To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

Hitachi SuperH™ RISC Engine
SH-1/SH-2/SH-DSP

Programming Manual

LENESAS

ADE-602-063C
Rev. 4.0
3/6/03

Hitachi ,Ltd

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained i
this document. Hitachi bears no responsibility for problems that may arise with third party’
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that
have received the latest product standards or specifications before final design, purchase
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi's sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may direct
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment f
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitach
particularly for maximum rating, operating supply voltage range, heat radiation characterist
installation conditions and other characteristics. Hitachi bears no responsibility for failure ¢
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation «
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docum
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Introduction

The SH-1 and SH-2 incorporates a RISC (Reduced Instruction Set Computer) type CPU. A ba
instruction can be executed in one clock cycle, realizing high performance operation. A built-in
multiplier can execute multiplication and addition as quickly as DSP.

The SH-DSP is a 32 bit microcontroller based on Hitachi’'s SUgRISC engine that realizes the
same signal processing capability as a general usage DSP (Digital Signal Processor). The SH-
offers an improvement on the DSP functions of multiplication and multiply and accumulate in
SuperH microprocessors by using a DSP style data path function. It maintains upward
compatibility at the object code level with the SH-1 and SH-2 microprocessors and has the mar
functions, low power usage, and low price of other SuperH microprocessors.

The SH-DSP achieves high performance in processing operations by using a RISC CPU core ¢
a DSP unit with DSP functions. This new type of single chip RISC-DSP simultaneously integrat
the peripheral functions needed to build systems into the SH-DSP and provides the lower-powe
consumption vital to microprocessor applications.

This Programming Manual describes in detail the basic architecture and instructions for the SH
SH2, and SH-DSP and is intended as a reference on instruction operation and architecture. It 3
covers the operation of pipelines, which are a feature of the SuperH microprocessor.

For software development environment system, contact your Hitachi sales office.

Note: SuperHM is a trademark of Hitachi, Ltd.

Contents

SECUHON 1 FRAIUIES.....c.oeiiiieeceee ettt
1.1 SH-1aNd SH-2 FEAIUIESuuuiiiiiiiiieee e e ettt e et e e e e e e e e e e e e e e e e e s s asnarnnaneeeeeeeeeseeannes
1.2 SH-DSP FEALUIEScoiiiiiiiteiee ettt ettt e e e e e e s s e e e e e e e s 2....
Section 2 Register Configuration..............ccccoovieviieciiicieeeceseeeee e,
2.1 GENEIAlI REQISTEIS . ..eiiiiiiieii ittt ettt e e e e e et b e e e e e e e e e e s e e aanntbe s s e e e 5.
2.2 CONLIOI REGISIEISeiiiiiiiiie ettt ettt e e rbbe e e e mmenseee o 8..
2.3 SYSIEM REQISIEIS. . .eiiiiiiiiiie ettt e e e e st e 11...
N S Y e o (o 11 (= S 12..
2.5 Precautions for Handling of Guard Bit and OVerflow............cccccovviiiiiiiiieee e
2.6 Initial Values Of REQISIEISeiiiiiiiiiiii et 14.....
Section 3 Data FOMMALS.........cccooiiiieeece e
3.1 Data FOrmat in REGISIEISuveiiiiiiiieiie ettt [STRN
3.2 Data FOrmat iN MEMOIYuuiiiiiiiieee e e es st et et e e e e e s s s st e e e eee e e s s s sssnsnraraereeeeaeeessnsnsnnnnes
3.3 ImMmediate Data FOMMAL........ccuuiiiiiiiiiiie e e e st e e e e ebee e e e e nree
3.4 DSP Type Data FOMIALS........uiiiiiii i e e e e e e e e e e e e eeeeeeeennenes
3.5 DSP Instructions and Data FOrMALSoooiiiiiiiiiiiiiie e
3.5.1 DSP Data PrOCESSING......eeteiiuuiiiieiiiiiiie ittt e ettt e e et e s e e s e b e e s anbreee e
3.5.2 Xand Y Data TranSfers.......ccccciiiiiiiiiie e e e e e e e e
3.5.3 Single Data TranSfEIScccii it e e e e e e e e eannrneeeen
Section 4 INSrUCtiON FEALULES...........oooviieeiieeeee e :
4.1 RISC-TYPE INSIIUCLION SEL ...ttt e e e e e e e e e eeeeaaaaeeeas
4.2 AJAresSSiNG MOUEScoiiiiiiiiie ettt e et e e 26......
4 C T [1S3 {0 o 1 o] o T o T 4= 29...
A DSP ..ttt e et e e et e e e e e n bttt e+ — 32
4.5 DSP Data AQAreSSINgG ...ceieiiee et e ittt e e e e e e e e e e e e e e e e s s aeeaeaaaee e e s e aanrraaaees 3.
451 Xand Y Data AQreSSINg.....cccuuuueueeeiiaaaieiiiiitieiiee et e e e e re e e e e e e e e nebbeeeeen
4.5.2 Single Data AQAreSSINGocouutiiiiiiiieiee ettt e e e e e s e e e e e e e e s e e sneeeeees
4.5.3 MOAUIO ACAIESSING ...eeiiitiiiieiiieiee ettt e et e et e e e s sbeeeeeeaa
4.5.4 DSP Addressing OPErationcccoiiuiiiieiiiiiiiee e iiiieee ettt e e eibreee e
4.6 Instruction Formats for DSP INSLIUCHIONS.........coiiiiiiiiii et
4.6.1 Double and Single Data Transfer INStruCtioNSccccccviiieeeeeee e
4.6.2 Parallel Processing INStrUCTIONS.c..uuiiiiiiiiiiee ettt
4.7 ALU Fixed Decimal POint OPEratioNSeceiiiiaaaiiiiiiiiiiiie et e e e e e e eiiireeee e e e e e e e e e
ot R ¥ [o o 1T o TP
4.7.2 INStructions and OPEIaNdS.........ccooiiiiiiieiiiiiiie ettt
N B B T O = | PO PPPPTPPPPR

