To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

Hitachi Microcomputer Development Environment Systen

H8S, H8/300 Series
Simulator/Debugger

User’s Manual

ENESANS

ADE-702-037E

Rev. 6.0
3/3/03
Hitachi, Ltd

HSS008SDIW3SE

Cautions

Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information containe
this document. Hitachi bears no responsibility for problems that may arise with third pa
rights, including intellectual property rights, in connection with use of the information
contained in this document.

Products and product specifications may be subject to change without notice. Confirm t
have received the latest product standards or specifications before final design, purchag
use.

Hitachi makes every attempt to ensure that its products are of high quality and reliability.

However, contact Hitachi’'s sales office before using the product in an application that

di
ty’

hat
e (

demands especially high quality and reliability or where its failure or malfunction may ditec

threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nucle
power, combustion control, transportation, traffic, safety equipment or medical equipme
life support.

ar
nt f

Design your application so that the product is used within the ranges guaranteed by Hitact

particularly for maximum rating, operating supply voltage range, heat radiation characte
installation conditions and other characteristics. Hitachi bears no responsibility for failur
damage when used beyond the guaranteed ranges. Even within the guaranteed rangeg
consider normally foreseeable failure rates or failure modes in semiconductor devices a
employ systemic measures such as fail-safes, so that the equipment incorporating Hitag
product does not cause bodily injury, fire or other consequential damage due to operatidg
the Hitachi product.

. This product is not designed to be radiation resistant.

rist
e
nd
hi
n

No one is permitted to reproduce or duplicate, in any form, the whole or part of this docym

without written approval from Hitachi.

. Contact Hitachi's sales office for any questions regarding this document or Hitachi
semiconductor products.

Trademarks:

Microsoft’ and Windows$ are registered trademarks of Microsoft Corporation in the United State:
and/or other countries.

IBM PC is the name of a computer administered by International Business Machines Corporati

ELF/DWAREF is the name of an object format developed by the Tool Interface Standards
Committee.

All products or brand names used in the manual are trademarks or registered trademarks of the
respective companies.

Read First:

1. Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi) pursues
policy of continuing improvement in design, performance, and safety of the system. Hitachi
reserves the right to change, wholly or partially, the specifications, design, user's manual, al
other documentation at any time without notice.

2. This user's manual and this system are copyrighted and all rights are reserved by Hitachi. N
part of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-
copy or machine-readable form, by any means available without Hitachi's prior written
consent.

3. Hitachi assumes no responsibility for any intellectual property claims or other problems tha
may result from applications based on the examples described herein.

Preface

Read First

READ this user's manual before using the Hitachi Debugging Interface (hereinafter, referred t
the HDI).

KEEP the user's manual handy for future reference.

Do not attempt to use the system until you fully understand its mechanism.

About this Manual

This manual explains the use of the simulator debugger and the HDI and for Hitachi
microcomputer development tools. The following section will provide a briedductionto the
debugging interface and simulator/debugger, and list its key features.

The following sectionsSystem Overvievimulator/Debugger Functionslenus Windows and
Dialog BoxesCommand LinesandMessagesgive reference information about the operation anc
facilities available from these respective areas.

The following sectiond,.ooking at Your Program/Norking with MemoryExecuting Your
Program, Stopping Your Prograrhpoking at VariablesOverlay FunctionSelecting Functions,
andConfiguring the User Interfacg@rovide a “how to” guide to using HDI for debugging.

This manual assumes that the HDI is used on the English version of Mit\softows 95
operating system running on the IBM PC.

Assumptions

It is assumed that the reader has a competent knowledge of the C/C++ programming languag
assembly-language mnemonics for the processor being debugged and is experienced in usin
Microsoft’ Windows’ applications.

Rev. 6.0, 09/00, page i of xv
RENESAS

Document Conventions

This manual uses the following typographic conventions:

Table 1 Typographic Conventions

CONVENTION

MEANING

[Menu->Menu Option]

Bold text with ‘->’ is used to indicate menu options (for example,
[File->Save As...]).

FILENAME.C Uppercase names are used to indicate file names.

“enter this string” Used to indicate text that must be entered (excluding the “ " quotes).

Key+Key Used to indicate required key presses. For example, Ctrl+N means
press the Ctrl key and then, while holding the Ctrl key down, press
the N key.

=) When this symbol is used, it is always located in the left-hand

(The “how to” symbol)

margin. It indicates that the text to its immediate right is describing
“how to” do something.

Rev. 6.0, 09/00, page ii of xv

RENESAS

Contents

Y= Tox (o) o I R @ Y1 o=
I O T 10 | (=2 PP P P TP 1.
1.2 Target USEIr PrOQIaIMuuuiiiiiiiiiiiieeieeeeeeeeae s st e e e e e a e e e e e e e e e e s naanaanes 20
1.3 SIMUIAtion RANGEueeiiiiiiiiiiiiie e e e eeee B
SeCtion 2 SYSTEM OVEIVIEW......ccoiiiiiiiiiiiitiie ettt ettt e e e e e e e e e e e e eeeees
2.1 USEI INEEITACE ...ttt e e et 5.
2.2 DALA ENIIY oot 5....
2.2. 1 OPEIALOIS ...ttt e et e et ettt ettt e e e e e e e e e e
2.2.2 DaAta FOIMIALS ... e e e e e e e e et ettt e e e e e e e e e eeeeeannnnnan
pZ R T = = o] 11 o] o PRSP
2.2.4 EXPression EXamMPIEScoooiiiiiiiiiiiiii e a e,
2.2.5 SYMDOI FOMMAL......cco i e e e e e e e e e e aeaaanane
2.2.6 SYMDOI EXAMPIES....oiiiiiiii et
2.3 HEID e e e e e e e s s eeesaneee e
2.3.1 Context SENSItIVE HEIPeiiiiii e
Section 3 Simulator/Debugger FUNCHONS...........uuviiiiiiiiiiiiiieeeee e
3.1 Simulator/Debugger Platforms and CPU TYPES.....ccoiiiiiieiiiieeeeieiiiien e
3.2 Simulator/Debugger Memory Management............uuueeeieieeeeeieeeieiiiiiiiss e e e e e e e e eeeeeeennnnnnnns,
3.2.1 Memory Map SPeCifiCatioN..........cccouiiiiiiiiiiiiiii e (
3.1.2 Memory Resource SPecCifiCationccueeeiiiiiiiiiiiiiiiiiee e
3.3 Instruction Execution RESEt PrOCESSINGuvviiiiiiiiiiiiieeiiiiiiee et e e
3.4 EXCEPLON PrOCESSING ...ccciiiiiiiiiiiiieie e e ettt s s e e e e e e e e e e ettt ae e e e e aeaaeeeeanenes 11.......
3.5 Features Specific t0 HBS/2600 CPUccccoiiiiiiiiiieeeccie e a e e e e aanee
3.6 CONrOl REQISIEIS ... ettt e e e e e e e e e et e e e e e e s s e e aeeaeeeeees s s 12.....
T A I - o = PR 12
3.8 Standard /O and File I/O ProCeSSINGuutiieiiiiiiiiieeiiiiiieee ettt
3.9 Calculation of Instruction EXeCUtioN CYCIEScccoiiiiiiiiieiiiiiiiie e |
3.10 Break CONGItIONS. eiiiiiiiiiiaee ettt e e e e e e e e e e e e s s bbb bbb e e e e e e 25.....
3.10.1 Break Due to the Satisfaction of a Break Command Condition........................... :
3.10.2 Break Due to the Detection of an Error During Execution of the User Program .z
3.10.3 Break Due to a Trace Buffer OVerflowcooooiiiiiiiiiiiiiieeeeeeee e y
3.10.4 Break Due to Execution of the SLEEP Instructioncooovccciiiiiiiiiieeeeeeeenn. :
3.10.5 Break Due to the [STOP] BULLONo.cuviieiiiiiiiiiiie et
3.11 Floating-PoiNt Dataccouuuiuiiiiiie i e e e e e e e e e e e aaaees e 29......
3.12 Display of FUNCLION Call HISIOYuuuieiiiiii i e e e e e e e eaanans :
SECHON 4 IMENUS ...ceeiii it e e e e e e e e e e e e et e e e e e eeraaaaes)

Rev. 6.0, 09/00, page iii of xv

4.1

4.2

4.3

4.4

.. 31
LN A=Y 11 (o o :
[0 = 1o IS Y=Y (o] o 1SR
ST VSIS YT (o] o
SAVE SESSION AS... o oiiiiiiiei ettt et e e e e e e eeaa e aaat s,
[0 F=To I =d {o T [=T o o SRR K
INIEALIZE. .o eraan 32........
0 32.......
... 32
(O | N 32........
(00 ¢)V TSP 1 I 3
P aSTE ..o e 33..........
[T o [P PRUPPPPR 33.........
V2= 1L F= 1 K
.. 33
BreakPOiNtSeeeiiiiiiiii e 3
(000] 040 aF=To o I T o [P P PO UPPPPPR 3
DiISASSEMDBIY ... e ———— K
LADEIS ..o e do........ :
[0 o7 [4......... 3
MEBIMOTY ... o e e e e e e e e e e e e eeennnes 3
Performance ANAIYSIScooiuiiiiiiii e 3
PrOfil@-LISt ...t 3.
[(o) 1 (SR W =TSO UUPPPRRRNt 3
=T 0] 1= 5SS B
ST 01U o = T 35..........
] =1 10 [N 35.........
L =T = T PP PP 35........
WaALCK .o e PP :
SIMUIALEA 1O ... et e et e e et e eeeees 3
] o] [= Tod = OO PP PSP SRRPPPP
(=14 = N 1 Yo | N 3
... 36
(R CTST =) O = U TR
Lo TSR UPPRPTR 36........
LU= ST N €T o TP
(CTo T [0 T O U] =10] (PSRN 3
1=y O o T O U] £ SR TR K
41 | P PP 36.........
SEEP TN e G......... :
S (] IO 1Y =T TSP :
RS (] O U1 SRR :
1] (=] o TSP 37........

Rev. 6.0, 09/00, page iv of xv

o R o = | OO UPUUPPPR PRI 3d.......

S T |V (=T 0 o Y PP 31..
A.5. 1 REITESN oo ———————————————
2 1 o T To SRR AR
A.5.3 SAV ... it a e e e e e e e e e e e e 38
A.5.4 VEIiY e oo e ——— LS TR
T T = O PP PPPPPUPPPPR 38........
T T | PR 38......
T A ©7o] o) PP PP TTPP PP PP PR TRTPPIN 8.........
4.5.8 COIMPAIE. .. oottt e e et ettt e e e e e e e e e e
T I ©o oo {8 =01, > o PP
4.5.10 CoNfIgUIe OVEITAY.......uiiiii i e e e e e e e e aaaas

7= (1 | o F PP 39
T S = L LU =3 = - | TR
I @ I o] 1o o - TSP PUTUOPPPPP
T T - o SO 9.
A.6.4 CUSIOMIZE ..ottt ettt e e e e e e e e e e e e e e e e e e aaaan
4.6.5 Configure Platform..........cooiiiiiie e ‘

o A V.10 To [1O P PP PPPPPRPRPY 40..
o 0 R O 1= Vo [SRR
o 1 = OSSO 40.......
4.7.3 AITANGE ICONS ..o ittt e e e e et e e e e e e e e e e e e a e
AT 4 ClOSE Al ettt e e e e e e e A

T 1= o TSRS &

N 70t R [T [PP U PP TP TP PP POPTPP 41.........
4.8.2 USING HEIP oo |
4.8.3 Search for HEIP ON ...coooiiiiiiii e
B S A o o U1 A 0 PP .

Section 5 Windows and Dialog BOXESuuuiiiiiiiiiiiiiiiieeeeeeee e,

5.1 Breakpoints WINGOW..........cooviiiiiiiiii i e e e e e e e e et s e e e e e e e e e eeaaannnn CTRN
LS 00 0 Yo [SRR’ 7 S
Lo 00 o 1 NP 7 SSSR
L0 T 1= 1= 1 USSR 4.
.14 DIt All ...t a e e e e ,
5.1.5 Disable/ENADIEoooii e,
51,6 GO TO SOUICE ...ttt e e e e e et e et e e a e e e e e e e e e eeennen

5.2 Set Break Dialog BOX.......cuuuiiiiiiiiiiiiee e 45........

5.3 Break Sequence DIialog BOX..........cuiuiiiiiiiiieeiiiiieiie ettt

5.4 Command LINE WINUOW ...ttt r e e e e e e e e e e e e e s e e e aaaannenes
541 SetBatCh File... ..cuueeeiiiie e,
Bid 2 PlAY . e a e 48........
543 SELLOQ File... oot

Rev. 6.0, 09/00, page Vv of xv

L0 R 1o To To 11 o S 4
LT ST S 1= [t Y | 4
B.4.8 COPY -uttntrttrieteee ittt e e e e < JRT— Vi
5.5 DisasSemMDBIY WINOOW.eiiiiiiiiiiiiieiiiiit ettt s b e e e e £
L 700 R o] USSR Q......... 5
B.5.2 S AUUIESS. ..ottt e e e e e et a b
LT TC T € To T o T O U | =T] PN E
o N T =Y o O o 11 = NP
SIS R T [415 = L a1 A= (o o 5
LTS T T o [0 IRV (o] o TN 5
LT T A € To I (0 TR0 11] o = TS !
5.6 LabelS WINUOW ...t e e et e e enba s 51......
B.B. 1 Ad. .. i e a e e e e 5
LT ST = o || 5
LT S TR T 0T 5
LI S TS w0 Vo I A=) S 5
B.B.5 VIBW SOUICE ..cvuuiiiiiiii ettt et e e e e e e e e et e e e e e et eeeeeaba e e e earaneeeees 5
L 2 T o) USSP I 5
B.B.7 DEIBLE . e e e K PR r
oI ST T 1= 1= (=3 A | N 5
LTS TS IR o T- Vo 5
DB.10 SOV ..t 55........
LT 0 I A = Y I L L
5.7 LOCAIS WINAOW ...covviiiiiiiiie et e e e e e e et e e e e et e eaeenn 56.......
LT 01 R o] USRI B......... 5
LT A T |1 AV - [V T 5
LT AR T = ¥ 1o [A 5
5.8 MeMOrY WINUOWeviiiiiiiiiiiiiiee ettt ettt ettt e e e e s b eeee e YA 5
B.8.1 REITESN e !
B.8.2 LOAA. .. oot e a e aa e 5
LT S TG T S Y- V= TP £
LIRS T A = 1 R E
LIRS TR S T | 1 8........ 5
LS T T O o] o YOO PP PPPEPUPPPPRPPRR 5
D 8.7 COMIPAIE... it e e n e £
B.8.8 SBAICK ... e e e e e !
B5.8.9 Sl AUUIESS. ..ottt e a b
5.8.10 ASCII/Byte/Word/Long/Single Float/Double Float.................ccooeiiiiiiiiiiiiiiinns 59
5.9 Performance ANalySiS WINGOWoiuuiiiiiiiiiiiiie ettt 5
B5.9.1 AU RANGE. ... ettt ettt e st e e aas €
B5.9.2 EQIt RANQE. .. cooiiiiiiiiii ettt e e e e e e e e et et aaaaaaaaaa €
5.9.3 Delete RANQGE ...ttt a e e e e a e ————— {
5.9.4 RESEt COUNIS/TIMES....couuiiiiiiiiie ettt e e e e e e e e e e et e e e e e aaaa e e e eenaanss (

Rev. 6.0, 09/00, page vi of xv

5.9.5 Delete All RANQES.......ccci oot e e e e e e e e e e e e aaaaaaas

5.9.6 ENADIE ANAIYSIS. ..ottt
5.10 Performance Option Dialog BOX........cccoiiiiiiiiiiiiiiiiiee et
5.11 REQISIErS WINUOWeiiiiiiiiiiiiiie ittt 62.......

LS00 I 0 R o] o) TP PPPPPPPTPPPPP 62.........

L0t I O o [ST T PP PPTPPPPPP 2

L0 I G T I To T | 1= = R
5.12 SOUICE WINUOWceiiiiiiiiieeee e ei ettt e e e e e e e e e e s e e s as s s eeneeeeeeeeeeeeeeesomn 63......

B.12. 1 COPY ctetiiiieeeeee ettt a e e e e e e a e 64.........

L0072 1o T SRR 64........

5.12.3 SBt AUUIESS. .. it e e e e e e e e e e e e e e e e e e,

B.12.4 SEELINE... oot a e e e e e e e 4.

5.12.5 GO TO CUISOI .. ittt ettt e e e e ettt e e e be b e e e e e e e et e eeeeannban e e e e eeeas.

LT Y= W o O o = - PR

L0 7 1 1 = L ALY - o] o RIS

5.12.8 A WALCK ..ottt e e e e e e e e e e e e e e ee e e

5.12.9 GO TO DIiSASSEMDIYeueniiiiiiiecceee e,
5.13 System StatuS WINUOW.......cooiieeiiieieeeee i e e e e e 5.

L0 I 700 R o T -1 = PR 6.........

5.13.2 COPY ceiiiiieeeeie et e e e e e e e a e 66.........
5,14 Trace WINUOWcoiiiiiieeiiie ettt e e e e e e et e e s e e e ettt e e e e e e e eaeeaeeeaeeseeseanannns 66.....

Lo 00 5 T T o SR 67........

B.14.2 NGO NEXL. .ttt ettt e ettt et e e e e e e e e e e e s e e e e naeeebaeeees

D143 FIOr ... e e e ed 61.......

B.14. 4 ACQUISILION. .. ceitiiiiiiie e e e e s e e e e e e et et s e e e e e e e e e e e eeeaataaa s s e eaeeaaeaanernnes |

Lo T T | SO 68.......

L0 I B T {1 = 1 USSP 68........

5147 SNAPSNOT....ciiii e

B.14.8 ClBAN ..t e e 68........

B.14.9 SAVE... oottt ettt et e e e e e e e e B8.........

5.14.10 VIBW SOUICE ...ttt ettt et e e e e e e e et e e e et bbbttt e ettt e e et e e aaeeaaeasaasaanaannbnnbeneees,

Lo 00 5 T S Yo U o = SRR
5.15 Trace Acquisition Dialog BOX.........coiiiiiiiiiiiiiiiiiiiie e
5.16 Trace Search Di@log BOXcccuuiiiiiiiiiiiiiiee ittt ettt sttt e e e e sbba e e e e s nannees
5.17 WatCh WINOW........coiiiiiiiiiiiiiieieceeet e iiiiieeieeeeeeee e e e e e e e e e e e e s seseed L

L0 I R O] o) PO PP UPPPTPPPTP 1.

B.A7.2 DEIBLE ... 71......

B5.17.3 DEIELE All ...t ———————————————————— |

B5.17.4 A WALCN. .. cooiiiiiiiie e e e a e e e e e e e e |

LNt ST o 1 Y 2 | 0T PR |

LT G - To [PP PPTPPPP TR 12.........
5.18 System Configuration Dialog BOXiiiiiiiiiiiiiiieeiiis e
5.19 Memory Map Modify DIialog BOXuuuuiiiiiiieeeiiiiiiiiiiiiiis e e e e e e e e e eeeee v e e e e e aaaaenenns 7

Rev. 6.0, 09/00, page vii of xv
RENESAS

5.20
521
5.22
5.23
5.24
5.25

5.26

5.27

5.28

Memory Map DiIalog BOXoouuuuiiiiiieiei e eee et s e s e e e e et e e e e e e e e e e e e 7

System Memory Resource Modify Dialog BOXc..eeeiiiiiiiiiiiiiiiiiiiiieee e 7
Control REQISErS WINGOWcoiiiiiiiiiiiiei ittt ettt e e e s eee s 1
SYSCR DIAIOG BOX...etiieiiiiiiiiiee ittt sttt e et e e e 78.........
Simulated /O WINAOW..........cuuiiieiiiiiiei et e e e e e b s 9........ 7
SEACK Trace WINAOWuuiiiiiiiiie ettt e e e e e e e e e et e e e e e et e e eeeaaes 80.........
L7470 R O] o V2SR 80.........
LI T € To i (o RS 1o] U1 (o =N {
5.25.3 VIEBW SEIING. .. cuueeeiiiei ittt e st e e ee e 8
Profile-LiSt WINOGOW..........coveiieeeeeee e e e e e e et e eeean 82......
B5.26.1 VIBW SOUICE ... ciitiiiieiieiie e e e et e et e e et e e e e e et e e e e e aat s e e s eaba s e e s eaban e eseataaeeeeeraans 8
B5.26.2 VIEW PrOfilE-TrEE. ... ittt eeaaaas 8.
5.26.3 VIeW Profile-Chart..........oouiiiiiii e e e 8!
oI I B Y o F= 1 o] (ST = (0] 111 R 8
LT S T T 1 o 8
oI N ST O [T Tl - | - W {
5.26.7 Output Profile Information File............ouviiiiiiiiieee e 83
5.26.8 OULIPUL TEXE FilE... coieeeeiiiiiieie i e e e e e e e e e e e s 8
B5.26.9 SEIECE DAA.. ..o iiiiiiii i e e aeaaan {
5.26.00 SELING .. «oeiiitieieie ettt e e e e s e e e s €
Profile-Tree WINGOW...........uiiiiieiie et e e e e e e e e eaaa s 85........
B.27. 1 VIBW SOUICE ... eeteeeeeeeee e et e et e e et e e e e e e e e e e et s e e s et e e e s eeba s e e s eeraaeeeeeeanns 8
B5.27.2 ViIEW ProOfil@-LiSt.......cviiiiiiiii e 8¢
5.27.3 VIeW Profile-Chartcooouiiiiii e e e 8
5.27.4 ENADIE Profiler ..o 8
LT S T 1 o 8
LI A T T (o [- | - R 8
I A A O [T Tl - | - W {
5.27.8 Profile Information File..........ccooiiiiiiiii e 87
5.27.9 OUIPUL TEXE FilE... oo e e e e e e e e e e e 8
B.27.10 SEIECE DALA. .. ccvuiiieiiiiiie e e e e e {
L 0 N S 1= 11 T PP PPP PRI €
Profile-Chart WINOOWoooeuei et eeeaaad 89........
B5.28.1 EXPANAS SIZE ...eiiiiiiiiiiiii ettt e e a e e é
B5.28.2 REUUCES SIZE .. oottt ettt e et e e e et e e e e eraans |
B5.28.3 VIBW SOUICE ...cvvueieeiiiiie ettt ettt e e e e e e e e e e e e et e e e e e et s e e s e et e e e eerannns C
5.28.4 VIEW ProfilE-LiSt.....ccciiiiiiiiieie e e aaaas 9(
5.28.5 VIEW PrOfilE-TrBE. .. it e e e e e e e e e eaaans 9
5.28.6 VIEW Profile-Chart........c.couuiiiiiii e e e e e e e 9(
5.28.7 ENADIE PrOfil@F ... e 9
I R T O[T T gl DT | - VPP TP UPPPTPR (
5.28.9 MUKIPIE VIBW ettt s e e e e e e e e e e s e e e e e aaeeeeaanees 9]
5.28.10 Output Profile Information File... ... e 91

Rev. 6.0, 09/00, page viii of xv

RENESAS

Section 6 Command Lines
T(@T LY 11 = N 1 TR

ANALY SIS oo e e e e et e et e e et e e e e e e e e eeeenmeee

F TN 2 ST 27 N = 9......
ANALYSIS_RANGE_DELETE w..ooveveeeeeeeeeeeeeeeeeeeeeeeseeseeesee s eseeseesseeseseseeseeseeeseesessesseeesesseeses
AASSEMBLE ...ttt eeee e et eeee e et e e e ettt et e s st s e a7
AASSERT ..ottt e et et e e e ettt et e ettt 97
BREAKPOINT ..ot eeee e e e e e e e e et s eee e e e e e s e es e seee e eseeeeeeseeeens 08.
BREAK ACCESS ...t eeeee e s s eseeeee e s ee e ese s ee s eee e eseeee 98.....
BREAK_CLEAR ..o eeeee e s e e eeee s s s e s e eseeseee e eseesenens 99...
BREAK DATA ..ot eeeeeeeeeeeeeseeeee s e s eseee e sse e eeesees e esees et eseeetessees e s e s s smmneee 100
BREAK_DISPLAY ..ottt eeeseee e eeeeeeeeeee s ee e e eseeseeeseesees s eseee s eseeeeeeseeseseseeseees e s 100...
BREAK_ENABLE ...ttt e s eee s eeeesees e sse s eseeseeseesseeseeeseseesseseeseeess oo 101...
BREAK_REGISTER «.eoveveeeeoeeesee e eeee e eee e s e eeeeeeeeeeeeeeseesees e s eeseseeeeeeseaseseseeeeseseseom 102.....
BREAK_SEQUENCE ... et e e e es e eee e saeeeeese s eeeseeseeeeesseneeeee 103.......
DISASSEMBLE ..o e e es e e e e st ee et s e e et ee e eeeees 103
ERASE ...ttt e et e et e ettt ettt ettt ee e ne e
EVALUATE «.coe oottt e e e e e s e eee s s et ese et ee s et eee s eseee et es e s s sommnemen
FILE_LOAD ..ot eee et eeeee e s et eee e s s e s et eee e s eseee s es e e s es e s seeemeemeens

ST =Y\ =3O

ST == 1= V2T

T TSSO

GO _RESET .ottt et eee e e e e e e e e s e s e et e e eee e e s et e s eee et eee e es e s sonmseeennn

GO TILL oottt e e e st e s e e e et e et e et e et rene e
HALT oot e e e et s e s e e s es et e s e s et eeeee e eseee et ee et sseneeneseeee e
=10 =TSO

1T Y1 SO

K T T
MAP_DISPLAY

IMAP _SET oottt e e e e e et eseee e seee e e e s eee e s e s eee s e s eee s et es e e s e eee e eeees s eemeemeene
MEMORY _DISPLAY ...voeeoeeeeeeeeeeeeeeeesee e ses e s eseeeeeeeeeseessees e ses s es s eessees e seeseeeee 113.....
Y10 L0 =37 = o SR 114,
YT T0)37 =T OO 115
MEMORY _MOVE ..ot e et eeee e e e eee e e s s e es e eseeeeseneereeon 116....
MEMORY _TEST oooeeeeeeeteeeee et eeeeeeeeteeseeeseeseee e esees s seeseeessesees s esseseeese s eesees e esees e eeeme 116
QUIT oottt e et et e et e s e e s s e e et ee e s e e et e e ee e e e et e e eemenenene 117
RADIX ...t evevee et eeeee e eeees e e eseee e esees e s e s ee s esees s esees e eseeseee s e s ee e e ee et e st ee s s eeemeneeee 117
REGISTER_DISPLAY ..ot eeeeeeeeeeeeee oo eee e eeeeee e eeees s esees e eesseseeeeeseeeeeeseeeereeon 118.....
YISy =12 Y] = LT 119
T2 = OO 120
SLEEP .. eeeeveeeeee e eeee ettt et et r ettt ettt eene st 120
STEP oottt ettt e e et e ettt ettt ettt ettt e e se et eene 121
STEP _OUT ettt et s et e s e e e et et e et s eee e s ee et es et oeeeneaeeen 121

Rev. 6.0, 09/00, page ix of xv

STEP_OVER ..o mmmmnnnns 122

I = 2 7N PSR 122
Y] =1 1 I PR PRRRN 123
SYMBOL_ADD ...ttt ettt e et e e e e et e e e e e e e s e ——t e e e e s e aaaeea e anns s 123,
SYMBOL_CLEAR ...ttt ettt ettt e e e e ettt e e e s sttt e e e e e s asbbeeeeeessnbbaeeeeessanbeneenns 124
SN 41,1 210] I @ L I 2 PRSP 124,
SYMBOL_SAVEttt ittt ettt e sttt e e e s sttt e e e s e asb bt e e e e e s anbbeeeaeeaanneraeees 125
SYMBOL_VIEW....coeiiiii ittt et e e e e e ettt e e e s ettt e e e e s et e e eeaessastaaeeaeesantsseee s 125.
TRACE ..ot e e — e e e e et — e e e e e e ntbee e e — 126
TRACE_ACQUISITION ...citiiiieeee ettt e e e e e e e s e e s e e e e e e e e e aeaaaeeeeeeas 26......1
SECHON 7 IMESSAUES ...vveveeiiiiiiiiiieee e e e e e ettt r e e e e e e e e e e e e e e e s s s s s e
7.1 INfOrmMation MESSAQESoevieiiiiiiiiie e e e et e e e e e e e e e e e e et a e e e e e e aaeaaaann 29.........
7.2 EITON MESSAUESceiieiiiiiiei ittt et e e e e e e e e s e e e e e e e e ettt e e eeeeeeeesammae 130....
Section 8 Looking at YOUr Programcceveeeiiiiiiiiiieieeiiis e :
8.1 Compiling fOor DEBUQGQING ...coeveeeeeieee e ———— 1
8.2 VIeWING the COUE.......coeeeiiieiiei e e e e e e e e e e e e e e aeeeneanes 131.....
8.2.1 ViIieWINQG SOUICE COUE........uuuruiiiiie e eeee et e e s e e e e e e e e e e s e e e e e e e e e e eaeaenannaans 1
8.2.2 Viewing Assembly-Language Code..........ccccoviiiiiiiiiiiiiiiiie e 1
8.2.3 Modifying Assembly-Language COdecooeiiiiiiiiiiiiiiiiiiieee e K
8.3 LoOKING At LADEIS......eeiiiiiiiiiiiiee e 133....
8.3.1 LiStiNg LADEIS......cco i e ———— 1
8.3.2 Adding a Label from a Source or Disassembly Windowccccoeeeeeveviviiiinnnnnn. 1:
8.4 Looking at @ SPECIfiC AQAIESS.......ciiii i e i
8.4.1 Looking at the Current Program Counter AddreSS.........couviiiiiiieeiiniiiieeiee e 1
8.5 FINAING TOXL ..o iiieiiie ettt et e e et e e e e e 136.
Section 9 Working With MemOry........coooiiiiiiiiiii e 1
9.1 Looking at an Area Of MEIMOIYccoiiiiiiieiees e e e e e e e e 1
9.1.1 Displaying Memory as ASCIl.......ccooviriiiiiiiie et 13
9.1.2 Displaying MemOory 8S BYLESccciiiiiiiiiiieiiiiiiie ettt 1
9.1.3 Displaying Memory 8S WOITS.........ccuuuieiiaiiiiiieie e 1
9.1.4 Displaying Memory as LONGWOIASocuuuieieeiiiiiiieee e iiieiee e e siiieee e e s esiiieeeee e 1:
9.1.5 Displaying Memory as Single-Precision Floating Pointcccccoeeiiiiiiinnnnn, 13
9.1.6 Displaying Memory as Double-Precision Floating Point.............ccccoevvviiiiinnnen. 13
9.1.7 Looking at a Different Area of MEMOIYcccoiiiiiiiiiiiiiicie e, 13
9.2 Modifying MemOry CONLENTSuuiiiiieiiiiii ettt e e et e e e e s abbeeeeeesaaees 1
LS 720 R © T 1 od Qo[1 1
LS I V|| I o 1 R 39......1
9.2.3 Selecting @ MemOry RANQEccoceeiiieieeece e 1
9.3 FiNnding @ Value in MEIMOIYcciiii i e e e e eeeeaae e 1
9.4 Filling an Area of Memory With @ Valueoovriiiiiiii e, 14

Rev. 6.0, 09/00, page x of xv

RENESAS

9.5
9.6
9.7
9.8

9.4.1 FilliNg @ RANQEcceiiieieeeeis et e e e e e e e e e e e e e e e e e e e s
Copying an Area Of MEMOIYciii ittt e e eas
Saving an Area@ Of MEIMOIYouuviiiiii it e e,
Loading an Area Of MEIMOIYcoiuuiiiiie ittt e e e et eeeeeeaaes
Verifying an Area Of MEMOIYouiiiiiiiii et e e e e e e eeeaaaeees :

Section 10 EXecuting YOUI PrOgramcccuuiiiiieiaeiiiiiiiiiiiiiiiineeee e

10.1
10.2
10.3
10.4
10.5

10.6
10.7

RUNNING frOM RESEL......eeeiiiiiiiiei e 145......
Continuously RUNNING YOUT PrOGramuueiieeeiiiiiiieee ettt e et e e e e e e e ninaee.
RUNNING 0 the CUMSON ..ot 146.......
RUNNING t0 SeVeral POINTSooiiiiieicce e 46......
Y[T TSI (] o 146

10.5.1 Stepping INt0 @ FUNCHIONuvuiiii e e e e e e e e
10.5.2 Stepping Over a FUNCLON Calloeiiiiiiiiiiii e
Stepping Out Of & FUNCLIONooiiiiiiiec e 7.
MUIIPIE SEEPS et e e 147.

Section 11 Stopping YOUr Program...........uuuureeeiiiiiieeeeeeeeeeeeeeeeeeseessnnnnnnnsnneeens

111

11.2

11.3

114

115

L F= L1 o T =T o U 1o o PP 149...

