 1 Comparison
Rm,1 T result

CMP/GT RmRn When signed and Rn > 0011nnnnmmmmO0111 1 Comparison
Rm,1-T result

CMP/STR Rm,Rn When a byte in Rn equals 0010nnnnmmmm1100 1 Comparison
abyteinRm,1 - T result

DIVl Rm,Rn 1 step division (Rn + Rm) 0011nnnnmmmmO0100 1 Calculation

result

DIVOS Rm,Rn MSB of Rn - Q, MSB of 0010nnNnmmmmO0111 1 Calculation
Rm - M,M*"Q - T result

DMULS.L RmRn Signed operation of Rn x 001lnnnnmmmm1101 2 —
Rm - MACH, MACL (to 5)*

DMULUL RmRn Unsigned operation of Rn 0011nnnnmmmm0101 2 —
x Rm - MACH, MACL (to 5)*

EXTSB RmRn Sign-extend Rm from byte 0110nnnnmmmm1110 1 —
- Rn

526

RENESAS

Table A-38 Direct Register (cont)

Instruction Operation Code Cycles T Bit
EXTSW Rm_Rn Sign-extend Rm from word - Rn 0110nnnnmmmm1111 1 —
EXTUB Rm[Rn Zero-extend Rm from byte - Rn 0110nnnnmmmm1100 1 —
EXTUW Rm,Rn Zero-extend Rm from word -~ Rn 0110nnnnmmmm21101 1 —
MOV Rm,Rn Rm - Rn 0110nnNNnmmmmO011 1 —
MUL.L Rm,Rn Rn xRm - MAC 0000NNNNMMmMmMmO111 2 —
(to 5)*
MULS Rm,Rn With sign, Rn xRm - MAC 0010nnnnmmmm1111 1 —
(to 3)*
MULU Rm,Rn Unsigned, Rn x Rm - MAC 0010nnnnmmmm1110 1 _
(to 3)*
NEG RmRn 0—-Rm - Rn 0110nnnnmmmm1011 1 —
NEGC RmRn 0O—-Rm-T - Rn, Borrow - T 0110nnNnnmmmmZ1010 1 Borrow
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO111 1 —
OR RmRn Rn|Rm - Rn 0010nnnnmmmm1011 1 —
SHAD RmRn Rn=0; Rn<<Rm - Rn 0100nnNNmMmmmZ1100 1 —
Rn <0; Rn >>Rm - [MSB - Rn]
SHLD RmRn Rn=0; Rn<<Rm - Rn 0100nnNNnmmmm21101 1 —
Rn <0; Rn>>Rm - [0-Rn]
SUB RmRn Rn-Rm - Rn 0011nnNnnmmmmZ1000 1 —
SUBC RmRn Rn-Rm-T - Rn, Borrow - T 0011nnnnmmmmZ1010 1 Borrow
SUBV RmRn Rn-Rm - Rn, Underflow - T 0011nnnnmmmm1011 1 Under-
flow
SWAPB RmRn Rm - Swap upper and lower 0110nnnnmmmm1000 1 —
halves of lower 2 bytes -~ Rn
SWAPW RmRn Rm - Swap upper and lower 0110nnnnmmmm1001 1 —
word - Rn
TST RmRn Rn &Rm,whenresultis0,1 - T 0010nnnnmmmm1000 1 Test
results
XOR RmRn Rn”~Rm - Rn 0010nnnnmmmm1010 1 —
XTRCT Rm,Rn Rm: Center 32 bits of Rn -~ Rn 0010nnNnnmmmm21101 1 —
Note: * Normal minimum number of execution states (the number in parentheses is the number

of states when there is contention with preceding/following instructions).

RENESAS

527

Table A-39 Indirect Register

Instruction Operation Code Cycles T Bit
MOV.B Rm,@Rn Rm - (Rn) 0010nNNNMmMmMMmMO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnNNmmmmO001 —

MOV.L Rm,@Rn Rm - (Rn) 0010NnNNMMmMmMmO010

MOVW @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO001

1
1
MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO000 1 —
1
1

MOV.L @Rm,Rn (Rm) - Rn 0110nnNNmmmmO010

Table A-40 Indirect Post-Increment Register (Multiply/Accumulate Operation)

Instruction Operation Code Cycles T Bit

MACL @Rm+@Rn+ Signed operation of (Rn) x 0000NnNnnmmmm1111 2 (to 5)* —
(Rm) + MAC - MAC,
Rn+4 - Rn,Rm+4 - Rm

MACW @Rm+,@Rn+ Signed operation of (Rn) x 0100nnnnmmmm1111 2 (to 5)* —
(Rm) + MAC - MAC,
Rn+2 - Rn,Rm+2 - Rm

Note: * Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).