4.8
4.9

4.10

4.11

4.12

4.13

4.14
4.15
4.16

4.17
4.18

4.19

o S @ o To 11 To] g T = 1 OSSR
4.7.5 Overflow Prevention Function (Saturation Operation)........ccccccccevvvvcvvvvvreeeeeeeennn.
ALU INtEQEN OPEIALIONS ...uvviiiieieeeeie ittt e e e e e e s e s s e e e e e e e e et e s s b b breeeeeeaaeesessaannnnranneees
ALU LOQICAl OPEIALIONS ...ttt ettt e e e e e e e e e s e s bbb beaeeeeaaeeeen
e Tt R ¥ [(o 1T o DTS TPT TR
4.9.2 INStructions and OPEIaANUScoooiiuiiiiiiiiiiie ettt e s ee e
e TR T I T O = SRS
e A @o T (o 110 o I =1 £ PO PR
Fixed Decimal Point MURIPIICALIONccuviiiiiiieecce e e e
SHIft OPEIALIONS ...t e et e e e e e e e e e s e s e 57
4.11.1 Arithmetic Shift OPerationscooviiiiiiiiiii e
4.11.2 Logical Shift OPEratiONSceieiiiiiiieiiiiie et
The MSB Detection INSIUCHON..........oiiiiieiieeece e e e e e e e s e s enneen
o R ¥ Vo £ o o PSPPI 1.
4.12.2 Instructions and OPErandS...........cccuuuiiiieiieeee e ii et rer e e e e e e s e s e e e e e e e e e senanes
A B D [O =T | TP PP PRPON 5.....
4.12.4 CONAILION BILS ...vetiiiiiiiieiiii ittt e e e e e e e e e e e e e e nne e
ROUNGING. -1ttt e bbbt e e s abe et e e s ¢ s 66
4.13.1 Operation FUNCHONcociiiiiiiee ittt et
4.13.2 Instructions and OPErandS...........cccurirriirireeeee e i e e e e e e s s s ssrrrrerr e eeeeeesannanes
4.13.3 DO Bl teieiiiieiieie ittt 8.....
4.13.4 CONAILION BILS ...uetiiiiiiieeiiii ittt e e e e e e e e s
4.13.5 Overflow Prevention Function (Saturation Operation).............ccccuveiieerieiennnnnnnns
Condition Select Bits (CS) and the DSP Condition Bit (DC)cccveeiiiiiiieiiiiiiee e
Overflow Prevention Function (Saturation Operation)ccccevvriieeeeiniiieee s
DaAta TrANSIEIS. ...ttt e e et neane s 12
4.16.1 XandY Memory Data Transfer.........ccccoiiiiiiiiiie e
4.16.2 Single Data TranSTEIScooi it
OpErand CONTENTION.......ciiiiiee ettt e e e e e e e e s s aabbeeeeeeeaaaeeeeesanimene 76.....
DSP Repeat (LOOP) CONLIOLoiiiiiiiiiieeiiiiit ettt
4.18.1 ACtUAl PrOGraMIMING ...coouvveeeeeiiieiee et e ettt e e et e e e st e e e s s sbbr e e e e s sabbeeeessbbneeeeaas
Conditional Instructions and Data Transfers ...

