Section 15. Electrical Specifications

15.1 Absolute Maximum Ratings

Table 15-1 lists the absolute maximum ratings.

Table 15-1. Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3 to +7.0	V
Programming voltage	VPP	-0.3 to +14.0	V
Input voltage	Vin	-0.3 to Vcc + 0.3	V
Operating temperature	Topr	Regular specifications: -20 to +75	°C
1 0 1	-	Wide-range specifications: -40 to +85	°C
Storage temperature	Tstg	-55 to +125	°C

Note: The input pins have protection circuits that guard against high static voltages and electric fields, but these high input-impedance circuits should never receive overvoltages exceeding the absolute maximum ratings shown in table 15-1.

15.2 Electrical Characteristics

15.2.1 DC Characteristics

Table 15-2 lists the DC characteristics of the H8/320 series.

Table 15-2. DC Characteristics

Conditions: $VCC = 5.0V \pm 10\%$, Vss = 0V, Ta = -20 to $75^{\circ}C$ (regular specifications)

Ta = -40 to $85^{\circ}C$ (wide-range specifications)

Item		Symbol	min	typ	max	Unit	Measurement conditions
Schmitt trigger	P66 – P63, P60,	V _T -	1.0	_	_	V	
input voltage	P70	V_T^+	_	_	$Vcc \times 0.7$	V	
(1)		VT+-VT	().4	-	_	V	
Input high voltage	RES, STBY	VIH	Vcc - 0.7	_	Vcc + 0.3	V	
(2)	MD1, MD0		•				
	EXTAL, $\overline{\text{NMI}}$						
Input high voltage	Input pins	VIH	2.0	_	Vcc + 0.3	V	
	other than (1)						
	and (2)						
Input low voltage	RES, STBY	VIL	-0.3	_	0.5	V	
(3)	MD1, MD0,						
	EXTAL						
Input low voltage	Input pins	VIL	-0.3	-	0.8	V	
	other than (1)						
	and (3)						
Output high	All output pins	Vон	Vcc - 0.5	_		V	$Ioh = -200 \mu A$
voltage			3.5		_	V	IOH = -1.0 mA
Output low	All output pins	Vol		_	0.4	V	IOL = 1.6 mA
voltage	P17 – P10,		_		1.0	V	IOL = 10.0 mA
	P27 - P20						
Input leakage	RES	I in	_	-	10.0	μΑ	$V_{in} = 0.5 \text{ V to}$
current	STBY, NMI,		_	-	1.0	μΑ	Vcc – 0.5 V
	MD1, MD0						
Leakage current	Ports 1 to 7	ITSI	_		1.0	μΑ	$V_{in} = 0.5 \text{ V to}$
in 3-state (off state)							Vcc – 0.5 V
Input pull-up	Ports 1 to 7	-Ip	30		250	μΑ	$V_{in} = 0 V$
MOS current							

Table 15-2. DC Characteristics (cont.)

Conditions: VCC = AVCC = $5.0V \pm 10\%$, Vss = 0V, Ta = -20 to $75^{\circ}C$ (regular specifications)

Ta = -40 to $85^{\circ}C$ (wide-range specifications)

							Measurement
Item		Symbol	min	typ	max	Unit	conditions
Input capacitance	RES	Cin	_	_	60	pF	$V_{in} = 0 V$
1	\overline{NMI}		_	-	30	pF	
	All input pins		-	_	15	pF	f = 1 MHz
	except RES						$Ta = 25^{\circ}C$
	and NMI						
Current	Normal	Icc	_	12	25	mA	f = 6 MHz
dissipation*	operation			16	30	mA	f = 8 MHz
F	•		_	20	40	mA	f = 10 MHz
	Sleep mode		_	8	15	mA	f = 6 MHz
	•		_	10	20	mA	f = 8 MHz
			-	12	25	mA	f = 10 MHz
	Standby mode	S	_	0.01	5.0	μA	
RAM standby	- Market Market	VRAM	2.0		_	V	
voltage							

^{*} Current dissipation values assume that V1H min. = VCC - 0.5V, VIL max. = 0.5V, all output pins are in the no-load state, and all MOS input pull-ups are off.