Standard Breakpoints (PC BreakpointS)..........ccuueiieeiiiiiiiiie e,
The Breakpoints WINGOW............ueiiiiiiiiii ettt
11.3.1 Adding @ Breakpointoooueeiiiiiiiiiiie et
11.3.2 Modifying a BreaKpointoovuiiiiiiiiiiii e 1
11.3.3 Deleting @ BreaKPoiNt...... ..o i it e e e e e e
11.3.4 Deleting All BreaKPOiNtS.......uuuuieieie e eeee et e e e e e e e et s e s e e e e e eeeeaeaaaanens i
Disabling Bre@kpOiNtScoiiuiiiiieiiiiieeee ettt 152.....
11.4.1 Disabling @ Bre@kpOiNt.........oocuuuiiiieiiiiiiiie et
11.4.2 ENabling @ BreakpPOiNt..........oouuiiiiiiiiiiiiiie et
Temporary BreaKpOiNtS.o e e e e e bh2.......

Section 12 Looking at Variables ...,

12.1
12.2
12.3

12.4
12.5

TOOIP WALCKceiiiiiieiee et e st 155.

L 1S3 =T Y Y= 1o o S 155
USING WaLCh ITEMS ..o 156......
12.3.1 AdAiNG @ WALC....uuuiiiii e e e e e e e e e e e e e e e eaaaas
12.3.2 Expanding a WatChoooiiiiiiiiie e
12.3.3 Modifying Radix for Watch Item Display........ccccceeeeiiiiiiiiiiiiciiie e, 1!
12.3.4 Changing a Watch Item’s Valueooooiiiiiiiiiiii s
12.3.5 Deleting @ WALCHuiiiiiiii e,
Looking at Local Variableseeiiiiiiii e Q...
LOOKING @t REQISIEIS.....ccieeeiiieiie e e e e s e e e e e e e e e eeaeeeeees s 160.....
12.5.1 EXxpanding a Bit REQISIEI........uuuiiiiii i e e e e e e
12.5.2 Modifying Register CONENLSuvuiuiiiii i e e eeeaa e

Rev. 6.0, 09/00, page xi of xv
RENESAS

12.5.3 Using RegiSter CONLENIS.......ccvviiiiiiiie e ee et e e e e e e et e s e e e e e aaeeaees i

Section 13 Overlay FUNCHON.........cooiiiiii e :
13.1 Displaying SECHON GrOUPcoiiurrieieeiiitieeee e sttt e e sttt e e st e e e e s sebae e e e e e e naebeeas b R .
13.2 Setting SECHON GrOUP ...cccvvviiiiiiiiiei e e e e eie e eeeeee s s e e e e e e et e e e eeaa st s aaeeeeeaaeeeeeaesennas 164.......
Section 14 Selecting FUNCHONSuuiiiiiiiiiiiiiieeeeeeeee e
141 Displaying FUNCLONS.........uiiiiiii ettt e e e e e 165.....
14.2 SPECIfYING FUNCLONSeiiiiiiiiiiiiie et e e 166.....
14.2.1 SeleCting @ FUNCHONcoiitiiiiei ittt e e e i
14.2.2 Deleting @ FUNCHONoooiiiecei e e e e e e e e e eeeaaaaees 1
I 7 T ST i 1] o = W U o £) o S 1
Section 15 Configuring the User Interface.........ccooevivviiiiiiiiieiiiiiiie e :
15.1 Arranging WINGOWSccooiiiiiiiiiiaiiiiiee ettt e e 1617.......
15.1.1 MinimMiziNg WINQOWS........ouuiiiiieiiiiiiieee et e e e breee e e 16
ST I N o = Vg o T T oo 1
ST I I 11 To T YT o [0 Y 1¢
15.1.4 CascadiNng WINUOWSccoiiiiiiiiiiiii i e e e e e e ee ettt e s e e e e e e e e e e e e e aataa e e s e aaaeaaaeaannns 1
15.2 Locating Currently Open WINGOWS.coiiuiiiiieaiiiiiiieee et snereee e 1
15.2.1 Locating the NeXt WINGOWcooiiiiiiiiiiiiiiiete e 1
15.2.2 Locating a SPeCific WINAOWcoouuiiiiiiiiiiiiieee it 1
15.3 Enabling/Disabling the Status Bar............ccooiiiiiiiiiiiiie e
15.4 Customizing the TOOIDAI.........iiii i e e 1. :
15.4.1 OVErall APPEATANCE......uuuuiie i e e e ettt e e e e et e e e e e e e e e e e e a e eaeeas i
15.4.2 Customizing Individual TOOIDAIS........ccuuviiiieiiiiii e 17
15.4.3 BUON CAEOOMIESuuieiiieiiiitieiee ettt e ettt e e sttt e e st e e e s ab e et e e e e aanbeeeeee s i
15.4.4 Adding a Button t0 @ TOOIDAI........cccoiiiiiiiiiiaiiiie e 1
15.4.5 Positioning a Button in @ TOOoIbar...............ouiiiiiiii e 1
15.4.6 Removing a Button from a Toolbar ..., 1
15.5 Customizing the FONTS.......coouiiiiiiiie i e e e e e e eeeeaaes 174......
15.6 Customizing the File Filters ... 74....... i
15.7 SAVING @ SESSIONuutiiiiiieiiiiieite ettt ettt e e st bt e e e s bbbt e e e e s aaabbb e e e e e s ansee e e e 176....
15.8 LOAING @ SESSION....eiiiiiiiiiiiieiei ittt ee ettt ettt e e e et e e e e s st be et e e e s aabbe e e e e s smmen 176....
15.9 Setting HDI OPLiONSuuiiiiiii e e e e e e e e e as 177.....
15.10 Setting the Default INPUL RAiX.......ccooiieiiiiiiieiees e 8. i
Appendix A - SYsStem MOAUIESuoiiiiiiii e i
Appendix B - GUI Command SUMMAIYcouuuiiiieiiiiiiiiieeeeeeiiineeeeeeesineeeaeennns 1
Appendix C - Symbol File FOrmMat..........cccuuuiiiiiiiiiiiiiiieeeeeeeee e 1

Rev. 6.0, 09/00, page xii of xv
RENESAS

Figures

Figure 1.1

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5-38
Figure 5.39

Creation of Target User Programs
Menus
Breakpoints Window
Set Break Dialog BOX.........cuiiiiiiiiiiieiiiiiiiiee ettt 5.
Break Sequence Dialog Box
Command Line Window
Disassembly Window
Labels Window
Add Label Dialog Box
Edit Label Dialog Box
Find Label Containing Dialog Box

Message Box for Confirming Label Deletion

Message Box for Confirming All Label Deletionccccooooeeiiiiiiiiiiiccicieeeee,

Load Symbols Dialog Box
Locals Window
Memory Window
Performance Analysis Window
Performance Option Dialog Box

REQIStErS WINUOW ... e s 2.....

Source View

System Status Window
Trace Window
Trace Acquisition Dialog Box
Trace Search Dialog Box

VA = Lo TV [0 [0 1.

System Configuration Dialog Box
Memory Map Modify Dialog Box
Memory Map Dialog Box

System Memory Resource Modify Dialog BOXcccovuiiiiiieiiiiiiiiiiiiiiieen,

Control Registers Window
SYSCR Dialog Box
Simulated 1/0 Window
Stack Trace Window
Stack Trace Setting Dialog Box

Profile-List WINAOW.........ccooiiiiiiiiccc et 2.....
Warning Message Box Showing Profiler and Analysis Cannot Be Set at a.‘Bge

Setting Profile-List Dialog Box
Profile-Tree Window

Warning Message Box Showing Profiler and Analysis Cannot Be Set at a. Bfne

Find Data Dialog Box
Setting Profile-Tree Dialog Box

RENESAS

Rev. 6.0, 09/00, page xiii of xv

Figure 5.40 Profile-Chart WINAOWccooieiiiiii e
Figure 5.41 Warning Message Box Showing Profiler and Analysis Cannot Be Set at a. ‘Bithe

Figure 8.1 SOUICE WINUOWccoiiiiiiiiiiiiiiiiieee ettt 31l......
Figure 8.2 Disassembly WINAOW...........coooiiiiiiiiiiiiiiiiiee e,
Figure 8.3 AssemMbIer DIalog BOXccoieieiiiiiiieieicis e e e e e e e,
Figure 8.4 Labels WINUOWuiiiiiii i e e s 4.
Figure 8.5 Label Dialog BOX.......ccooiiiiieeiiieie e 34.....
Figure 8.6 Set AAdress Dialog BOXcouiuiiiiiiiiiiiiiiee et
Figure 8.7 Find Di@log BOX......cccoiiiuiiiiieiiiiiiiie ettt 136.......
Figure 9.1 Open Memory WIindow Dialog BOXccccoiuiiiiiiiiiiiiiiee et 1
Figure 9.2 Memory WINAOW (BYLES)cccceeiiiieieeieiiee et e e e e e e e 1
Figure 9.3 Set Address DIialog BOXuuuuuiiiiiiieeeiei et s e e e e e e e e e e s e e e e e aaeeeaananns
Figure 9.4 Edit DIialog BOXoovviiiiiiiiiiie it e e a e e e 140.......
Figure 9.5 Search Memory Dialog BOX.........ocuueiiiiiiiiiiiiiieiiiiiiiee e
Figure 9.6 Fill MeEMOrY Dialog BOXccoiiiiiiiiiiiiiiiiiie et 1
Figure 9.7 Copy Memory Dialog BOX........ccuiiiiiiiiiiieiiiiiiiieee ettt 1
Figure 9.8 Save Memory As Dialog BOXccoiiiiiiiiiiiiiiii e i
Figure 9.9 Load Memory Dialog BOXccuuuiiiiiiiiii e e e e e e aa e 1
Figure 9.10 Verify S-Record File with Memory Dialog BOX..........ccccovvvvviiiiiiiiiiiiiiieeeeeeeeeees 1/
Figure 10.1 Highlighted Line Corresponding to PC AdAreSS........coovcuvvieiieiiiiiieeee e]
Figure 10.2 Step Program Dialog BOXcoieiiiiiiiiiiiiiiiiieie e
Figure 11.1 Setting a Program Breakpointeeeiieiiiiiiiiiiees e,
Figure 11.2 BreakpointsS WINAOW...........uuuiiiiiiiiei it e e e s e e e e e e e e e eeanaenennnn,
Figure 11.3 Run Program Dialog BOX.........ccouuuuiiiiiiiiiiie e ee e e e e e e e,
Figure 12.1 TOOItP WALCHcooeiiiiiiii i a e e e aaaees 155.......
Figure 12.2 Instant Watch Dialog BOXuueeiieiiiiiiiiieeiiiiiieee et
Figure 12.3 Add WatCh Dialog BOX.......oocuuuiiiiiiiiiiiiiee ittt]
Figure 12.4 WatCh WINGOWcoiiiiiiiiiiiiei ettt ree e
Figure 12.5 Expanding a WatChouuuiiiiiii e e e,
Figure 12.6 Edit Value Dialog BOXcccciiiiiiiiiiieeicie et e e s 1
Figure 12.7 LoCalS WINAOWcccoiiiiiiiiiiiiiee e e e e e e e et n e e e e 9........
Figure 12.8 RegiSters WINAOWcoiiiiiiiiiiie ittt
Figure 12.9 EXpanding a Bit REQISIET........coiiiiiiiii i
Figure 12.10 RegiSter DIalog BOX........ciiiiiiiiiiiiieiiiiiiiee ettt ettt e e e snaraee e e s,
Figure 13.1 Overlay Dialog Box (at OPening)uuuuuiiiiiieeeeeieieeeiiiiieis e e e e e e 1
Figure 13.2 Overlay Dialog Box (Address Range Selected)ccoceeeviiiieiiiiiiiiiiiiiciceeeeee,
Figure 13.3 Overlay Dialog Box (Highest-Priority Section Group Selected)cccce....... 1
Figure 14.1 Select FUNCLION Dialog BOXcoiiuiiiiiiiiiiiiiiiiie it
Figure 15.1 Minimizing @ WINQOWcccoiiiiiiiiiiiiiiiiie et e e e 1
Figure 15.2 Disassembly WINAOW ICONcooiiiiiiiiiiiiiiiiiiee e
Figure 15.3 1cons Before ArrangemeENntciii i i e e e e e e e e e e e eeanaans
Figure 15.4 1cons After ArrangemENL.........oooviiiiiiiiii e ee e e e e e e e e e e e e e e eaaeas,
Figure 15.5 SeleCting @ WINUOWuuuiiiiii i e e e e e e e e e e et

Rev. 6.0, 09/00, page xiv of xv

Figure 15.6 Customize Toolbar (Toolbars) Dialog BOX...........ccuvvviiiiiiiiiieeiecceeeeeee e

Figure 15.7 Customize Toolbar (Commands) Dialog BOX...........ccuveeeeeiiiiiieeieiiiiiiiiee e
Figure 15.8 FONt DIalog BOX........ueeiiiiiiiiiiiiiei ittt 74......
Figure 15.9 Customize File Filter Dialog BOXcoooiiiiiiiiiiiiiiiiieee e
Figure 15.10 SesSion NameE DiSPIay......ccieiiiiiiiiii s e e e e e e e e aanenaaan,
Figure 15.11 HDI Options (Session) Dialog BOX..........uuuiiiiiiieeeiiiiiieiiiiiiiiiies e e e eeeeeeeeeeannenannn,
Figure 15.12 HDI Options (Confirmation) Dialog BOXceiiiiiieeiiiiiiiiiiiiiiiie e eeeeeeeeeeenanns 1
Figure 15.13 HDI Options (Viewing) Dialog BOXcccoiiiuiiiiieiiiiiiiieeeeiiiiiee et 1
Figure 15.14 Setting RAAIX......ccciiiiiiiiieiiiiiiiiee et e e 179......
Figure A1 HDI SyStem MOAUIESccoiiiiiiiiiieiie et
Tables
Table 3.1 Simulator/Debugger Platforms and CPU TYPESccovviiiiieiiiiiiiiiee e
Table 3.2 MEIMOIY TYPES ..ttt e et et e e e e e e e e e e e e e e
Table 3.3 [/O FUNCHIONS ...ttt e s
Table 3.4 Processing When a Break Condition is Satisfied..........cccccccoeeeiiiiiiiiiiiiciennnn,
Table 3.5 SIMUIALION ETOIS ...t
Table 3.6 Register States at Simulation Error StOP.........coeeviiiiiieeiiiiiieee e
Table 6.1 Simulator/Debugger COMMANAS..........eeiiiiiiiiiiieai et
Table 7.1 INFOIrMALION MESSAUESeeeeieiiiiiiiie ettt e e e e e
Table 7.2 ErTOr MESSAQEScoeiiieiiiiiiiiee ittt et e e e e e e et s s e e e e e e e e e eeaeaenanaaaas

Rev. 6.0, 09/00, page xv of xv
RENESAS

Section 1 Overview

The Hitachi Debugging Interface (HDI) is a Graphical User Interface intended to ease the
development and debugging of applications written in C/C++ programming language and
assembly language for Hitachi microcomputers. Its aim is to provide a powerful yet intuitive w
of accessing, observing and modifying the debugging platform in which the application is
running.

Key Features

« Windows® GUI for debugging
* Intuitive interface

e On-line help

Common “Look & Feel”

Note: The HDI does not run on Windows$ version 3.1.

The simulator/debugger provides simulation functions for H8S and H8/300 series
microcomputers (H8/300, H8/300L, H8/300H, H8S/2600, and H8S/2000 series) and provides
debugging functions for programs written in C, C++, or assembly language. Therefore, the
simulator/debugger promotes efficient debugging of programs.

When used with the following software, the simulator/debugger reduces the time required for
software development.

» Hitachi Embedded Workshop (HEW)

» H8S and H8/300 series C/C++ compiler
» HB8S and H8/300 series cross assembler
» Optimizing linkage editor

1.1 Features

» Since the simulator/debugger runs on a host computer, software debugging can start with
using an actual user system, thus reducing overall system development time.

» The simulator/debugger performs a simulation to calculate the number of instruction
execution cycles for a program, thus enabling performance evaluation without using an ac
user system.

» The simulator/debugger offers the following features and functions that enable efficient
program testing and debugging.

O The ability to handle all of the H8S and H8/300 series CPUs
00 Functions to trace instructions or subroutines

Rev. 6.0, 09/00, page 1 of 187
RENESAS

O

O
g
O
g

Functions to stop or continue execution when an error occurs during user program
execution

Profile data acquisition and function-unit performance measurement

A comprehensive set of break functions

Functions to set or edit memory maps

Functions to display function call history

» The breakpoint, memory map, performance, and trace can be set through the dialog box
under Window& Environments corresponding to each memory map of the H8S and H8/300
microcomputers can be set through the dialog box.

1.2

Target User Program

Load modules in ELF/DWARF format and S-type format can be debugged with the
simulator/debugger. These load modules are called user programs in this manual.

Figure 1.1 shows the creation of target user programs to be debugged.

Rev. 6.0, 09/00, page 2 of 187

RENESAS

C source
program

C++ source
program

Assembly source
program

H8S and H8/300 series H8S and H8/300 series
cross assembler C/C++ compiler

Instance
information file

Prelinker

Object
load module
Y

Optimizing linkage editor

\

Load module Stack information/
(ELF/S type) profile information

L —

H8S and H8/300 series
simulator/debugger

A

Library file

Figure 1.1 Creation of Target User Programs

Rev. 6.0, 09/00, page 3 of 187
RENESAS

1.3 Simulation Range
The simulator/debugger supports the following H8S and H8/300 series microcomputer functior

e All CPU instructions
» Exception processing
* Registers

e All address areas

The simulator/debugger does not support the following H8S and H8/300 series MCU functions
Programs that use these functions must be debugged with the H8S and H8/300 series emulat

e Dual port RAM

e Timers

e Pulse width modulator (PWM)

» Serial communication interface (SCI)
» A/D converter

e /O ports

e Interrupt controller

Rev. 6.0, 09/00, page 4 of 187
RENESAS

Section 2 System Overview

HDI is a modular software system, utilizing self-contained modules for specific tasks. These
modules are linked to a general purpose Graphical User Interface, which prosiaesan look
& feel independent of the particular modules with which the system is configured.

21 User Interface

The HDI Graphical User Interface is a WindGvegplication that presents the debugging
platform to you and allows you to set up and modify the system. Refer to a standard Windows
user manual for details on how to operate within a Wind@pslication.

2.2 Data Entry

When entering numbers in any dialog box or field you can always enter an expression insteac
a simple number. This expression can contain symbols and can use the operators in the C/C-
programming languages. Use of C/C++ programming language features such as arrays and
structures is only available if an object DLL that supports C/C++ programming language
debugging is in use.

In some dialogs, where there is a control expecting an end address, it is possible to enter a rz
by prefixing the value with a + sign. This will set the actual end address to be equal to the sta
address plus the entered the value.

221 Operators
The C/C++ programming language operators are available:

+ * /1 &1 |1 Aa ~ !1 >>1 <<1 %1 (1)1 <1 >1 <:1 >:1 == !:1 &&1 ||

2.2.2 Data Formats

Unprefixed data values will be taken as being in the default radix set [etup->Radix]
menu option. The exception is count field which use decimal values by default (independent
the current default system radix).

Symbols may be used by nhame and ASCII character strings can be entered if surrounded by
single quote characters, e.g. ‘demo’.

The following prefixes can be used to identify radices:
O Octal
B’ Binary

Rev. 6.0, 09/00, page 5 of 187
RENESAS

D’ Decimal
H’ Hexadecimal
0Ox Hexadecimal

The contents of a register may be used by specifying the register name, prefixed by the #
character, e.g.:

#R1, #ERS3, #R4L

2.2.3 Precision

All mathematics in expression evaluation is done using 32 bits (signed). Any values exceeding
32 bits are truncated.

224 Expression Examples

Buffer_start + 0x1000

#R1 | B’10001101

((pointer + (2 * increment_size)) & H'FFFF0000) >> D'15
I(flag * #ER4)

2.25 Symbol Format

You can specify and reference symbols in the same format as in C/C++ programming languag
Cast operators may be used together with symbols, and you can reference data after its type t
been converted. Note the following limitations.

» Pointers can be specified up to four levels.
» Arrays can be specified up to three dimensions.
* No typedef name can be used.

2.2.6 Symbol Examples

Object.value : Specifies direct reference of a member (C/C++)
p_Object->value : Specifies indirect reference of a member (C/C++)
Class::value : Specifies reference of a member with class (C++)
*value : Specifies a pointer (C/C++)

array[0] : Specifies an array (C/C++)

Object.*value : Specifies reference of a pointer to member (C++)
::g_value : Specifies reference of a global variable (C/C++)
Class::function(short) : Specifies a member function (C++)

(struct STR) *value : Specifies cast operation (C/C++)

Rev. 6.0, 09/00, page 6 of 187
RENESAS

2.3 Help

HDI has a standard WindoWsontext sensitive help system. This provides on-line information
about using the debugging system.

Help can be invoked by pressing fhekey or via the Help menu. Additionally, some windows
and dialog boxes have a dedicated help button to launch the help file at the appropriate conte

2.3.1 Context Sensitive Help

To get help on a specific item in the HDI help cursor can be used. To enable the help cursor,
pressSHIFT+F1 or click the button on tool bar.

Your cursor then changes to include a question mark. You can then click on the item for whic
you require help and the help system will be opened at the appropriate content.

Rev. 6.0, 09/00, page 7 of 187
RENESAS

Rev. 6.0, 09/00, page 8 of 187
RENESAS

Section 3 Simulator/Debugger Functions
This section describes the H8S and H8/300 series simulator/debugger functions.

3.1 Simulator/Debugger Platforms and CPU Types
Each simulator/debugger platform corresponds to a specific type of CPU as listed in table 3.1
Select a correct platform from ti$elect Sessiodialog box.

Table 3.1 Simulator/Debugger Platforms and CPU Types

Simulator/Debugger Platform CPU Type

H8/300 simulator H8/300

H8/300L simulator H8/300L

H8/300HA simulator H8/300H advanced mode
H8/300HN simulator H8/300H normal mode
H8S/2600A simulator H8S/2600 advanced mode
H8S/2600N simulator H8S/2600 normal mode
H8S/2000A simulator H8S/2000 advanced mode
H8S/2000N simulator H8S/2000 normal mode

3.2 Simulator/Debugger Memory Management

3.2.1 Memory Map Specification

A memory map is specified to calculate the number of memory access cycles during simulati
The simulator/debugger supports the memory types shown in table 3.2.

Table 3.2 Memory Types

Memory Type User Program Execution
Internal ROM Enabled
Internal RAM Enabled
External memory Enabled
Internal 1/0 Disabled
EEPROM Enabled

A memory map can be specified in tBgstem Configurationdialog box to calculate the
number of memory access cycles during simulation.

Rev. 6.0, 09/00, page 9 of 187
RENESAS

The following items can be specified:

* Memory type

« Start and end addresses of the memory area
e Number of memory access cycles

* Memory data bus width

The memory types that can be specified depend on the CPU. For details, refer to section 5.18
System Configuration Dialog Box. The user program can be executed in all areas except for th
internal 1/0 area.

3.2.2 Memory Resource Specification
A memory resource must be specified to load and execute a user program.

The memory resource, including the following items, can be specified 8yttem Memory
Resource Modifydialog box.

e Start address
 End address
e Access type

The access type can be read/write, read-only, or write-only. Since an error occurs if the user
program attempts an illegal access (for example, trying to write to a read-only memory), such
illegal access in the user program can be easily detected.

However, unlike the other memory areas, a read-only EEPROM can be written to with the
EEPMOV instruction and a writable EEPROM can be written to only with the EEPMOV
instruction.

3.3 Instruction Execution Reset Processing

The simulator/debugger resets the instruction execution count and instruction execution cycles
when:

» The program counter (PC) is modified after the instruction simulation stops and before it
restarts.

« The RUN command to which the execution start address has been specified is executed.
 Initialization is performed, or a program is loaded.

Rev. 6.0, 09/00, page 10 of 187
RENESAS

3.4 Exception Processing

The simulator/debugger detects the exceptions corresponding to TRAPA instructions (only fo
the H8/300H and H8S series) and traces (only for the H8S series) and then simulates exceptl
processing.

The simulator/debugger simulates exception processing with the following procedures.

1. Detects an exception during instruction execution.

2. Saves the PC and CCR register in the stack area. If the validity bit in EXR is set to 1, the
simulator/debugger also saves the EXR register. If an error occurs while saving registers,
simulator/debugger stops exception processing, displays that an exception processing err
has occurred, and enters the command input wait state.

3. Sets the | bit in the CCR register as 1.

4. Reads the start address from the vector address corresponding to the vector number. If al
error occurs while reading the address, the simulator/debugger stops exception processin
displays that an exception processing error has occurred, and enters the command input \
state.

5. Starts instruction execution from the start address. If the start address is 0, the
simulator/debugger stops exception processing, displays that an exception processing err
has occurred, and enters the command input wait state.

3.5 Features Specific to H8S/2600 CPU

MAC Instruction: The H8S/2600 CPU performs multiply and accumulate operation (MAC
instruction). Either saturation or non-saturation multiply and accumulate operation can be
executed depending on the state of bit 7 (the MACS bit) in the SYSCR register in the internal
I/O:

MACS bit = 0: Non-saturation operation
MACS bit = 1: Saturation operation

EXR Register: The H8S/2600 CPU has the EXR register, which can be enabled or disabled |
the state of bit 5 (the EXR bit) in the SYSCR register in the internal 1/O:

EXR bit = 0;: EXR disabled
EXR bit = 1: EXR enabled

The SYSCR register address can be specified [SM§CR Address]in theSystem
Configuration dialog box.

Note: The SYSCR register address must be within the internal 1/0; otherwise the
simulator/debugger assumes the MACS bit as 0 (non-saturation operation) and
EXR bit as 0 (EXR disabled).

Rev. 6.0, 09/00, page 11 of 187
RENESAS

For details, refer to section 5.18, System Configuration Dialog Box, section 5.22, Control
Registers Window, and section 5.23, SYSCR Dialog Box.

3.6 Control Registers

For the H8S/2600 series, the simulator/debugger supports the system control register (SYSCF
as a memory-mapped control register. Therefore, a user program using multiply and accumula
operation and EXR access can be simulated and debugged.

The SYSCR address can be specified ugtSCR Address]in theSystem Configuration
dialog box.

To modify or display the control register value, useG@obatrol Registerswindow and the
SYSCRdialog box. For details, refer to section 5.18, System Configuration Dialog Box, sectior
5.22, Control Registers Window, and section 5.23, SYSCR Dialog Box.

3.7 Trace

The simulator/debugger writes the results of each instruction execution into the trace buffer. T
trace buffer can hold the results for up to 1024 instruction executions. The conditions for the
trace information acquisition can be specified inThece Acquisition dialog box. Click the

right mouse button in th€race window and choospAcquisition] from the popup menu to

display theTrace Acquisition dialog box. The acquired trace information is displayed in the
Trace window.

The trace information displayed in tfieace window is as follows.

» Total number of instruction execution cycles

» Instruction address

+ CCR

» Multiplier internal flag (only for the H8S/2600 series)

e Instruction mnemonic

» Data access information (destination and accessed data)
e C/C++ or assembly-language source programs

The trace information can be searched. The search conditions can be specifiddacehe
Searchdialog box. Click the right mouse button in fhiece window and choosf=ind] from
the popup menu to display tiieace Searchdialog box.

For details, refer to section 5.14, Trace Window through section 5.16, Trace Search Dialog Bo

Rev. 6.0, 09/00, page 12 of 187
RENESAS

3.8 Standard I/O and File 1/0O Processing

The simulator/debugger provides tBienulated 1/0 window to enable the standard I/O and file
I/0 processing listed in table 3.3 to be executed by the user program. When the I/O processir
executed, th&imulated 1/0 window must be open.

Table 3.3 lists the I/O processing functions supported by the simulator/debugger. Each functi
has three types of function codes: those for the 16-bit address, for the 24-bit address, and for
32-bit address. Select one according to the target CPU.

Table 3.3 I/O Functions

Function Code
16-Bit 24-Bit 32-Bit Function

No. Address Address Address Name Description

1 H'01 H'11 H'21 GETC Inputs one byte from the standard input device
2 H'02 H'12 H'22 PUTC Outputs one byte to the standard output device
3 H'03 H'13 H'23 GETS Inputs one line from the standard input device

4 H'04 H'14 H'24 PUTS Outputs one line to the standard output device
5 H'05 H'15 H'25 FOPEN Opens afile

6 H'06 H'06 H'06 FCLOSE Closes a file

7 H'07 H'17 H'27 FGETC Inputs one byte from a file

8 H'08 H'18 H'28 FPUTC Outputs one byte to a file

9 H'09 H'19 H'29 FGETS Inputs one line from a file

10 HOA H'1A H'2A FPUTS Outputs one line to a file

11 HOB H'0B H'0B FEOF Checks for end of file

12 HOC H'0C H'0C FSEEK Moves the file pointer

13 H'OD H'0D H'0D FTELL Returns the current position of the file pointer

To perform 1/O processing, use tf&ystem Call Address]in theSystem Configurationdialog
box in the following procedure.

1. Setthe address specialized for I/O processing ifBfsem Call Address] selec{Enable]
and execute the program.

2. When detecting a subroutine call instruction (BSR or JSR), that is, a system call to the
specialized address during user program execution, the simulator/debugger performs 1/0O
processing by using the RO and R1 values (H8/300 and H8/300L series) or the ER1 value
(H8/300H and H8S series) as the parameters.

Therefore, before issuing a system call, set as follows in the user program:

Rev. 6.0, 09/00, page 13 of 187
RENESAS

» Set the function code (table 3.3) to the RO register

MSB 1 byte 1 byte LSB
| H'01 | Function code |

» Set the parameter block address to the R1 register (for the parameter block, refer to each
function description)

MSB LSB

| Parameter block address |

» Reserve the parameter block and input/output buffer areas
Each parameter of the parameter block must be accessed in the parameter size.

After the 1/O processing, the simulator/debugger resumes simulation from the instruction that
follows the system call instruction.

Each 1/O function is described in the following format:

@) (4)
3

Parameter Block

®)

Parameters

(6)

(1) Number corresponding to table 3.3
(2) Function name

(3) Function code

(4) /0O overview

(5) I/O parameter block

(6) /0O parameters

Rev. 6.0, 09/00, page 14 of 187
RENESAS

1 GETC Inputs one byte from the standard input device
H'01, H'11, H'21

Parameter Block

* Function code: H'01 (for the 16-bit address)
One byte One byte

+0 ‘ Input buffer start address ‘

e Function code: H'11 (for the 24-bit address) or H'21 (for the 32-bit address)
One byte One byte

+0
r--- Input buffer start address ~ ---1

+2

Parameters

« Input buffer start address (input)
Start address of the buffer to which the input data is written to.

2 PUTC Outputs one byte to the standard output device
H'02, H'12, H'22

Parameter Block

* Function code: H'02 (for the 16-bit address)
One byte One byte

+0 ‘ Output buffer start address ‘

* Function code: H'12 (for the 24-bit address) or H'22 (for the 32-bit address)
One byte One byte

+0
- Output buffer start address ~ ----
+2

Parameters

e Output buffer start address (input)
Start address of the buffer in which the output data is stored.

Rev. 6.0, 09/00, page 15 of 187
RENESAS

3 GETS Inputs one line from the standard input device
H'03, H'13, H'23

Parameter Block

* Function code: H'03 (for the 16-bit address)
One byte One byte

+0 ‘ Input buffer start address ‘

e Function code: H'13 (for the 24-bit address) or H'23 (for the 32-bit address)
One byte One byte

+0
F--- Input buffer start address ~ ---1

+2

Parameters

» Input buffer start address (input)
Start address of the buffer to which the input data is written to.

4 PUTS Outputs one line to the standard output device
H'04, H'14, H'24

Parameter Block

* Function code: H'04 (for the 16-bit address)
One byte One byte

+0 ‘ Output buffer start address ‘

* Function code: H'14 (for the 24-bit address) or H'24 (for the 32-bit address)
One byte One byte

+0
--- Output buffer start address ---
+2

Parameters

e Output buffer start address (input)
Start address of the buffer in which the output data is stored.

Rev. 6.0, 09/00, page 16 of 187
RENESAS

5 FOPEN Opens a file
H'05, H'15, H'25

The FOPEN opens a file and returns the file number. After this processing, the returned file
number must be used to input, output, or close files. A maximum of 256 files can be open at t
same time.

Parameter Block

e Function code: H'05 (for the 16-bit address)

One byte One byte
+0 Return value File number
+2 Open mode Unused
+4 Start address of file name

* Function code: H'15 (for the 24-bit address) or H'25 (for the 32-bit address)

One byte One byte
+0 Return value File number
+2 Open mode Unused
+: --- Start address of file name ----
+

Parameters

e Return value (output)
0: Normal completion
—1: Error

* File number (output)
The number to be used in all file accesses after opening.