Table A-41 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit
MOV.B @Rm+Rn (Rm) - sign extension — Rn, 0110nnnnmmmmO0100 1 —
Rm+1 - Rm

MOV.W @Rm+Rn (Rm) - sign extension — Rn, 0110nnnnmmmmO0101 1 —
Rm+2 - Rm

MOV.L @Rm+Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmmQ0110 1 —

Table A-42 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit
MOV.B Rm,@-Rn Rn—1 - Rn, Rm - (Rn) 0010nnNNmmmmO100 1 —
MOVW Rm@-Rn Rn-2 - Rn,Rm - (Rn) 0010NnnNNnmmmmO101 1 —
MOV.L Rm,@-Rn Rn—-4 - Rn, Rm - (Rn) 0010nnNNnmmmmO110 1 —
528

RENESAS

Table A-43 Indirect Indexed Register

Instruction Operation Code Cycles T Bit
MOV.B Rm@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmmMO100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmmMO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000NNNNMmMmmO110 1 —
MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension — Rn 0000nnnnmmmm1100 1 —
MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension — Rn 0000nnnnmmmm1101 1 —
MOV.L @(RORm)Rn (RO +Rm) - Rn 0000NNNNMmMmmM1110 1 —
Table A-44 Floating Point Instructions (SH-3E Only)
Instruction Operation Code Cycles T Bit
FADD FRm,FRn FRn+FRmM - FRn 1111nnnnmmmmO000 1 —
FCMP/EQ FRm,FRn (FRn=FRm)? 1.0 - T 1111nnNnnmmmmO100 1 Comparison
result
FCMP/GT FRm,FRn (FRn>FRm)? 1:0 - T 1111nnnnmmmmO0101 1 Comparison
result
FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmmmO011 13 —
FMAC FRO,FRm,FRn FROxXFRm+FRn - FRn 1111nnnnmmmm1110 1 —
FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 1 —
FMOV.S @(RO,Rm),FRn (RO+Rm) - FRn 1111nnnnmmmmO0110 1 —
FMOV.S @Rm+,FRn (Rm) - FRn,Rm+4 - 1111nnnnmmmm1001 1 —
Rm
FMOV.S @Rm,FRn (Rm) - FRn 1111nnNnnmmmm21000 1 —
FMOV.S Fm@(RO,Rn) (FRm) - (RO+Rn) 1111nnnnmmmmoO0111 1 —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmmm1011 1 —
FMOV.S FRm,@Rn FRm - (Rn) 1112nnnnmmmm1010 1 —
FMUL FRm,FRn FRn xFRm - FRn 1111nnnnmmmmO0010 1 —
FSUB FRm,FRn FRn-FRm - FRn 1111nnnnmmmmO001 1 —
A.2.5 md Format
Table A-45 md Format
Instruction Operation Code Cycles T Bit
MOV.B @(disp,Rm),RO (disp + Rm) - sign 10000100mmmmdddd —
extension - RO
MOV.W @(disp,Rm),RO (disp x 2+ Rm) - sign 10000101mmmmdddd —

extension —» RO

RENESAS

529

A.2.6 nd4 Format
Table A-46 nd4 Format

Instruction Operation Code Cycles T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO - (disp x2 + Rn) 10000001nnnndddd 1 —

A.2.7 nmd Format
Table A-47 nmd Format

Instruction Operation Code Cycles T Bit
MOV.L Rm,@(disp,Rn) Rm - (disp x4 + Rn) 000Innnnmmmmdddd 1 —
MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmmdddd 1 —

A.2.8 d Format
Table A-48 Indirect GBR with Displacement

Instruction Operation Code Cycles T Bit
MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV.W RO,@(disp,GBR) RO - (disp x2 + GBR) 11000001dddddddd 1 —
MOV.L RO,@(disp,GBR) RO - (disp x4 + GBR) 11000010dddddddd 1 —
MOV.B @(disp,GBR),RO (disp + GBR) - sign 11000100dddddddd 1 —

extension - RO

MOV.W @(disp,GBR),R0O (disp x 2 + GBR) - 11000101dddddddd 1 —
sign extension - RO

MOV.L @(disp,GBR),RO (disp x 4 + GBR) - RO 11000110dddddddd 1 —

Table A-49 PC Relative with Displacement

Instruction Operation Code Cycles T Bit
MOVA @(disp,PC),R0O disp x4+ PC - RO 11000111dddddddd 1 —
LDRS @(disp,pc) * disp x 2+PC - RS 10001100dddddddd 3 —
LDRE @(disp,pc) * disp x 2+PC - RE 10001110dddddddd 3 —

Note: * SH3-DSP instructions.

530
RENESAS

Table A-50 PC Relative

Instruction Operation Code Cycles T Bit
BF label When T =0, dispx2+PC - 10001011dddddddd 3/1 —
PC; when T =1, nop
BF/S label If T=0,dispx2+PC - PC; 10001111dddddddd 2/1* —
if T=1, nop
BT label When T =1, dispx2+PC - 10001001dddddddd 3/1 —
PC; when T =0, nop
BT/S label If T=1,dispx2+PC - PC; 10001101dddddddd 2/1*
if T=0, nop
Note: * One state when it does not branch.
A.2.9 d12 Format
Table A-51 d12 Format
Instruction Operation Cycles T Bit
BRA label Delayed branching, disp x 2 + PC - PC 1010dddddddddddd 2 —
BSR label Delayed branching, PC - PR, 1011dddddddddddd 2 —
dispx2+PC - PC
A.2.10 nd8 Format
Table A-52 nd8 Format
Instruction Operation Cycles T Bit
MOV.W @(disp,PC),Rn (disp x 2 + PC) - sign 1001nnnndddddddd 1 —
extension - Rn
MOV.L @(disp,PC),Rn (disp x4+ PC) - Rn 1101nnnndddddddd 1 —
A.2.11 iFormat
Table A-53 Indirect Indexed GBR
Instruction Operation Cycles T Bit
AND.B #imm,@(RO,GBR) (RO + GBR) & imm - 11001.101iiiiiiii 3 —
(RO + GBR)
ORB #mm,@(RO,GBR) (RO + GBR) | imm - 1100111 Ziiiiii 3 —
(RO + GBR)
TST.B #mm,@(R0O,GBR) (RO + GBR) & imm, 11001 100iiiiili 3 Test
whenresultis0,1 - T results
XOR.B #imm,@(RO,GBR) (RO + GBR) ~imm - 110011 10Qiiiiiii 3 —
(RO + GBR)
531