Table 15-3. Allowable Output Current Sink Values

Conditions: $VCC = 5.0V \pm 10\%$, Vss = 0V, Ta = -20 to $75^{\circ}C$ (regular specifications)

Ta = -40 to 85°C (wide-range specifications)

Item		Symbol	min	typ	max	Unit
Allowable output low	Ports 1 and 2	Iol	_	_	10	mA
current sink (per pin)	Other output pins		_	_	2.0	mA
Allowable output low	Ports 1 and 2, total	ΣΙοι	_	_	80	mA
current sink (total)	All output pins		_	_	120	mA
Allowable output high current sink (per pin)	All output pins	I он	_		2.0	mA
Allowable output high current sink (total)	Total of all output	Σ-Іон	_	-	40	mA

Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current sink values in table 15-3. In particular, when driving a Darlington pair or LED directly, be sure to insert a current-limiting resistor in the output path. See figures 17-1 and 17-2.

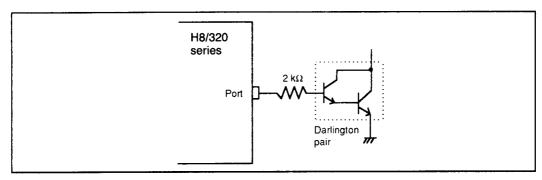


Figure 15-1. Example of Circuit for Driving a Darlington Pair

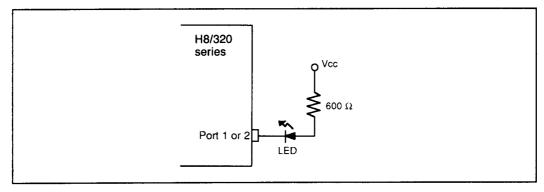


Figure 15-2. Example of Circuit for Driving a LED

15.2.2 AC Characteristics

The AC characteristics for the H8/320 series are listed in three tables. Bus timing parameters are given in table 15-4, control signal timing parameters in table 15-5, and timing parameters of the on-chip supporting modules in table 15-6.

Table 15-4. Bus Timing

Conditions: $Vcc = 5.0V \pm 10\%$, $\emptyset = 0.5$ to 10MHz, Vss = 0V,

Ta = -20 to 75°C (regular specifications), Ta = -40 to 85°C (wide-range specifications)

Measurement		Measurement	6МН	Z _	8MHz		10MHz		
Item	Symbol	conditions	min	max	min	max	min	max	Unit
Clock cycle time	tcyc	Fig. 15-4	166.7	2000	125	2000	100	2000	ns
Clock pulse width Low	tCI.	Fig. 15-4	65	-	45	_	35		ns
Clock pulse width High	tch	Fig. 15-4	65	_	45	_	35		ns
Clock rise time	tCr	Fig. 15-4	_	15		15		15	ns
Clock fall time	tCf	Fig. 15-4		15		15		15	ns
Address delay time	tad	Fig. 15-4		70		60		55	ns
Address hold time	tah	Fig. 15-4	30	_	25	-	20		ns
Address strobe delay time	tasd	Fig. 15-4		70		60		40	ns
Write strobe delay time	twsD	Fig. 15-4		70	-	60		50	ns
Strobe delay time	tsD	Fig. 15-4		70		60		50	ns
Write strobe pulse width	twsw	Fig. 15-4	200		150		120		ns
Address setup time 1	tas1	Fig. 15-4	25		20		15		ns
Address setup time 2	tAS2	Fig. 15-4	105		80	-	65		ns
Read data setup time	trds	Fig. 15-4	60		50		35		ns
Read data hold time	trdh	Fig. 15-4	0		0		0		ns
Write data delay time	twdd	Fig. 15-4	<u>-</u>	85	_	75		75	ns
Read data access time	tacc	Fig. 15-4		280		210	_	170	ns
Write data setup time	twDs	Fig. 15-4	30		15	_	10		ns
Write data hold time	twDH	Fig. 15-4	30	_	25	_	20		ns
Wait setup time	twrs	Fig. 15-5	45		45		45		ns
Wait hold time	twth	Fig. 15-5	10	_	10		10		ns
E clock delay time	tED	Fig. 15-6	_	25		25		25	ns
E clock rise time	t Er	Fig. 15-6	-	15	_	15		15	ns
E clock fall time	ter	Fig. 15-6		15	-	15		15	ns
Read data hold time	trdhe	Fig. 15-6	0	_	0	-	0	-	ns
(for E clock)									
Write data hold time	twdhe	Fig. 15-6	50	_	40		30	-	ns
(for E clock)									