* Open mode (input)
H'00: "r"

H'01: "w"

H'02: "a"

H'03: "r+"
H'04: "w+"
H'05: "a+"
H'10: "rb"
H'11: "wb"
H'12: "ab"

Rev. 6.0, 09/00, page 17 of 187
RENESAS

H'13: "r+b"
H'14: "w+b"
H'15: "a+b"
These modes are interpreted as follows.
“r'": Open for reading.
"w": Open an empty file for writing.
"a": Open for appending (write starting at the end of the file).
"r+": Open for reading and writing.
"w+": Open an empty file for reading and writing.
"a+" : Open for reading and appending.
"b" : Open in binary mode.
» Start address of file name (input)
The start address of the area for storing the file name.

6 FCLOSE Closes a file
H'06

Parameter Block

One byte One byte

+0 ‘ Return value File number

Parameters

* Return value (output)
0: Normal completion
-1: Error
e File number (input)
The number returned when the file was opened.

Rev. 6.0, 09/00, page 18 of 187
RENESAS

7 FGETC Inputs one byte from a file
H'07, H'17, H'27

Parameter Block

* Function code: H'07 (for the 16-bit address)

One byte One byte
+0 Return value ‘ File number
+2 Input buffer start address

* Function code: H'17 (for the 24-bit address) or H'27 (for the 32-bit address)

One byte One byte
+0 Return value ‘ File number
+2
F--- Input buffer start address ----
+4

Parameters

e Return value (output)
0: Normal completion
—1: EOF detected
* File number (input)
The number returned when the file was opened.
» Start address of input buffer (input)
The start address of the buffer for storing input data.

Rev. 6.0, 09/00, page 19 of 187
RENESAS

8 FPUTC Outputs one byte to a file
H'08, H'18, H'28

Parameter Block

* Function code: H'08 (for the 16-bit address)

One byte One byte
+0 Return value ‘ File number
+2 Output buffer start address

* Function code: H'18 (for the 24-bit address) or H'28 (for the 32-bit address)

One byte One byte
+0 Return value ‘ File number
+2

Output buffer start address ----|
+4

Parameters

e Return value (output)
0: Normal completion
—1: Error
* File number (input)
The number returned when the file was opened.
» Start address of output buffer (input)
The start address of the buffer used for storing the output data.

Rev. 6.0, 09/00, page 20 of 187
RENESAS

9 FGETS Reads character string data from a file
H'09, H'19, H'29

Reads character string data from a file. Data is read until either a new line code or a NULL cc
is read, or until the buffer is full.

Parameter Block

* Function code: H'09 (for the 16-bit address)

One byte One byte
+0 Return value ‘ File number
42 Buffer size
+4 Input buffer start address

e Function code: H'19 (for the 24-bit address) or H'29 (for the 32-bit address)

One byte One byte
+0 Return value ‘ File number
42 Buffer size
Mol Input buffer start address -~ -1
+6

Parameters

* Return value (output)
0: Normal completion
—1: EOF detected
e File number (input)
The number returned when the file was opened.
« Buffer size (input)
The size of the area for storing the read data. A maximum of 256 bytes can be stored.
» Start address of input buffer (input)
The start address of the buffer for storing input data.

Rev. 6.0, 09/00, page 21 of 187
RENESAS

10 FPUTS Writes character string data to a file
H'OA, H'1A, H'2A

Writes character string data to a file. The NULL code that terminates the character string is no
written to the file.

Parameter Block

* Function code: H'OA (for the 16-bit address)

One byte One byte
+0 Return value ‘ File number
+2 Output buffer start address

* Function code: H'1A (for the 24-bit address) or H'2A (for the 32-bit address)

One byte One byte
+0 Return value ‘ File number
+2

Output buffer start address ----
+4

Parameters

e Return value (output)
0: Normal completion
—1: Error
» File number (input)
The number returned when the file was opened.
» Start address of output buffer (input)
The start address of the buffer used for storing the output data.

Rev. 6.0, 09/00, page 22 of 187
RENESAS

11

FEOF

H'0B

Checks for end of file

Parameter Block

Parameters

Return value (output)

One byte One byte

+0 ‘ Return value File number

0: File pointer is not at EOF

—1: EOF detected
File number (input)

The number returned when the file was opened.

12

FSEEK

H'0C

Moves the file pointer to the specified position

Parameter Block

Parameters

Return value (output)

+0
+2
+4
+6

0: Normal completion

—1: Error

File number (input)

One byte One byte
Return value File number
Direction Unused

Offset (high-order word)
Offset (low-order word)

The number returned when the file was opened.

Direction (input)

0: The offset specifies the position as a byte count from the start of the file.

1: The offset specifies the position as a byte count from the current file pointer.
2: The offset specifies the position as a byte count from the end of the file.

Rev. 6.0, 09/00, page 23 of 187

RENESAS

« Offset (input)

The byte count from the location specified by the direction parameter.

13 FTELL
H'0OD

Returns the current position of the file pointer

Parameter Block

+0
+2
+4

Parameters

e Return value (output)
0: Normal completion
—1: Error

* File number (input)

One byte One byte

Return value File number

Offset (high-order word)
Offset (low-order word)

The number returned when the file was opened.

» Offset (output)

The current position of the file pointer, as a byte count from the start of the file.

The following shows an example for inputting one character as a standard input (from a
keyboard). As the system call address, label SYS_CALL is specified:

MOV.W #H'0101,R0
MOV.W #PARM, R1
JSR @SYS_CALL
STOP NOP
SYS_CALL NOP
PARM .DATA.W .INBUF
INBUF .RES.B 2
.END

Rev. 6.0, 09/00, page 24 of 187

RENESAS

3.9 Calculation of Instruction Execution Cycles

The simulator/debugger calculates the number of instruction execution cycles using the
expression described in the H8S series or H8/300 series programming manual, and the data
width and the number of access cycles specified iSylstem Configurationdialog box.

However, the calculated number of execution cycles may differ from that for the actual user
system because the number of instruction execution cycles for some instructions and proces:
are treated as follows.

¢ MOVFPE and MOVTPE instructions
The number of data transfer cycles of an E-clock-synchronous instruction ranges from 9 tc
16. The simulator/debugger calculates the total number of instruction execution cycles by
assuming the number of data transfer cycles as 11, and adding the number of operand ac
cycles to it. The number of operand access cycles is determined by the memory data bus
width and the number of memory access cycles.

» EEPMOYV instruction
The number of execution cycles for an EEPROM write instruction is the sum of the
instruction read cycles and data transfer cycles.

» SLEEP instruction
The simulator/debugger does not count the number of execution cycles of the SLEEP
instruction because the instruction is usually used to stop program execution.

» Standard I/O and file I/O processing
The simulator/debugger does not count the number of execution cycles of standard I/O an
file I/O processing because the processing is specific to the simulator/debugger. Here,
standard 1/O and file 1/O processing begins when execution has jumped, due to the BSR ¢
JSR instruction, to an address specifiefBystem Call Address]and ends when execution
has returned to the calling address.

3.10 Break Conditions

The simulator/debugger provides the following conditions for interrupting the simulation of a
user program during execution.

» Break due to the satisfaction of a break command condition

» Break due to the detection of an error during execution of the user program
« Break due to a trace buffer overflow

» Break due to execution of the SLEEP instruction

e Break due to thESTOP] button

Rev. 6.0, 09/00, page 25 of 187
RENESAS

3.10.1 Break Due to the Satisfaction of a Break Command Condition

There are five break commands as follows:

e BREAKPOINT: Break based on the address of the instruction executed
» BREAK_ACCESS: Break based on access to a range of memory
» BREAK_DATA: Break based on the value of data written to memory

« BREAK_REGISTER: Break based on the value of data written to a register
e BREAK_SEQUENCE: Break based on a specified execution sequence

When a break condition is satisfied during user program execution, the instruction at the
breakpoint may or may not be executed before a break depending on the type of break, as list
in table 3.4.

Table 3.4 Processing When a Break Condition is Satisfied

Command Instruction When a Break Condition is Satisfied
BREAKPOINT Not executed

BREAK_ACCESS Executed

BREAK_DATA Executed

BREAK_ REGISTER Executed

BREAK_SEQUENCE Not executed

For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address other
than the beginning of the instruction, the break condition will not be detected.

When a break condition is satisfied during user program execution, a break condition satisfact
message is displayed on the status bar and execution stops.

3.10.2 Break Due to the Detection of an Error During Execution of the User Program

The simulator/debugger detects simulation errors, that is, program errors that cannot be detec
by the CPU exception generation functions. Blgstem Configurationdialog box specifies
whether to stop or continue the simulation when such an error occurs. Table 3.5 lists the error
messages, error causes, and the action of the simulator/debugger in the continuation mode.

Rev. 6.0, 09/00, page 26 of 187
RENESAS

Table 3.5

Error Message

Simulation Errors

Error Cause

Processing in Continuation
Mode

Address Error

A PC value was an odd number.

Operates in the same way as the

An instruction was fetched from the
internal I/O area.

actual device.

Word data was accessed to an odd-
numbered address.

Longword data was accessed to an odd-
numbered address.

Memory Access Error

Access to a memory area that has not
been allocated

On memory write, nothing is
written; on memory read, all bits

Write to a memory area having the write
protect attribute

are read as 1.

Read from a memory area having the
read disable attribute

Access to an area where memory does
not exist

Data was written to EEPROM with an
instruction other than EEPMOV.

lllegal Instruction

A code other than an instruction was
executed.

Always stops.

MQOV.B Rn, @-SP or MOV.B @SP+, Rn
was executed.

Continues operation; the result is
not guaranteed.

lllegal Operation

In the DAA or DAS instruction,
relationship between the C and H flags
of CCR, and their relation to the value
before compensation were incorrect.

Continues operation; the result is
not guaranteed.

Zero-division or overflow was caused by
the DIVXU or DIVXS instruction.

When a simulation error occurs in the stop mode, the simulator/debugger returns to the comn
wait state after stopping instruction execution and displaying the error message. Table 3.6 lis
the states of the program counter (PC) at simulation error stop. The status register (SR) value
does not change at simulation error stop.

RENESAS

Rev. 6.0, 09/00, page 27 of 187

Table 3.6 Register States at Simulation Error Stop

Error Message PC Value

Address Error, ¢ When an instruction is read:
Memory Access Error The start address of the instruction that caused the error.
* When an instruction is executed:

The instruction address following the instruction that caused the error.

lllegal Instruction The start address of the instruction that caused the error.

lllegal Operation The instruction address following the instruction that caused the error.

Use the following procedure when debugging programs which include instructions that genera
simulation errors.

a. First execute the program in the stop mode and confirm that there are no errors except tho
in the intended locations.

b. After confirming the above, execute the program in the continuation mode.

Note: If an error occurs in the stop mode and simulation is continued after changing the
simulator mode to the continuation mode, simulation may not be performed
correctly. When restarting a simulation, always restore the register contents and
the memory contents to the state prior to the occurrence of the error.

3.10.3 Break Due to a Trace Buffer Overflow

After the[Break] mode is specified witfTrace buffer full handling] in theTrace Acquisition
dialog box, the simulator/debugger stops execution when the trace buffer becomes full. The
following message is displayed when execution is stopped.

Trace Buffer Full

3.10.4 Break Due to Execution of the SLEEP Instruction

When the SLEEP instruction is executed during instruction execution, the simulator/debugger
stops execution. The following message is displayed when execution is stopped.

Sleep

Note: When restarting execution, change the PC value to the instruction address at the
restart location.

Rev. 6.0, 09/00, page 28 of 187
RENESAS

3.10.5 Break Due to the [STOP] Button

Users can forcibly terminate execution by clicking fBR€OP] button during instruction
execution. The following message is displayed when execution is terminated.

Stop

Execution can be resumed with the GO or STEP command.

3.11 Floating-Point Data

Floating-point numbers can be displayed and input for the following real-number data, which
makes floating-point data processing easier.

« Data in theSet Breakdialog box when the break type is sefRoeak Data] or [Break
Register]

» Data in theMemory window

« Data in theFill Memory dialog box

» Data in theSearch Memorydialog box

The floating-point data format conforms to the ANSI C standard.

In the simulator/debugger, the rounding mode for floating-point decimal-to-binary conversion
can be selected in tl8ystem Configurationdialog box. One of the following two modes can be
selected:

* Round to nearest (RN)
e Round to zero (RZ)

If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, i
is converted to zero in RZ mode, and it is left as a denormalized number in RN mode. If an
overflow occurs during decimal-to-binary conversion, the maximum floating-point value is
returned in RZ mode, and the infinity is returned in RN mode.

3.12 Display of Function Call History

The simulator/debugger displays the function call history irsStiaek Tracewindow when
simulation stops, which enables program execution flow to be checked easily. Selecting a
function name in th&tack Tracewindow displays the corresponding source program in the
Sourcewindow; the function that has called the current function can also be checked.

The displayed function call history is updated in the following cases:

Rev. 6.0, 09/00, page 29 of 187
RENESAS

* When simulation stops under the break conditions described in section 3.10, Break
Conditions.

* When register values are modified while simulation stops due to the above break condition:
* While single-step execution is performed.

For details, refer to section 5.25, Stack Trace Window.

Rev. 6.0, 09/00, page 30 of 187
RENESAS

Section 4 Menus

This document uses the standard Micrdsofénu naming convention.

Menu title Check mark
Menu = e -
bar EX Hitachi Debugging Interface - MANUAL - EG000 H85 /2600 Emulator H=] E3
Drop- » I AP
donn 1l N e) [e Pz [= e el
nal
menu Cusztomise Decimal
Select Platiormy..s g;::[l

Menu Configure Plationmees I

option |

Ellipsis Cascading menu

Figure 4.1 Menus
Check marks indicate that the feature provided by the menu option is selected.

Ellipsis indicates that selecting the menu option will open a dialog box that requires extra
information to be entered.

Refer to your Windowsuser manual for details on how to use the Windawsnu system.

4.1 File

The File menu is used for aspects of the program that access program files.

4.1.1 New Session...

Launches th&elect Sessiodialog box allowing the user to select a new debugging
platform.

4.1.2 Load Session...

Launches th&elect Sessiodialog box allowing the user to load a session from a
selected session file (*.hds extension). A session file contains the debugging platform's settin
and the current program and the position of open child windows (views) - it contains symboals,
breakpoints, or current register values.

Rev. 6.0, 09/00, page 31 of 187
RENESAS

4.1.3 Save Session

Updates the session file for the current session file. If there is no current session file
defined, this acts in a similar manner to tBaje Session As].menu option.

41.4 Save Session As...

Launches th&ave Asdialog box allowing the user to save the current session details under a
new file name. A session file contains the debugging platform's settings, and the current progr
and the position of open child windows (views) - it contains symbols, breakpoints, or current
register values.

4.1.5 Load Program...

Launches théoad Program dialog box, allowing the user to select an object file in
either S-Record (*.mot; *.s20; and *.obj extensions) or ELF/DWARF (*.abs extension) format
and download it to the debugging platform's memory. This will also load the symbols if they are
available in the selected file.

4.1.6 Initialize

This will attempt to re-initialize the debugging system. It will close down any open
child windows and shut down the link to the debugging platform. If this is successful, an attem|
to re-establish the link to the debugging platform will be made. The meksagap ' will

appear in the left-most box of the status bar if this is successful. (See also section 4.4.1, Rese
CPU)

417 Exit

This will close down the HDI. The actions that are carried out by the HDI can be defined by the
user in the 'On Exit' section of th#D| Options dialog box. (See also section 4.6.2, Options...)

4.2 Edit

The Edit menu is used for aspects of the program that access or modify data in the child wind
and debugging platform.

4.2.1 Cut
& Only available if a block is highlighted in a child window whose contents can be
modified.

Rev. 6.0, 09/00, page 32 of 187
RENESAS

This will remove the contents of the highlighted block from the window and place it on the
clipboard in the standard Windomsianner.

422 Copy

Only available if a block is highlighted in a child window whose contents can be

modified. This will copy the contents of the highlighted block to the clipboard in the standard
Windows manner.

4.2.3 Paste

N2 Only available if the contents of the child window can be modified. This will copy the
contents of the Windowslipboard into the child window at the current cursor position.

424 Find...

i, Only available if the window contains text. This will launch Eied dialog box

allowing the user to enter a word and locate occurrences within the text. If a match is found, t
cursor will move to the start of the word.

4.2.5 Evaluate...

Launches th&valuate dialog box allowing the user to enter a numeric expression, e.g
"(#pc + 205)*2 ", and display the result in all currently supported radices.

4.3 View

The View menu is used to select and open new child windows. If the menu option is grayed, t
the features provided by the window are not available with the current debugging platform.

4.3.1 Breakpoints

Opens thdBreakpoints window allowing the user to view and edit current breakpoints.

Rev. 6.0, 09/00, page 33 of 187
RENESAS

4.3.2 Command Line

e Opens th&Command Line window allowing the user to enter text-based commands to

control the debugging platform. These commands can be piped in from a batch file, and the
results piped out to a log file, allowing automatic tests to be performed.

4.3.3 Disassembly...

Launches th&et Addressdialog box allowing the user to enter the address that you
wish to view.

4.3.4 Labels

Launches théabels window allowing the user to manipulate the current program's
symbols (labels).

4.35 Locals

Opens thd.ocals window allowing the user to view and edit the values of the variables
defined in the current function. The contents are blank unless the PC is within a C/C++ source
level function.

4.3.6 Memory...

Launches th©pen Memory Window dialog box allowing the user to specify a
memory block and view format to display withifveemory window.

4.3.7 Performance Analysis

Launches th@erformance Analysiswindow allowing the user to set up and view the
number of times that particular sections of the user program have been called.

4.3.8 Profile-List

[Opens théProfile-List window allowing the user to view the address and size of a
function or a global variable, the number of times the function is called, and profile data.

Rev. 6.0, 09/00, page 34 of 187
RENESAS

4.3.9 Profile-Tree

b Opens théProfile-Tree window allowing the user to view the relation of function calls
in a tree structure. THerofile-Tree window also displays the address, size, and stack size of
each function, number of function calls, and profile data. The stack size, number of function
calls, and profile data are values when the function is called.

4.3.10 Registers

Opens thdRegisterswindow allowing the user to view all the current CPU registers anc
their contents.

4.3.11 Source...

Launches th@®pen dialog box allowing the user to enter a file name of the source file

(in either C/C++ or assembly language format) to view. If the source file is not included within
the current program or there is no debugging information for the file within the 'absolute’ (*.ab
file, then the message "Cannot load program. No Source level debugging available" is display

4.3.12 Status

Opens the&ystem Statusvindow allowing the user to view the debugging platform's
current status and the current session and program names.

4.3.13 Trace

Opens thérace window allowing the user to see the current trace information.

4.3.14 Watch

Opens thé&Vatch window allowing the user to enter C/C++-source level variables and
view and modify their contents.

4.3.15 Simulated I/O

Opens th&imulated 1/0 window enabling the standard I/O and file 1/0.

4.3.16 Stack Trace

Opens thétack Tracewindow displaying the current stack trace information.

Rev. 6.0, 09/00, page 35 of 187
RENESAS

4.3.17 External Tool

Opens thdexternal Tools window allowing the user to use the co-verification tool.

4.4 Run
The Run menu controls the execution of the user program in the debugging platform.

441 Reset CPU

Bi Resets the user system hardware and sets the PC to the reset vector address. (See a
section 4.1.6, Initialize).

442 Go

=l Starts executing the user program at the current PC.

4.4.3 Reset Go

Executes the user program from the reset vector address.

444 Go To Cursor

=l Starts executing the user program at the current PC and continues until the PC equals
the address indicated by the current text cursor (not mouse cursor) position.

445 Set PC To Cursor

L. Changes the value of the Program Counter (PC) to the address at the row of the text
cursor (not mouse cursor). Disabled if no address is available for the current row.

446 Run..

Launches th&un Program dialog box allowing the user to enter temporary breakpoints before
executing the user program.

4.4.7 Step In

Executes a block of user program before breaking. The size of this block is normally a
single instruction but may be set by the user to more than one instruction or a C/C++-source li

Rev. 6.0, 09/00, page 36 of 187
RENESAS

(see also section 4.4.10, Step...). If a subroutine call is reached, then the subroutine will be
entered and the view is updated to include its code.

448 Step Over

T Executes a block of user program before breaking. The size of this block is normally

single instruction but can be set by the user to more than one instruction or a C/C++-source |
(see also section 4.4.10, Step...). If a subroutine call is reached, then the subroutine will not k
entered and sufficient user program will be executed to set the current PC position to the nex
line in the current view.

4.4.9 Step Out

¥ Executes sufficient user program to reach the end of the current function and set the
to the next line in the calling function before breaking.

4,410 Step...

L Launches th&tep Programdialog box allowing the user to modify the settings for
stepping.

4411 Halt

Stops the execution of the user program.

4.5 Memory

The Memory menu is used for aspects of the user program that access memory.

45.1 Refresh
Forces a manual update of the contents of all dpemory windows.
452 Load..

Launches théoad Memory dialog box, allowing the user to select an offset address ir
the memory area, and file name to load from an S-Record format file on disk.

Rev. 6.0, 09/00, page 37 of 187
RENESAS

45.3 Save...

Launches th&ave Memory Asdialog box, allowing the user to select a start and an
end address in the memory area, to save to an S-Record format file on disk. If a block of mem:
is highlighted in a1emory window, these will be automatically entered as the start and end
addresses when the dialog box is displayed.

454 Verify...

=) Launches th&erify S-Record File with Memory dialog box, allowing the user to

select a start and an end address in the memory area to check against the contents of an S-R«
file on disk.

455 Test...

Launches th&est Memory dialog box allowing the user to specify a block of memory
to test for correct read/write operation. The exact test is target dependent. However, in all case
the current contents of the memory will be overwritten - YOUR PROGRAM AND DATA WILL
BE ERASED. This simulator/debugger does not support this function.

456 Fil..

Launches th&ill Memory dialog box allowing the user to fill a block of the debugging
platform's memory with a value. The start and end fields can be specified in the same way as
with the Save option (refer to section 4.5.3, Save...).

457 Copy...

Launches th€opy Memory dialog box allowing the user to copy a block of the
debugging platform's memory to an address within the same memory area. The blocks may
overlap, in which case any data within the overlapped region of the source block will be
overwritten. The start and end fields can be specified in the same way as that with the Save
option (refer to section 4.5.3, Save...).

45.8 Compare...

Launches th€ompare Memory dialog box, allowing the user to select a start and an
end address in the memory area, to check against another area in memory. The start and end
fields can be specified in the same way as that with the Save option (refer to section 4.5.3,
Save..).

Rev. 6.0, 09/00, page 38 of 187
RENESAS

459 Configure Map...

Opens thévlemory Mapping window allowing the user to view and edit the debugging
platform'’s current memory map. In some debugging platform$/é&meory Map dialog box
will open.

4.5.10 Configure Overlay...

Launches th®verlay... dialog box. When the overlay function is used, the target
section group can be selected in the dialog box.

4.6 Setup

The Setup menu is used to modify the settings of the HDI user interface, and the configuratio
the debugging platform.

4.6.1 Status Bar
Toggles the status bar feature on and off. If the feature is enabled then a check mark will be

displayed to the left of the menu text.

4.6.2 Options...

Launches th&lDI Options dialog box allowing the user to modify the settings that are
specific to the HDI (not debugging platform dependent settings).

4.6.3 Radix

E Cascades a menu displaying a list of radix in which the numeric values will b

displayed and entered by default (without entering the radix prefix). The current radix has a
check mark to its left and the associated toolbar button is locked down.

For example, if the current radix is decimal then the number ten will be display&d"znd
may be entered ag0", "H A", "Ox0a ", etc.; if the current radix is hexadecimal then the number
ten will be displayed a€DA" and entered asA", "D'10", etc.

4.6.4 Customize

Dm Cascades a menu displaying a list of options that can be customized by the
user.
Toolbar :When this cascade menu option is selectedCtisomizedialog box is launched.

Rev. 6.0, 09/00, page 39 of 187
RENESAS

Font :When this cascade menu option is selected-time dialog box is launched, allowing a
fixed width font to be selected.

File Filter : When this cascade menu option is selectedCtlsomize File Filter dialog box is
launched, allowing the browser file filters for object, source and memory files to be changed to
match the user’s requirements.

4.6.5 Configure Platform...

E Launches aet-updialog box allowing the user to modify the debugging platform
settings. Refer to section 5.18, System Configuration Dialog Box for more details.

4.7 Window

The Window menu modifies the display of currently open child windows. The following menu
options are always displayed, and a numbered list of current child windows will be appended -
the topmost child window will have a check mark.

4.7.1 Cascade

Arranges the child windows in the standard cascade manner, i.e. from the top left suct
that the title bar of each child window is visible.

472 Tile

Arranges the child windows in the standard tile manner, i.e. sizes each window such
that all are displayed without overlapping.

4.7.3 Arrange Icons

Lines up any iconized windows neatly along the bottom of the parent frame in the
standard manner.

4.7.4 Close All

Closes all the child windows.

Rev. 6.0, 09/00, page 40 of 187
RENESAS

4.8 Help

The Help menu accesses additional information on how to use the functionality provided by
HDI.

4.8.1 Index

Opens the main help file at the index.

4.8.2 Using Help

Opens a help file allowing the user to find out how to use Wintibwsertext help system.

4.8.3 Search for Help on

Opens the main help file and launches$earchdialog box allowing the user to enter and
browse through the file's keywords.

4.8.4 About HDI

Launches thé\bout HDI dialog box allowing the user to view the version of HDI and the
currently loaded DLLs.

Rev. 6.0, 09/00, page 41 of 187
RENESAS

Rev. 6.0, 09/00, page 42 of 187
RENESAS

Section 5 Windows and Dialog Boxes

This section describes types of windows and dialog boxes, the features that they support and
options available through their associated popup menu.

5.1 Breakpoints Window

Breakpoints =1 =] !

00000038 BFR
_main 00000000 BS

sort.c/8

Figure 5.1 Breakpoints Window

This window displays all of the specified breakpoints. Iltems that can be displayed are listed
below.

[Enable] Displays whether the breakpoint is enabled or disabled. Breakpoints wit® roark
O are enabled.

[File/Line] Displays file names and line numbers where breakpoints are specified.

[Symbol] Displays symbols that correspond to breakpoint setting addresses. When no symn
exists, nothing is displayed.

[Address] Displays addresses where breakpoints are specified.

[Type] Displays break types.
BP: PC break
BA: Break access
BD: Break data
BR: Break register (Register name)
BS: Break sequence

When a breakpoint is double clicked in this window, $le¢ Breakdialog box is opened and
break conditions can be modified. If a break sequence is double click&tetileSequence
dialog box is opened.

A popup menu containing the following options is available by right clicking within the window

Rev. 6.0, 09/00, page 43 of 187
RENESAS

5.1.1 Add..

Sets a breakpoint. Launches &t Breakdialog box allowing the user to set a break condition.

51.2 Edit...

Only enabled if a breakpoint is selected. LauncheS#tidBreakdialog box allowing the user to
modify the properties of an existing breakpoint. When [Break Sequence] is selecteate
Sequencdlialog box opens.

513 Delete

Only enabled if a breakpoint is selected. Removes the selected breakpoint. To retain the detai
of the breakpoint but not have it cause a break when its conditions are met, use the Disable
option (see section 5.1.5, Disable/Enable).

5.14 Delete All

Removes all breakpoints from the list.

5.15 Disable/Enable

Only enabled if a breakpoint is selected. Toggles the selected breakpoint between enabled an
disabled (when disabled, a breakpoint remains in the list, but does not cause a break when the
specified conditions are satisfied). When a breakpoint is enabled, a check mark is shown to th
left of the menu text (and a circle is shown in Bmable column for the breakpoint).

5.1.6 Go To Source

OpensSourceor Disassemblywindow at address of breakpoint.

Rev. 6.0, 09/00, page 44 of 187
RENESAS

5.2 Set Break Dialog Box

Set Break i
 Type
" PC Breakpoint - ;
" Break Access End address ;
o Brﬂﬂk Dﬂtﬂ Hegister ;PC
Data ;m
Size ..
;"A[:[:E:SS WPE 'y Byte ' Single float
o)“ \Ward " Double float
5 " Long Word
&+ Equal " Mot equal
Count i
ﬂﬂlp ! _, GK- Eancﬂl

Figure 5.2 Set Break Dialog Box
This dialog box specifies break conditions.

A break type to be set is specified using the radio buttons i yipe] box. ltems that can be
specified are listed below.

[PC Breakpoint] [Start address] Address where a break occurs
[Count] Number of times that a specified instruction is fetched
(default: 1)

[Break Access] [Start address] Start address of memory where a break occurs if the men
is accessed
[End address] End address of memory where a break occurs if the memo
is accessed (If no data is input, only the start address is brez
range)
[Access type] Read, Write, or Read/Write

Rev. 6.0, 09/00, page 45 of 187
RENESAS

[Break Data] [Start Address] Address of memory where a break occurs

[Data] Data value that causes a break
[Size] Data size
[Option] Data match/mismatch
[Break Register] [Register] Register name where break conditions are specified
[Data] Data value that causes a break (If no data is input, a break
occurs whenever data is written to the register)
[Size] Data size
[Option] Data match/mismatch

Note that wheriBreak Sequencejs selected undgiype], theBreak Sequencelialog box
opens.

When[PC Breakpoint] is selected, if an overloaded function or class hame including a membel
function is specified ifiStart Address], theSelect Functiondialog box opens. In the dialog
box, select a function. For details, refer to section 14, Selecting Functions.

Clicking the[OK] button sets the break conditions. Clicking [{@ancel] button closes this
dialog box without setting the break conditions.

5.3 Break Sequence Dialog Box

Break Sequence !

Address1: |H'uuuuuuuu

Address?2: IH'I]I]I]I]::II]I]I] T

0K
Address3: qum]
Addressd4: I e
Addressh: l
Addresshb: i i
AddressT: |
Address8: |

Figure 5.3 Break Sequence Dialog Box

This dialog box specifies the pass addresses as break conditions.

Rev. 6.0, 09/00, page 46 of 187
RENESAS

Specify addresses [Address1]to [Address8]. Not all eight addresses need to be specified.
When an overloaded function or a class name including a member function is specified as a |
address, th&elect Functiondialog box will open; select the function name in the dialog box.
For detalils, refer to section 14, Selecting Functions.

Clicking the[OK] button sets the pass addresses. Clicking@hacel] button closes this dialog
box without adding a new pass address.

54 Command Line Window

' Command Line H=]

G| s | o 4]

*IE pC _Maln _J
»rd

EO: 0000

E1l: 0000

EZ2: 0000

R3: 0000

E4: 0000

ES5: 0000

Ee: 0000

E7: 0000

FC: 1016

CCE: —-0——m7m

< J_‘

Figure 5.4 Command Line Window

Allows the user to control the debugging platform by sending text-based commands instead c
the window menus and commands. It is useful if a series of predefined commands need to be
sent to the debugging platform by calling them from a batch file and, optionally, recording the
output in a log file. The command can be executed by pressing 'Enter' after the command is i
to the text box (Or, thEnter button in the right of the text box is clicked). For information about
the available commands, refer to the on-line help.

If available, the window title displays the current batch and log file names separated by colon

The functionality of the toolbar buttons is identical to the popup menu options shown below.

Rev. 6.0, 09/00, page 47 of 187
RENESAS

54.1 Set Batch File...

Launches th&etBatch File dialog box, allowing the user to enter the name of an HDI

command file (*.hdc). The batch file is then run automatically. The name of the file is shown or
the window title bar.

5.4.2 Play

Runs the last executed HDI command file (*.hdc). It is displayed in gray while the batc
file is running and the display is enabled when the command file execution is terminated and tl
control is returned to the user.

5.4.3 Set Log File...

Launches th®pen Log File dialog box, allowing the user to enter the name of an HDI
log file (*.log). The logging option is automatically set and the name of the file is shown on the
window title bar.

Opening a previous log file will ask the user if they wish to append or over-write the current log

5.4.4 Logging

Toggles logging to file on and off. When logging is active, the button becomes

effective. Note that the contents of the log file cannot be viewed until logging is completed, or
temporarily disabled by clearing the check box. Re-enabling logging will append to the log file.

5.45 Select All

Selects all the output from ti@ommand Line window.

5.4.6 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.5 Disassembly Window
This window is used to display code at the assembly-language level.