RENESAS

Table A-54 Immediate (Arithmetic Logical Operation with Direct Register)

Instruction Operation Code Cycles T Bit

AND #imm,R0 RO & imm - RO 1100100Liiiiiii 1 —

CMP/EQ #mm,RO When RO =imm, 1 - 10001000iiiiiiii 1 Comparison
T results

OR #imm,R0 RO | imm - RO 11001021 Ziiiiiiii 1 —

TST #imm,R0O RO & imm, when result 11001000iiiiiiii 1 Test results
is0,1 - T

XOR #imm,R0 RO A imm - RO 1100101 Qiiiiiii 1 —

Table A-55 Immediate (Specify Exception Processing Vector)

Instruction Operation Code Cycles T Bit

TRAPA #mm imm - TRA, PC - SPC, SR - 1100001 Liiiiiii 6/8* —
SSR, 1 - SR.MD/BL/RB, 0x160 —
EXPEVT, VBR + H'00000100 - PC

Note: * Eight cycles on the SH3-DSP.

Table A-56 Load to Control Register (SH3-DSP Only)

Instruction Operation Code Cycles T Bit

SETRC #imm imm — RC(SR[23:16]), 1000001 0iiiii 3 —
zeros - SR[27:24]

A.2.12 ni Format
Table A-57 ni Format

Instruction Operation Code Cycles T Bit
ADD #imm,Rn Rn + #imm - Rn O112nnnniiiiiii 1 —
MOV #imm,Rn #imm - sign extension - Rn 1110nnnNniiiiiiii 1 —
532

RENESAS

A3

Operation Code Map

Table A-58 Operation Code Map

Instruction Code fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

0000 |Rn Fx 0000

0000 |Rn Fx 0001

0000 |Rn 00MD| 0010 |STC SR,Rn STC GBR,Rn STC VBR,Rn STC SSR,Rn

0000 |Rn 01MD| 0010 |STC SPC,Rn STC MOD,Rn*? STC RS,Rn*?2 STC RE,Rn*?

0000 |Rn 10MD| 0010 |STC RO_BANK,Rn |STC R1_BANK,Rn |STC R2_BANK,Rn |STC R3_BANK,Rn

0000 |Rn 11MD| 0010 |STC R4_BANK,Rn |STC R5_BANK,Rn |STC R6_BANK,Rn |STC R7_BANK,Rn

0000 |Rn 00MD| 0011 |BSRFRm BRAF Rm

0000 |Rm |10MD|0011 |PREF @Rm

0000 |Rn Rm 01MD|MOV.B Rm, MOV.W Rm, MOV.L Rm, MUL.L Rm,Rn
@(RO,Rn) @(RO,Rn) @(RO,Rn)

0000 | 0000 |OOMD| 1000 |CLRT SETT CLRMAC LDTLB

0000 |0000 |01MD| 1000 |CLRS SETS

0000 | 0000 | Fx 1001 |NOP DIVOU

0000 | 0000 |Fx 1010

0000 | 0000 | Fx 1011 |RTS SLEEP RTE

0000 |Rn Fx 1000

0000 |Rn Fx 1001 MOVT Rn

0000 |Rn 00MD| 1010 |STS MACH,Rn STS MACL,Rn STS PR,Rn

0000 |[Rn |01MD| 1010 STS FPUL,Rn *! |STS FPSCR,Rn*! |STS AO,Rn *?

STS DSR,Rn*?

0000 |Rn 10MD| 1010 |STS X0,Rn *2 STS X1,Rn *2 STS YO,Rn *2 STS Y1,Rn *2

0000 |Rn Fx 1011

0000 |Rn Rm 11MD|MOV.B MOV.W MOV.L MAC.L
@(RO,Rm),Rn @(RO,Rm),Rn @(RO,Rm),Rn @Rm+,@Rn+

0001 |Rn Rm |disp |MOV.L Rm,@(disp:4,Rn)

0010 |Rn Rm |00MD|MOV.B Rm,@Rn | MOV.W Rm,@Rn | MOV.L Rm,@Rn

0010 |Rn Rm 01MD|MOV.B Rm,@-Rn | MOV.W Rm,@-Rn| MOV.L Rm,@-Rn DIVOS Rm,Rn

0010 |Rn Rm | 10MD|TST Rm,Rn AND Rm,Rn XOR Rm,Rn OR Rm,Rn

0010 |Rn Rm 11MD|CMP/STR Rm,Rn | XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn

0011 |Rn Rm OOMD|CMP/EQ Rm,Rn CMP/HS Rm,Rn CMP/GE Rm,Rn

RENESAS

533

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0011 |Rn Rm 01MD|DIV1 Rm,Rn DMULU.L Rm,Rn CMP/HI Rm,Rn CMP/GT Rm,Rn
0011 |Rn Rm 10MD|SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn
0011 |Rn Rm 11MD|ADD Rm,Rn DMULU.L Rm,Rn |ADDC Rm,Rn ADDV Rm,Rn
0100 |Rn Fx 0000 |SHLL Rn DT Rn SHAL Rn
0100 |Rn Fx 0001 |SHLR Rn CMP/PZ Rn SHAR Rn
0100 |Rn 0O0MD| 0010 | STS.L MACH, STS.L MACL, STS.L PR,
@-Rn @-Rn @-Rn
0100 |Rn 01MD| 0010 STS.L FPUL, STS.L DSR, STS.L AO,
@-Rn?* @-Rm? @-Rm?
STS.L FPSCR,
@-Rn?
0100 |Rn 10MD| 0010 | STS.L X0, STS.L X1, STS.L YO, STS.L Y1,
@-Rn? @-Rn? @-Rn? @-Rn?
0100 |Rn 00MD| 0011 |STC.L STC.L STC.L STC.L SSR,A-Rn
SR,@-Rn GBR,@-Rn VBR,@-Rn
0100 |Rn 01MD| 0011 |STC.L SPC,@-Rn |STS.L MOD, STS.L RS, STS.L RE,
@-Rn? @-Rn? @-Rn?
0100 |Rn 10MD| 0011 |STC.L STC.L STC.L STC.L
RO_BANK,@-Rn |R1_BANK,@-Rn |R2_BANK,@-Rn |R3_BANK,@-Rn
0100 |Rn 11MD| 0011 |STC.L STC.L STC.L STC.L
R4_BANK,@-Rn R5_BANK,@-Rn R6_BANK,@-Rn R7_BANK,@-Rn
0100 |Rm/ |Fx 0100 |ROTLRn SETRC Rm ROTCL Rn
Rn
0100 |Rn Fx 0101 |ROTR RN CMP/PL Rn ROTCR Rn
0100 |[Rm |00OMD|0110 |LDS.L LDS.L LDS.L
@Rm+,MACH @Rm+,MACL @Rm+,PR
0100 |[Rm |01MD|0110 LDS.L LDS.L LDS.L
@Rm+,FPUt! @Rm+,DSR @Rm+,A02
LDS.L
@Rm+,FPSCR
0100 |Rm 10MD| 0110 |LDS.L LDS.L LDS.L LDS.L
@Rm+,X02 @Rm+,X*? @Rm+,Y0? @Rm+,Y¥?
0100 |Rm 00MD| 0111 |LDC.L LDC.L LDC.L LDC.L
@Rm+,SR @Rm+,GBR @Rm+,VBR @Rm+,SSR
534

RENESAS

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 |Rm 01MD| 0111 |LDC.L @Rm+,SPC| LDC.L LDC.L LDC.L
@Rm+,MOD @Rm+,R®? @Rm+,RE?
0100 |Rm 10MD| 0111 |LDC.L LDC.L LDC.L LDC.L
@Rm+,R0_BANK |@Rm+,R1_BANK |@Rm+,R2_BANK |@Rm+R3 BANK
0100 |Rm 11MD| 0111 |LDC.L LDC.L LDC.L LDC.L
@Rm+,R4_BANK |@Rm+,R5_BANK |@Rm+R6_BANK |@Rm+R7_BANK
0100 |Rn Fx 1000 | SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 |Rn Fx 1001 | SHLR2 Rn SHLR8 Rn SHLR16 Rn
0100 |Rm 00MD| 1010 | LDS Rm,MACH LDS Rm,MACL LDS Rm,PR
0100 |Rm 01MD| 1010 LDS Rm,FPUL*! | LDS Rm,DSR¢? LDS Rm,A0*2
LDS Rm,FPSCR*
0100 |Rm 10MD| 1010 |LDS Rm,X0*?2 LDS Rm,X1*2 LDS Rm,Y0*2 LDS Rm,Y1*2
0100 |Rn Fx 1011 | JSR @Rm TAS.B @Rn JMP @Rm
0100 |[Rm |Rm |1100 | SHAD Rm,Rn
0100 |[Rm |Rm |1101 | SHLD Rm,Rn
0100 |Rm 00MD| 1110 | LDC Rm,Sr LDC Rm,GBR LDC Rm,VBR LDC Rm,SSR
0100 |Rm 01MD| 1110 | LDC Rm,SPC LDC Rm,MOD? LDC Rm,RS*? LDC Rm,RE*?
0100 |Rm 10MD| 1110 |LDC Rm,RO_BANK| LDC Rm,R1_BANK LDC Rm,R2_BANK LDC Rm,R3_BAN
0100 |Rm 11MD| 1110 |LDC Rm,R4_BANK| LDC Rm,R5_BANK LDC Rm,R6_BANK LDC Rm,R7_BAN
0100 |Rn Rm 1111 | MAC.W @Rm+,@Rn+
0101 |Rn Rm |disp | MOV.L @(disp:4,Rm),Rn
0110 |Rn Rm 00MD| MOV.B @Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn
0110 |Rn Rm 01MD| MOV.B @Rm+,Rn | MOV.W @Rm+,R MOV.L @Rm+,Rn NOT Rm,Rn
0110 |Rn Rm 10MD| SWAP.B Rm,Rn SWAP.W Rm,Rn NEGC Rm,Rn NEG Rm,Rn
0110 |Rn Rm 11MD| EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn
0111 |Rn imm ADD #imm:8,Rn
1000 |OOMD|Rn disp | MOV.B RO, MOV.W RO, SETRC #imm *2
imm @(disp:4,Rn) @(disp:4,Rn)
1000 |OIMD|Rm |disp |MOV.B MOV.W
@(disp:4, @(disp:4,
Rm),R0O Rm),R0O

RENESAS

535

A X

Table A-58 Operation Code Map (cont)

Instruction Code fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

1000 |10MD| imm/disp |CMP/EQ BT disp:8 BF label:8
#imm:8,R0O

1000 |10MD| imm/disp |LDRS BT/S disp:8 LDRE BF/S label:8
@(disp,PC) *? @(disp,PC) *?