Table 15-5. Control Signal Timing

Conditions: $VCC = 5.0V \pm 10\%$, $\emptyset = 0.5$ to 10 MHz, Vss = 0 V,

Ta = -20 to 75°C (regular specifications), Ta = -40 to 85°C (wide-range specifications)

Measurement		Measurement	6MHz		8MHz		10MHz		_
Item	Symbol	conditions	min	max	min	max	min	max	Unit
RES setup time	tress	Fig. 15-7	200	_	200		200		ns
RES pulse width	tresw	Fig. 15-7	10		10	_	10		tcyc
Mode programming	tmds	Fig. 15-7	4	-	4	_	4	-	tcyc
setup time									
NMI setup time	tnmis	Fig. 15-8	150	-	150		150	-	ns
$(\overline{NMI}, \overline{IRQ0} \text{ to } \overline{IRQ2})$									
NMI hold time	tnmih	Fig. 15-8	10	-	10	-	10	-	ns
$(\overline{NMI}, \overline{IRQ0} \text{ to } \overline{IRQ2})$									
Interrupt pulse width	tnmiw	Fig. 15-8	200	_	200	-	200	_	ns
for recovery from soft-									
ware standby mode									
$(\overline{NMI}, \overline{IRQ0} \text{ to } \overline{IRQ2})$									
Crystal oscillator settling	tosci	Fig. 15-9	20	_	20	-	20	_	ms
time (reset)									
Crystal oscillator settling	tosc2	Fig. 15-10	10		10	-	10	_	ms
time (software standby)									

Table 15-6. Timing Conditions of On-Chip Supporting Modules

Conditions: $Vcc = 5.0V \pm 10\%$, $\emptyset = 0.5$ to 10MHz, Vss = 0V,

Ta = -20 to 75°C (regular specifications), Ta = -40 to 85°C (wide-range specifications)

				6MHz		8MHz		10MHz		_	
	Item	Symbol	conditions	min	max	min	max	min	max	Unit	
FRT	Timer output delay time	tftod	Fig. 15-11	_	100	_	100	_	100	ns	
	Timer input setup time	tftis	Fig. 15-11	50	-	50	-	50	-	ns	
	Timer clock input setup time	tFTCS	Fig. 15-12	50	_	50	_	50	_	ns	
	Timer clock pulse width	tftcwh tftcwl	Fig. 15-12	1.5	_	1.5	-	1.5	_	tcyc	

Table 15-6. Timing Conditions of On-Chip Supporting Modules (cont.)

Conditions: $VCC = 5.0V \pm 10\%$, $\emptyset = 0.5$ to 10 MHz, Vss = 0 V,

Ta = -20 to 75°C (regular specifications), Ta = -40 to 85°C (wide-range specifications)