This window layout has a different layout from tBeurcewindow, with an additional column
Label which displays the symbol/label name (if available) for that address. Assembler

Rev. 6.0, 09/00, page 48 of 187
RENESAS

information is obtained by disassembling the memory contents, and may be edited or viewed
directly from memory without requiring debug information from the object file.

gDisassemhl_l,l PAUSERSALOUIS-NAMEXESAIZBITAHESTUTATUTORIAL.C N =] B3
Address |BP |C0de |Label |Assembler |S|:|urce Yi‘
ooooio1z 01006DF6& main MOV, I ERG, @-ERT vold mai
poooio1le OFF& MOV. L ER7, ERE

goooiois cAZBO0FF MOV.E @HTO0OFFFF3E: 32, ROL 1f(MI
gooolo0le ES07 AND.E #H"07,ROL

goooiozo AB06 CHME.E #H"06, ROL

0O0010ZzZZ 4702 BEQ EHT1025:8

pgoooioz4 403E BERA AHT1064:8 1
poonioze cAZBO0FF MOV.E AHTO0OFFFF39: 32, ROL ity
ooo0i0zZe AB01 CHME. B #H"01,ROL

goooioze 4708 EEQ @HT1038:8

goooiozo FE01 MOV.E #H"01, ROL 3
poo0i03z cAAB00FF MOV. B ROL, @H'O00OFFFF39: 32

poooioza 6A3B00FF BCLE. B #5, BH'O00FFFEDS: 32 BCRL.
00001040 5528 ESR @ STOF MODE: S STOE
poooio4z 5544 B3R @ _MASE1:3 MASE]
LDBD.‘LD*!& 5574 B3R @ DMAZ RUN:H DMA(E bl

Figure 5.5 Disassembly Window
Each column supports column-specific double-click actions:

» BP - Toggles standard breakpoint at that address.

» Address - Launches ti&et Addressdialog box, allowing the user to enter a new address. If
the address is in a source file, then that file will be opened in a new window (a current sou
view will be brought into focus) with the cursor set to the specified address. Finally, if the
address does not correspond to a source file, then this window will scroll to that location.
When an overloaded function or a class name is entered in the Set Address edit field, the
Select Functiondialog box opens for you to select a function.

» Code and Assembler - Launches Assemblerdialog box allowing the user to modify the
instruction at that address. Note that changes to the machine code do not modify the sour
file, and any changes will be lost at the end of the session.

» Label - Launches thieabel dialog box, allowing the user to enter a new label, or to clear or
edit the name of an existing label.

e Source - Launches editor at location in source (set by optional startup parameters in
Windows' Start menu HDI shortcut).

Within the BP column a list of currently supported standard breakpoint types can be displaye
right clicking. The currently selected standard breakpoint is shown by a check mark to the lef
the menu text.

Rev. 6.0, 09/00, page 49 of 187
RENESAS

A popup menu containing the following options is available by right clicking within the window,
but outside the BP column:

55.1 Copy

Bz
Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

55.2 Set Address...

Launches th&et Addressdialog box, allowing the user to enter a new start address. The
window will be updated so that this is the first address displayed in the top-left corner. When a
overloaded function or a class name including a member function is entergd|ebeFunction
dialog box opens for you to select a function.

553 Go To Cursor

+
= Commences to execute the user program starting from the current PC address. The
program will continue to run until the PC reaches the address indicated by the text cursor (not
mouse cursor) or another break condition is satisfied.

55.4 Set PC Here

Changes the value of the PC to the address indicated by the text cursor (not the mouse cursor

555 Instant Watch...

Launches thénstant Watch dialog box with the name extracted from the view at the current
text cursor (not mouse cursor) position. Only valid in the selected source column.

5.5.6 Add Watch

Adds the name extracted from the view at the current text cursor (not mouse cursor) position ti
the list of watched variables. IVdatch window is not open, then it is opened and brought to the
top of the child windows. Only valid in the source column.

5.5.7 Go to Source
Opens the&ourcewindow corresponding to the current text cursor (not mouse cursor) position.

Only valid in the source column.

Rev. 6.0, 09/00, page 50 of 187
RENESAS

5.6 Labels Window

+ Labels Lo g [s

EE | Talue | Name ﬂ
HTO0O001000 startup boot
HTO0O00101Z main
H'0000106a STOP MODE
H'OOOO108E _ MASEL
HT0OO010BA DMAC RUN
HTOOO0O1180 MAREZ
H'00001lac DTC REGS
H'0OO01Z%E DTC SCI0 ACT
H'OOO01ZEZ DTC 3CI0 RUN
H'O0O0OO01316 MASKS
H'O0000134Z WDT_RUN —
H'O0O001353 DENDOA
HTOOOO136C WOVI
HTOOOO133E TEIO
H'000013Cé COPY MEM
H'O00OO01412 ~ THNITSCT
H'O00OO1453C D ROM ﬂ

Figure 5.6 Labels Window

You can view symbols sorted either alphabetically (by ASCII code) or by address value by
clicking on the respective column heading.

It supports column-specific double-click actions:

» BP — Sets or cancels a standard breakpoint at that address.
« Address - Opens Sourcewindow at the start of the function.
* Name - Launches thedit Label dialog box.

Within the BP column a list of currently supported standard breakpoint types can be displaye
right clicking. The currently selected standard breakpoint is shown by a check mark to the lef
the menu text.

A popup menu containing the following options is available by right clicking within the window
but outside the BP column:

Rev. 6.0, 09/00, page 51 of 187
RENESAS

5.6.1 Add...

Launches thédd Label dialog box:

Add Label

Marme ||

Walue |

| k. | Cancel

Figure 5.7 Add Label Dialog Box

Enter the new label name into the Name field and the corresponding value into the Value field
and pres§OK] . TheAdd Label dialog box closes and the label list is updated to show the new
label. When an overloaded function or a class name is entered in the Name figklette
Function dialog box opens for you to select a function. For details, refer to section 14, Selectin
Functions.

5.6.2 Edit...

Launches th&dit Label dialog box:

Edit Label

Marme
Walug [H'00001012

| k. | Cancel |

Figure 5.8 Edit Label Dialog Box

Edit the label name and value as required and then [@&$sto save the modified version in
the label list. The list display is updated to show the new label details. When an overloaded
function or a class name is entered in the Name fieldSéhect Functiondialog box opens for
you to select a function. For details, refer to section 14, Selecting Functions.

Rev. 6.0, 09/00, page 52 of 187
RENESAS

5.6.3 Find...

Launches th&ind Label Containing dialog box:

Find Label Containing
[
k. I Clear | Cancel |

Figure 5.9 Find Label Containing Dialog Box

Enter all or part of the label name that you wish to find into the edit box and@Kkgkor press
ENTER. The dialog box closes and HDI searches the label list for a label name containing th
text that you entered.

Note: Only the label is stored by 1024 characters of the start, therefore the label name
must not overlap mutually in 1024 characters or less. Labels are case sensitive.

5.6.4 Find Next

After a label has been searched, searches for the next label that matches the search conditio

5.6.5 View Source

Opens the&ourceor theDisassemblywindow that matches the address of the label.

5.6.6 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.6.7 Delete

Deletes the currently selected label from the symbol list. Alternatively use the Delete accelere
key. A confirmation message box appears:

Rev. 6.0, 09/00, page 53 of 187
RENESAS

HDI =

Please confirm:
Delete label.

Figure 5.10 Message Box for Confirming Label Deletion

If you click on the[Yes] button the label is removed from label list and the window display is
updated. If the message box is not required then do not select the Delete Label option of the
Confirmation tab in théiDI Options dialog box.

5.6.8 Delete All

Deletes all the labels from the list. A confirmation message box appears:

HDI =

Pleaze confirm:
Delete ALL labels.

Figure 5.11 Message Box for Confirming All Label Deletion

If you click on the[Yes] button all the labels are removed from the HDI system’s symbol table
and the list display will be cleared. If the message box is not required then do not select the
Delete All Labels option of the Confirmation tab in thBI Options dialog box.

5.6.9 Load...

Merges a symbol file into HDI's current symbol table. Tbad Symbolsdialog box opens:

Rev. 6.0, 09/00, page 54 of 187
RENESAS

Load Symbols

Look jn: | 3 HBsztut

il)
[3] tutarial. gpm

File name: |m_l,l_|:|:|de.s_l,lm Open |
Filez af type: |S_|,|m|:u:-| Files [*. zpm)] ﬂ Cancel

Figure 5.12 Load Symbols Dialog Box

The dialog box operates like a standard Windoeyen file dialog box; select the file and click

[Open] to start loading. The standard file extension for symbol files is “.sym”. When the symb:
loading is complete a confirmation message box will be displayed showing how many symbo
have been loaded (this can be switched off in the Confirmations tab on the HDI Options dialo:

5.6.10 Save

Saves HDI’s current symbol table to a symbol file.

5.6.11 Save As...

The Save Symbolsiialog box operates like a standard Windb®ave File Asdialog box. Enter
the name for the file in thigile namefield and clicklOpen] to save HDI's current label list to a
symbol file. The standard file extension for symbol files is “.sym”.

See appendix C for symbol file format.

Rev. 6.0, 09/00, page 55 of 187
RENESAS

5.7 Locals Window

- Locals El M=l B3

Mame Walue

+a ={ 0x00003Fd4 } (long[10])

] D'8410 { 0x00003fd0 {long)
I D'10 { 0x00003Fcc T (int)
min D'0 L Ox00003Fc8 1 (int)

max D'22117 1 0x00003fFc4 b+ (int)

Figure 5.13 Locals Window

Allows the user to view and modify the values of all the local variables. The contents of this
window are blank unless the current PC can be associated to a function containing local varial
in the source files via the debugging information available in the object file.

The following items are displayed:
[Name] Variable name

[Value] Value, allocated position, and variable type. The allocated position is enclosed ir
{}, and the type is enclosed in ().

The variables are listed with a plus indicating that the information may be expanded by double
clicking on the variable name, and a minus indicating that the information may be reduced.
Alternatively, the plus and minus keys may be used. For more information on the display of
information, refer to section 12.3.2, Expanding a Watch.

A popup menu containing the following options is available by right clicking within the window:
57.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.7.2 Edit Value...

Launches a dialog box to modify the selected variable’s value.

Rev. 6.0, 09/00, page 56 of 187
RENESAS

5.7.3 Radix

Changes the radix for the selected local variable display.

5.8 Memory Window

£ Byte Memory - _Temp_Name

tddress Data Value :|
OOFFECOO0 B8 69 74 61 Hita
OOFFEC04 63 68 00 00 ch..
OOFFECO8 00 00 00 00

OOFFECOC 00 00 00 00

OOFFEC10 00 00 00 00

OOFFEC14 00 00 00 00

OOFFECL1E 00 00 00 00

Figure 5.14 Memory Window

Allows the user to view and modify the contents of the debugging platform's memory. Memor
may be viewed in ASCII, byte, word, long word, single-precision floating-point, and double-
precision floating-point formats, and the title bar indicates the current view style and the addr:
shown as the offset from the previous label (symbol).

The contents of memory may be edited by either typing at the current cursor position, or by
double-clicking on a data item. The latter will launchHu# dialog box, allowing the user to
enter a new value using a complex expression. If the data at that address cannot be modified
within ROM or guarded memory) then the message "Invalid address value" is displayed.

Double-clicking within the Address column will launch tBet Addressdialog box, allowing
the user to enter an address. Clicking[®kK] button will update the window so that the address
entered in th&et Addressdialog box is the first address displayed in the top-left corner.

A popup menu containing the following options is available by right clicking within the window

5.8.1 Refresh

Updates the contents in tMemory window.

5.8.2 Load...

Launches théoad Memory dialog box, allowing the user to load to the debugging platform's
memory from an S-Record file (*.mot) without deleting the current debug information. The

Rev. 6.0, 09/00, page 57 of 187
RENESAS

offset field may be used to move the address values specified in the file to a different set of
addresses. The optional verify flag can be used to check that the information has been
downloaded correctly.

5.8.3 Save...

Launches th&ave Memory Asdialog box, allowing the user to save a block of the debugging
platform’'s memory to an S-Record file (*.mot). The start and end fields may be set similarly to
the Search option (see section 5.8.8, Seayxch

584 Test...
This function is not supported by this simulator/debugger version.

Launches th&est Memory dialog box, allowing the user to test a block of memory within the
debugging platform. The details of the test depend on the debugging platform. The start and e
fields may be set similarly to the Search option(see section 5.8.8, Sgarch..

5.85 Fill...

Launches th&ill Memory dialog box, allowing the user to fill a block of the debugging
platform's memory with a specified value. The start and end fields may be set similarly to the
Search option(see section 5.8.8, Search...).

58.6 Copy...

Launches th€opy Memory dialog box, allowing the user to copy a block of memory within the
debugging platform to another location within the same memory space. The blocks may overla
The start and end fields may be set similarly to the Search option(see section 5.8.8, Search...)

5.8.7 Compare...

Launches th€ompare Memory dialog box, allowing the user to select a start and an end
address in the memory area, to check against another area in memory. If a block of memory is
highlighted in aMemory window, these will be automatically set as the start and end addresses
when the dialog box is displayed.

Similar to Verify memory, but compares two blocks in memory.

Rev. 6.0, 09/00, page 58 of 187
RENESAS

5.8.8 Search...

Launches th&earch Memorydialog box, allowing the user to search a block of the debugging
platform’'s memory for a specified data value. If a block of memory is highlighted, the start anc
end fields in the dialog box will be set automatically with the start and end addresses
corresponding to the highlighted block, respectively.

5.8.9 Set Address...

Displays theSet Addressdialog box. When a new start address is entered, the window is
updated, and the address entered by the user is shown in the upper left corner. When an
overloaded function or a class name including a member function is entered for the address,
Select Functiondialog box is displayed. In this dialog box, select the functions to be set.

5.8.10 ASCII/Byte/Word/Long/Single Float/Double Float

A check mark next to these six options indicates the current view format. The user may selec
different option to change to that format.

5.9 Performance Analysis Window

Performance Analysis =1 =1

Function|Cycle| Count | % |Histogram
0 sort 3573 1 Ee FHfEHE

Figure 5.15 Performance Analysis Window
This window displays the number of execution cycles required for the specified functions.

The number of execution cycles can be obtained from the difference between the total numbe
execution when the target function is called and that when execution returns from the functior

The following items are displayed:

[Index] Index number of the set condition

Rev. 6.0, 09/00, page 59 of 187
RENESAS

[Function] Name of the function to be measured (or the start address of the function)

[Cycle] Total number of execution cycles required for the function
[Count] Total number of calls for the function
[9%6] Ratio of execution cycle count required for the function to the execution cycle

count required for the whole program
[Histogram] Histogram display of the above ratio

Double-clicking a function to be evaluated displaysReeformance Optiondialog box. In this
dialog box, functions can be modified. Up to 255 functions can be specified.

A popup menu containing the following options is available by right clicking within the view
area:

59.1 Add Range...

Launches th@erformance Optiondialog box, allowing the user to add a new function to be
evaluated.

5.9.2 Edit Range...

Only enabled when the highlighting bar is on a user-defined range. Launciresftivenance
Option dialog box, allowing the user to modify the range's settings.

5.9.3 Delete Range

Only enabled when the highlighting bar is on a user-defined range. Deletes the range and
immediately recalculates the data for the other ranges.

5.9.4 Reset Counts/Times
Clears the current performance analysis data.

5.9.5 Delete All Ranges

Deletes all the current user-defined ranges, and clears the performance analysis data.

5.9.6 Enable Analysis

Toggles the collection of performance analysis data. When performance analysis is active, a
check mark is shown to the left of the text.

Rev. 6.0, 09/00, page 60 of 187
RENESAS

5.10 Performance Option Dialog Box

Performance Option |

Function Mame |50ﬂ

Help | 0K Cancel |

Figure 5.16 Performance Option Dialog Box

This dialog box specifies functions (including labels) to be evaluated. Evaluation results are
displayed in thé>erformance Analysiswindow.

Note that when an overloaded function or a class name including a member function is specif
the Select Functiondialog box opens. In the dialog box, select a function. For details, refer to
section 14, Selecting Functions.

Clicking the[OK] button stores the setting. Clicking f@ancel] button closes this dialog box
without setting the function to be evaluated.

Rev. 6.0, 09/00, page 61 of 187
RENESAS

5.11 Registers Window

& Registers EIN=] B4
Register|Walue

RO ocooao
Rl ocooao
RZ ocooao
3 ocooao
R4 oooa
RS ocooao
R& ocooao
R7 ocooao
BC 1004

- CCR I0---z--

g Mm=E o mgH
oOoORrOOO0OO0OR

Figure 5.17 Registers Window
Allows the user to view and modify the current register values.

A popup menu containing the following options is available by right clicking within the window:

5.11.1 Copy

Only available if a block of text is highlighted. This copies the selected text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.11.2 Edit...

Launches th&®egisterdialog box, allowing the user to set the value of the register indicated by
the text cursor (not mouse cursor).

Rev. 6.0, 09/00, page 62 of 187
RENESAS

5.11.3 Toggle Bit

Only available if the text cursor is placed on a bit-field, e.g. a flag within a status register.
Changes the current state of the bit to its other state, e.g. a set overflow flag can be cleared.

5.12 Source Window

The Sourcewindow can be used to view any source file that was included within the object file
debug information - this may be C/C++ and assembly language.

ﬂ Tutornal.c H=]
Line |Address |BE' |Label |Snurce ﬂ
zg oooo1i0iz _main wold mainiwvolid)

29 { |
a0

a1 Qoooiols if (MDCR.BIT.MD&!=0x&
32 £ printf("sele
33 Q00010Z4 o return;

a4 '

a5 Qoo010Ze if(8v3CR.BYTE!=0x01)
a6 Qoooiozo Y ACR.EYTE=0x1;

a7

a8 ooooio3s ECRL.EIT.EAE = 0;

a9

40 ooooi040 STCP _MODE () ; -
4] | LH

Figure 5.18 Source View
It supports column-specific double-click actions:

» BP - Sets/clears a program (PC) breakpoint at that address.

e Address - Launches ti&et Addressdialog box, allowing the user to enter a new address. If
the address is within the range of this file, then the view will scroll such that the cursor car
positioned correctly. If the address is in a different source file, then that file will be opened
a new window with the cursor set to the specified address. Finally, if the address does not
correspond to a source file, then a rigisassemblywindow will be opened. When an
overloaded function or a class name is enteredSéhect Functiondialog box opens for you
to select a function.

» Label - Launches thieabel dialog box, allowing the user to enter a new label and edit the
name of an existing label.

Rev. 6.0, 09/00, page 63 of 187
RENESAS

e Line - Launches th&et Line dialog box, allowing the user to go directly to a line in the
source file.

e Source - Opens the source file in the editor (specified in the Startup menu HDI shortcut) at
this source line.

Within the BP column a list of currently supported standard breakpoint types can be displayed
right clicking. The currently selected standard breakpoint is shown by a check mark to the left
the menu text.

A popup menu containing the following options is available by right clicking in any of the other
columns within the window:

5.12.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.12.2 Find...

Launches th&ind dialog box, allowing the user to search the source file for a string.

5.12.3 Set Address...

Launches th&et Addressdialog box, allowing the user to enter a new start address. The
window will be updated so that this is the first address displayed in the top-left corner. When a
overloaded function or a class name including a member name is entei®eleitte-unction

dialog box opens for you to select a function.

5.12.4 Set Line...

Launches th&et Line dialog box, allowing the user to display and move the text cursor (not the
mouse cursor) to a specific line.

5.12.5 Go To Cursor

=l Commences to execute the user program starting from the current PC address. The
program will continue to run until the PC reaches the address indicated by the text cursor (not
mouse cursor) or another break condition is satisfied. Grayed if not supported by the debuggin
platform.

Rev. 6.0, 09/00, page 64 of 187
RENESAS

5.12.6 Set PC Here

Changes the value of the PC to the address indicated by the text cursor (not the mouse cursc

5.12.7 Instant Watch...

Launches thénstant Watch dialog box with the name extracted from the view at the current
text cursor (not mouse cursor) position. Only valid in the source column.

5.12.8 Add Watch

Adds the name extracted from the view at the current text cursor (not mouse cursor) position
the list of watched variables. If thgatch window is not open, then it is opened and brought to
the top of the child windows. Only valid in the source column.

5.12.9 Go To Disassembly

Opens a Disassembly view at the address matching the current source line.

5.13 System Status Window

System Status =1 =]
Ttem Status :
Connected to HES /26004 Simulator
ZPU HES /2600
Run Status Ready]

Ereak Cause FC Breakpoint
Single Step Count 1
Execute From Reset
Exec Instructions 719
Cycles 7311
Session_x Platform 4 Memory 4 Events /

Figure 5.19 System Status Window

Allows the user to view the current status of the debugging platform.

Rev. 6.0, 09/00, page 65 of 187
RENESAS

The System Statusvindow is split into four tabs:

» Session - contains information about the current session including the connected debuggin

platform and the names of loaded files.

» Platform - contains information about the current status of the debugging platform, typically

including CPU type and mode; run status; and timing information.

» Memory - contains information about the current memory status including the memory
mapping resources and the areas used by the currently loaded object file.

» Events - contains information about the current event (breakpoint) status, including resourc

information.

A popup menu containing the following options is available by right clicking within the window:

5.13.1 Update

Updates the displayed data.

5.13.2 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the

Windows' clipboard, allowing it to be pasted into other applications.

5.14 Trace Window

This window displays trace information. The displayed information items depend on the target

CPU. The trace acquisition conditions can be specified ifirdnee Acquisition dialog box.

EE Trace - 709 records [no filter] (o] [Of x]
—-PTR- --CYCLE-—- -ADDR- INSTRUCTION e Source -
-0708 0000000017 000000 ERG,@-ER7 00003FFC<-00000000 void main({void)

-0707 0000000021 000004 ER7,ERE ERG=—-0000ZFFC

-070& 00000000322 00000& #H'0000002z2 ER7? ER7<-00002ZFCA

-070& 0000000037 000oo0c RO, RO RO<-0000 fori i=0; i<10; i++ 14
-0704 0000000043 QO0000E RO,@{H'FFDZ:16,ERE) O0OO02FCE<-0000

-07032 0000000057 00001z @H'O0EC:8 PC=-0000005C

-070& 0000000065 Q000LC @{H'FFDZ:16,ERE) RO RO<-0000

-0701 0000000077 0000&0 #H'OO00A , RO

-0700 0000000028 0000&4 @EH'O0l4:8 PC<=-00000014

-0&93 000000010Z 000014 E_rand:Z4 PC<-00000ZA& J = rand();

-0828 0000000112 QO0ZAs . ER&,E-ER? O00003FCZ=<-00003FFC

-0&37 0000000121 000ZAL I-H----C MOV.L #H'O000003EA, ERE ERG<-0000032EL

-0&9& 0000000147 QOO0EZEO I-H--Z-C MOV.L @ERS,ER0 ERO<-00000000 S
1| I » A

Figure 5.20 Trace Window

Rev. 6.0, 09/00, page 66 of 187

RENESAS

This window displays the following trace information items. The trace acquisition conditions ¢
be specified in th&race Acquisition dialog box.

[PTR] Pointer in the trace buffer (0 for the last executed instruction)

[CYCLE] Total number of instruction execution cycles (cleared by pipeline reset)
[ADDR] Instruction address

[CCR] Contents of the condition code register (CCR) are displayed in mnemonic
[MULT] Internal flags in the multiplier are displayed in mnemonics (only for the

H8S/2600 series)

[INSTRUCTION] Instruction mnemonic and data access (displayed in the form of [Transfer
destination <- Transferred data])

[Source] C/C++ or assembly-language source programs

Double-clicking a line in th&race window opens th&ourcewindow orDisassemblywindow.
In the window, the source code is displayed and the selected line is indicated by the cursor.

A popup menu containing the following options is available by right clicking within the window

5.14.1 Find...

Launches th&race Searchdialog box, allowing the user to search the current trace buffer for &
specific trace record.

5.14.2 Find Next

If a find operation is successful, and the item found is non-unique, then this will move to the n
similar item.

5.14.3 Filter...
This function is not supported by this simulator/debugger version.

Launches thé&ilter Trace dialog box, allowing the user to mask out all unnecessary trace
entries.

5.14.4 Acquisition...

Launches th&race Acquisition dialog box, allowing the user to define the area of user progran
to be traced. This is useful to focus tracing on problem areas.

Rev. 6.0, 09/00, page 67 of 187
RENESAS

5.14.5 Halt
This function is not supported by this simulator/debugger version.

Stops tracing data and updates the trace information without stopping execution of the user
program.

5.14.6 Restart
This function is not supported by this simulator/debugger version.

Starts tracing data.

5.14.7 Snapshot
This function is not supported by this simulator/debugger version.

Updates the trace information to show the debugging platform's current status without stopping
user program execution.

5.14.8 Clear

Empties the trace buffer in the debugging platform. If more than one trace window is open, all
Trace windows will be cleared as they all access the same buffer.

5.14.9 Save...

Launches th&ave Asfile dialog box, allowing the user to save the contents of the trace buffer a
a text file. It is possible to define a numeric range based on the Cycle number or to save the
complete buffer (saving the complete buffer may take several minutes). Note that this file cann
be reloaded into the trace buffer.

5.14.10 View Source

Opens &ourceor Disassemblywindow for the address.

5.14.11 Trim Source

Removes white space from the left side of the source.

Rev. 6.0, 09/00, page 68 of 187
RENESAS

5.15 Trace Acquisition Dialog Box

Trace Acquisition |

~Trace startfStop
" Disable
* Enable

- Instruction type
% Instruction Cancel
" Subroutine

~Trace buffer full handling—————— Help

* Continue
" Break

Figure 5.21 Trace Acquisition Dialog Box
This dialog box specifies the conditions for trace information acquisition.

[Trace start/Stop]
[Disable] Disables trace information acquisition.
[Enable] Enables trace information acquisition.

[Instruction type]
[Instruction] Acquires trace information for all instructions.
[Subroutine] Acquires trace information for the subroutine instructions only.

[Trace buffer full handling]
[Continue] Continues acquiring trace information even if the trace information
acquisition buffer becomes full.
[Break] Stops execution when the trace information acquisition buffer becomes
full.

Clicking the[OK] button stores the settings. Clicking {i@ancel] button closes this dialog box
without modifying the settings.

Rev. 6.0, 09/00, page 69 of 187
RENESAS

5.16 Trace Search Dialog Box

Trace Search |

—ltem

T PTR
" Cycle
= Address

* Instruction

Cancel

Help

Yalue |[BRA

Figure 5.22 Trace Search Dialog Box

This dialog box specifies the conditions for searching trace information. Specify a search item
[ltem] and search for the specified contentp/alue].

[PTR] Pointer in the trace buffer (O for the last executed instruction, specify in the
form of -nnn)

[Cycle] Total number of instruction execution cycles
[Address] Instruction address
[Instruction] Instruction mnemonic

Clicking the[OK] button stores the settings. Clicking f@ancel] button closes this dialog box
without searching.

Rev. 6.0, 09/00, page 70 of 187
RENESAS

5.17 Watch Window

-« Watch Window E!EE

Mame wWalue

-3 =1 0x00003td4 } {long[1l0])
(0] H' 00000000 { 0x00003tdd 1 (long)
[1] H'00000daa { O0x00003fds } (long)
[2] H'000020da { 0x00003fdc } (long)
;3; H'00D02704 [Ox00003fed 1 (long)
[4] H'00002f5a { 0x00003fed 1 (long)
[5] H'00003ead { Ox00003fel } (long)
(6] H'0000421F { 0x00003fec } (long)
[7] H'00004d1ld { 0x00003ff0 } (long)
5] H'000053dc { 0x00003fF4 1 (long)
[9] H'OQD05665 { Ox00003FF8 T (Tong)

Max H'0000%66% 4 O0x00003fc4 (intg

Figure 5.23 Watch Window

Allows the user to view and modify C/C++-source level variables. The contents of this windov
are blank unless the current user program can be associated to a C/C++-souecthéile
debugging information available in the absolute file (*.abs).

[Name] Variable name
[Value] Value, allocated position, and type of the variable

The variables are listed with a plus indicating that the information may be expanded by doubl
clicking on the variable name, and a minus indicating that the information may be reduced.
Alternatively, the plus and minus keys may be used.

A popup menu containing the following options is available by right clicking within the
windows:

5.17.1 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the
Windows' clipboard, allowing it to be pasted into other applications.

5.17.2 Delete

Removes the variable indicated by the text cursor (not the mouse cursor) frdfattie
window.

Rev. 6.0, 09/00, page 71 of 187
RENESAS

5.17.3 Delete All

Removes all the variables from téatch window.

5.17.4 Add Watch...

Launches thé&dd Watch dialog box, allowing the user to enter a variable or expression to be
watched.

5.17.5 Edit Value...
Launches th&dit Value dialog box, allowing the user to change the variable's value. Particular

care should be taken when the value of a pointer is changed as it may no longer point to valid
data.

5.17.6 Radix

Modifies the radix for the selected watch item display.

5.18 System Configuration Dialog Box

System Configuration

CPU [HBS/2600A ~| Memory Map
Sy 00000000 FFFFEBFFEXT 8 2
Address space bit size 132 FFFFECO0 FFFFFBFF RAM 16 1
FFFFFC00 FFFFFFFF 10 8 2
Program area bit size 124
SYSCR Address
|H'FFFFFF39
System Call Address " Enable -Execution Mode ——————————
[H*00000000 Stop " Continue
 Round Mode
| & Round to nearest
" Round to zero
Add Modify Delete Cancel Help

Figure 5.24 System Configuration Dialog Box

This dialog box sets the address space bit size, program area bit size, SYSCR address, systel
call start address, execution mode, floating-point rounding mode, and memory map.

Rev. 6.0, 09/00, page 72 of 187
RENESAS

[CPU] Displays the current CPU. (The CPU must be specified iB¢lect Sessiodialog
box.)

[Address Space Bit Size]
Specifies the bit size of the address space. Available bit size depends on the CPU
follows:
H8/300, H8/300L, H8/300HN, H8S/2600N, H8S/2000N: 16 bits
H8/300HA: 17 to 24 bits
H8S/2600A, H8S/2000A: 17 to 32 bits

[Program Area Bit Size]
Specifies the bit size of the program area. Available bit size depends on the CPU
follows:
H8/300, H8/300L, H8/300HN, H8S/2600N, H8S/2000N: 16 bits
H8/300HA: 17 to 24 bits (same as the address space bit size)
H8S/2600A, H8S/2000A: 17 to 24 bits

[System Call Address] Specifies the start address of a system call that performs standal
input/output or file input/output processing from the user system.
[Enable] Specifies whether the system call is enabled or disabled.

[Execution Mode] Specifies whether the simulator/debugger stops or continues operating
when a simulation error occurs.
[Stop] Stops the simulation.
[Continue] Continues the simulation.

[Round Mode] Specifies the rounding mode for floating-point decimal-to-binary
conversion.
[Round to nearest] Rounds to the nearest value.
[Round to zero] Rounds toward zero.

In the[Memory Map], the start address, end address, memory type, data bus width, and acce
cycles are displayed in that order. The memory types are as follows:

[Add] SpecifiesiMemory Map] items. Clicking this button opens tMemory Map
Modify dialog box, andMemory Map] items can be specified.

[Modify] Modifies [Memory Map] items. Select an item to be modified in the list box and
click theModify button. TheMemory Map dialog box opens ariilemory Map]
items can be modified.

[Delete] DeletegMemory Map] items. Select an item to be deleted in the list box and click
this button.

Rev. 6.0, 09/00, page 73 of 187
RENESAS

Clicking the[OK] button stores the settings. Clicking f@&ncel] button closes this dialog box
without modifying the settings.

5.19 Memory Map Modify Dialog Box

Memory Map Modify

Memory type IFIAM
Start address |H'FFFFECI]I]

End address |H'FFFFFBFF Cancel

State count |1 Help

Data bus size |1E

Figure 5.25 Memory Map Modify Dialog Box
This dialog box specifies the memory map of the target CPU of the simulator/debugger.

The contents displayed in this dialog box depend on the target CPU. The specified data is use
calculate the number of cycles for memory access.

[Memory type] Memory type

[Start address] Start address of the memory corresponding to a memory type
[End address] End address of the memory corresponding to a memory type
[State count] Number of memory access cycles

[Data bus size] Memory data bus width

Clicking the[OK] button stores the settings. Clicking f@ancel] button closes this dialog box
without modifying the settings.

Note: The memory map setting for the area allocated to a system memory resource
cannot be deleted or modified. First delete the system memory resource allocation
with the Memory Map dialog box, then delete or modify the memory map setting.

Rev. 6.0, 09/00, page 74 of 187
RENESAS

5.20 Memory Map Dialog Box

MemoyMap |
System Configuration Memory map

CPU:H85/2600 =] |Doo000DD FFFFEBFF EXT 8 2

Address Space Size:32 FFFFECO0 FFFFFBFF RAM 16 1

Program Area Size:24 FFFFFCO0 FFFFFFFF 12O & 2

Exec Mode:STOP =l

System memory resource

00000000 00003FFF Read
00004000 00007 FFF Write
00008000 D000FFFF Readfyrite

Modify Delete Beset Help Close

Figure 5.26 Memory Map Dialog Box
This dialog box displays a memory map and information on the target CPU.