1001 |Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 |OOMD| imm/disp | MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #imm:8
@(disp:8, @(disp:8, @(disp:8,
GBR) GBR) GBR)

1100 |01MD disp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
GBR),R0 GBR),R0 GBR),R0 PC),RO

1100 |10MD imm TST AND XOR OR
#imm:8,R0 #imm:8,R0 #imm:8,R0 #imm:8,R0

1100 |11MD imm TST.B AND.B XOR.B OR.B
#imm:8, #imm:8, #imm:8, #imm:8,
@(RO,GBR) @(RO,GBR) @(RO,GBR) @(RO,GBR)

1101 |Rn disp MOV.L @(disp:8,PC),Rn

1110 |Rn imm MOV #imm:8,Rn

1111 |Rn Rm 0OOMD| FADD FRm,FRn*! | FSUB FRm,FRn*! | FMUL FRm,FRn** | FDIV FRm,FRn **

1111 |Rn Rm 01MD| FCMP/EQ FCMP/GT FMOV.S FMOV.S
FRm,FRn*! FRm,FRn*! @(RO,Rm),FRm*! | FRm,@(RO,Rn) *!

1111 |Rn Rm 10MD| FMOV.S FMOV.S FMOV.S FMOV.S
@Rm,FRA* @Rm+,FRKt FRm,@Rn* FRm,@-Rrt!

1111 |Rn Rm | 1100 | FMOV FRm,FRr!

1111 |Rn 00MD| 1101 |FSTS FLDS FLOAT FTRC
FPUL,FRn*?! FRn,FPUL*?! FPUL,FRn*?! FRn, FPUL *!

1111 |Rn 01MD| 1101 | FNEG FRr! FABS FRn*! FSQRT FRr!

1111 |Rn 10MD| 1101 | FLDIO FRn *! FLDI1 FRn *1

1111 |Rn Rm |1110 | FMAC
FRO,FRm,FRn*?!

1111 |00** ok (MOVX.W, MOVY.W, DPS double data transfer instructions)
(SH3-DSP)

536

RENESAS

Table A-58 Operation Code Map (cont)

Instruction Code fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
1111 |01** Fokkk (MOVS.W, MOVS.L, DPS single data transfer instructions)
(SH3-DSP)
1111 | 10** ok (DPS parallel processing instructions, field A: MOVX.W,
MOVY.W, DPS double data transfer instructions, field B:
PSHL to PLDS, DPS operation instructions) (SH3-DSP)
1111 11** *kkk
Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.

These instruction are available only on the SH-3E

2. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

Table A-59 Operation Code Map for DSP Operation Instructions (B Field)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB ‘ LSB cc:00 cc:01 * cc:10 (DCT) cc:11 (DCF)
0000 imm 2777 PSHL #imm, Dz

0000 | 1#+* #*** ok

0001 imm 2227 PSHA #imm, Dz

0001 | 1%+ ex Hekk

Q01 |*hkx e ok

0100 | eeff XXyYy gguu |PMULS Se, Sf, Dg

0101 | **%x ks ok

0110 | eeff XXYY gguu |PSUB Sx, Sy, Du PMULS Se, Sf, Dg

0111 | eeff XXyYy gguu |PADD Sx, Sy, Du PMULS Se, Sf, Dg

1000 |00cc |xxyy 72727 [if cc] PSHL Sx, Sy, Dz

1000 |0i1cc XXYY 2772 PCMP Sx, Sy

1000 |10cc |xxyy 7777 PABS Sx, Dz [if cc] PDEC Sx, Dz

1000 |11lcc |xxyy 7277 [if cc] PCLR Dz

1001 | 00cc XXYY 2277 [if cc] PSHA Sx, Sy, Dz

1001 |Olcc XXYY 2272 [if cc] PAND Sx, SY, Dz

1001 |10cc |xxyy 7277 PRND Sx, Dz [if cc]PINC Sx, Dz

RENESAS

537

Table A-59 Operation Code Map for DSP Operation Instructions (B Field) (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB cc:00 cc:01 * cc:10 (DCT) [cc:11 (DCF)