			Measurement	6MH	Z	8MH	Z	10Ml	Hz	
	Item	Symbol	conditions	min	max	min	max	min	max	Unit
TMR	Timer output	tTMOD	Fig. 15-13	-	100	_	100	_	100	ns
	delay time									
	Timer reset	ttmrs	Fig. 15-15	50	_	50	_	50	_	ns
	input setup time									
	Timer clock	tTMCS	Fig. 15-14	50	_	50	-	50	_	ns
	input setup time									
	Timer clock	ttmcwh	Fig. 15-14	1.5	_	1.5	_	1.5	-	tcyc
	pulse width	t TMCWL								
	(single edge)									
	Timer clock	_	Fig. 15-14	2.5	_	2.5	-	2.5	-	tcyc
	pulse width									
	(both edges)					-w				
SCI	Input (Async)	tScyc	Fig. 15-16	2		2		2		tcyc
	clock (Sync)	tScyc	Fig. 15-16	4	_	4	_	4	-	tcyc
	cycle									
	Transmit data	t1XD	Fig. 15-16	-	100	-	100	-	100	ns
	delay time (Sync	:)								
	Receive data	trxs	Fig. 15-16	100	_	100	_	100	_	ns
	setup time (Sync	:)								
	Receive data	trxh	Fig. 15-16	100	-	100	_	100		ns
	hold time (Sync))								
	Input clock	tsckw	Fig. 15-17	0.4	0.6	0.4	0.6	0.4	0.6	tScyc
	pulse width									
Ports	Output data	t PWD	Fig. 15-18	-	100	-	100	-	100	ns
	delay time									
	Input data setup	tPRS	Fig. 15-18	50	_	50	-	50	_	ns
	time									
	Input data hold	tPRH	Fig. 15-18	50		50		50	_	ns
	time									

Table 15-6. Timing Conditions of On-Chip Supporting Modules (cont.)

Conditions: $Vcc = 5.0V \pm 10\%$, $\emptyset = 0.5$ to 10 MHz, Vss = 0 V,

Ta = -20 to 75°C (regular specifications), Ta = -40 to 85°C (wide-range specifications)

			Measurement	6MHz		8MHz		10MHz			
	Item	Symbol	conditions	min	max	min	max	min	max	Unit	
Parallel	Handshake	thisw	Fig. 15-19	1.5	-	1.5	_	1.5	-	tcyc	
handshake	input strobe										
interface	pulse width										
	Handshake	this	Fig. 15-19	10	_	10	_	10	_	ns	
	input data										
	setup time										
	Handshake	tнін	Fig. 15-19	120	_	120	-	120	_	ns	
	input data										
	hold time										
	Handshake	thosdi	Fig. 15-20	_	80		80		80	ns	
	output strobe	tHOSD2	Fig. 15-20	_	80	_	80	_	80	ns	
	delay time										
	Busy output	thbsodi	Fig. 15-21	_	150	_	150	_	150	ns	
	delay time	tHBSOD2	Fig. 15-21	_	150	_	150	_	150	ns	

• Measurement Conditions for AC Characteristics

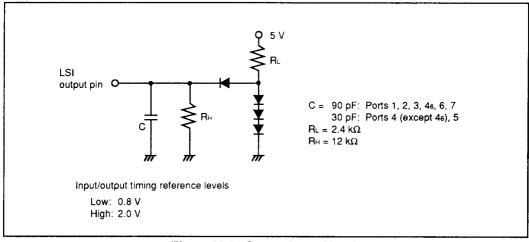


Figure 15-3. Output Load Circuit

15.3 MCU Operational Timing

This section provides the following timing charts:

15.3.1 Bus Timing	Figures 15-4 to 15-6
15.3.2 Control Signal Timing	Figures 15-7 to 15-10
15.3.3 16-Bit Free-Running Timer Timing	Figures 15-11 to 15-12
15.3.4 8-Bit Timer Timing	Figures 15-13 to 15-15
15.3.6 SCI Timing	Figures 15-15 to 15-17
15.3.7 I/O Port Timing	Figure 15-18
15.3.8 Parallel Handshaking Interface Timing	Figures 15-19 to 15-21