[System Configuration] Displays the target CPU, address space size, program area size
and execution mode of the simulator/debugger.

[System memory resource] Displays the access type, start address, and end address of the
current memory.

[Memory map] Displays the start address, end address, memory type, data bus
width, and access cycles.

[System memory resourcetan be specified, modified, and deleted using the following buttons

[Add] SpecifiegSystem memory resourcejtems. Clicking this button opens tBgstem

Memory Resource Modifydialog box, andSystem memory resourcejtems can
be specified.

[Modify] Modifies [System memory resource]tems. Select an item to be modified in the list
box and click theModify button. TheSystem Memory Resource Modifydialog
box opens anfSystem memory resource]tems can be modified.

[Delete] DeletegSystem memory resourcejtems. Select an item to be deleted in the list
box and click this button.

Rev. 6.0, 09/00, page 75 of 187
RENESAS

Note that thgReset]button can reset tH®¥emory map] and[System memory resource}o
the default value. Clicking tH€lose] button closes this dialog box.

5.21 System Memory Resource Modify Dialog Box

System Memory Resource Modify |

Start address |H'uuuuuuuu 0K

End address |H'I]I]I]I]3FFF - :
Cance

i+ Read " Write Headf\Write Help

|—Access type

Figure 5.27 System Memory Resource Modify Dialog Box
This dialog box specifies or modifies system memory settings.
[Start address] Start address of the memory area to be allocated
[End address] End address of the memory area to be allocated

[Access type] Access type
Read: Read only
Write: Write only
Read/Write: Read and write

Click the[OK] button after specifying thi&tart address], [End address] and[Access type]
Clicking the[Cancel] button closes this dialog box without modifying the setting.

Rev. 6.0, 09/00, page 76 of 187
RENESAS

5.22 Control Registers Window

B Contral Registers !IEI E

CCR ZF

Figure 5.28 Control Registers Window

This window displays the following control register value. Note that this window is available
only for the H8S/2600 series.

[SYSCR] System control register

The control register value can be directly modified in the window. Double-clicking the register
opens the SYSCR dialog box. In this dialog box, the register value can be modified in bit unit:

Rev. 6.0, 09/00, page 77 of 187
RENESAS

5.23 SYSCR Dialog Box

SYSCR |

¥ MACS bit([Bit7)

¥ EXR bit[Bit5)

Cancel

Help

Figure 5.29 SYSCR Dialog Box

This dialog box sets the value of the SYSCR register (system control register). Note that this
dialog box is available only for the H8S/2600 series.

The following items are set:

[MACS bit] Selects saturation operation or non-saturation operation for the multiply and
accumulate operation (MAC instruction). Checking this item selects the
saturation operation.

[EXR bit] Enables or disables the EXR register. Checking this item enables the EXR
register.

Clicking the[OK] button sets modified values in the memory. Clicking[@emncel] button
closes this dialog box.

Rev. 6.0, 09/00, page 78 of 187
RENESAS

5.24 Simulated I/0O Window

[Simulated 170 Window =] B
Simulated I/0

Figure 5.30 Simulated I/O Window
This window is for standard 1/0 and file I/O system calls from the user program.

Clicking the right mouse button on tBémulated I/O window displays the following popup
menus.

[Copy] Copies the highlighted text to the Windévetipboard so that the text can
be pasted to another application.

[Paste] Pastes the text from the Winddwiipboard to theSimulated 1/0 window.
[Clear Window] Clears the contents of t8enulated I/O window.

For the I/O processing, refer to section 3.12, Standard 1/0 and File /0O Processing.

Rev. 6.0, 09/00, page 79 of 187
RENESAS

5.25 Stack Trace Window

Eind| Hame Yalue

F func3 (short *) { O0x000000%4 13

=] param_3 O0=x00003ffa { O0x00003f£dE } {(short*)
L lozal 3 D3 { 0Ox00003fd4 } {unsigned long)
F func? { shaort *) { Ox00000072 1}

=] param Z Ox00003ffa | 0x00003fed } (short*)
L lozal 2 D2 { 0x00003fel } {unsigned long)
F funcl{short *) { Ox0000003e }

P param 1 Ox00003ffa | O0x00003££f0 } (short*)
L lozal 1 D'1 { O0xD0003fec ! {unsigned long)
F mainil { Ox00000012 %

L ztart 0DT103 { O0x=x00003ffa } (short)

Figure 5.31 Stack Trace Window
This window displays the function call history except for the functions called after an interrupt.
The following items are displayed.
[Kind] Symbol type
F: Function

P: Parameter of a function
L: Local variable

[Name] Symbol name
[Value] Symbol value, address, and type

Right-clicking on the mouse within the window displays a popup menu. Supported mer
options are described in the following sections:

5.25.1 Copy

This copies the highlighted text into the Windéwgpboard, allowing it to be pasted into other
applications.

5.25.2 Go to Source

Displays the source program corresponding to the selected functionSouheewindow.

Rev. 6.0, 09/00, page 80 of 187
RENESAS

5.25.3 View Setting...

Launches th&tack Trace Setting..dialog box allowing the user to specify the display format
of the Stack Tracewindow.

Stack Trace Setting

Mest level 1-643 Iiﬁ] =]

— Dizplay symbal
[+ Barameter
v Local Wariable

— Diaplay Radix
" Hexadecimal
&+ Decimal
¢ oot
"~ Binary

Cancel |

Figure 5.32 Stack Trace Setting Dialog Box

[Nest leve] specifies the nesting level of a function call to be displayed iSthek Trace

window. The display symbol group check box specifies the symbol (excluding the functions)
be displayed. Display Radix group check box specifies the display radix $tatle Trace
window.

[Display symbol] group check boxes specify the symbol types to be displayed in addition to
functions.

[Display Radix] group radio buttons specify the radix for displays inSteeck Tracewindow.

Rev. 6.0, 09/00, page 81 of 187
RENESAS

5.26 Profile-List Window

3 Profile-List
Function/¥ariable [Address Size Ti
main H'O00000000 HOOoO0OOOA#] 93

_sort H'O00000O044 HOODOOO13C 0 0
_change H'000OO1EE H'OODOOOO&R 0 1]
_rand H'00000Z8E H'OOOOOOOO] 181
FOIVLER H'OO0O0ZCE H OOoooonno] 104
TMULLES H'OOODOOZEC H'OopOOOODOO 1 104
FOIVULES H'OO000304 HOopOOOQODOO 1 137
__rnext HOoooo340 HOooooooo 3 0

KA i

Figure 5.33 Profile-List Window

This window displays the address and size of a function or a global variable, the number of tirr
the function is called or the global variable is accessed, and profile data. Displayed profile date
as follows:

» Called (the number of times a global variable is accessed)
e Cycle (the number of execution cycles)

The number of execution cycles are calculated by subtracting the total execution cycles at a
specific function call instruction execution from the total execution cycles at a return instructior
execution of a specific function.

When the column header is clicked, data are sorted in alphabetic or ascending/descending orc

Double-clicking the Function/Variable or Address column displays the source program or
disassembled memory contents corresponding to the address in the line. Right-clicking on the
mouse within the window displays a popup menu. Supported menu options are described in tl
following sections:

5.26.1 View Source

Displays the source program or disassembled memory contents for the address in the selecte
line. If aline of a global variable is selected, this menu option is displayed in gray characters.

5.26.2 View Profile-Tree

Displays theProfile-Tree window.

Rev. 6.0, 09/00, page 82 of 187
RENESAS

5.26.3 View Profile-Chart

Displays theProfile-Chart window focused on the function in the specified line.

5.26.4 Enable Profiler

Toggles the collection of profile data. When profile data acquisition is active, a check mark is
shown to the left of the menu text. Profile data and performance analysis data cannot be acqt
at the same time. If the profile data acquisition is going to be enabled when the performance
analysis data acquisition is active (when the “Enable Analysis” iR¢hn®rmance Analysis
window is checked), a warning message box is displayed.

HDI K|

Performance fnalysis is enabled.
Profiling and Performance &nalvsiz use the same resources,
=0 cannot be uzed at the szame time. If vou continue and

enable Praofiling, Performance fnalysis will be dizabled.
Thizs will delete vour current Performance Analvsiz data.

Fel Azl |

Figure 5.34 Warning Message Box Showing Profiler and Analysis Cannot Be Set at a
Time

When [OK] is clicked, the performance analysis data acquisition is disabled and the profile da
acquisition is enabled.

5.26.5 Find...

Displays therind Text dialog box to find a character string specified in the Function/Variable
column. Search is started by inputting a character string to be found in the edit box and clicki
[Find Next] or pressing thENTER key.

5.26.6 Clear Data

Clears the number of times functions are called and profile data. DataArofile-Tree
window and theProfile-Chart window are also cleared.

5.26.7 Output Profile Information File...
Displays theSave Profile Information File dialog box. Profiling results are saved in a profile
information file (.pro extension). The optimizing linkage editor optimizes user programs

Rev. 6.0, 09/00, page 83 of 187
RENESAS

according to the profile information in this file. For details of the optimization using the profile
information, refer to the optimizing linkage editor’'s manual supplied in a separate volume.

5.26.8 Output Text File...

Displays theSave Text of Profile Datadialog box. Displayed contents are saved in a text file.

5.26.9 Select Data...

Selects profile data types. The types of profile data differ according to the debug platform. If th
menu option is not supported by the debug platform, it is displayed in gray characters.

5.26.10 Setting...

Displays theSetting Profile-List dialog box to set displayed contents.

Setting Profile-List |

[Show Size
¥ Show Times

— FunctionzVariables
* Show both

 Show only Functions

 Show only Wariables

[T Show only executed functionis)
[T Ihclude data of child functioniz)

Figure 5.35 Setting Profile-List Dialog Box
The Column group check boxes set the display of a specific column.

Functions/Variables group radio buttons are set to display either both of the functions and the
global variables displayed in the Function/Variable column or only one of them.

Rev. 6.0, 09/00, page 84 of 187
RENESAS

Checking in the Show Only Executed Function(s) check box disables the display of unexecut
functions. If a stack usage information file (.sni extension) output from the optimizing linkage
editor does not exist, unexecuted functions are not displayed even if this check box is not
checked.

The Include Data of Child Function(s) check box sets whether to display information for a chil
function which is called in the function as profile data.

5.27 Profile-Tree Window

* 2 Profile-Tree El W= E3
Function fiddress Size stack Size [Times|Cvcle
-fpplication

IR 00000000 HTO00000&& HUOOOOQOD3R 1 98

+ _rand H'OODOOZBE HTOoOOOQODOOO H*OOOOOODOO 1 191
_change H'0OOOO1ER H'OOOOQOOAS H'OOOODOOD3& O 0
_saort H'oooooogs HOOOOQOT3C H'OOOODOO1A O 0
KN o

Figure 5.36 Profile-Tree Window

This window displays the relation of function calls in a tree structure. Displayed contents are
address, size, stack size, number of function calls, and profile data. The stack size, number o
function calls, and profile data are displayed each time a function call occurs.

Displayed profile data is as follows:
e Cycle (the number of execution cycles)

The number of execution cycles and cache misses are calculated by subtracting the total
execution cycles or cache misses at a specific function call instruction execution from the totz
execution cycles or cache misses at a return instruction execution of a specific function.

Note: Displayed stack size does not represent the actual size. Use it as a reference value
when the function is called. If there is no stack usage information file (.sni
extension) output from the optimizing linkage editor, the stack size is not displayed.
For details of the stack usage information file, refer to the optimizing linkage
editor's manual.

Double-clicking a function in the Function column expands or reduces the tree structure displ
The expansion or reduction is also provided by the plus and minus keys. Double-clicking the

Rev. 6.0, 09/00, page 85 of 187
RENESAS

Address column displays the source program or disassembled memory contents correspondin
the specific address.

Right-clicking on the mouse within the window displays a popup menu. Supported menu
options are described in the following sections:

5.27.1 View Source

Displays the source program or disassembled memory contents for the address on the selecte
line.

5.27.2 View Profile-List

Displays theProfile-List window.

5.27.3 View Profile-Chart

Displays theProfile-Chart window focused on the function in the specified line.

5.27.4 Enable Profiler

Toggles the collection of profile data. When profile data acquisition is active, a check mark is
shown to the left of the text. Profile data and performance analysis data cannot be acquired at
same time. If the profile data acquisition is going to be enabled when the performance analysi:
data acquisition is active (when the “Enable Analysis” inRbgformance Analysis window is
checked), a warning message box is displayed.

HDI

Perfarmance Analysiz iz enabled.
Prafiling and Performance Analysis uze the zame rezouces,
g0 cannot be uged at the zame time. If you continue and

enable Profiling, Performance Analysis will be dizabled.
T hiz will delete your cument Performance Analpsiz data.

i Cancel |

Figure 5.37 Warning Message Box Showing Profiler and Analysis Cannot Be Set at a
Time

When [OK] is clicked, the performance analysis data acquisition is disabled and the profile dat:
acquisition is enabled.

Rev. 6.0, 09/00, page 86 of 187
RENESAS

5.27.5 Find...

Displays the~ind Text dialog box to find a character string specified in the Function/Variable
column. Search is started by inputting a character string to be found in the edit box and clicki
[Find Next] or pressing ENTER.

5.27.6 Find Data...

Displays the~ind Data dialog box. When the cursor is in the Function column, this menu
option is displayed in gray characters.

Find Data

Find Data Find Next |
= i
' Cancel |

= Minimum

Figure 5-38 Find Data Dialog Box

By selecting the search type from the Find Data group and enfenmbNext] button or
ENTER key, search is started. If tfieind Next] button or theENTER key is input repeatedly,
the second larger data (the second smaller data when the Minimum is specified) is searched

5.27.7 Clear Data

Clears the number of times functions are called and profile data. DataArofile-Tree
window and theProfile-Chart window are also cleared.

5.27.8 Profile Information File...

Displays theSaveProfile Information File dialog box. Profiling results are saved in a profile
information file (.pro extension). The optimizing linkage editor optimizes user programs
according to the profile information in this file. For details of the optimization using the profile
information, refer to the optimizing linkage editor's manual.

5.27.9 Output Text File...

Displays theSave Text Profile Datadialog box. Displayed contents are saved in a text file.

Rev. 6.0, 09/00, page 87 of 187
RENESAS

5.27.10 Select Data...

Selects profile data types. The types of profile data differ according to the debug platform. If th
menu option is not supported by the debug platform, it is displayed in gray characters.

5.27.11 Setting...

Displays theSetting Profile-Tree dialog box to set displayed contents.

Hetting Profiler-Tree |

—Column ok

[+ Show Size
¥ Show Stack Size
¥ Show Times

[T Show only executed functionis)
[T Ihclude data of child functionéz)

Figure 5.39 Setting Profile-Tree Dialog Box
The Column group check boxes set whether or not to display a specific column.

Checking in the Show Only Executed Function(s) check box disables displaying unexecuted
functions. If a stack usage information file (.sni extension) output from the optimizing linkage
editor does not exist, unexecuted functions are not displayed even if this check box is not
checked.

The Include Data of Child Function(s) check box sets whether to display information for a chilc
function called in a function as profile data.

Rev. 6.0, 09/00, page 88 of 187
RENESAS

5.28 Profile-Chart Window

& Profile-Chart — _rand -

IR
SHULLS 3

_main _rand

Figure 5.40 Profile-Chart Window

This window displays the relation of calls for a specific function. This window displays the
calling relation for the function specified in tReofile-List window orProfile Tree window.

The specified function is displayed in the middle, the calling function on the left side, and the
called function on the right side. Values beside the calling and called functions show the num
of times the function has been called.

TheProfile-Chart window includes the following tool buttons:

» Expands Size
* Reduces Size

Right-clicking on the mouse within the window displays a popup menu. Supported menu
options are described in the section 5.28.3, View Source and in the subsequent sections.

5.28.1 Expands Size

k-

Expands spaces between each function. The plus key can also be used to expand sy

5.28.2 Reduces Size

L |

Reduces spaces between each function. The minus key can also be used to reduce
spaces.

Rev. 6.0, 09/00, page 89 of 187
RENESAS

5.28.3 View Source

Displays the source program or disassembled memory contents for the address of the functior
which the cursor is placed when the right side button of the mouse is clicked. If the cursor is n
placed on a function when the right side button is clicked, this menu option is displayed in gray
characters.

5.28.4 View Profile-List

Displays theProfile-List window.

5.28.,5 View Profile-Tree

Displays theProfile-Tree window.

5.28.6 View Profile-Chart

Displays theProfile-Chart window for the specific function on which the cursor is placed when
the right side button of the mouse is clicked. If the cursor is not placed on a function when the
right side button is clicked, this menu option is displayed in gray characters.

5.28.7 Enable Profiler

Toggles the collection of profile data. When profile data acquisition is active, a check mark is
shown to the left of the text. Profile data and performance analysis data cannot be acquired at
same time. If the profile data acquisition is enabled when the performance analysis data
acquisition is active (when the Enable Analysis check box iP#mormance Analysiswindow

is checked), a warning message box is displayed.

HDI

Performance Analyzis iz enabled.
Prafiling and Peformance Analysis use the same resounces,
g0 cannot be uzed at the same time. |f pou continue and

enable Profiling, Performance Analyziz will be dizabled.
Thiz will delete pour curment Performanice Analyziz data.

i Cancel |

Figure 5.41 Warning Message Box Showing Profiler and Analysis Cannot Be Set at a
Time

Rev. 6.0, 09/00, page 90 of 187
RENESAS

When [OK] is clicked, the performance analysis data acquisition is disabled and the profile da
acquisition is enabled.

5.28.8 Clear Data

Clears the number of times functions are called and profile data. DataHroffie-List window
and theProfile-Tree window are also cleared.

5.28.9 Multiple View

If the Profile-Chart window is going to be opened when it has already been opened, selects
whether another window is to be opened or the same window is to be used to display data. W\
a check mark is shown to the left side of the menu text, another window is opened.

5.28.10 Output Profile Information File...

Displays theSave Profile Information File dialog box. Profiling results are saved in a profile
information file (.pro extension). The optimizing linkage editor optimizes user programs
according to the profile information in this file. For details of the optimization using the profile
information, refer to the optimizing linkage editor’'s manual.

Rev. 6.0, 09/00, page 91 of 187
RENESAS

Rev. 6.0, 09/00, page 92 of 187
RENESAS

Section 6 Command Lines

Table 6.1 lists the commands.

Table 6.1 Simulator/Debugger Commands

Command Name Abbreviation Function

! - Comment

ANALYSIS AN Enables or disables performance analysis
ANALYSIS _RANGE AR Sets or displays performance analysis functions
ANALYSIS_RANGE_ AD Deletes a performance analysis range

DELETE

ASSEMBLE AS Assembles instructions into memory

ASSERT - Checks if an expression is true or false
BREAKPOINT BP Sets a breakpoint at an instruction address
BREAK_ACCESS BA Specifies a memory range access as a break condition
BREAK_CLEAR BC Deletes breakpoints

BREAK_DATA BD Specifies a memory data value as a break condition
BREAK_DISPLAY Bl Displays a list of breakpoints

BREAK_ENABLE BE Enables or disables a breakpoint
BREAK_REGISTER BR Specifies a register data as a break condition
BREAK_SEQUENCE BS Sets sequential breakpoints

DISASSEMBLE DA Disassembles memory contents

ERASE ER Clears the Command Line window

EVALUATE EV Evaluates an expression

FILE_LOAD FL Loads an object (program) file

FILE_SAVE FS Saves memory to a file

FILE_VERIFY FV Verifies file contents against memory

GO GO Executes user program

GO_RESET GR Executes user program from reset

GO_TILL GT Executes user program until temporary breakpoint
HALT HA Halts user program

HELP HE Gets help for command line or help on a command
INITIALISE IN Initializes HDI

Rev. 6.0, 09/00, page 93 of 187
RENESAS

Table 6.1 Simulator/Debugger Commands (cont)

Command Name Abbreviation Function

LOG LO Controls command output logging
MAP_DISPLAY MA Displays memory mapping
MAP_SET MS Allocates a memory area
MEMORY_DISPLAY MD Displays memory contents
MEMORY_EDIT ME Modifies memory contents
MEMORY_FILL MF Fills a memory area
MEMORY_MOVE MV Moves a block of memory
MEMORY_TEST MT Tests a block of memory

QUIT QU Exits HDI

RADIX RA Sets default input radix
REGISTER_DISPLAY RD Displays CPU register values
REGISTER_SET RS Changes CPU register contents
RESET RE Resets CPU

SLEEP - Delays command execution
STEP ST Steps program (by instructions or source lines)
STEP_OUT SP Steps out of the current function
STEP_OVER SO Steps program, not stepping into functions
STEP_RATE SR Sets rate of stepping

SUBMIT SuU Executes a command file
SYMBOL_ADD SA Defines a symbol
SYMBOL_CLEAR SC Deletes a symbol
SYMBOL_LOAD SL Loads a symbol information file
SYMBOL_SAVE SS Saves a symbol information file
SYMBOL_VIEW S\ Displays symbols

TRACE TR Displays trace buffer contents

TRACE_ACQUISITION TA

Enables or disables trace information acquisition

The following describes each command syntax.

Rev. 6.0, 09/00, page 94 of 187

RENESAS

I(COMMENT)

Abbreviation: none

Description:

Allows a comment to be entered, useful for documenting log files.

Syntax:
I <text>
Parameter Type Description
<text> Text Output text
Example:
| Start of test routine Outputs comment 'Start of test routine' intGdhemand Line
window (and to the log file, if logging is active).
ANALYSIS

Abbreviation: AN

Description:
Enables/disables performance analysis. Counts are not automatically reset before running.
Syntax:

an [<state>]

Parameter Type Description
None Displays the performance analysis state
<state> Keyword Enables/disables performance analysis
enable Enables performance analysis
disable Disables performance analysis
reset Resets performance analysis counts

Rev. 6.0, 09/00, page 95 of 187
RENESAS

Examples:

ANALYSIS Displays performance analysis state.
AN enable Enables performance analysis.

AN disable Disables performance analysis.

AN reset Resets performance analysis counts.

ANALYSIS_RANGE

Abbreviation: AR

Description:

Sets a function for which the performance analysis is provided, or displays a function for which
the performance analysis is provided without parameters.

Syntax:
ar [<function name>]

Parameter Type Description

none Displays all functions for which the
performance analysis is provided

<function name> String Name of function for which the performance
analysis is provided

Examples:
ANALYSIS _RANGE sort Provides the performance analysis for the function sort.
AR Displays the function for which the performance analysis

is provided.

ANALYSIS_RANGE_DELETE

Abbreviation: AD

Description:

Deletes the specified function, or all functions if no parameters are specified (itad@esk for
confirmation).

Rev. 6.0, 09/00, page 96 of 187
RENESAS

Syntax:

ad [<index>]

Parameter Type Description

none Deletes all functions

<index> Numeric Index number of function to delete
Examples:

ANALYSIS_RANGE_DELETE 6 Deletes the function with index number 6.

AD Deletes all functions.

ASSEMBLE
Abbreviation: AS
Description:

Assembles mnemonics and writes them into memory. In assembly mode, '.' exits, "' steps ba
byte, the ENTER key steps forward a byte.

Syntax:

as <address>

Parameter Type Description

<address> Numeric Address at which to start assembling
Example:

AS H'1000 Starts assembling from H’1000.
ASSERT

Abbreviation: none

Description:

Checks if an expression is true or false. It can be used to terminate the batch file when the
expression is false. If the expression is false, an error is returned. This command can be usec
write test harnesses for subroutines.

Rev. 6.0, 09/00, page 97 of 187
RENESAS

Syntax:

assert <expression>

Parameter Type Description
<expression> Expression Expression to be checked
Example:

ASSERT #R0 == 0x100 Returns an error if RO does not contain 0x100.

BREAKPOINT

Abbreviation: BP

Description:

Specifies a breakpoint at the address where the instruction is written.

Syntax:
bp <address>qcount>]
Parameter Type Description
<address> Numeric The address of a breakpoint
<count> Numeric The number of times the instruction at the specified
address is to be fetched (optional, default = 1).
Examples:

BREAKPOINT 0 2 A break occurs when an attempt is made to execute the instruction at
address H'O for the second time.

BP CO A break occurs when an attempt is made to execute the instruction at
address H'CO.

BREAK_ACCESS

Abbreviation: BA

Description:

Specifies a memory range as a break condition

Rev. 6.0, 09/00, page 98 of 187
RENESAS

Syntax:

ba <start address> [<end address>] [<xmode>]

Parameter Type Description
<start address> Numeric The start address of a breakpoint
<end address> Numeric The end address of a breakpoint (optional, default =
<start address>)
<mode> Keyword Access type (optional, default = RW).
R A break occurs when the specified range is read.
w A break occurs when the specified range is written to.
RW A break occurs when the specified range is read or
written to.
Examples:

BREAK_ACCESS 01000 W A break occurs when the specified range from address H'0
address H'1000 is written to.

BA FFFF A break occurs when address H'FFFF is accessed.

BREAK_CLEAR

Abbreviation: BC

Description:

Deletes breakpoints.

Syntax:
bc <index>
Parameter Type Description
<index> Numeric Index of the breakpoint to be canceled. If the index is
omitted, all breakpoints are deleted.
Examples:
BREAK_CLEAR O The first breakpoint is deleted.
BC All breakpoints are deleted.

Rev. 6.0, 09/00, page 99 of 187
RENESAS

BREAK_DATA

Abbreviation: BD

Description:
Specifies a memory data value as a break condition.
Syntax:

bd <address <data> ksize>] <option>]

Parameter Type Description
<address> Numeric The address where the break condition is checked.
<data> Numeric Access data
<size> Keyword Size (optional, default = L).
B Byte size
w Word size
L Longword size
S Single-precision floating-point size
D Double-precision floating-point size
<option> Keyword Match or mismatch of data. The default is EQ.
EQ A break occurs when the data matches the specified value.
NE A break occurs when the data does not match the specified value.
Examples:

BREAK_DATA 0 100 L EQ A break occurs when H'100 is written to memory address H'0
in longword.

BD CO FF B NE A break occurs when a value other than H'FF is written to
memory address H'CO in byte.

BD 4000 1000 A break occurs when H'1000 is written to memory address
H'4000 in longword.

BREAK_DISPLAY

Abbreviation: Bl

Description:

Displays a list of breakpoints.

Rev. 6.0, 09/00, page 100 of 187
RENESAS

Syntax:

bi

Parameter Type Description

None Displays a list of breakpoints
Examples:

BREAK_DISPLAY

Bl

BREAK_ENABLE

Abbreviation: BE

Description:

A list of breakpoints is displayed.

A list of breakpoints is displayed.

Enables or disables a breakpoint.

Syntax:

be<flag> [<index>]

Parameter Type Description
<flag> Keyword Enabling or disabling of a breakpoint
E Enable
D Disable
<index> Numeric Index of the breakpoint to be canceled. If the index is
omitted, all breakpoints are deleted.
Examples:

BREAK_ENABLE D 0

BE E

The first breakpoint is disabled.

All breakpoints are enabled.

Rev. 6.0, 09/00, page 101 of 187
RENESAS

BREAK_REGISTER

Abbreviation: BR

Description:

Specifies a register data as a break condition

Syntax:

br <register name>{date> <size>] [<option>]

Parameter Type

Description

<register> Character string

Register name.

<data> Numeric Access data.
<size> Keyword Access size. If no size is specified, the size of the specified
register is assumed. Note that when data is specified, the
size must not be omitted.
B Byte size
w Word size
L Longword size
S Single-precision floating-point size
D Double-precision floating-point size

<option> Keyword

Match or mismatch of data. The default is EQ.

EQ

A break occurs when the data matches the specified value.

NE

A break occurs when the data does not match the specified
value.

Examples:

BREAK_REGISTER RO FFFF W EQ A break occurs when the low-order two bytes of

BR R10

Rev. 6.0, 09/00, page 102 of 187

the RO register change to H'FFFF.

A break occurs when the R10 register is written to.

RENESAS

BREAK_SEQUENCE

Abbreviation: BS

Description:
Sets sequential breakpoints
Syntax:

bs<address1>qaddress2>qaddress 3> [...] 1]

Parameter Type Description
<address1> - Numeric Addresses of sequential breakpoints. Up to eight
<address8> addresses can be specified.

Examples:

BREAK_SEQUENCE 1000 2000 A break occurs when addresses H'1000 and H'2000 are
passed in this order.

BS 1000 A break occurs when address H'1000 is executed.

DISASSEMBLE

Abbreviation: DA

Description:

Disassembles memory contents to assembly-language code. The display of disassembled
memoryis fully symbolic.

Syntax:

da <address> [<length>]

Parameter Type Description
<address> Numeric Start address
<length> Numeric Number of instructions (optional, default = 16)

Rev. 6.0, 09/00, page 103 of 187
RENESAS

Examples:
DISASSEMBLE H'100 5 Disassembles 5 lines of code starting at H'100.

DA H'3EQ0 20 Disassembles 20 lines of code starting at H’'3E0O.

ERASE

Abbreviation: ER

Description:

Clears theCommand Line window
Syntax:

er

Parameter Type Description

none Clears the Command Line window

Example:

ER Clears th€ommand Line window.

EVALUATE
Abbreviation: EV
Description:

Provides a calculator function, evaluating simple and complex expressions, with parentheses,

mixed radices, and symbols. All operators have the same priority but parentheses may be use
change the order of evaluation. The operators have the same meaning as in C/C++. Expressic
can also be used in any command where a number is required. Register names may be used,
must always be prefixed by the ‘# character. The result is displayed in hexadecimal, decimal,

octal, or binary.

Syntax:
ev <expression>

Parameter Type Description

<expression> Expression Expression to be evaluated

Rev. 6.0, 09/00, page 104 of 187
RENESAS

Valid operators:

&& logical AND [l logical OR << left arithmetic >> right arithmetic
shift shift

+ addition - subtraction * multiplication / division

% modulo | bitwise OR & bitwise AND ~ bitwise NOT

n bitwise exclusive OR |! logical NOT == equal to I= unequal to

> greater than < less than >= greater than or <= less than or
equal to equal to

Examples:

EV H'123 + (D’'73 | B'10)

EV #R2H * #R2L

FILE_LOAD

Abbreviation: FL

Description:

Result: H'16E D’'366 O'556
B’00000000000000000000000101101110

Result: H'121 D'289 0’441
B’00000000000000000000000100100001

Loads an object code file to memory with the specified offset. Existing symbols are cleared, b
the new ones will override any existing ones with the same names. If an offset is specified thi
will be added to the symbols. The file extension defauMiST .

Syntax:

fl <filename> [<offset>] [<state>]

Parameter Type Description
<filename> String File name
<offset> Numeric Offset to be added to load address (optional, default = 0)
<state> Keyword Verify flag (optional, default = V)
\% Verify
N No verify

Rev. 6.0, 09/00, page 105 of 187
RENESAS

Examples:
FILE_LOAD A:\BINARYW\TESTFILE.A22 Loads S-Record file "testfile.a22".

FL ANOTHER.MOT H’200 Loads Motorola S-Record file "another.mot"
with an offset of H'200 bytes.

FILE_SAVE
Abbreviation: FS
Description:

Saves the specified memory area data to a file. The data is saved in Motorola S-Record forma
The user is warned if about to overwrite an existing file. The file extension defau®1is.
Symbols arenot automatically saved.

Syntax:

fs <filename> <start> <end>

Parameter Type Description

<filename> String File name

<start> Numeric Start address

<end> Numeric End address
Examples:

FILE_SAVE TESTFILE H'0 H’'2013 Saves address range H’0-H'2013 as Motorola

S-Record file "TESTFILE.MOT".

FS D:WUSERWANOTHER.A22 H'4000 Saves address range H'4000-H'4FFF as S-

H'4FFF Record format file "ANOTHER.A22".
FILE_VERIFY

Abbreviation: FV

Description:

Verifies file contents against memory contents. The file data must be in a Motorola S-Record
format. The file extension default.i®IOT.

Rev. 6.0, 09/00, page 106 of 187
RENESAS

Syntax:

fv <filename> [<offset>]

Parameter Type Description

<filename> String File name

<offset> Numeric Offset to be added to file address (optional, default = 0)
Examples:

FILE_VERIFY A:\BINARYW\TEST.A22 Verifies S-Record file "TEST.A22" against memory.

FV ANOTHER 200 Verifies Motorola S-Record file "ANOTHER.MOT"
against memory with an offset of H'200 bytes.

GO

Abbreviation: GO

Description:

Executes object code (the user program). While the user program is executiteyfohemance
Analysis window is updated.

Syntax:

go [<state>] [<address>]

Parameter Type Description
<state> Keyword Specifies whether or not to continue command processing during
user program execution (optional, default = wait)
wait Causes command processing to wait until user program stops
continue Continues command processing during execution
<address> Numeric Start address for PC (optional, default = PC value)

Wait is the default and this causes command processing to wait until user program stops
executing.

Continue allows you to continue to enter commands (but they may not work depending on the
debugging platform).