1001 |11cc |xxyy 7277 [if cc] PDMSB Sy Dz

1010 |00cc |xxyy 7277 PSUBC Sy, [if cc] PSUB Sx, Sy, Dz
Sy, Dz

1010 |O1lcc |xxyy 7277 [if cc] PXOR Sx, Sy, Dz

1010 |10cc |xxyy 7277 PABS Sy, Dz [if cc] PDEC Sy, Dz

1010 |11cc XXYY 2272

1011 |00cc |xxyy 7277 PADDC Sx, [if cc] PADD Sx, Sy, Dz
Sy, Dz

1011 |Olcc |xxyy 7277 [if cc] POR Sx, Sy, Dz

1011 |10cc |xxyy 7277 PRND Sy, Dz [if cc] PINC Sy, Dz

1011 [11cc |xxyy 7277 [if cc] PDMSB Sy, Dz

1100 | Q%+ pirx -

1100 |10cc |xxyy 7277 [if cc] PNEG Sx, Dz

1100 |11cc |xxyy 7277 [if cc] PSTS MACH, Dz

1101 | Q%+ pirx -

1101 |10cc |xxyy 7277 [if cc] PCOPY Sx, Dz

1101 |11cc |xxyy 7277 [if cc] PSTS MACL, Dz

1110 | Orre piowx ok

1110 |10cc |xxyy 7277 [if cc] PNEG Sy, Dz

1110 |11cc |xxyy 7277 [if cc] PLDS Dz, MACH

1111 | Q%+ piwx -

1111 |10cc |xxyy 7277 [if cc] PCOPY Sy, Dz

1111 |11cc |xxyy 7277 [if cc] PLDS DZ, MACL

Note: * Unconditional

538

RENESAS

Appendix B Pipeline Operation and Contention

The SH-3/SH-3E/DSP series is designed so that basic instructions are executed in one cycle. T
or more cycles are required for instructions when, for example, the branch destination address i
changed by a branch instruction or when the number of cycles is increased by contention betwe
MA and IF. Table B-1 gives the number of execution cycles and stages for different types of
contention and their instructions. Instructions without contention and instructions that require 2 c
more cycles even without contention are also shown.

Instructions contend in the following ways:
» Operations and transfers between registers are executed in one cycle with no contention.
* No contention occurs, but the instruction still requires 2 or more cycles.

» Contention occurs, increasing the number of execution cycles. Contention combinations are:
— MA contends with IF
— MA contends with IF and sometimes with memory loads as well
— MA contends with IF and sometimes with the multiplier as well
— MA contends with IF and sometimes with memory loads and sometimes with the multipliel

539
RENESAS

Table B-1 Instructions and Their Contention Patterns

Contention Cycles Stages Instructions
None 1 3 « Transfers between registers
« Operations between registers
(except when a multiplier is involved)
* Logical operations between registers
« Shift and dynamic shift instructions
e System control ALU instructions
2 3 Unconditional branches
3/1 3 Conditional branches
2/1 3 Delayed conditional branch instructions
4 3 SLEEP instruction
4 5 RTE instruction
5 5 LDC instruction (SR), register to SR
6/8*> 9 TRAP instruction
* MA contends with IF 1 4 « Memory store instructions
e STS.L instruction (PR)
e Cache instruction
1/2%? 4 e Bank register other than STC.L
instruction
2 5 STC.L instruction (bank register)
3 6 « Memory logic operations
3/4** 6 « TAS instruction
7 7 LDC.L instruction (SR), memory to SR
* MA contends with IF. 1 5 « Memory load instructions
» Causes memory load contention. « LDS.L instruction (PR)
1/5** 5 + LDC.L instruction

540

RENESAS

Table B-1 Instructions and Their Contention Patterns (cont)

Contention Cycles Stages Instructions
* MA contends with IF. 1 4 » Register to MAC transfer instructions
» Causes multiplier contention. .

Memory to MAC transfer instructions
* MAC to memory transfer instructions

1(to3)*' 6 Multiplication instructions (excluding
PMULS)
2 (to5)*t 7 Multiply/accumulate instructions
2(to5)** 9 Double length multiply/accumulate
instructions
2 (to5)*" 9 Double length multiplication instructions
* MA contends with IF. 1 5 MAC/DSP to register transfer instructions
» Causes memory load,
contention.

» Causes multiplier contention.
» Causes DSP operation
contention

Notes: 1. The normal minimum number of execution states. (The number in parentheses is the
number in contention with the preceding/following instructions.)
2. Inthe case of the SH3-DSP, the figures on the right indicate the number of cycles and
stages.

541
RENESAS

542
RENESAS

SH-3/SH-3E/SH-DSP Programming Manual

Publication Date: 1st Edition, September 1995
3rd Edition, September 2000
Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1995. All ghts reserved. Printed inpkmn.

	Cover
	Cautions
	Introduction
	Contents
	Section 1 Features
	1.1 SH-3 CPU Features
	1.2 SH3-DSP Features

	Section 2 Programming Model
	2.1 Organization of Registers
	2.1.1 Privileged Mode and Banks

	2.2 General-Purpose Registers
	2.3 Control Registers
	2.4 System Registers
	2.5 Initial Register Value

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Data Format for Immediate Data
	3.4 DSP Type Data Formats (SH3-DSP Only)

	Section 4 Floating Point Unit (SH-3E only)
	4.1 Introduction
	4.2 Floating Point Registers and System Registers for FPU
	4.2.1 Floating Point Register File
	4.2.2 Floating Point Communication Register (FPUL)
	4.2.3 Floating Point Status/Control Register (FPSCR)

	4.3 Floating Point Format
	4.3.1 Floating Point Format
	4.3.2 Not a Number (NaN)
	4.3.3 Denormalized Values
	4.3.4 Other Special Values

	4.4 Floating Point Exception Model
	4.4.1 Enabled Exception
	4.4.2 Disabled Exception
	4.4.3 Exception Event and Code for FPU
	4.4.4 Alignment of Floating Point Data in Memory
	4.4.5 Arithmetic with Special Operands

	4.5 Synchronization Issues

	Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)
	5.1 ALU Fixed Decimal Point Operations
	5.1.1 Function
	5.1.2 Instructions and Operands
	5.1.3 DC Bit
	5.1.4 Condition Bits

	5.2 ALU Integer Operations
	5.3 ALU Logical Operations
	5.3.1 Function
	5.3.2 Instructions and Operands
	5.3.3 DC Bit
	5.3.4 Condition Bits

	5.4 Fixed Decimal Point Multiplication
	5.5 Shift Operations
	5.5.1 Arithmetic Shift Operations
	5.5.2 Logical Shift Operations