15.3.1 Bus Timing

(1) Basic Bus Cycle (without Wait States) in Expanded Modes

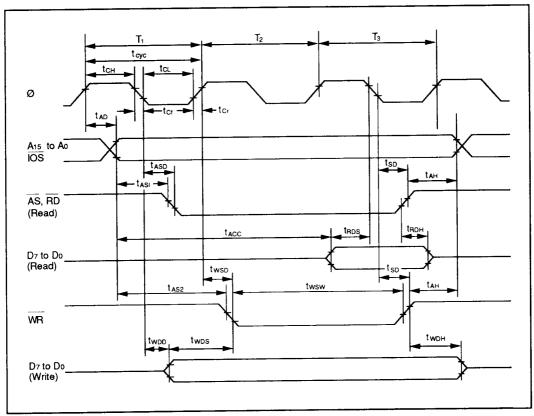


Figure 15-4. Basic Bus Cycle (without Wait States) in Expanded Modes

(2) Basic Bus Cycle (with 1 Wait State) in Expanded Modes

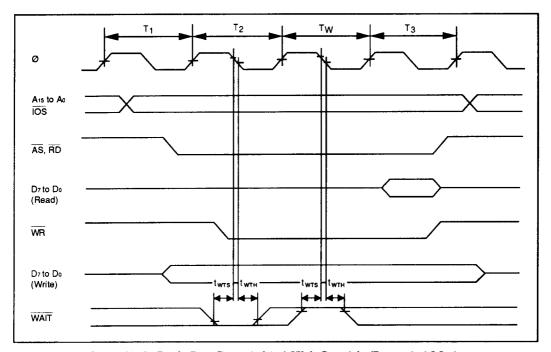


Figure 15-5. Basic Bus Cycle (with 1 Wait State) in Expanded Modes

(3) E Clock Bus Cycle

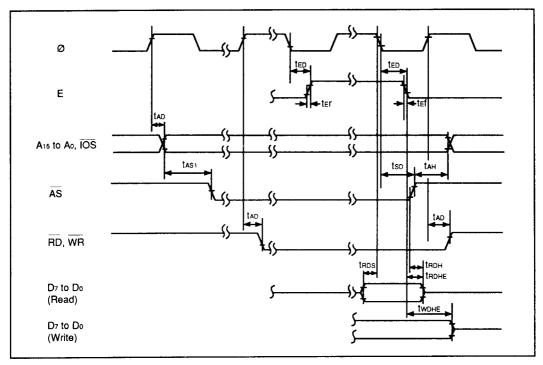


Figure 15-6. E Clock Bus Cycle

15.3.2 Control Signal Timing

(1) Reset Input Timing

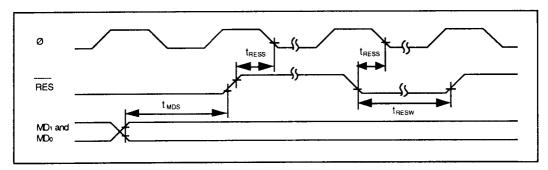


Figure 15-7. Reset Input Timing

(2) Interrupt Input Timing

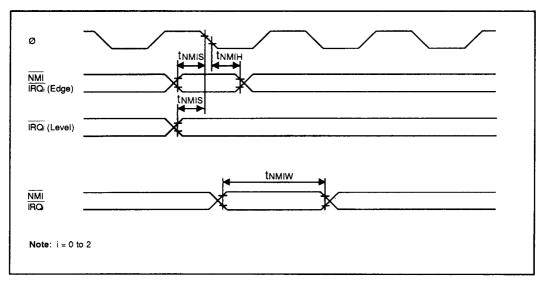


Figure 15-8. Interrupt Input Timing

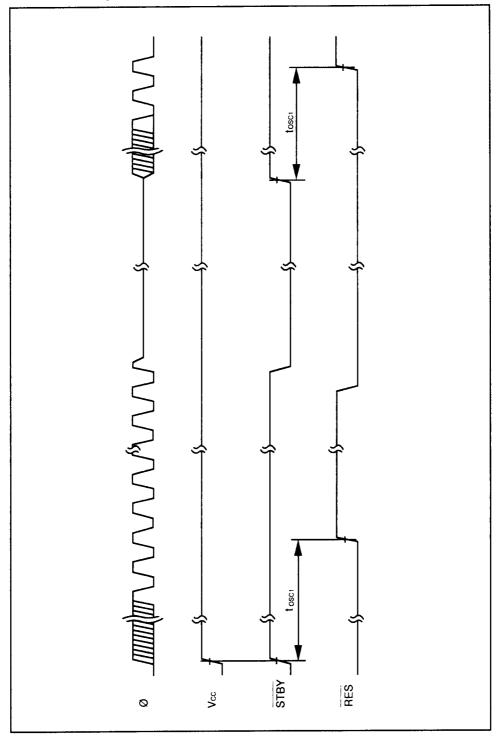


Figure 15-9. Clock Settling Timing

(4) Clock Settling Timing for Recovery from Software Standby Mode

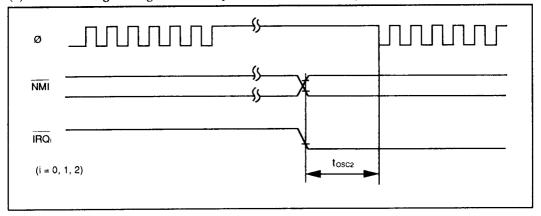


Figure 15-10. Clock Settling Timing for Recovery from Software Standby Mode