Rev. 6.0, 09/00, page 107 of 187
RENESAS

Examples:

GO Executes the user program from the current PC value. Command
processing cannot be continued.

GO CONTINUE H'1000 Executes the user program from H'1000. Command processing ca
be continued.

GO_RESET

Abbreviation: GR

Description:

Executes the user program starting at the address specified in the reset vector.
While the user program is executing, rerformance Analysiswindow is updated.
Syntax:

gr [<state>]

Parameter Type Description
<state> Keyword Specifies whether or not to continue command processing
during user program execution (optional, default = wait)
wait Causes command processing to wait until user program stops
continue Continues command processing during execution

Wait is the default and this causes command processing to wait until user program stops
executing.

Continue allows you to continue to enter commands (but they may not work depending on the
debugging platform)

Example:

GR Executes the user program starting at the address specified in the
reset vector (does not continue command processing).

Rev. 6.0, 09/00, page 108 of 187
RENESAS

GO _TILL

Abbreviation: GT

Description:

Executes the user program from the current PC with temporary breakpoints. This command t
multiple addresses as parameters, and these are used to set temporary PC breakpoints (thes
breakpoints only exist for the duration of the command).

Syntax:

gt [<state>] <address>...

Parameter Type Description
<state> Keyword Specifies whether or not to continue command processing
during user program execution (optional, default = wait)
wait Causes command processing to wait until user program
stops
continue Continues command processing during execution
<address>... Numeric Temporary breakpoint address (list)

Wait is the default and this causes command processing to wait until user program stops
executing

Continue allows you to continue to enter commands (but they may not work depending on the
debugging platform)

Example:

GO_TILL H1000 Continues execution until the PC reaches address H’1000.

HALT

Abbreviation: HA

Description:

Halts the user program. This command can be used after the GO command if the GO commz
uses continue for option.

Rev. 6.0, 09/00, page 109 of 187
RENESAS

Syntax:

ha

Parameter Type Description

none Halts the user program
Example:

HA Halts the user program.
HELP

Abbreviation: HE

Description:

Opens a window displaying the help file.

For context sensitive help, the F1 key should be pressed. Help on a particular command can b

displayed by entering HELP or HE followed by the command name.
Syntax:

he [<command>]

Parameter Type Description
none Displays the contents of the help
<command> String Displays the help for the specified command
Examples:
HE Displays the contents of the help.
HE GO Displays help for the GO command.
INITIALISE

Abbreviation: IN

Description:

Initializes HDI, user system, all breakpoints, and memory mapping. It also initializes debugging

platform, as if you had reselected the target DLL.

Rev. 6.0, 09/00, page 110 of 187
RENESAS

Syntax:

in
Parameter Type Description
none Initializes HDI
Example:
IN Initializes HDI.
LOG

Abbreviation: LO

Description:

Controls logging of command output to file. If no parameters are specified, logging status is
displayed. If an existing file is specified, you will be warned; if you answerdata, will be
overwritten to the existing file, otherwise the file will be added. Logging is only supported for
the command line interface.

Syntax:

lo [<state>|<filename>]

Parameter Type Description
none Displays logging status
<state> Keyword Starts or suspends logging
+ Starts logging
- Suspends logging
<filename> Numeric Specifies the logging output file
Examples:
LOG TEST Stores the logging in file TEST.
LO - Suspends logging.
LOG + Resumes logging.
LOG Displays logging status

Rev. 6.0, 09/00, page 111 of 187
RENESAS

MAP_DISPLAY

Abbreviation: MA

Description:

Displays memory mapping.
Syntax:

ma

Parameter Type Description

none Displays the current memory mapping

Example:

MA Displays the current memory mapping.

MAP_SET
Abbreviation: MS
Description:

Allocates a memory area.
Syntax:

ms<start address>pnd address>Kmode>]

Parameter Type Description

<start address> Numeric Specified start address

<end address> Numeric Specified end address

<mode> Keyword Access type (optional, default = RW)
R Read only
W Write only
RW Displays the current memory mapping

Rev. 6.0, 09/00, page 112 of 187
RENESAS

Examples:

MAP_SET 0000 3FFF RW A read/write-enabled area is allocated to addresses H'0000 t
H'3FFF.

MS 5000 A read/write-enabled area is allocated to address H'5000.

MEMORY_DISPLAY

Abbreviation: MD

Description:
Displays memory contents.
Syntax:

md <address> [<length>] [<mode>]

Parameter Type Description
<address> Numeric Start address
<length> Numeric Length (optional, default = H'100 bytes)
<mode> Keyword Display format (optional, default = byte)
byte Displays in byte units
word Displays in word units (2 bytes)
long Displays in longword units (4 bytes)
ascii Displays in ASCII codes
single Displays in single-precision floating-point format
double Displays in double-precision floating-point format
Examples:

MEMORY_DISPLAY H'C000 H'100 WORD Displays H'100 bytes of memory starting at
H'C000 in word units

MEMORY_DISPLAY H'1000 H'FF Displays H'FF bytes of memory starting at
H’1000 in byte units

Rev. 6.0, 09/00, page 113 of 187
RENESAS

MEMORY_EDIT
Abbreviation: ME
Description:

Allows memory contents to be modified. When editing memory the current location may be
modified in a similar way to that described in &%&SEMBLE command description.

When editing, '." exits edit mode, "M goes back a unit, and blank line goes forward without
modification.

Syntax:

me <address> [<mode>] [<state>]

Parameter Type Description
<address> Numeric Address to edit
<mode> Keyword Format (optional, default = byte)
byte Edits in byte units
word Edits in word units
long Edits in longword units
ascii Edits in ASCII codes
single Edits in the single-precision floating-point
format
double Edits in the double-precision floating-point
format
<state> Keyword Verify flag (optional, default = V)
\% Verify
N No verify
Example:

ME H’1000 WORD Modifies memory contents in word units starting from H'2000 (with
verification)

Rev. 6.0, 09/00, page 114 of 187
RENESAS

MEMORY _FILL

Abbreviation: MF

Description:

Modifies the contents in the specified memory area to the specified data value.
Syntax:

mf <start> <end> <data> [<mode>] [<state>]

Parameter Type Description
<start> Numeric Start address
<end> Numeric End address
<data> Numeric Data value
<mode> Keyword Data size (optional, default = byte)
byte Byte
word Word
long Longword
single Single-precision floating-point
double Double-precision floating-point
<state> Keyword Verify flag (optional, default = V)
\% Verify
N No verify
Examples:
MEMORY_FILL H'C000 Modifies memory contents in the range from H'C000 to
H'COFF H'55AA WORD H'COFF to word data H'55AA.
MF H'5000 H'7FFF H'21 Modifies memory contents in the range from H’5000 to

H'7FFF to data H'21.

Rev. 6.0, 09/00, page 115 of 187
RENESAS

MEMORY_MOVE

Abbreviation: MV

Description:
Moves data in the specified memory area.
Syntax:

mv <start> <end> <dest> [<state>]

Parameter Type Description
<start> Numeric Source start address
<end> Numeric Source end address (including this address)
<dest> Numeric Destination start address
<state> Keyword Verify flag (optional, default = V)
\Y, Verify
N No verify
Examples:

MEMORY_MOVE H’1000 H'1FFF H2000

MV H'FB80 H'FF7F H’3000

MEMORY_TEST

Abbreviation: MT

Description:

Moves memory contents in the area from
H’1000 to H'1FFF into H'2000.

Moves memory contents in the area from
H'FB80 to H'FF7F into H'3000.

Performs read, write, and verification testing in the specified address range. At this time, the
original contents are destroyed. The test will access the memory according to the map settings

This simulator/debugger does not support the MEMORY_TEST command.

Rev. 6.0, 09/00, page 116 of 187

RENESAS

Syntax:

mt <start> <end>

Parameter Type Description

<start> Numeric Start address

<end> Numeric End address (including this address)
Examples:

MEMORY_TEST H’8000 H'BFFF

MT H'4000 H’5000

QUIT

Abbreviation: QU

Description:

Exits HDI. Closes a log file if it is open.

Syntax:

qu

Parameter Type

Tests from H'8000 to H'BFFF.

Tests from H'4000 to H’5000.

Description

none

Exits HDI

Example:

QU Exits HDI.

RADIX

Abbreviation: RA

Description:

Sets default input radix. If no parameters are specified, the current radix is displayed. Radix c

be changed by using B’, H’, D', or O’ before nhumeric data.

Rev. 6.0, 09/00, page 117 of 187

RENESAS

Syntax:

ra [<mode>]

Parameter Type Description
none Displays current radix
<mode> Keyword Sets radix to specified type
H Sets radix to hexadecimal
D Sets radix to decimal
0] Sets radix to octal
B Sets radix to binary
Examples:
RADIX Displays the current radix.
RAH Sets the radix to hexadecimal.

REGISTER_DISPLAY

Abbreviation: RD

Description:

Displays CPU register contents.

Syntax:
rd

Parameter Type Description

none Displays all register contents
Example:

RD Displays all register contents

Rev. 6.0, 09/00, page 118 of 187

RENESAS

REGISTER_SET

Abbreviation: RS

Description:
Changes the contents of a register.
Syntax:

rs <register> <value> <mode>

Parameter Type Description
<register> Keyword Register name
<value> Numeric Register value
<mode> Keyword Data size (optional, default = corresponding
register size)
byte Byte
word Word
long Longword
single Single-precision floating-point
double Double-precision floating-point
Examples:
RS PC _StartUp Sets the program counter to the address defined by the symbol
_StartUp

RS RO H'1234 WORD Sets word data H'1234 to RO.

Rev. 6.0, 09/00, page 119 of 187
RENESAS

RESET

Abbreviation: RE
Description:

Resets the microprocessor. All register values are set to the initial values of the device. Memo
mapping and breakpoints are not initialized.

Syntax:
re

Parameter Type Description

none Resets the microprocessor

Example:

RE Resets the microprocessor.

SLEEP

Abbreviation: none

Description:

Delays command execution for a specified period.
Syntax:

sleep <milliseconds>

Parameter Type Description

< milliseconds > Numeric Delayed time (ms)

Default radix (it is not always decimal) is used, if you do not specify D'.
Example:

SLEEP D’9000 Delays 9 seconds.

Rev. 6.0, 09/00, page 120 of 187
RENESAS

STEP

Abbreviation: ST

Description:

Single step (in source line or instruction units) execution. Performs a specified number of
instructions, from current PC. Default is stepping by lines if source debugging is available. Ca
default is 1.

Syntax:

st [<mode>] [<count>]

Parameter Type Description
<mode> Keyword Type of single step (optional)
instruction Steps by assembly instruction
line Steps by source code line
<count> Numeric Number of steps (optional, default = 1)
Example:
STEP 9 Steps code for 9 steps.
STEP_OUT

Abbreviation: SP

Description:

Steps the program out of the current function. (i.e., a step up). This works for both assembly-
language and source level debugging.

Syntax:
sp

Parameter Type Description

none Steps the program out of the current function
Example:

SP Steps the program out of the current function.

Rev. 6.0, 09/00, page 121 of 187
RENESAS

STEP_OVER

Abbreviation: SO

Description:
Performs a specified number of instructions from current PC.

This command differs from STEP in that it does not perform single step operation in subroutine
or interrupt routines. These are executed at full speed.

Syntax:

so [<xmode>] [<count>]

Parameter Type Description
<mode> Keyword Type of stepping (optional)
instruction Steps by assembly instruction
line Step by source code line
<count> Numeric Number of steps (optional, default = 1)
Example:
SO Steps over 1-step code.
STEP_RATE

Abbreviation: SR

Description:

Controls the speed of stepping in the STEP and STEP_OVER commands. A rate of 6 causes !
fastest stepping. A value of 1 is the slowest.

Syntax:

Sr <rate>
Parameter Type Description
none Displays the step rate
<rate> Numeric Step rate 1 to 6 (6 = fastest)

Rev. 6.0, 09/00, page 122 of 187
RENESAS

Examples:

SR Displays the current step rate.
SR 6 Specifies the fastest step rate.
SUBMIT

Abbreviation: SU

Description:

Executes a file of emulator commands. This command can be used even in a command file t
processed. Any error aborts the file. Th®p] button terminates the process.

Syntax:

su <filename>

Parameter Type Description
<filename> String File name
Examples:

SUBMIT COMMAND.HDC

SU A:SETUP.TXT

SYMBOL_ADD

Abbreviation: SA

Description:

Processes the fle COMMAND.HDC.

Processes the file SETUP.TXT on drive A..

Adds a symbol, or changes an existing one.

Syntax:

sa <symbol> <value>

Parameter Type Description
<symbol> String Symbol name
<value> Numeric Value

Rev. 6.0, 09/00, page 123 of 187
RENESAS

Examples:
SYMBOL_ADD start H'1000 Defines the symbol start at H’'1000.

SA END_OF_TABLE 1000 Uses current default radix and defines END_OF_TABLE at
H'1000 .

SYMBOL_CLEAR

Abbreviation: SC

Description:
Deletes a symbol. If no parameters are specified, deletes all symbols (after confirmation).
Syntax:

sc [<symbol>]

Parameter Type Description
none Deletes all symbols
<symbol> String Symbol name
Examples:
SYMBOL_CLEAR Deletes all symbols (after confirmation).
SC start Deletes the symbol ‘start’.

SYMBOL_LOAD

Abbreviation: SL

Description:

Loads symbols from file. File must be in XLINK Pentica-b format (i.e. 'XXXXH name"). The
symbols are added to the existing symbol table.

Syntax:
sl <filename>

Parameter Type Description

<filename> String File name

Rev. 6.0, 09/00, page 124 of 187
RENESAS

Examples:

SYMBOL_LOAD TEST.SYM Loads the file TEST.SYM.

SL MY_CODE.SYM Loads the file MY_CODE.SYM.

SYMBOL_SAVE

Abbreviation: SS

Description:

Saves symbols to a file in XLINK Pentica-b format. The symbol file extension defaBlis.
If the file name already exists, then a prompt to overwrite the file is displayed.

Syntax:

ss <filename>

Parameter Type Description
<filename> String File name
Examples:
SYMBOL_SAVE TEST Saves symbol table to TEST.SYM.
SS MY_CODE.SYM Saves the symbol table to MY_CODE.SYM.

SYMBOL_VIEW

Abbreviation: SV

Description:
Displays all defined symbols, or those containing the case sensitive string pattern.
Syntax:

sv [<pattern>]

Parameter Type Description
none Displays all symbols
<pattern> String Displays the symbols including the specified string pattern

Rev. 6.0, 09/00, page 125 of 187
RENESAS

Examples:

SYMBOL_VIEW BUFFER Displays all symbols containing the word BUFFER.
SV Displays all the symbols.
TRACE

Abbreviation: TR

Description:

Displays the trace buffer contents. The last (most recently executed) cycle in the buffer is 0, ar
older cycles have negative values.

Syntax:

tr [<start rec> [<count>]]

Parameter Type Description
<start rec> Numeric Offset (optional, default = most recent cycle - 9)
<count> Numeric Count (optional, default = 10)
Example:
TRO5 Displays five lines of trace buffer contents starting from the top of the
buffer.

TRACE_ACQUISITION

Abbreviation: TA

Description:

Enables or disables trace information acquisition

Rev. 6.0, 09/00, page 126 of 187
RENESAS

Syntax:

ta <mode>
Parameter Type Description
<mode> Keyword Enabling or disabling trace information acquisition.
E Trace information acquisition is enabled.
D Trace information acquisition is disabled.
Examples:

TRACE_ACQU Trace information acquisition is enabled.
ISITION E

TAD Trace information acquisition is disabled.

Rev. 6.0, 09/00, page 127 of 187
RENESAS

Rev. 6.0, 09/00, page 128 of 187
RENESAS

Section 7 Messages

7.1 Information Messages

The simulator/debugger outputs information messages as listed in table 7.1 to notify users of
execution status.

Table 7.1 Information Messages

Message Contents

Break Access The break access condition was satisfied and execution has stopped.
Break Data The break data condition was satisfied and execution has stopped.
Break Register The break register condition was satisfied and execution has stopped.
Break Sequence The break sequence condition was satisfied and execution has stopped.
PC Breakpoint The breakpoint condition was satisfied and execution has stopped.

Sleep Execution has been stopped by the SLEEP instruction.

Step Normal End The step execution succeeded.

Stop Execution has been stopped by the [Stop] button.

Trace Buffer Full Since the Break mode was selected by Trace buffer full handling in the

Trace Acquisition dialog box and the trace buffer became full, execution
was terminated.

Rev. 6.0, 09/00, page 129 of 187
RENESAS

7.2 Error Messages

The simulator/debugger outputs error messages to notify users of the errors of user programs
operation. Table 7.2 lists the error messages.

Table 7.2 Error Messages

Message

Contents

Address Error

One of the following states occurred:

e A PC value was an odd number.

* Aninstruction was read from the internal I/0 area.

* Word data was accessed to an address other than a multiple of 2.

¢ Longword data was accessed to an address other than a multiple of 4.
Correct the user program to prevent the error from occurring.

Exception Error

An error occurred during exception processing.
Correct the user program to prevent the error from occurring.

lllegal Instruction

Either of the following states occurred:

¢ A code other than an instruction was executed.

¢ MOV.B Rn, @-SP or MOV.B @SP+, Rn was executed.
Correct the user program to prevent the error from occurring.

lllegal Operation

Either of the following states occurred:

¢ Inthe DAA or DAS instruction, relationship between the C and H flags of

CCR, and their relation to the value before compensation were incorrect.
e Zero-division or overflow was caused by the DIVXU or DIVXS instruction.
Correct the user program to prevent the error from occurring.

Memory Access
Error

One of the following states occurred:

A memory area that had not been allocated was accessed.

« Data was written to a memory area having the write protect attribute.
« Data was read from a memory area having the read disable attribute.
* A memory area in which memory does not exist was accessed.

« Data was written to EEPROM with an instruction other than EEPMOV.

Allocate memory, change the memory attribute, or correct the user program to
prevent the memory from being accessed.

System Call Error

System call error occurred. Modify the incorrect contents of registers RO, R1,
and parameter block.

Rev. 6.0, 09/00, page 130 of 187

RENESAS

Section 8 Looking at Your Program

This section describes how to look at your program as source code and assembly language
mnemonics. HDI's facilities for dealing with code and symbol information are explained and y
will be shown how to look at text files in the user interface.

8.1 Compiling for Debugging

In order to be able to debug your program at C/C++ source level, your C/C++ program must t
compiled and linked with the debug option enabled.

Note: Make sure you have the debug option enabled on your compiler and linker, when
you generate an object file for debugging.

If your debug object file does not contain any debugging information, then you can still load it
into the debugging platform, but you will only be able to debug at assembly-language level.

8.2 Viewing the Code

8.2.1 Viewing Source Code

To look at your program’s source, choose[Wiew->Source...]Jmenu option; use thetrl+K
accelerator; or click on the Source Window toolbar b.

Select your source file and clif@pen], HDI opens &ourcewindow:

sTutulial.c [_ (O] %]
Line |Address |BP |Label |Source ﬂ
28 gooolo01z _main vold main({wvoid)

z9 { il
20

31 poooio1s if (MDCOR.BIT.MDS.=0xé4
3z i* printf{"gele
a3 QOO010Z4 & return;

24 }

35 0ooo010Z6 1f(S¥ICR.BYTE.!=0x01)
i) oooo1o030 AYSCR.EYTE=0x1;

a7

28 oooo1io3s ECRL.EIT.EAE = 0O;

39

40 ooooio40 BTOF_MODE () ; -
KN LI_‘

Figure 8.1 Source Window

Rev. 6.0, 09/00, page 131 of 187
RENESAS

The Sourcewindow is divided into two areas; the header bar area and the main window area,
and split vertically into five columns; Line, Address, BP (breakpoint), Label, and Source. The
respective width of each column can be adjusted by dragging the dividing line between each
column title in the header bar. The cursor will changd-l-b and a vertical line will be

displayed where the dividing line of the columns will be. Release the mouse button when you e
satisfied with the column width and the display will be updated with the new column width.

8.2.2 Viewing Assembly-Language Code

If you have a source file open, right-click to open the popup menu andGeléztDisassembly
to open isassemblywindow at the same address as the cu®entrcewindow.

If you do not have a source file, but wish to view code at assembly-language level, either choo
the[View->Disassembly...Jmenu option; use th@étrl+D accelerator; or click on the

Disassembly Window toolbar butt. This will open aSet Addressdialog box in which

you can address to start disassembling.

The Disassemblywindow shows Address, BP (breakpoint), Code - showing the machine code
values, Label and Assembler - showing the disassembled mnemonics (with labels when
available). Additionally the final column contains any source line starting at that address, thus
providing mixed mode display.

ﬁ‘% Disassembly c:\hdivtutonalvh8s\tutorial.c

Address EP |Code Lakhel |Assembler Source -
oooololz 01006DFé _main MOV.L ER&, @-ER7 vold main(void)
oooo0l0le OFF& MOV, L ER7,ERA&

goooiols 6AZB00FF MOV, B GAHTO00FFFF3E: 32, ROL 1f (MDCFR.EBIT.MI
ooool0le ES07 AND. B #HT07, ROL

0oo010Zz0 AB06 CMP. E #H'06, ROL

oooo10zZ 4702 BEQ @HT10Z6:8

000010Z4 403 E EBRA GHT1084:8 returmn;
00001026 6AZB00FF MOV, B GAHTO0FFFF39: 32, ROL 1f (8¥3CR.EBYTE.
oooolo0zZe A801 CMP.E #H'O01,ROL

ooo0l0Ze 4708 EEQ @HT1QP38:8

oooopoz0 FE01 MoV, B #H'OL, ROL SYBCR.EYT!
0000103z cAAB00FF MOV, B ROL, [@HTO00OFFFF39: 32 _ILI
K o 4
Addll'ess Breakpoint Assembly-language Source

field code code

Figure 8.2 Disassembly Window

8.2.3 Modifying Assembly-Language Code

You can modify the assembly-language code by double-clicking on the instruction that you wis
to change. Th&ssemblerdialog box will open:

Rev. 6.0, 09/00, page 132 of 187
RENESAS

Azzembler

Addrezz Code M nemaonic
Address 00001012 010060 FE b0V L ERB.EERT
Machine code |

] Cancel |

Disassembled
instruction

Figure 8.3 Assembler Dialog Box

The address, machine code and disassembled instruction are displayed. Type the new instru
or edit the old instruction in the Mnemonic field. PresdNTER will assemble the instruction
into memory and move on to the next instruction. Click@g] will assemble the instruction

into memory and close the dialog box. Clickj@ancel] or pressingeSC will close the dialog

box.

Note: The assembly-language display is disassembled from the actual machine code in the
debugging platform’s memory. If the memory contents are changed the display will
show the corresponding new assembly-language code, but will not match the text
shown in the source display.

8.3 Looking at Labels

Thedebug object filalso contains symbolic information. This is a table of text names that
represent an address in the program and is referred to as labels in HDI. You will see symbols
the Label field on the line of the corresponding address, and in the Assembler field as part of
instruction’s operand.

Notes 1. An instruction’s operand is replaced with a label name if the operand and label
value match. If two or more labels have the same value, then the label that comes
first alphabetically will be displayed.

2. Wherever you can enter an address or value in an HDI edit control you can use a
label instead.

8.3.1 Listing Labels

To see a list of all the labels defined in the current session opealibks window by choosing
the[View->Labels] menu option.

Rev. 6.0, 09/00, page 133 of 187
RENESAS

+ Labels SO x

EP | Value | Name ﬂ
H'00001000 startup boot
HTO0000101Z main
H"0D0D106&a _ STOP MODE
HT0O0010SE MAREL
H"OD0OD10B&A DMAC RUN
HT0O001180 MASEE
HTODOD11AC DT REGS
H'OO0OO12%E DTC SCI0 ACT
HTODOD1ZEZ DTC SCI0 RUN
HT0O000131e MASES
HT0000134Z WDT RUN —
HT00001358 DENDOA
HT0000136C WOVI
HTO0O00135%E _TXIO
HTO0D0D13C6 COPY MEM
HT0O000141Z INITS2CT
HT0000145C D ROM ﬂ

Figure 8.4 Labels Window

You can view symbols sorted either alphabetically (by ASCII code) or by address value by
clicking on the respective column heading.

You can quickly set a software break at an address by double-clicking (or right-clicking and
selecting Break on the BP popup menu) in the BP column.

8.3.2 Adding a Label from a Source or Disassembly Window

You can quickly add a label fromSourceor Disassemblywindow, by double-clicking in the
Label column at the address for which you want to assign the Labdlabkédialog box opens
for you to enter the text.

Label
|
[k | Clear | Cancel |

Figure 8.5 Label Dialog Box

Enter the label name text and cli€kK] , so that the label is added to the label list with the
address value contained in the Address column of the corresponding line, Sodrtte
window display is updated to show the label. T@kar] button can be used to remove the label.

Rev. 6.0, 09/00, page 134 of 187
RENESAS

This method can also be used for quickly modifying the text of existing labels. When you
double-click on the label in the Label column, the text is copied into the edit boxladlibe
dialog box. You can then edit it and the modified version is saved in the label liSoUee
window display is updated to show the new label.

Note: To use added or modified labels again in later sessions, save them in a file. For
details, see section 5.6.11, Save As....

8.4 Looking at a Specific Address

When you are looking at your program isaurcewindow, you may want to look at another
area of your program'’s code. Rather than scrolling through a lot of code in the program, you c
go directly to a specific address. Double-click in the Address columSghAaddressdialog

box opens:

Set Address

I_main

(] I Cancel |

Figure 8.6 Set Address Dialog Box

Enter the address or symbol name in the edit box and either cljédgnor presENTER. If

the code at that address is in the same source fil8ptineewindow updates to show the code

at the new address. When an overloaded function or a class name is ent&el:dheunction
dialog box opens for you to select a function. For details, refer to section 14, Selecting Functi

If the new address is in a source file that is already being vieweSanraewindow, that
window is brought to the front and updated to show the code at the new address.

If the new address is in another source file, a 8ewrcewindow opens to show the code at that
address. By default the new window shows source if it is available. If no source is available fc
the new address, therDésassemblywindow shows assembly-language code.

8.4.1 Looking at the Current Program Counter Address

Wherever you can enter an address or value into HDI, you can also enter an expression (see
section 2.2, Data Entry). If you enter a register name prefixed by the “#” character, the conter
of that register will be used as the value in the expression. Therefore if you ot Aadress
dialog box and enter the expression “#PC”, Sloarceor Disassemblywindow display will go

Rev. 6.0, 09/00, page 135 of 187
RENESAS

to the current PC address. You can also display from an offset of the current PC by entering a
expression with the PC register plus an offset, e.g., “#PC+0x100".

8.5 Finding Text

You can search for a particular text string in 8teircewindow using the find option. To do
this, choose thfFind...] menu option from the popup menu, or useRBeaccelerator key.

TheFind dialog box is displayed:

Find
Find what: [localint Find Nest
Direction Cancel
" Up & Down

Figure 8.7 Find Dialog Box

Enter the text that you wish to find and cligknd Next] or presEENTER. TheSourcewindow
will display the text (if found) highlighted. To find the next occurrence of the text, [Eliok
Next] or presENTER again. To close thEind dialog box, clicCancel] or pres€SC.

Rev. 6.0, 09/00, page 136 of 187
RENESAS

Section 9 Working with Memory

This section describes how to look at areas of memory in the CPU’s address space. It will she
you how to look at an area of memory in different formats, fill, move and test a block of
memory, and save, load and verify an area of memory with a disk file.

9.1 Looking at an Area of Memory

To look at an area of memory, choose [iew->Memory...

acceleratorpr clicking the Memory Window toolbar butto
This will open arOpen Memory Window dialog box:

menu option; using th€trl+M
(] to open aMemory window.

Open Memory Window
Address: -

= Ok

| Cance
Format:

|Eﬂe :J

Figure 9.1 Open Memory Window Dialog Box

Type in the start address or equivalent symbol for the window display in the Address field anc
select the required display format from the Format list. G@ik] or presENTER, and the
dialog box closes andMemory window opens:

& Byte Memory - _Temp_MName EIN=]
ddress Data Value :l
OOFFECO0 P8 69 74 61 Hita

63

OOFFECO4 68 00 00 <h..
DOFFECOS 00 00 O0 od
DOFFECOC 00 00 Qo0 oad
ODOFFEC1O 00 00 a0 od
ODOFFEZ14 00 00 00 00
DOFFEZ18 00 00 00 00

Figure 9.2 Memory Window (Bytes)
There are two display columns excluding the address display column:

1. Data- The data read from the debugging platform. Where supported it is read from
physical memory at the displayed width. Editing is supported.

Rev. 6.0, 09/00, page 137 of 187
RENESAS

2. Value - Data displayed in an alternative format. Editing is not supported.

If you want to change the display format from the one you selected when you opened the
window, do it from the popup menu.

9.1.1 Displaying Memory as ASCII

To display and edit memory as ASCII characters, choog@8@ll] menu option from the
popup menu and the display will be updated to show the area of memory as ASCII characters.

9.1.2 Displaying Memory as Bytes

To display and edit memory as bytes, choos¢Bliee] menu option from the popup menu and
the display will be updated to show the area of memory as individual bytes as shown in figure
9.2.

9.1.3 Displaying Memory as Words

To display and edit memory as words, choosgWwmrd] menu option from the popup menu
and the display will be updated to show the area of memory as 16-bit words.

9.1.4 Displaying Memory as Longwords

To display and edit memory as longwords, choosélitveg] menu option from the popup menu
and the display will be updated to show the area of memory as 32-bit longwords.

9.1.5 Displaying Memory as Single-Precision Floating Point

To display and edit memory as single-precision floating-point data, chooi&ingke float]
menu option from the popup menu and the display will be updated to show the area of memor
as single-precision floating-point data.

9.1.6 Displaying Memory as Double-Precision Floating Point

To display and edit memory as double-precision floating-point data, chod&otltde float]
menu option from the popup menu and the display will be updated to show the area of memor
as double-precision floating-point data.

9.1.7 Looking at a Different Area of Memory
If you want to change the area of memory that is displayed ikémeory window, use the
scroll bars. To quickly look at a new address you can useghAddressdialog box. This can

Rev. 6.0, 09/00, page 138 of 187
RENESAS

be opened either be choosing [Bet Address...Jmenu option from the popup menu or by
double-clicking in the Address column.

Set Address

I_main

(] I Cancel |

Figure 9.3 Set Address Dialog Box

Enter the new address value, and cJOK] or presENTER. The dialog box closes and the
Memory window display is updated with the data at the new address. When an overloaded
function or a class name is entered, Sieéect Functiondialog box opens for you to select a
function. For details, refer to section 14, Selecting Functions.

9.2 Modifying Memory Contents
There are two ways that you can change the contents of memory at an address:

1. Quick edit method - allows you to enter values by typing directly into the window, but is
limited to ASCII (when displaying ASCII format) or hexadecimal values only (when
displaying all other formats).

2. Full edit method - uses a dialog box to enter values as floating point or evaluated
expressions.

9.2.1 Quick Edit

The quick way to change the contents of memory is to select the digit that you wish to change
by clicking or dragging on it. You will see the selected digit is highlighted. Type the new value
for the digit; it must be in the range 0-9, a-f (when displaying not ASCII format) or the new
value for ASCII; it must be ASCII (when displaying ASCII format) . The new value is written
into the digit and the cursor moves on to the next digit in memory.

9.2.2 Full Edit

The full way to change the contents of memory is accessed \alithdialog box. Move the
cursor on the memory unit (depending on ylemory window display choice) that you wish
to change. Either double-click on the memory unit, or pE$EER. TheEdit dialog box opens:

Rev. 6.0, 09/00, page 139 of 187
RENESAS

Edit word at H'00001024

[w erify (] Cancel

Figure 9.4 Edit Dialog Box

Like any other data entry field in HDI, you can enter a formatted number or C/C++ expression
(see section 2.2, Data Entry). When you have entered the new number or expression, click the
[OK] button or presENTER, the dialog box closes and the new value is written into memory.

9.2.3 Selecting a Memory Range

If the memory address range is in Memory window, you can select the range by clicking on
the first memory unit (depending on yddemory window display choice) and dragging the
mouse to the last unit. The selected range is highlighted.

9.3 Finding a Value in Memory

To find a value in memory you must opeMamory window, then choose tj§earch] menu
option from the popup menu. Alternatively, withvVemory window in focus, just preds3.

This will open theSearch Memorydialog box:

Search Memory

Beain:

{HFFECOD oK |
[Coedl |

End:
i+H'I:IE

Cancel

Data:
fi

FEarmat:

iLu:ung j

Figure 9.5 Search Memory Dialog Box

Rev. 6.0, 09/00, page 140 of 187
RENESAS

Enter the start and end addresses of the range in which to search (if an area of memory was
selected in théemory window then the Begin and End address values will be filled in
automatically) and the data value to search for. The end address can also be prefixed by a '+
which will use the entered value as a range.