	5.6 The MSB Detection Instruction
	5.6.1 Function
	5.6.2 Instructions and Operands
	5.6.3 DC Bit
	5.6.4 Condition Bits

	5.7 Rounding
	5.7.1 Operation Function
	5.7.2 Instructions and Operands
	5.7.3 DC Bit
	5.7.4 Condition Bits
	5.7.5 Overflow Prevention Function (Saturation Operation)

	5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)
	5.9 Overflow Prevention Function (Saturation Operation)
	5.10 Data Transfers
	5.10.1 X and Y Memory Data Transfer
	5.10.2 Single Data Transfers

	5.11 Operand Contention
	5.12 DSP Repeat (Loop) Control
	5.12.1 Usage Notes

	5.13 Conditional Instructions and Data Transfers

	Section 6 Instruction Features
	6.1 RISC-Type Instruction Set
	6.1.1 16-Bit Fixed Length
	6.1.2 One Instruction/Cycle
	6.1.3 Data Length
	6.1.4 Load-Store Architecture
	6.1.5 Delayed Branch Instructions
	6.1.6 Multiplication/Accumulation Operation
	6.1.7 T Bit
	6.1.8 Immediate Data
	6.1.9 Absolute Address
	6.1.10 16-Bit/32-Bit Displacement
	6.1.11 Privileged Instructions

	6.2 CPU Instruction Addressing Modes
	6.3 DSP Data Addressing (SH3-DSP Only)
	6.3.1 X and Y Data Addressing
	6.3.2 Single Data Addressing
	6.3.3 Modulo Addressing
	6.3.4 DSP Addressing Operation

	6.4 Instruction Format of CPU Instructions
	6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)
	6.5.1 Double and Single Data Transfer Instructions
	6.5.2 Parallel Processing Instructions

	Section 7 Instruction Set
	7.1 Instruction Set by Classification
	7.1.1 Data Transfer Instructions
	7.1.2 Arithmetic Instructions
	7.1.3 Logic Operation Instructions
	7.1.4 Shift Instructions
	7.1.5 Branch Instructions
	7.1.6 System Control Instructions
	7.1.7 Floating Point Instructions (SH-3E Only)
	7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)
	7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)

	7.2 Instruction Set in Alphabetical Order
	7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)
	7.3.1 Double Data Transfer Instructions (X Memory Data)
	7.3.2 Double Data Transfer Instructions (Y Memory Data)
	7.3.3 Single Data Transfer Instructions

	7.4 DSP Operation Instruction Set (SH3-DSP Only)
	7.4.1 ALU Arithmetic Operation Instructions
	7.4.2 ALU Logical Operation Instructions
	7.4.3 Fixed Decimal Point Multiplication Instructions
	7.4.4 Shift Operation Instructions
	7.4.5 System Control Instructions
	7.4.6 NOPX and NOPY Instruction Code

	Section 8 Instruction Descriptions
	8.1 Sample Description (Name): Classification
	8.2 Instruction Description (Listing and Description of Instructions Common to the SH-3, SH-3E and SH3-DSP)
	8.2.1 ADD (Add Binary): Arithmetic Instruction
	8.2.2 ADDC (Add with Carry): Arithmetic Instruction
	8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction
	8.2.4 AND (AND Logical): Logic Operation Instruction
	8.2.5 BF (Branch if False): Branch Instruction
	8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction
	8.2.7 BRA (Branch): Branch Instruction
	8.2.8 BRAF (Branch Far): Branch Instruction
	8.2.9 BSR (Branch to Subroutine): Branch Instruction
	8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction
	8.2.11 BT (Branch if True): Branch Instruction
	8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction
	8.2.13 CLRMAC (Clear MAC Register): System Control Instruction
	8.2.14 CLRS (Clear S Bit): System Control Instruction
	8.2.15 CLRT (Clear T Bit): System Control Instruction
	8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	8.2.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	8.2.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction
	8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	8.2.22 DT (Decrement and Test): Arithmetic Instruction
	8.2.23 EXTS (Extend as Signed): Arithmetic Instruction
	8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	8.2.25 JMP (Jump): Branch Instruction
	8.2.26 JSR (Jump to Subroutine): Branch Instruction
	8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only)
	8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction (SH3-DSP Only)
	8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction (SH3-DSP Only)
	8.2.30 LDS (Load to System Register): System Control Instruction
	8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Only)
	8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
	8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction
	8.2.34 MOV (Move Data): Data Transfer Instruction
	8.2.35 MOV (Move Immediate Data): Data Transfer Instruction
	8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction
	8.2.37 MOV (Move Structure Data): Data Transfer Instruction
	8.2.38 MOVA (Move Effective Address): Data Transfer Instruction
	8.2.39 MOVT (Move T Bit): Data Transfer Instruction
	8.2.40 MUL.L (Multiply Long): Arithmetic Instruction
	8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	8.2.43 NEG (Negate): Arithmetic Instruction
	8.2.44 NEGC (Negate with Carry): Arithmetic Instruction
	8.2.45 NOP (No Operation): System Control Instruction
	8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction
	8.2.47 OR (OR Logical) Logic Operation Instruction
	8.2.48 PREF (Prefetch Data to the Cache)
	8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction
	8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction
	8.2.51 ROTL (Rotate Left): Shift Instruction
	8.2.52 ROTR (Rotate Right): Shift Instruction
	8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only)
	8.2.54 RTS (Return from Subroutine): Branch Instruction
	8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction (SH3-DSP Only)
	8.2.56 SETS (Set S Bit): System Control Instruction
	8.2.57 SETT (Set T Bit): System Control Instruction
	8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction
	8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction
	8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction
	8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction
	8.2.62 SHLL (Shift Logical Left): Shift Instruction
	8.2.63 SHLLn (Shift Logical Left n Bits): Shift Instruction
	8.2.64 SHLR (Shift Logical Right): Shift Instruction
	8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction
	8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)
	8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only)
	8.2.68 STS (Store System Register): System Control Instruction
	8.2.69 SUB (Subtract Binary): Arithmetic Instruction
	8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction
	8.2.71 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction
	8.2.73 TAS (Test and Set): Logic Operation Instruction
	8.2.74 TRAPA (Trap Always): System Control Instruction
	8.2.75 TST (Test Logical): Logic Operation Instruction
	8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction
	8.2.77 XTRCT (Extract): Data Transfer Instruction