15.3.3 16-Bit Free-Running Timer Timing

(1) Free-Running Timer Input/Output Timing

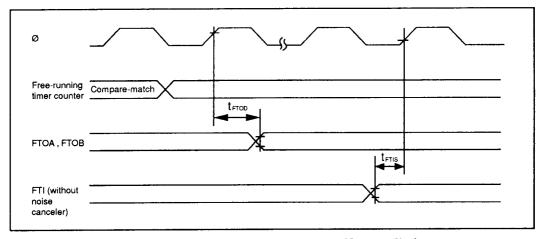


Figure 15-11. Free-Running Timer Input/Output Timing

(2) External Clock Input Timing for Free-Running Timer

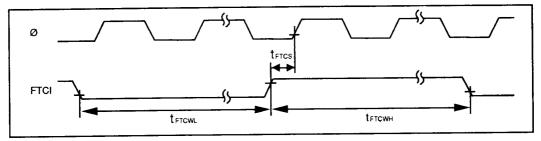


Figure 15-12. External Clock Input Timing for Free-Running Timer

15.3.4 8-Bit Timer Timing

(1) 8-Bit Timer Output Timing

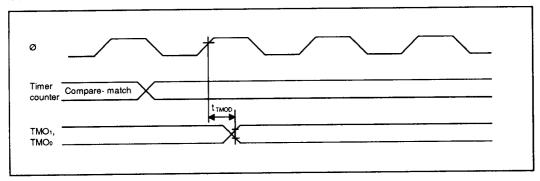


Figure 15-13. 8-Bit Timer Output Timing

(2) 8-Bit Timer Clock Input Timing

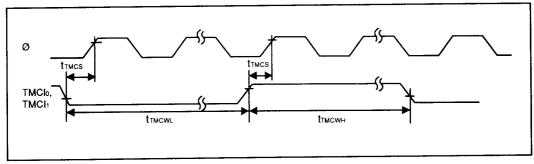


Figure 15-14. 8-Bit Timer Clock Input Timing

(3) 8-Bit Timer Reset Input Timing

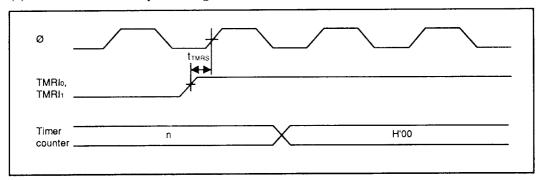


Figure 15-15. 8-Bit Timer Reset Input Timing

15.3.5 Serial Communication Interface Timing

(1) SCI Input/Output Timing

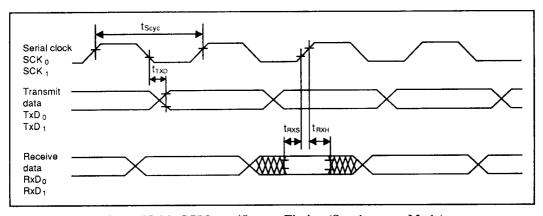


Figure 15-16. SCI Input/Output Timing (Synchronous Mode)