Select the search format and cl[€&] or pres€ENTER. The dialog box closes and HDI
searches the range for the specified data. If the data is found, it will be highlighted in the
Memory window. If the data cannot be found, the caret position iid@ory window

remains unchanged and a message informing you that the data could not be found is display:
the message box.

9.4 Filling an Area of Memory with a Value

You can set the contents of a range of memory addresses to a value using the memory fill
feature.

94.1 Filling a Range

To fill a range of memory with the same value, choos¢Rifle..] menu option on &emory
window's popup menu, ¢Memory->Fill...] menu option. Th&ill Memory dialog box opens:

Fill Memory]|
Begin:

|H'FFEEIIIIII ok |
Zod Cancel |
i+H'IZIE

Data:

f = /ety
Format:

iLu:ung j

Figure 9.6 Fill Memory Dialog Box

If an address range has been selected iMthaory window, the specified start and end
addresses will be displayed. Select the format from the Format drop list and enter the data ve
in the Data field. Click thfOK] button or presENTER, the dialog box closes and the new
value are written into the memory range.

Rev. 6.0, 09/00, page 141 of 187
RENESAS

9.5 Copying an Area of Memory

You can copy an area of memory using the memory copy feature. Select a memory range (see
section 9.2.3, Selecting a Memory Range), choosflbygy...] menu option from the popup
menu. TheCopy Memory dialog box opens:

Copy Memory !
Beain:

|H'FFECO0 ok, |
End Cancel |
i+H'EIE

Destination:

I I= ity
Format:

iLu:ung __:J

Figure 9.7 Copy Memory Dialog Box

The source start and end address specified iM#reory window will be displayed in the Begin
and End fields. Enter the destination start address in the Destination field and dl@Kkhe
button or presENTER, the dialog box closes and the memory block will be copied to the new
address.

9.6 Saving an Area of Memory

You can save an area of memory in the address space to a disk file using the save memory
feature. Open thBave Memory Asdialog box by choosing tH&emory->Save...] menu
option:

Save Memory Az
Start; End:
|EI |f Save
Canizel
Eile name:
|c:hhdiktuturial'&has'\tutDrial.mu:ut J Browsze. ..

Figure 9.8 Save Memory As Dialog Box

Rev. 6.0, 09/00, page 142 of 187
RENESAS

Enter the start and end addresses of the memory block that you wish to save and a file name
File name drop-list contains the previous four file names used for saving memory, or a standzc
Save Asdialog box can be launched by clicking {Beowse...] button. Click thdSave] button

or presENTER, so that the dialog box closes and the memory block will be saved to the disk
a Motorola S-Record format file. When the file save is completed, a confirmation message bo
may be displayed (this can be switched off in the Confirmations tab ¢iDth®ptions dialog

box).

9.7 Loading an Area of Memory

To load an S-Record file to an area of memory without removing the current debugging
information by using the load memory feature. Operi_tieed Memory dialog box by choosing
the[Memory->Load...] menu option:

Load Memory

Dffzet:
|EI [erify
Cancel
File name:
| o hdibtutarials b3z test. mat ﬂ Browse. ..

Figure 9.9 Load Memory Dialog Box

You can offset the loading address from the address specified in the S-Record by entering a
value (positive or negative) in the Offset field. Click [@pen] button or presENTER, so that

the dialog box closes and the data loads into memory. When the file load is completed, a
confirmation message box may be displayed (this can be switched off in the Confirmations ta
on theHDI Options dialog box).

9.8 Verifying an Area of Memory

You can compare an area of memory against a previously saved block of memory using the
memory verify feature. Open théerify S-Record File with Memory dialog box by choosing
the[Memory->Verify...] menu option:

Rev. 6.0, 09/00, page 143 of 187
RENESAS

Yerify S-Hecord File with Memory

|0

Cancel |
File name:
| o shdibtutorialshS8shtest mot ﬂ Browse... |

Figure 9.10 Verify S-Record File with Memory Dialog Box

You can offset the verification address from the address specified in the S-Record by entering
value (positive or negative) in the Offset field. Click [@@en] button or presENTER so that

the dialog box closes and the file and the memory contents are verified. When the file
verification is completed a confirmation message box may be displayed (this can be switched
in the Confirmations tab on th¢DI Options dialog box)

Rev. 6.0, 09/00, page 144 of 187
RENESAS

Section 10 Executing Your Program

This section describes how you can execute your program. You can either run your program
continuously or step single or multiple instructions at a time.

10.1 Running from Reset

To reset your user system and run your program from the reset addtess, choose tfieun-
>Reset GoJmenu option, or click the Reset Go toolbar but

The program will run until it hits a breakpoint or a break condition is satisfied. You can stop th
program manually at any time by choosing fRan->Halt] menu option, or by clicking the Halt

toolbar button].

Note: The program will start running from whatever address is stored in the reset vector
location. Therefore it is important to make sure that this location contains the
address of your startup code.

10.2 Continuously Running Your Program

When your program is stopped and the debugger is in break mode, the HDI will highlight the
line in theSourceandDisassemblywindows that correspond to the CPU’s current program
counter (PC) address value. This will be the next instruction to be executed if you perform a s
or continue running.

BP |Addre==

Lakel Line |8ource
00001012 main 28 vold main{void)
29 {
PC Location 30 .
gooolols a1l 1t (MDCR.EBIT.MDZ
3z £ printf(
oooo010z4 33 return;

@ Registers EN=] B

- |

¥
1f(8YECR.BYTE!=

Begister |Walue 8Y3CR. BYTE=
ERG oooooooo
ER7 ooooooaoo ECRL.EIT.EAE =
EBC 001018 |

+ CCR - STOF MODE () ;

Figure 10.1 Highlighted Line Corresponding to PC Address

RENESAS

Rev. 6.0, 09/00, page 145 of 187

To continue running from the current PC address, click the Go toolbar HZindr choose
the[Run->Go] menu option.

10.3 Running to the Cursor

The function for executing only a part of the user program is provided by the Go To Cursor
feature to execute to a specific address.

< Using Go To Cursor

1. Make sure that Sourceor Disassemblywindow is open showing the address
at which you wish to stop.

2. Position the text cursor on the address at which you wish to stop by either
clicking in the Address field or using the cursor keys.

3. Choose th§Go To Cursor] menu option from the popup menu.

The debugging platform will run your program from the current PC value until it reaches the
address indicated by the cursor’s position.

Notes 1. If your program never executes the code at this address, the program will not
stop. If this happens, program execution can be stopped by pressing ESC,
choosing the [Run->Halt] menu option, or clicking on the ‘Halt’ toolbar button
[&h.

2. The Go To Cursor feature requires a temporary breakpoint - if you have already
used all those available then the feature will not work, and the menu option will
be disabled.

10.4 Running to Several Points

When you want to perform something like the Go To Cursor operation but the destination is
outside theSourcewindow, or want to stop at several addresses, you can use HDI's temporary
breakpoint feature (see section 11.5, Temporary Breakpoints).

10.5 Single Step

When you are debugging your code, it is very useful to be able to step a single line or instructi
at a time and examine the effect of that instruction on the system. Sotineewindow, a step
operation will step a single source line. In Bisassemblywindow, a step operation will step a
single assembly-language instruction. If the instruction calls another function or subroutine, yo
have the option to either step into or step over the function. If the instruction does not perform
call, then either option will cause the debugger to execute the instruction and stop at the next
instruction.

Rev. 6.0, 09/00, page 146 of 187
RENESAS

10.5.1 Stepping Into a Function

If you choose to step into the function, the debugger will execute the call and stop at the first |
or instruction of the function. To step into the function either click the Step In toolbar button
[, or choose théRun->Step In] menu option.

10.5.2 Stepping Over a Function Call

If you choose to step over the function, the debugger will execute the call and all of the code
the function (and any function calls that that function may make) and stop at the next line or
instruction of the calling function. To step over the function either click the Step Over toolbar
button , or choose th§Run->Step Over] menu option.

10.6 Stepping Out of a Function

During debugging, there are occasions when you may have entered a function, finished stepy
through the instructions that you want to examine, and would like to return to the calling funct
without tediously stepping through all the remaining code in the function. Or alternatively (anc
perhaps more usefully) you may have stepped into a function by accident, when you meant t
step over it and so want to return to the calling function without stepping all the way through t
current function. You can do this with the Step Out feature.

To step out of the current function either click the Step Out toolbar b [pr choose the
[Run->Step Out] menu option.

10.7 Multiple Steps

Sometimes you may find it useful to step several instructions at a time. You can do this by us
the Step Programdialog box. The dialog box also provides an automated step with a selectab
intervals between steps. Open it by choosingRlua-> Step...] menu option.

Rev. 6.0, 09/00, page 147 of 187
RENESAS

The Step Programdialog box is displayed:

Step Program
Steps:
Rate: 1 [Slowes =

[Step Owver Calls
[V Source Lewvel Step

k. Cancel

Figure 10.2 Step Program Dialog Box

Enter the number of steps in the Steps field , choose whether you want to step over function ¢
by the Step Over Calls check box, and choose whether to make one line of the source prograr
correspond to one step by the Source Level Step check box. If you are using the feature for
automated stepping, choose the step rate from the list in the Rate fieldGHliclor press

ENTER to start stepping.

Rev. 6.0, 09/00, page 148 of 187
RENESAS

Section 11 Stopping Your Program

This section describes how you can halt execution of your program. This section describes h
to do this directly by using the halt command and by setting breakpoints at specific locations |
your code.

11.1 Halting Execution

When your program is running, the Halt toolbar button is ena (a red STOP sign), and

when the program has stopped it is disa][(the STOP sign is grayed out). To stop the
program click on the Halt toolbar button, pr&&C, or choose thfRun->Halt] menu option.

Your program’s execution is halted, with the mess&yedk = Stop " displayed on the
status bar. HDI will then update any open windows.

The last break cause can also be viewed ifPtaorm pane of theSystem Statuswvindow.

11.2 Standard Breakpoints (PC Breakpoints)

When you are trying to debug your program you will want to be able to stop the program runn
when it reaches a specific point or points in your code. You can do this by setting a PC
breakpoint on the line or instruction at which to want the execution to stop. The following
instructions will show you how to quickly set and clear simple PC breakpoints. More complex
breakpoint operation can be done viaBneakpoints window, which is discussed later.

< To set gorogram (PC)breakpoint
1. Make sure that the Source window is open at the place you want to set a
program (PC) breakpoint.
2. Double-click in the BP column, or press F9, at the line showing the address ai
which you want the program to stop.

3. You will see a circle and the word ‘Break’ appear in the column to indicate tha
a program (PC) breakpoint has been set.

Rev. 6.0, 09/00, page 149 of 187
RENESAS

Eﬁ‘}jTulurial.c

Line |Address [BEFP [Lahkel dource -

z2g8 oooo101z _main wvold main{wvoid)

Z9 { =l

an

31 pooolois 1f(MDCR.EIT.MDELI=0x6&
Break- .
point | 32 A+ printfi{"gele
isset [33 00001024 o return;

34 }

35 ooool0zé 1f(3YESCR.EYTE!=0x01)

36 ooooio3zo SV 3CR. BYTE=0x1;

a7

38 opooolnzs ECRL.EBIT.EAE = 0;

a9

40 oooolo4n 3TOF_MODE () ; -

[« | a1y

Figure 11.1 Setting a Program Breakpoint

Now when you run your program and it reaches the address at which you set the program (PC
breakpoint, execution halts with the messdgieék = PC Breakpoint " displayed on the
status bar, and ti&ourcewindow display is updated with the program (PC) breakpoint line
highlighted.

Note: The line or instruction at which you set a program (PC) breakpoint is not actually
executed; the program stops just before it is about to execute it. If you choose to Go
or Step after stopping at the program (PC) breakpoint, then the highlighted line
will be the next instruction to be executed.

11.3 The Breakpoints Window

The Breakpoints window allows you to access complex breakpoints (if your debugging platforr
supports them) and gives you more control over setting or clearing and enabling or disabling
breakpoints. To open ttgreakpoints window choose thp/iew->Breakpoints] menu option or
click the Breakpoint Window toolbar butt, if visible.

Rev. 6.0, 09/00, page 150 of 187
RENESAS

TheBreakpoints window opens.

Breakpoints EM=] E
Header l?ar Enakle [File/Line Symbol Address |Type
Sre%klpgmt TUTORIAL.C/36 00001030 Type=EC
Isable . TUTORIAL. /42 00001042 Typs=PEC
Breakpoint | 7 _Temp Name 0000ECO0 Type=Read
enabled |
oy |

Figure 11.2 Breakpoints Window

The window displays a list of the breakpoints set in the system. The breakpoint list is divided
horizontally into five columns; Enable, File/Line, Symbol, Address, and Type. The respective
widths of each of the columns can be adjusted by clicking and dragging on the dividing line
between each column title in the header bar. The cursor will cha+{+tand a vertical line

will be displayed at the dividing line of the columns. Release the mouse button when you are
satisfied with the column width and the display will be updated with the new column width.

11.3.1 Adding a Breakpoint

You can add a new breakpoint in BBeeakpoints window by choosing thAdd...] menu
option from the popup menu.

The Set Breakdialog box will open in which you can enter the type and parameters of the new
breakpoint.

11.3.2 Modifying a Breakpoint

To edit an existing breakpoint in tBeeakpoints window, select the breakpoint in the list by
double-clicking, or by clicking on the line corresponding to it and chfidie...] menu option
from the popup menu.

The Set Breakdialog box will open in which you can change the type and parameters of the
selected breakpoint. When a break sequence is select<etleSequencelialog box will
open.

11.3.3 Deleting a Breakpoint

To delete an existing breakpoint in tBeeakpoints window, select the breakpoint in the list by
clicking on the line corresponding to it and choos€gfreete] menu option from the popup
menu.

Rev. 6.0, 09/00, page 151 of 187
RENESAS

The breakpoint is deleted and the window is updated.

11.3.4 Deleting All Breakpoints

To delete all of the breakpoints listed in Breakpoints window choose thiDelete Alll menu
option from the popup menu.

All breakpoints are deleted and the window is cleared.

11.4 Disabling Breakpoints

During the course of a debugging session you may find that you tend to focus on particular are
of code for a period of time and then look at other areas, but want to return to the previous one
afterwards. When concentrating on these areas you will want to set breakpoints to stop your
program execution at useful points. If you have set these breakpoints and wish to move on to
another area of investigation, but know that you will want to return to the current area later, it i
frustrating to have to delete all the breakpoints you have set only to have to set them all again
when you return. Fortunately, HDI eases this problem by allowing you to disable breakpoints,
while still leaving them in the breakpoint list.

11.4.1 Disabling a Breakpoint

To disable an individual breakpoint, select the breakpoint in the list by clicking on the line
corresponding to it and choose fBésable] menu option from the popup menu.

Alternatively, double-click in the Enable column of the breakpoint you need to disable.

The symbol in the Enable column is cleared to show that the breakpoint is disabled.

11.4.2 Enabling a Breakpoint

When you want to re-enable a breakpoint inBheakpoints window list, select the breakpoint
in the list by clicking on the line corresponding to it and choosgahable] menu option from
the popup menu.

Alternatively, double-click in the Enable column of the breakpoint you need to enable.

The symbol in the Enable column is set to show that the breakpoint is enabled.

11.5 Temporary Breakpoints

There are times when you may want to start running your program and want it to stop if it hits
one or more addresses, but do not want to set permanent breakpoints at these addresses. Foi

Rev. 6.0, 09/00, page 152 of 187
RENESAS

example you may want to perform something like the Go To Cursor operation, but the
destination may be outside tBeurcewindow or you may want to stop at several addresses. To
do this you can use HDI's temporary breakpoint feature to run as it supports up to ten tempor
breakpoints that are cleared when you break. Temporary breakpoints are s&in Br@gram
dialog box, which is opened by choosing fRen-> Run...] menu option.

TheRun Program dialog box opens:

Program Counter;
{H'00001000

Stop Al
H'oaao oo

main

CaFY_MEM

GoPC I Guﬂesetl LCancel |

Elazt Brogranm | Elazh Baot |

Figure 11.3 Run Program Dialog Box

Enter the symbols or address values for the points at which you want the program to stop (up
ten points) in the Stop At field. When an overloaded function or a class name is entered, the
Select Functiondialog box opens for you to select a function. For details, refer to section 14,
Selecting Functions.

Click the[Go PC] button to start running from the current program counter address, as display
in the Program Counter field. Click tfi@o Reset]button to reset the CPU and start running
from the reset vector address.

When the program halts the temporary breakpoints that you specified are cleared from the
current breakpoint list. However, when the dialog box is opened again, the list is retained in tt
Stop At field and will be set again if you click tf@o PC] or [Go Reset]buttons.

Rev. 6.0, 09/00, page 153 of 187
RENESAS

Rev. 6.0, 09/00, page 154 of 187
RENESAS

Section 12 Looking at Variables

This section describes how to look at the variables and data objects that your program uses.
shows you how to view variables, set up watch items and look at the contents of the CPU'’s
general, FPU, DSP and on-chip peripheral registers.

12.1 Tooltip Watch

The quickest way to look at a variable in your program is to use the Tooltip Watch feature.

< To use Tooltip Watch:
1. Open the&sourcewindow showing the variable that you want to examine.

2. Rest the mouse cursor over the variable name that you want to examine; a
tooltip will appear near the variable containing basic watch information for that
variable.

¢ MEM 221 wvoid COPY MEM{woid)

222 {
223 unsigned short u;
224 for{ w=0; u < sizecf(NAME); ut++)

225 * (TempZ Name+ \ = * ({NaME+u) ;
2Z2a
Z27 } u=H7YEM

Figure 12.1 Tooltip Watch

12.2 Instant Watch
To look at the variable in more detail, use the Instant Watch feature.

< To use Instant Watch:
1. Open the&sourcewindow showing the variable that you want to examine.
2. Click on the variable. You should see a cursor on the variable.
3. Choose th@instant Watch] menu option from the popup menu.

Rev. 6.0, 09/00, page 155 of 187
RENESAS

Thelnstant Watch dialog box opens:

Instant Watch

= N o

E3
] [|

"48°H'{ 0w0000303 |
[1] = H'63 7 { 00000303) (uns fdd Watch
[2] = H'74 1 { 0400003fba } {uns —
[3] = H'E1 ‘&' { 0400003 bb } (un
[4] = HE3 'c' { 0x00003be } {un
[5] = H'E2 'h' { 0400003 bd } un
[E] = H'63 ' { 0x00003fbe } (uns
[7]= H20 " { DAD003HE } funsi o |

Figure 12.2 Instant Watch Dialog Box

You can add this variable to the list of watch items irviteech window by clicking on the
[Add Watch] button.

12.3 Using Watch Iltems

When you are debugging your program you may find it useful to be able to look at variables of
interest and see their values at different times during the program execution. HDI allows you tc
openWatch windows, which contain a list of variables and their values. To op¥ateh

window choose th@View->Watch] menu option; or click on the Watch Window toolbar button
[if it is visible. A Watch window opens. Initially the contents of the window will be blank.

12.3.1 Adding a Watch

There are two ways to add watch items towetch window; the quick method accessed from
the Sourcewindow, and the full method using tAeld Watch dialog box in th&Vatch
window.

Quick Method
The quickest way to add a variable to ¥atch window is to use the Add Watch feature.

< To use Add Watch from a Source Window:
1. Open the&Sourcewindow showing the variable that you want to examine.
2. Click on the variable. You should see a cursor on the variable.
3. Choose thgAdd Watch...] menu option from the popup menu.

The variable is added as a watch item andihé&h window updates.

Full Method

Rev. 6.0, 09/00, page 156 of 187
RENESAS

The full method uses a dialog box that allows you to enter more complex watch expressions,
example arrays, structures or pointers.

< To use Add Watch from a Watch Window:
1. Open thaVatch window.
2. Choose th@Add Watch...] menu option from the popup menu.

The Add Watch dialog box opens:

Add Watch E

£ Address I j

% arighle o erpression
Cancel

IITIEIH

Figure 12.3 Add Watch Dialog Box

Enter the name of the variable that you wish to watch and[@ikk. The variable is added to
theWatch window.

« « Watch Window < M=l E3

Mame Valle :
ma H'OO005665 § Qw=00003Fcd4 1 {int)

Figure 12.4 Watch Window

12.3.2 Expanding a Watch

If a watch item is a pointer, array, or structure, then you will see a plus sign (+) expansion
indicator to the left of its name. This means that you can expand the watch item. To expand &
watch item, double-click on it. The item expands to show the elements (in the case of structut
and arrays) or data value (in the case of pointers) indented by one tab character, and the plu:
changes to a minus sign (-). If the elements of the watch item also contain pointers, structure:
arrays, then they will also have expansion indicators next to them.

Rev. 6.0, 09/00, page 157 of 187
RENESAS

« Watch Window E = E

Mame Walue
Expanded watch — | -5tr ={ 0x00003rf8 } (unsigned
[0] H'01l { 0x00003fFf8 + {unsi
[1] H'O% { 0x00003ff2 1 (unsi
[2] H'Oc { 0x00003ffa } (unsi
o +Temp_Mame ="Hitachi Micro Systems E
Expansion indicator || | Temp_ame? ="Hitachi Micro Systems E
4 | 2

Figure 12.5 Expanding a Watch

To collapse an expanded watch item, double-click on the item again. The item’s elements will
collapse back to the single item and the minus sign changes back to a plus sign.

12.3.3 Modifying Radix for Watch Item Display

To change the radix of watch item, select the corresponding item by clicking it, and click the
right mouse button on the item. Then a popup menu will be displayed. ChofRadhd menu
option from the popup menu. Then choose the radix in which you wish the selected watch iternr
to be displayed. The value will be updated immediately.

12.3.4 Changing a Watch ltem’s Value

You may wish to change the value of a watch variable, e.g. for testing purposes or if the value
incorrect due to a bug in your program. To change a watch item’s value use the Edit Value
function.

< Editing a watch item’s value:

1. Select the item to edit by clicking on it, you will see a blinking cursor on the
item.

2. Choose th¢Edit Value] menu option from the popup menu.

Rev. 6.0, 09/00, page 158 of 187
RENESAS

TheEdit Value dialog box opens:

E dit Value
Expression: |Temp2_Name k. |
Current Yalue: “Hitachi Micro Cancel
I e W alue: |"Hitau:hi Micro Spstems

Figure 12.6 Edit Value Dialog Box

Enter the new value or expression in the New Value field and[@ick. TheWatch window is
updated to show the new value.

12.3.5 Deleting a Watch

To delete a watch item, select it and choosdDe¢ete] menu option from the popup menu. The
item is deleted and th&atch window updated.

Note: Watch items that you have set in the Watch window can be saved in a session file.
See section 15, Configuring the User Interface.

12.4 Looking at Local Variables

To look at local variables, open thecals window by choosing thp/iew->Locals] menu
option.

ThelLocalswindow opens:

- Locals El M=l B3

Mame Walue

+a ={ 0x00003Fd4 } (long[10])

] D'8410 { 0x00003fd0 {long)
I D'10 { 0x00003Fcc T (int)
min D'0 L Ox00003Fc8 1 (int)

max D'22117 1 0x00003fFc4 b+ (int)

Figure 12.7 Locals Window

Rev. 6.0, 09/00, page 159 of 187
RENESAS

As you debug your program thecals window will be updated, following a step or break from
run, to show the current local variables and their values. If a local variable is not initialized whe
defined, then the value in th@cals window will be undefined until a value is assigned to the
local variable.

The local variable values and the radix for local variable display can be modified in the same
manner as in thé&/atch window.

12.5 Looking at Registers

If you are debugging at assembly-language level, usin§dhecewindow in assembly
language or mixed display, then you will probably find it useful to see the contents of the CPU’
general, FPU and DSP registers. You can do this usingefisterswindow.

& Registers EIN=] B3
Register |Walue
ERD oooooaooa
ER1 oooooaooa
ERZ 57705770
ERZ oooooisao
ER4 57700000
ERS oooooaooa
ERA OOFFFEES

ERT OOFFFEEQD
EC QO01ZZz8
+ CCR -0---2--
+ EXR @ --—--- 111

MACH 00000115
MACL TODFZBSFF

Figure 12.8 Registers Window

To open &Registerswindow choose thf/iew->Registersmenu option or click the CPU
Register Window toolbar butto]. A Registerswindow opens showing all of the CPU'’s
general, FPU and DSP registers and their values, displayed in hexadecimal.

12.5.1 Expanding a Bit Register

If a register is used to control or display status using flags at the bit level, then you will see a p
sign (+) expansion indicator to the left of its name; this means that you can expand it. To do th
double-click on the plus sign to show the flags indented by one tab character, and the plus sig!

Rev. 6.0, 09/00, page 160 of 187
RENESAS

changes to a minus sign (-). If the flags have sub-groups, for example register masks, they wi
also have expansion indicators next to them.

% Registers EIN=] E
Register|Yalue
RO goon
Rl goon
RZ oooo
R goon
Standard register R4 oooo
RS goon
RE goon
R7 oooo
Expansion indicator Fe 1004
- COCR I0---2--
T 1
u]
Expanded bit register H 0
U]
i)]
A 1
v]
s o 0

Figure 12.9 Expanding a Bit Register

To collapse an expanded bit register, double-click on the minus sign. The registers collapse &
to the single item and the minus sign changes back to a plus sign.

12.5.2 Modifying Register Contents

There are two ways that you can change a register’s contents. The quick edit method that all
you to enter values by typing directly into the window, but is limited to hexadecimal values on
The full edit method that requires you to enter values via a dialog box, but allows you to enter
values in any base and use complex expressions.

Quick Edit

The quick way to change a register’s contents is to select the digit that you wish to change, b
clicking or dragging on it. You will see the selected digit is highlighted. Type the new value fol
the digit; it must be in the range 0-9 or a-f. The new value is written into the digit and the curs
moves to the next digit in the register. When you enter a value into the least significant digit o
the register, the cursor moves on to the most significant digit of the next register. If the digit o

Rev. 6.0, 09/00, page 161 of 187
RENESAS

the register display indicates a bit e.g. in the CPU condition code register (CCR) then you can
pressSPACE to toggle the bit's value.

Full Edit

The full way to change a register’s contents is accessedRagiater dialog box. Open the
Registerdialog box in one of three ways:

1. Double-click the register you want to change.
2. Select the register you want to change, and [ihSER.
3. Select the register you want to change, and choog&dite..] menu option from the

popup menu.
Register - CCR E3
Walle:
ED ok I
Set b
‘Whole Hegister ﬂl

Figure 12.10 Register Dialog Box

As in any other data entry field in HDI, you can enter a formatted number or C/C++ expression
(see section 2.2, Data Entry).

You can choose whether to modify the whole register contents (High Word, Low Word, etc), a
masked area, floating or flag bits by selecting an option from the drop list box (the contents of
this list depend on the CPU model and selected register).

When you have entered the new number or expression, clif@ijebutton or presENTER.
The dialog box closes and the new value is written into the register.

12.5.3 Using Register Contents

It can be useful to be able to use the value contained in a CPU register when you are entering
value elsewhere in HDI, for example when displaying a specified addressSauteeor

Memory window. You can do this by specifying the register name prefixed by the “#” character
e.g.: #R1, #PC, #R6L, or #ER3.

Rev. 6.0, 09/00, page 162 of 187
RENESAS

Section 13 Overlay Function

Programs making use of the overlay function can be debugged. This section explains the sett
for using the overlay function.

13.1

Displaying Section Group

When the overlay function is used, that is, when several section groups are assigned to the s
address range, the address ranges and section groups are display&yanltyedialog box.

Open theDverlay dialog box by choosing t&etup->Overlay] menu option.

Overlay

Address:

Section Mame:

O01000-0010z3 ;J
00z2000-002008

[

K

Figure 13.1 Overlay Dialog Box (at Opening)

This dialog box has two areas: the Address list box and the Section Name list box.

The Address list box displays the address ranges used by the overlay function. Click to choos
one of the address ranges in the Address list box.

Overlay

Addregzs:

Oo1000-001023

00Z000-00Z200B

[

Section Mame:

FzeccOl, Psectll
FPzeccOzZ, Psectlz
FPseccOs, Psectls

|

| o
Cancel

o

Figure 13.2 Overlay Dialog Box (Address Range Selected)

RENESAS

Rev. 6.0, 09/00, page 163 of 187

The Section Name list box displays the section groups assigned to the selected address range

13.2 Setting Section Group

When using the overlay function, the highest-priority section group must be selected in the
Overlay dialog box; otherwise HDI will operate incorrectly.

First click one of the address ranges displayed in the Address list box. The section groups
assigned to the selected address range will then be displayed in the Section Name list box.

Click to select the section group with the highest-priority among the displayed section groups.

Overlay

Addregzs: Section Mame:
FzeccOl, Psectll

ao1i000-001023

00Z000-00Z200B

Cancel

_Corcal |

FPseccOs, Psectls

o

[

Figure 13.3 Overlay Dialog Box (Highest-Priority Section Group Selected)

After selecting a section group, clicking f@K] button stores the priority setting and closes the
dialog box. Clicking th¢Cancel] button closes the dialog box without storing the priority
setting.

Note: Within the address range used by the overlay function, the debugging information
for the section specified in the Overlay dialog box is referred to. Therefore, the
same section of the currently loaded user program must be selected in the Overlay
dialog box.

Rev. 6.0, 09/00, page 164 of 187
RENESAS

Section 14 Selecting Functions

When selecting overloaded functions or member functions that can be used in C++ programs
follow the description in this section.

14.1 Displaying Functions
Use theSelect Functiondialog box to display overloaded functions and member functions.
A function can be selected in the following cases.

* When setting a breakpoint

* When specifying a function in tiieun Program dialog box

* In theSet Addressdialog box for opening thBourcewindow

» In theSet Addressdialog box for opening thilemory window
* When adding or modifying a symbol

* When specifying a function for performance analysis

When overloaded functions have the same specified function name, or when a class name
including a member function is specified, ®elect Functiondialog box opens.

Select Function

Select Function Mame Set Function Mame
Sample: Func({long.char) 5 Sample: :Func{short . char)
Sample: :Func{long, char, int)

Differ: :Func(short . char)
Differ: :Func{long.char) ¥

L4

L

Counter
All Function Select Function Set Function
5 Functions 4 Functions 1 Functions ok, | Caneel

Figure 14.1 Select Function Dialog Box
This dialog box has three areas.

« Select Function Name list box
Displays the overloaded functions or member functions and their detailed information.

e Set Function Name list box

Rev. 6.0, 09/00, page 165 of 187
RENESAS

Displays the function to be set and their detailed information.
» Counter group edit box
All Function Displays the number of functions with the same name or member function:

Select Function Displays the number of functions displayed in the Select Function Name |
box.

Set Function Displays the number of functions displayed in the Set Function Name list
box.

14.2 Specifying Functions

Select overloaded functions or member functions irSilect Functiondialog box. Generally,

one function can be selected at one time; only for setting breakpoints, setting the function in th
Run Program dialog box, or setting the function of the performance analysis, more than one
function can be selected.

14.2.1 Selecting a Function

Click the function you wish to select in the Select Function Name list box, and cligq the
button. You will see the selected function in the Set Function Name list box. To select all
functions in the Select Function Name list box, click[te¢ button.

14.2.2 Deleting a Function

Click the function you wish to delete from the Set Function Name list box, and cligk] the
button. To delete all functions in the Set Function Name list box, clidkthéutton.

14.2.3 Setting a Function

Click the[OK] button to set the functions displayed in the Set Function Name list box. The
functions are set and ti8zlect Functiondialog box closes.

Clicking the[Cancel] button closes the dialog box without setting the functions.

Rev. 6.0, 09/00, page 166 of 187
RENESAS

Section 15 Configuring the User Interface

When we designed the user interface for HDI we tried to make all the frequently used operati
quickly accessible and have related operations grouped in a logical order. However, when yo
are in the middle of a heavy debugging session you may find it more useful to have a differen
arrangement of the user interface items or you may just have a personal preference for the w
you want it arranged. We realize this and so HDI allows you to customize the user interface s
that you can be satisfied with the tool that you are using for debugging your program. This
section describes how you can arrange the user interface windows, customize various aspec
the display and save the configuration.

15.1 Arranging Windows

15.1.1 Minimizing Windows

If you have temporarily finished using an open window but want to be able to look at it in its
current state later, you can reduce it to an icon. This is aail@ichizingthe window. To
minimize a window, either click on the minimize button of the window, or choogiE]
Minimize] window menu option.