	8.3 Floating Point Instructions and FPU Related CPU Instructions (SH-3E Only)
	8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction
	8.3.2 FADD (Floating Point Add): Floating Point Instruction
	8.3.3 FCMP (Floating Point Compare): Floating Point Instruction
	8.3.4 FDIV (Floating Point Divide): Floating Point Instruction
	8.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction
	8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction
	8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction
	8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction
	8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction
	8.3.10 FMOV (Floating Point Move): Floating Point Instruction
	8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction
	8.3.12 FNEG (Floating Point Negate): Floating Point Instruction
	8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction
	8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction
	8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction
	8.3.16 FTRC (Floating Point Truncate And Convert To Integer): Floating Point Instruction
	8.3.17 LDS (Load to System Register): FPU Related CPU Instruction
	8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction

	8.4 DSP Data Transfer Instructions (SH3-DSP Only)
	8.4.1 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer Instruction
	8.4.2 MOVX (Move between X Memory and DSP Register): DSP Data Transfer Instruction
	8.4.3 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer Instruction
	8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction
	8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

	8.5 DSP Operation Instructions
	8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction
	8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction
	8.5.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction
	8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction
	8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction
	8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction
	8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction
	8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction
	8.5.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction
	8.5.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation Instruction
	8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction
	8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction
	8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction
	8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction
	8.5.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift Instruction
	8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction
	8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction
	8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction
	8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction
	8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction

	Section 9 Processing States
	9.1 State Transitions
	9.1.1 Reset State
	9.1.2 Exception Processing State
	9.1.3 Program Execution State
	9.1.4 Power-Down State
	9.1.5 Bus Release State

	9.2 Power-Down State
	9.2.1 Sleep Mode
	9.2.2 Standby Mode
	9.2.3 Hardware Standby Mode
	9.2.4 Module Standby Function

	Section 10 Pipeline Operation
	10.1 Basic Configuration of Pipelines
	10.1.1 Five-Stage Pipeline
	10.1.2 Slot and Pipeline Flow
	10.1.3 Number of Cycles Required for Execution of One Slot
	10.1.4 Number of Instruction Execution Cycles

	10.2 Contention
	10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)
	10.2.2 Effects of Memory Load Instructions on Pipelines
	10.2.3 Contention due to SR Update Instructions
	10.2.4 Multiplier Access Contention
	10.2.5 FPU Contention (SH-3E Only)
	10.2.6 Contention between DSP Data Operation Instructions and Store Instructions (SH3- DSP Only)
	10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only)

	10.3 Programming Guidelines
	10.3.1 Correspondence between Contention and Instructions
	10.3.2 Increasing Instruction Execution Speed
	10.3.3 Number of Cycles

	10.4 Operation of Instruction Pipelines
	10.4.1 Data Transfer Instructions
	10.4.2 Arithmetic Instructions
	10.4.3 Logic Operation Instructions
	10.4.4 Shift Instructions
	10.4.5 Branch Instructions
	10.4.6 System Control Instructions
	10.4.7 Exception Processing
	10.4.8 Pipeline for FPU Instructions (SH-3E Only)
	10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)
	10.4.10 DSP Operation Instructions (SH3-DSP Only)

	Appendix A Instruction Code
	A.1 Instruction Set by Addressing Mode
	A.1.1 No Operand
	A.1.2 Direct Register Addressing
	A.1.3 Indirect Register Addressing
	A.1.4 Post-Increment Indirect Register Addressing
	A.1.5 Pre-Decrement Indirect Register Addressing
	A.1.6 Indirect Register Addressing with Displacement
	A.1.7 Indirect Indexed Register Addressing
	A.1.8 Indirect GBR Addressing with Displacement
	A.1.9 Indirect Indexed GBR Addressing
	A.1.10 PC Relative Addressing with Displacement
	A.1.11 PC Relative Addressing
	A.1.12 Immediate

	A.2 Instruction Sets by Instruction Format
	A.2.1 0 Format
	A.2.2 n Format
	A.2.3 m Format
	A.2.4 nm Format
	A.2.5 md Format
	A.2.6 nd4 Format
	A.2.7 nmd Format
	A.2.8 d Format
	A.2.9 d12 Format
	A.2.10 nd8 Format
	A.2.11 i Format
	A.2.12 ni Format

	A.3 Operation Code Map

	Appendix B Pipeline Operation and Contention
	Colophon