(2) SCI Input Clock Timing

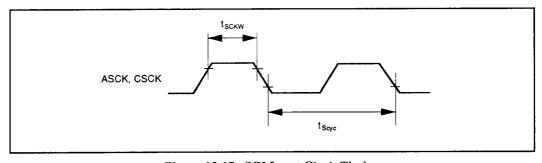


Figure 15-17. SCI Input Clock Timing

15.3.6 I/O Port Timing

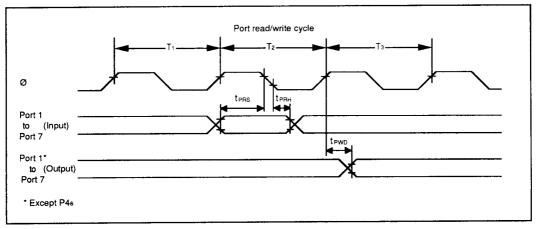


Figure 15-18. I/O Port Input/Output Timing

15.3.7 Parallel Handshake Interface Timing

(1) Input Strobe Input Timing

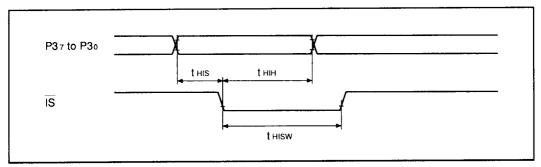


Figure 15-19. Input Strobe Input Timing

(2) Output Strobe Output Timing

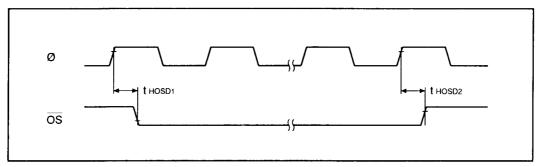


Figure 15-20. Output Strobe Output Timing

(3) Busy Output Timing

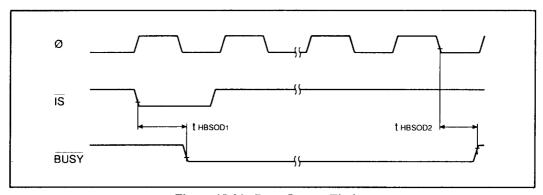


Figure 15-21. Busy Output Timing

Table C-1. Pin States (cont.)

T-90-01

Pin	MCU		Hardware	Software	Sleep	Normal
Name	Mode	Reset	Standby	Standby	Mode	Operation
P55 to P50,	1	3-State	3-State	Prev. state	Prev. state	I/O port
	2			(note 3)		
	3				·	
P66 to P60,	1	3-State	3-State	Prev. state	Prev. state	I/O port
	2			(note 3)		
	3					
P77/WAIT	1	3-State	3-State	3-state	3-state	WAIT
	2					
	3			Prev. state	Prev. state	I/O port
P76 to P74,	1	High	3-State	High	High	AS, WR,
\overline{AS} , \overline{WR} , \overline{RD} ,	2					\overline{RD}
	3	3-State		Prev. state	Prev. state	I/O port
P73 to P70,	1	3-State	3-State	Prev. state	Prev. state	I/O port
	2					-
	3					

Notes:

- 1. 3-state: High-impedance state
- 2. Prev. state: Previous state. Input ports are in the high-impedance state (with the MOS pull-up on if DDR = 0 and DR = 1). Output ports hold their previous output level.
- 3. On-chip supporting modules are initialized, so these pins revert to I/O ports according to the DDR and DR bits.
- 4. I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may also be used by the on-chip supporting modules.

See section 5, I/O Ports for further information.