Control menu
3 Disassembly P:AUSERSALOUIS-MAMEXESA32BITAHSSTUTATUTORIAL.C
Address EP |Code Label Azszsembler JourckE -
00001012 D100EDFE main MOV. L ER&, @-ER7 void ai
ooool0la OFF& MOV. L ER7, ERG
00001018 6AZ800FF MCOV.E @HTOOFFFF3E: 32, ROL 1 (MI
0000l0le EB07 AND.B #H"O7, ROL
00001020 AB06 CME. B #H"06, ROL
ooonioze 4702 BEQ @HT1026:8
. 00001024 403E BRA BHT1064:8 1
Minimize | qn0p1026 652B800FF MOV. B @H'O0FFFF39:32, ROL 1 (53
button 0000102 AB01 CME. B #HTO1, ROL
goodinze 708 BEQ BH 1036:8
00001030 FEO1 MOV. B #H"01, ROL g
00001032 EAA800FF MOV . B ROL, @GH'OOFFFF39: 32
00001038 6A3800FF BECLR. B #5, BHTO0FFFEDS: 32 BCRL.
00001040 5528 B3R @ STOP MCDE: 8 STOE_
00001042 5544 ESR @ MASRL:® MASK]
_DID_DI01044 5574 B3R R DMAC RUN:H DMAC T
4 » é

Figure 15.1 Minimizing a Window

The window is minimized to an icon at the bottom left of the HDI application window; for the
aboveDisassemblywindow example, the icon is:

Rev. 6.0, 09/00, page 167 of 187
RENESAS

Figure 15.2 Disassembly Window Icon

Note: You may not be able to see the icon if you have a window open over the bottom of
the screen.

To restore the icon back to a window, either double-click on the icon, or chodBegtere]
menu option from the control menu.

15.1.2 Arranging Icons

Although the icons will be put at the bottom left of the HDI application window by default when
you minimize a window, you can move them anywhere you like in the application window by
simply clicking and dragging them to a new position. When you restore the icon to a window, t
window will be at the same position that it was in when you minimized it. Similarly, when you
minimize it again, the icon will be placed at the last position that you moved it to.

When you have many minimized windows as icons, the display can look rather messy. To tidy
up the icons, choose tfi@indow->Arrange Icons] menu option.

The icons will be arranged in order from the bottom left of the application window:

Eﬂ Hitaoh Pebuamrng fnforface - - EBDDD HBS5 /2600 Emulator

H File Edit “iew Hun Memory Setup Window Help |
lemmeo || 2ong || @Enne SEDE, WEH

i Registers+] =l =] B3
S Tiace — Dref«d =] =] S

Byte MemodE=I[=i=] B3

ER:L02 2088,

|For Help, press F1 | MUK v

Figure 15.3 Icons Before Arrangement

Rev. 6.0, 09/00, page 168 of 187
RENESAS

E Hitaohi Debugming fnforface - - EBDDD HB5 /2600 Emulator

JEiIe Edit Yiew Bun Memory Setup Window Help |

|oRmE 0 || sy | AERESs I REE . BE

e—

% Registers [l [=] B

Byte Memod@I[=][=] B3 [|E5 Disassembl [==1E3 | s T race 0 e = =1 B3
|For Help, press F1 | [[NUM i

Figure 15.4 Icons After Arrangement

15.1.3 Tiling Windows

After some heavy debugging you may find that you have many windows open on the screen.
You can arrange all the windows in a tile format with none of them overlapping each other us
the Tile function by choosing tH&/indow->Tile] menu option.

All currently open windows are arranged in a tile format. Windows that are minimized to icons
are not affected.

15.1.4 Cascading Windows

Open windows can also be arranged in a cascading format with only their left and top border
visible under the window in front of them by choosing fWndow->Cascade]menu option.

All currently open windows are arranged in a cascading format. Windows that are minimized |
icons are not affected.

15.2 Locating Currently Open Windows

When you have many windows open in the HDI application window it is quite easy to lose onq
of them behind the others. There are two methods that you can use to find the lost window:

Rev. 6.0, 09/00, page 169 of 187
RENESAS

15.2.1 Locating the Next Window

To bring the next window in the window list to the front of the display, chpdeet] from the
window menu, or preSSTRL+F6. Repeating this operation will cycle selection of all windows
(open and minimized).

15.2.2 Locating a Specific Window

To select a specific window, choose from the list of windows (open and minimized) at the
bottom of the Window] menu. The currently selected window has a check mark next to it in the
window list. In the following example, tHRisassemblywindow is the currently selected

window:

Window Help

Cazcade
Tile
Arrange lcons

Cloze Al

v 1 Dizazzembly
2 Bute bemany - H'O0000000
3 Trace - O records [no filker)
4 Registers

Figure 15.5 Selecting a Window

The window that you select will be brought to the front of the display. If it is minimized the icon
is restored to a window.

15.3 Enabling/Disabling the Status Bar

You can select whether or not the status bar is displayed at the bottom of the HDI application
window; by default it will be displayed. To disable display of the status bar, chodSethp-
>Status Bar] menu option.

The status bar will be disabled and removed from the HDI application window display. To re-
enable the Status bar display, choosq3le¢up->Status BarJmenu option again. The Status bar
will be enabled and added to the HDI application window display.

Rev. 6.0, 09/00, page 170 of 187
RENESAS

15.4 Customizing the Toolbar

To control the selection and arrangement of buttons displayed on the toolbar, ch¢Sséuihe
>Customize->Toolbar...]menu option.

The Customize Toolbardialog box opens and contains two panes. The first pane 'Toolbars' is
used to set the overall appearance of the toolbars, while the second pane 'Commands' is use
set the individual buttons in each toolbar.

15.4.1 Overall Appearance

Select the Toolbars pane to set the overall appearance of the toolbars:

Customize
Toolbars l Commands]

T oolbars:
v benu bar [v Show Toollips Mew.

vFils [v Cool Look
Edit Reset
W] Wie [Large Buttanz

w|Fun

vt emany
v|Setup

| W indo
vHelp

(] | Cancel | | Help

Figure 15.6 Customize Toolbar (Toolbars) Dialog Box

The toolbars are listed in a multi-selection list box. To individually switch off a toolbar, clear tt
check box next to the name (this name is displayed in a mini-title bar when the toolbar is not
attached to the border of the main frame window).

Note: The menu bar cannot be switched off.

Rev. 6.0, 09/00, page 171 of 187
RENESAS

If you need to conserve desktop area (for example, when using a portable) then clear the 'Coo
Look' check box to revert to the classic Windd®sl style menu and toolbars.

It is possible to add user-defined toolbars - click on Hej...] button and enter a name for

your toolbar. This can be edited later in the Toolbar Name edit box (feature only available for
user defined toolbars). The new toolbar, in this case called 'My Toolbar', will appear floating at
the top-left of the main frame but will have no buttons. To add buttons, you will now have to
customize your toolbar.

15.4.2 Customizing Individual Toolbars

Customizing individual toolbars requires a mouse or other pointing device. The feature is not
available if only the keyboard is available. This is because the toolbars only operate with a
mouse, so customizing them would be unnecessary unless you have a mouse.

Select the Commands pane to set the individual buttons in each toolbar:

Cosomize |

Toolbars Commands |

Button
categories Categonies: — Buttons
= o
Buttons available
b ernary
Setup
Window
Help
Description Select a category, then click a button to see its description. Drag the button
, to ary toolbar
of button’s .
. — Descriphion
operation _ _
Load session from a file

(] I Cancel | Al | Help

Figure 15.7 Customize Toolbar (Commands) Dialog Box

Rev. 6.0, 09/00, page 172 of 187
RENESAS

15.4.3 Button Categories

At the top left of the dialog box is a list of button categories. For each category a list of button
within that category will be displayed to the right. Click on a button operation option in the list
view a description of the button’s operation in the Description field.

15.4.4 Adding a Button to a Toolbar

< To add a button to a toolbar:
1. Select the button category from the button category list.
2. Select the button item from the operation list.

3. Drag the button from the dialog box to the toolbar location you wish to add the
new button. Then the button is inserted into the tool bar.

15.4.5 Positioning a Button in a Toolbar

< To move a button position in a toolbar:
1. Select the button in a toolbar.
2. Drag the button to the new position in the toolbar or another toolbar.

Note: Holding down the Ctrl key while dragging will copy the button.

15.4.6 Removing a Button from a Toolbar

< To remove a button in a toolbar:
1. Select the button in a toolbar.
2. Drag the button out of the toolbar (anywhere into the main frame).

Rev. 6.0, 09/00, page 173 of 187
RENESAS

15.5 Customizing the Fonts

You can customize the display font for text style windows (gogirceandMemory windows),
or change the default font that is used when a new window is opened.

To change the display font, choose fetup->Customize->FontJmenu option. This will
launch theFont dialog box:

Font
Font: Font Style: Size: ok
[Regular 1

Courier Cancel
12 -
Fixedsys Bold 14
H MS LineDraw Bold Italic 16
Terminal =l =] |8 x| Help
Sample
Use as Detault Font ‘
AaBh¥yEz

Figure 15.8 Font Dialog Box

The dialog box is based on the standard Winddwast selection dialog box, except that only
fixed width fonts are listed in the Font list box. By pressing the [Use as Default Font] button, th
font to be used when a new window is opened can be specified.

15.6 Customizing the File Filters
You can customize the file filters displayed in @gen dialog box.

To change the filters, choose fi8&tup->Customize->File Filter]menu option. This will
launch theCustomize File Filter dialog box:

Rev. 6.0, 09/00, page 174 of 187
RENESAS

Customize File Filter

File:

v
Tupe
| Sysiof =] Add..

Filter: Edi...
* abz Delete

Figure 15.9 Customize File Filter Dialog Box

Note: Changes are made immediately when using this dialog box. There is no option to
cancel changes made.

< To edit an existing filter:
1. Select the file group from the File drop list.
2. Select the file type name from the Type drop list.

3. Click the[Edit...] button to open thEdit Filter dialog box. The dialog title
will display the file group that is being changed. The edit box on this dialog bo
is limited to accept only valid characters for filter type or extension.

4. Change the filter name and/or extension. If more than one extension is require
then separate each extension with a semi-colon. For example:

* mot;*.a20;*.a37
< To enter a new filter:
1. Select the file group from the File drop list.

2. Click the[Add...] button to open thAadd Filter dialog box. The dialog title
will display the file group that is being changed. The edit box on this dialog are
box limited to accept only valid characters for filters.

3. Enter a name for the filter type and the extensions you want to use for the filte

Note: If the filter type entered matches an existing type, the filter for the existing type will
be changed to the newly entered filter.

< To remove a filter:
1. Select the file group from the File drop list.
2. Select the file type name from the Type drop list.
3. The file type will be removed when tfi@elete] button is clicked.

Rev. 6.0, 09/00, page 175 of 187
RENESAS

15.7 Saving a Session

If you have downloaded the user program into the debugging platform, have the corresponding
source files displayed and a number of auxiliary windows open, then it can take some time to
setup this information the next time the program is loaded. To help with this, HDI can save the
current settings to a file.

If you are already using a named session, or want to create a session with the same name as
current object file, choose tli€ile->Save Sessioninenu option.

To save the current setting under a new name, chooféildfveSave Session As..rhenu

option. This will launch a common file dialog box prompting you for a file name. Up to three
files are saved; an HDI session file (*.hds); a target session file (*.hdt); and a watch session fil
(*.hdw). The first includes the HDI interface settings, e.g. all the open windows and their
positions. The second includes the settings specific to the debugging platform/user system, e.
the name of the debugging platform and its configuration. The third is only creatattth
window is open and it includes a list of the variables currently being watched.

The session name is then displayed as the second entry in HDI's title bar.

EHilachi Debugging Interface - MANUAL - EB000 H85 /2600 Emulator

File Edt %iew Bun Setup Tools Window Help

Figure 15.10 Session Name Display

Note: The session file does not include symbol or memory information. To use modified
information again in later sessions, save the symbol and memory information in
appropriate files. For details, see section 9.6, Saving an Area of Memaand section
5.6.11, Save As....

15.8 Loading a Session

To reload a saved session, choosgRile->Load Session...Jmenu option. This will launch a
standard Windowsfile dialog box prompting you for an HDI session file name (*.hds).

Any currently open windows will be closed, and the connection to the debugging platform
initialized. If user program has been downloaded to the user system, then the status bar will
display the percentage done. When the download is completed, windows will be opened and
updated to show the latest information from the user system.

Rev. 6.0, 09/00, page 176 of 187
RENESAS

15.9 Setting HDI Options

There are a number of settings available to help you to use the HDI interface. Choosing the
[Setup->Options...] menu option will launch thelDI Options dialog box:

HDI Dptions]|

Session | Eu:un[irmatiu:unl ‘v‘iewingl

On Exit
" Save session automatically
£~ Prompt for save session
& Quit without asking

[Load last session on startup

: Cancel |

Figure 15.11 HDI Options (Session) Dialog Box

The 'On Exit' group of radio buttons automates saving the current session when the user prog
is shut down:

« Save session automatically: This will save the session information in the current session
If there is no current session file then you will be prompted to enter an HDI session file
name.

- Prompt for save session: This will always ask you if you want to save the current session
when the program is shut down. If you select 'Yes', then the session information is saved
the current session file. If there is no current session file then you will be prompted to ent:
session file name.

« Quit without asking: This shuts down the program and does not prompt you, nor save the
current session information.

Check the 'Load last session on startup' check box if you want to automatically load the last

saved session the next time the user program is started.

Rev. 6.0, 09/00, page 177 of 187
RENESAS

HDI Options

Session Confimation]Viewing]

[v Splash screen -
[Download complete

[Load memony successful

[Werify remany successhul

[Labels loaded

[Delete breakpoint

¥ Delete all breakpoints

[Delete P4 range

¥ Delete all PA ranges |

(1] | Canicel |

Figure 15.12 HDI Options (Confirmation) Dialog Box

Confirmation message boxes can be switched off or on by using the appropriate confirmation
check box.

HDI Options

Sessiu:un] Confirmation igwing l

Tab Size:

C -

(1] | Canicel |

Figure 15.13 HDI Options (Viewing) Dialog Box

The 'Tab Size' list box can be used to set the number of spaces that a tab character will be
expanded to within the views. Valid values are between 2 and 8. The best value will be the sat
as your normal editor.

15.10 Setting the Default Input Radix

HDI can accept input in several numerical bases. The default is hexadecimal (except Count fie
which are always decimal), but you can also use one of the prefixes described in section 2.2.2

Rev. 6.0, 09/00, page 178 of 187
RENESAS

Data Formats. To improve usability, you can select one of these formats as the default, i.e. yc
will not need to enter the corresponding prefix to use that radix.

To change the default radix, choose fBetup->Radix] menu option. This will display a list of
possible numbering systems with a check mark to the left of the current radix:

exadecimal

Jul
v [Decimal
Octal

E

inary

Figure 15.14 Setting Radix

Rev. 6.0, 09/00, page 179 of 187
RENESAS

Rev. 6.0, 09/00, page 180 of 187
RENESAS

Appendix A - System Modules

The following section describes the architecture of the HDI debugging system.

HDI
graphical
user
interface

Object
DLL

Debugging
platform

[N

10 file

User
system User code

hardware (object file)

Figure A.1 HDI System Modules

In normal operation, the user program will be placed directly into the user system hardware ({
example as an EPROM). HDI uses this information to provide a Wirfdoaged debugging
system.

To decrease the learning curve when swapping between different debugging platforms and/o
user system hardware, HDI provides a single unified interface (the GUI) and a family of targe
specific modules. Normally, the user will only interact with the standard GUI - once the
appropriate target module has been selected, the rest of the system configures itself automat
by loading the appropriate modules.

Graphical User Interface

Rev. 6.0, 09/00, page 181 of 187
RENESAS

This is the main HDI.EXE program that runs under Windowsuses familiar Windows

operations, with menus and windows to give a user-friendly view into the debugging system. T
GUI is the only contact between the user and the rest of the system; it processes commands &
provides the required information about the user program. It also provides the interface betwee
the module DLLs and the host file system, i.e., the PC.

Object DLL

When creating the user program, a compiler will generatdbaolute object fileThis file

contains the actual machine code and data that the microcomputer processes to execute the
functions making up the target application. In order to debug the user program as original sour
code, the compiler must provide more information to the debugger. For this reason, nearly all
compilers have a debugging option that puts all the information necessary for debugging your
source code into the absolute file, which is usually called a debug object file.

The object DLL extracts this information from the object file for display to the user. Since the
format of data is compiler dependent, more than one object DLL may be present in the HDI
directory - HDI will try each in turn until it finds one that can understand the object file's format.

CPU DLL

The CPU DLL module contains information specific to the target microcomputer. For example,
it contains the number and types of registers available to the microcomputer. It also translates
raw machine code in the target into more familiar assembly-language mnemonics displayed in
the Sourcewindow, and vice versa.

Target DLL

The target DLL informs HDI about the debugging platform's capabilities and selects the correc
CPU DLL. Since some capabilities of the debugging platform cannot be generic (for example,
target configuration), the target DLL also includes extensions to the standard GUI to provide th
user with access to these capabilities.

For a detailed description of the features available using your target DLL, refer to the supplied
debugging platform user’'s manual.

Rev. 6.0, 09/00, page 182 of 187
RENESAS

Appendix B - GUI Command Summary

Menu ltem Accelerator Toolbar Graphic
File New Session... Ctrl+N
Load Session... Ctrl+O

E E _|||'

Save Session Ctrl+S

Save Session As...

Load Program...

= &

Initialize
Exit Alt+F4

Edit Cut Ctrl+X X
Copy Ctrl+C
Paste Ctrl+Vv
Find F3 i,
Evaluate

View Breakpoint Ctrl+B
Command Line Ctrl+L o
Disassembly... Ctrl+D
/O Area Ctrl+l
Labels Ctrl+A
Locals Ctrl+Shift+W
Memory... Ctrl+M
Performance Analysis Ctrl+P
Profile-List Ctrl+P @
Profile-Tree Ctrl+F £
Registers Ctrl+R
Source... Ctrl+K

Rev. 6.0, 09/00, page 183 of 187
RENESAS

Menu Item Accelerator Toolbar Graphic

View Status Ctrl+U

(cont)
Trace Ctri+T [=
Watch Ctrl+W

Run Reset CPU =f
Go F5
Reset Go Shift+F5
Go To Cursor
Set PC To Cursor I,

Run...

Step In F8 #

Step Over F7 U

Step Out {¥

Step... -}

Halt Esc

Memory Refresh F12

Load...
Save...
Verify...
Test...
Fill...
Copy...
Compare...
Search... i,

Configure Map...
Configure Qverlay... li

Rev. 6.0, 09/00, page 184 of 187
RENESAS

Menu Item Accelerator Toolbar Graphic
Setup Options... =1
Radix (Input)
Hexadecimal E
Decimal ' 10
Octal '
Einary IE
2]
Customize
Toolbar... @
Font... @
File Filter...
Configure Platform... E
Window Cascade
Tile
Arrange Icons
Close All
Help Index F1
Using Help

Search for Help on

About HDI

RENESAS

Rev. 6.0, 09/00, page 185 of 187

Rev. 6.0, 09/00, page 186 of 187
RENESAS

Appendix C - Symbol File Format

In order for HDI to be able to understand and decode the symbol file correctly, the file must be
formatted in a specified manner:

1. The file must be a plain ASCII text file.
The file must start with the word “BEGIN”.

3. Each symbol must be on a separate line with the value first, in hexadecimal terminated b
“H”, followed by a space then the symbol text.

4. The file must end with the word “END”.

Example:

BEGIN

11FAH Symbol_name_1
11FCH Symbol_name_2
11FEH Symbol_name_3
1200H Symbol_name_4
END

Rev. 6.0, 09/00, page 187 of 187
RENESAS

H8S, H8/300 Series Simulator Debugger
User’s Manual

Publication Date: 1st Edition, March 1994
6th Edition, September 2000
Published by: Electronic Devices Sales & Marketing Group

Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

	Cover
	Preface
	Contents
	Section 1 Overview
	1.1 Features
	1.2 Target User Program
	1.3 Simulation Range

	Section 2 System Overview
	2.1 User Interface
	2.2 Data Entry
	2.2.1 Operators
	2.2.2 Data Formats
	2.2.3 Precision
	2.2.4 Expression Examples
	2.2.5 Symbol Format
	2.2.6 Symbol Examples

	2.3 Help
	2.3.1 Context Sensitive Help

	Section 3 Simulator/Debugger Functions
	3.1 Simulator/Debugger Platforms and CPU Types
	3.2 Simulator/Debugger Memory Management
	3.2.1 Memory Map Specification
	3.2.2 Memory Resource Specification

	3.3 Instruction Execution Reset Processing
	3.4 Exception Processing
	3.5 Features Specific to H8S/2600 CPU
	3.6 Control Registers
	3.7 Trace
	3.8 Standard I/O and File I/O Processing
	3.9 Calculation of Instruction Execution Cycles
	3.10 Break Conditions
	3.10.1 Break Due to the Satisfaction of a Break Command Condition
	3.10.2 Break Due to the Detection of an Error During Execution of the User Program
	3.10.3 Break Due to a Trace Buffer Overflow
	3.10.4 Break Due to Execution of the SLEEP Instruction
	3.10.5 Break Due to the [STOP] Button

	3.11 Floating-Point Data
	3.12 Display of Function Call History

	Section 4 Menus
	4.1 File
	4.1.1 New Session...
	4.1.2 Load Session...
	4.1.3 Save Session
	4.1.4 Save Session As...
	4.1.5 Load Program...
	4.1.6 Initialize
	4.1.7 Exit

	4.2 Edit
	4.2.1 Cut
	4.2.2 Copy
	4.2.3 Paste
	4.2.4 Find...
	4.2.5 Evaluate...

	4.3 View
	4.3.1 Breakpoints
	4.3.2 Command Line
	4.3.3 Disassembly...
	4.3.4 Labels
	4.3.5 Locals
	4.3.6 Memory...
	4.3.7 Performance Analysis
	4.3.8 Profile-List
	4.3.9 Profile-Tree
	4.3.10 Registers
	4.3.11 Source...
	4.3.12 Status
	4.3.13 Trace
	4.3.14 Watch
	4.3.15 Simulated I/O
	4.3.16 Stack Trace
	4.3.17 External Tool

	4.4 Run
	4.4.1 Reset CPU
	4.4.2 Go
	4.4.3 Reset Go
	4.4.4 Go To Cursor
	4.4.5 Set PC To Cursor
	4.4.6 Run...
	4.4.7 Step In
	4.4.8 Step Over
	4.4.9 Step Out
	4.4.10 Step...
	4.4.11 Halt

	4.5 Memory
	4.5.1 Refresh
	4.5.2 Load...
	4.5.3 Save...
	4.5.4 Verify...
	4.5.5 Test...
	4.5.6 Fill...
	4.5.7 Copy...
	4.5.8 Compare...
	4.5.9 Configure Map...
	4.5.10 Configure Overlay...

	4.6 Setup
	4.6.1 Status Bar
	4.6.2 Options...
	4.6.3 Radix
	4.6.4 Customize
	4.6.5 Configure Platform...

	4.7 Window
	4.7.1 Cascade
	4.7.2 Tile
	4.7.3 Arrange Icons
	4.7.4 Close All

	4.8 Help
	4.8.1 Index
	4.8.2 Using Help
	4.8.3 Search for Help on
	4.8.4 About HDI

	Section 5 Windows and Dialog Boxes
	5.1 Breakpoints Window
	5.1.1 Add...
	5.1.2 Edit...
	5.1.3 Delete
	5.1.4 Delete All
	5.1.5 Disable/Enable
	5.1.6 Go To Source

	5.2 Set Break Dialog Box
	5.3 Break Sequence Dialog Box
	5.4 Command Line Window
	5.4.1 Set Batch File...
	5.4.2 Play
	5.4.3 Set Log File...
	5.4.4 Logging
	5.4.5 Select All
	5.4.6 Copy

	5.5 Disassembly Window
	5.5.1 Copy
	5.5.2 Set Address...
	5.5.3 Go To Cursor
	5.5.4 Set PC Here
	5.5.5 Instant Watch...
	5.5.6 Add Watch
	5.5.7 Go to Source

	5.6 Labels Window
	5.6.1 Add…
	5.6.2 Edit…
	5.6.3 Find…
	5.6.4 Find Next
	5.6.5 View Source
	5.6.6 Copy
	5.6.7 Delete
	5.6.8 Delete All
	5.6.9 Load…
	5.6.10 Save
	5.6.11 Save As…

	5.7 Locals Window
	5.7.1 Copy
	5.7.2 Edit Value...
	5.7.3 Radix

	5.8 Memory Window
	5.8.1 Refresh
	5.8.2 Load…
	5.8.3 Save…
	5.8.4 Test…
	5.8.5 Fill…
	5.8.6 Copy…
	5.8.7 Compare...
	5.8.8 Search…
	5.8.9 Set Address...
	5.8.10 ASCII/Byte/Word/Long/Single Float/Double Float

	5.9 Performance Analysis Window
	5.9.1 Add Range...
	5.9.2 Edit Range...
	5.9.3 Delete Range
	5.9.4 Reset Counts/Times
	5.9.5 Delete All Ranges
	5.9.6 Enable Analysis

	5.10 Performance Option Dialog Box
	5.11 Registers Window
	5.11.1 Copy
	5.11.2 Edit…
	5.11.3 Toggle Bit

	5.12 Source Window
	5.12.1 Copy
	5.12.2 Find...
	5.12.3 Set Address...
	5.12.4 Set Line...
	5.12.5 Go To Cursor
	5.12.6 Set PC Here
	5.12.7 Instant Watch...
	5.12.8 Add Watch
	5.12.9 Go To Disassembly

	5.13 System Status Window
	5.13.1 Update
	5.13.2 Copy

	5.14 Trace Window
	5.14.1 Find...
	5.14.2 Find Next
	5.14.3 Filter...
	5.14.4 Acquisition...
	5.14.5 Halt
	5.14.6 Restart
	5.14.7 Snapshot
	5.14.8 Clear
	5.14.9 Save...
	5.14.10 View Source
	5.14.11 Trim Source

	5.15 Trace Acquisition Dialog Box
	5.16 Trace Search Dialog Box
	5.17 Watch Window
	5.17.1 Copy
	5.17.2 Delete
	5.17.3 Delete All
	5.17.4 Add Watch…
	5.17.5 Edit Value…
	5.17.6 Radix

	5.18 System Configuration Dialog Box
	5.19 Memory Map Modify Dialog Box
	5.20 Memory Map Dialog Box
	5.21 System Memory Resource Modify Dialog Box
	5.22 Control Registers Window
	5.23 SYSCR Dialog Box
	5.24 Simulated I/O Window
	5.25 Stack Trace Window
	5.25.1 Copy
	5.25.2 Go to Source
	5.25.3 View Setting...

	5.26 Profile-List Window
	5.26.1 View Source
	5.26.2 View Profile-Tree
	5.26.3 View Profile-Chart
	5.26.4 Enable Profiler
	5.26.5 Find…
	5.26.6 Clear Data
	5.26.7 Output Profile Information File…
	5.26.8 Output Text File…
	5.26.9 Select Data…
	5.26.10 Setting…

	5.27 Profile-Tree Window
	5.27.1 View Source
	5.27.2 View Profile-List
	5.27.3 View Profile-Chart
	5.27.4 Enable Profiler
	5.27.5 Find…
	5.27.6 Find Data…
	5.27.7 Clear Data
	5.27.8 Profile Information File…
	5.27.9 Output Text File…
	5.27.10 Select Data…
	5.27.11 Setting…

	5.28 Profile-Chart Window
	5.28.1 Expands Size
	5.28.2 Reduces Size
	5.28.3 View Source
	5.28.4 View Profile-List
	5.28.5 View Profile-Tree
	5.28.6 View Profile-Chart
	5.28.7 Enable Profiler
	5.28.8 Clear Data
	5.28.9 Multiple View
	5.28.10 Output Profile Information File…

	Section 6 Command Lines
	!(COMMENT)
	ANALYSIS
	ANALYSIS_RANGE
	ANALYSIS_RANGE_DELETE
	ASSEMBLE
	ASSERT
	BREAKPOINT
	BREAK_ACCESS
	BREAK_CLEAR
	BREAK_DATA
	BREAK_DISPLAY
	BREAK_ENABLE
	BREAK_REGISTER
	BREAK_SEQUENCE
	DISASSEMBLE
	ERASE
	EVALUATE
	FILE_LOAD
	FILE_SAVE
	FILE_VERIFY
	GO
	GO_RESET
	GO_TILL
	HALT
	HELP
	INITIALISE
	LOG
	MAP_DISPLAY
	MAP_SET
	MEMORY_DISPLAY
	MEMORY_EDIT
	MEMORY_FILL
	MEMORY_MOVE
	MEMORY_TEST
	QUIT
	RADIX
	REGISTER_DISPLAY
	REGISTER_SET
	RESET
	SLEEP
	STEP
	STEP_OUT
	STEP_OVER
	STEP_RATE
	SUBMIT
	SYMBOL_ADD
	SYMBOL_CLEAR
	SYMBOL_LOAD
	SYMBOL_SAVE
	SYMBOL_VIEW
	TRACE
	TRACE_ACQUISITION

	Section 7 Messages
	7.1 Information Messages
	7.2 Error Messages

	Section 8 Looking at Your Program
	8.1 Compiling for Debugging
	8.2 Viewing the Code
	8.2.1 Viewing Source Code
	8.2.2 Viewing Assembly-Language Code
	8.2.3 Modifying Assembly-Language Code

	8.3 Looking at Labels
	8.3.1 Listing Labels
	8.3.2 Adding a Label from a Source or Disassembly Window

	8.4 Looking at a Specific Address
	8.4.1 Looking at the Current Program Counter Address

	8.5 Finding Text

	Section 9 Working with Memory
	9.1 Looking at an Area of Memory
	9.1.1 Displaying Memory as ASCII
	9.1.2 Displaying Memory as Bytes
	9.1.3 Displaying Memory as Words
	9.1.4 Displaying Memory as Longwords
	9.1.5 Displaying Memory as Single-Precision Floating Point
	9.1.6 Displaying Memory as Double-Precision Floating Point
	9.1.7 Looking at a Different Area of Memory

	9.2 Modifying Memory Contents
	9.2.1 Quick Edit
	9.2.2 Full Edit
	9.2.3 Selecting a Memory Range

	9.3 Finding a Value in Memory
	9.4 Filling an Area of Memory with a Value
	9.4.1 Filling a Range

	9.5 Copying an Area of Memory
	9.6 Saving an Area of Memory
	9.7 Loading an Area of Memory
	9.8 Verifying an Area of Memory

	Section 10 Executing Your Program
	10.1 Running from Reset
	10.2 Continuously Running Your Program
	10.3 Running to the Cursor
	10.4 Running to Several Points
	10.5 Single Step
	10.5.1 Stepping Into a Function
	10.5.2 Stepping Over a Function Call

	10.6 Stepping Out of a Function
	10.7 Multiple Steps

	Section 11 Stopping Your Program
	11.1 Halting Execution
	11.2 Standard Breakpoints (PC Breakpoints)
	11.3 The Breakpoints Window
	11.3.1 Adding a Breakpoint
	11.3.2 Modifying a Breakpoint
	11.3.3 Deleting a Breakpoint
	11.3.4 Deleting All Breakpoints

	11.4 Disabling Breakpoints
	11.4.1 Disabling a Breakpoint
	11.4.2 Enabling a Breakpoint

	11.5 Temporary Breakpoints

	Section 12 Looking at Variables
	12.1 Tooltip Watch
	12.2 Instant Watch
	12.3 Using Watch Items
	12.3.1 Adding a Watch
	12.3.2 Expanding a Watch
	12.3.3 Modifying Radix for Watch Item Display
	12.3.4 Changing a Watch Item’s Value
	12.3.5 Deleting a Watch

	12.4 Looking at Local Variables
	12.5 Looking at Registers
	12.5.1 Expanding a Bit Register
	12.5.2 Modifying Register Contents
	12.5.3 Using Register Contents

	Section 13 Overlay Function
	13.1 Displaying Section Group
	13.2 Setting Section Group

	Section 14 Selecting Functions
	14.1 Displaying Functions
	14.2 Specifying Functions
	14.2.1 Selecting a Function
	14.2.2 Deleting a Function
	14.2.3 Setting a Function

	Section 15 Configuring the User Interface
	15.1 Arranging Windows
	15.1.1 Minimizing Windows
	15.1.2 Arranging Icons
	15.1.3 Tiling Windows
	15.1.4 Cascading Windows

	15.2 Locating Currently Open Windows
	15.2.1 Locating the Next Window
	15.2.2 Locating a Specific Window

	15.3 Enabling/Disabling the Status Bar
	15.4 Customizing the Toolbar
	15.4.1 Overall Appearance
	15.4.2 Customizing Individual Toolbars
	15.4.3 Button Categories
	15.4.4 Adding a Button to a Toolbar
	15.4.5 Positioning a Button in a Toolbar
	15.4.6 Removing a Button from a Toolbar

	15.5 Customizing the Fonts
	15.6 Customizing the File Filters
	15.7 Saving a Session
	15.8 Loading a Session
	15.9 Setting HDI Options
	15.10 Setting the Default Input Radix

	Appendix A - System Modules
	Appendix B - GUI Command Summary
	Appendix C - Symbol File Format