Appendix D. Package Dimensions

T-90-20

Figure D-1 shows the dimensions of the DC-64S package. Figure D-2 shows the dimensions of the DP-64S package. Figure D-3 shows the dimensions of the FP-64A package.

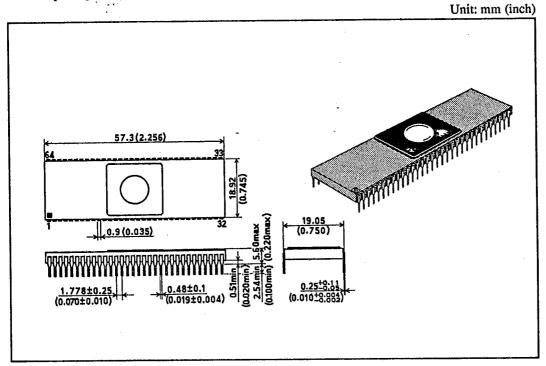


Figure D-1. Package Dimensions (DC-64S)

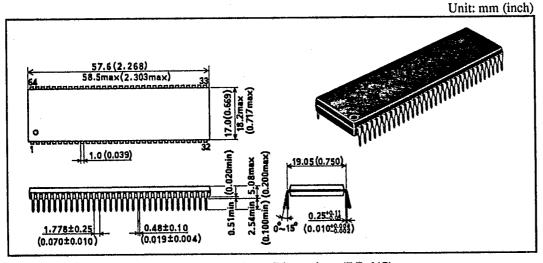


Figure D-2. Package Dimensions (DP-64S)

Appendix E. Package Dimensions

T-90-20

Figure D-1 shows the dimensions of the DC-64S package. Figure D-2 shows the dimensions of the DP-64S package. Figure D-3 shows the dimensions of the FP-64A package. Figure D-4 shows the dimensions of the CP-68 package.

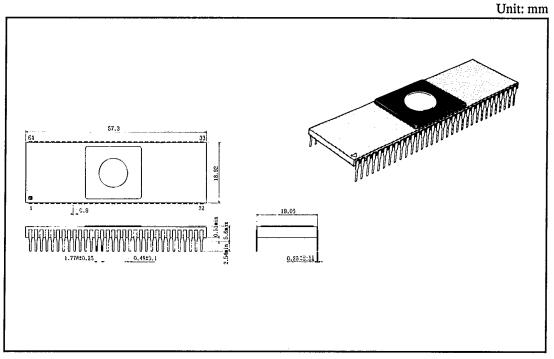


Figure E-1. Package Dimensions (DC-64S)

Figure E-2. Package Dimensions (DP-64S)

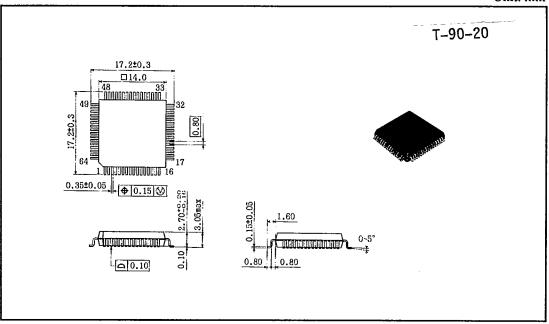


Figure E-3. Package Dimensions (FP-64A)

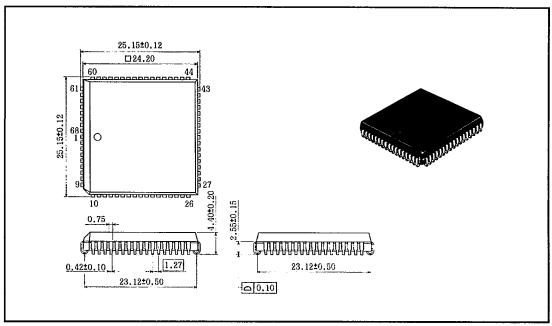


Figure E-4. Package Dimensions (CP-68)