SECHON S5 TNSIIUCTION SEL ... oottt 8

5.1

5.2

Instruction Set for CPU INSIIUCTIONS........ovuviiiie et e e e e e e e eees
5.1.1 Data Transfer INStIUCHIONSciiieeiiiee et e e e e e e e e e e eees
5.1.2 ArithmetiC INSIIUCIONScovvii i e e
5.1.3 Logic Operation INSIrUCHIONS........ccceiiiiiiiiieeie e e s s e e e e e e e e e e eee e
5.1.4 Shift INSIIUCHIONS ...oiiiiiiiic et s e e e e e e e e e e e e e e e e e eeeeeeeeesssareranes
5.1.5 BranCh INSITUCLIONSuuiiiiiiiiiiii it e e e e e et e e e e eaba s
5.1.6 System Control INSIIUCLIONScoiiiiiiiiiiiiiiiiie e
5.1.7 CPU Instructions That Support DSP FUNCLIONScceiiiiiiiieiiiiiee e
DSP Data Transfer INSITUCLION SeT..........oiiiiiiiiiiiiee e

RENESAS

5.2.1 Double Data Transfer Instructions (X Memory Data)ccccoccuveeeeiniiieneniiiinnen :
5.2.2 Double Data Transfer Instructions (Y Memory Data)ccccccceveeeeeeeeeeiiccnnnnnnn :
5.2.3 Single Data Transfer INStrUCIONSoooiiiiiiiiiiece e
5.3 DSP Operation INStrUCHION ST ..ot e e e e eeee s
5.3.1 ALU Arithmetic Operation INStIUCLIONSccuuiiiiiiiiiiaea e 1
5.3.2 ALU Logical Operation INSTIUCHIONS.coiuriiiiiiiiiieee it :
5.3.3 Fixed Decimal Point Multiplication INStruCtionscccooevevee i 1
5.3.4 Shift Operation INSTUCHONSccoiiiiiiieeie e e e
5.3.5 System Control INStIUCLIONSccoeeiiiiiiiieie e
5.3.6 NOPX and NOPY INStruction COUE...........euveiiiiiiieiiiiiiie e
Section 6 INStruction DESCIPLIONS........c.cviuiiiiiiicecieie s 11
6.1 INStrUCHION DESCHPLIONSciiuttiiiieiiiteie ettt st 119.....
6.1.1 Sample Description (Name): Classificationcccccvviiirieeeeiii e
6.1.2 ADD (ADD Binary): Arithmetic INStructioncccccvvevieeee e 12
6.1.3 ADDC (ADD with Carry): Arithmetic INStructioncccveeeveiiiiinniiiiiiiiee, 12
6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction................. 125
6.1.5 AND (AND Logical): Logic Operation INSIrUCLIONcccovrvireeeriiiieeeeiiiieeee 12
6.1.6 BF (Branch if False): Branch INStruCtioncccooviviiie i ‘
6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction............ccccccceeeeviinnns 1
6.1.8 BRA (Branch): Branch INStruCtionccccciiviiiriiie e :
6.1.9 BRAF (Branch Far): Branch INStruCtioNoooiiiiiiiiiiiiiiee e :
6.1.10 BSR (Branch to Subroutine): Branch INStructioncccceeeeviiiiiiiiiiiiiiiiieeeen.
6.1.11 BSRF (Branch to Subroutine Far): Branch INStruction............c.cccoeeeevviiiereennnnn.
6.1.12 BT (Branch if True): Branch INStruCtion............ccccooviiiiiiiiiieiie e :
6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction..............ccccccvveeeeen..n. 1
6.1.14 CLRMAC (Clear MAC Register): System Control Instruction........................... 1
6.1.15 CLRT (Clear T Bit): System Control INStruCtioNccceeeiiiiiiiiiiiiiieeeeeee e 1
6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction...............ccccuvvveeeeen. 1
6.1.17 DIVOS (Divide Step 0 as Signed): Arithmetic InStruction............cccoccvvvveeiiinnn 1
6.1.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction................cccceeeeneee. 1
6.1.19 DIV1 (Divide 1 Step): Arithmetic INStruCtioN...........cevvvivieeeiiiiiceeee e, 1
6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction 15
6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction 157
6.1.22 DT (Decrement and Test): Arithmetic INStruCtioNcccccooiiiiiiiiiiiiiiie :
6.1.23 EXTS (Extend as Signed): Arithmetic INStruction.............cccooveeiiiiieee e :
6.1.24 EXTU (Extend as Unsigned): Arithmetic INStruction...........cccccceeivviieeieniiiieeenns 1
6.1.25 JMP (Jump): Branch INStrUCLIONceeviiiiiiiiiie e
6.1.26 JSR (Jump to Subroutine): Branch Instruction
(Class: Delayed Branch INSrUCtion)ccuuiiiiiiiiiiieeee e
6.1.27 LDC (Load to Control Register): System Control Instruction
(Class: Interrupt Disabled INStrUCHION)eviiiiiiiiiieiiiee e :
6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction.... 1

iii
RENESAS

6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction 1

6.1.30 LDS (Load to System Register): System Control Instruction............cccccceeeevinnnes 1
6.1.31 MAC.L (Multiply and Accumulate Calculation Long):

AMtNMELIC INSIIUCTIONeviiiiiiiie e 1
6.1.32 MAC.W (Multiply and Accumulate Calculation Word):

ArthMEtiC INSTIUCTION ... e e 1¢
6.1.33 MOV (Move Data): Data Transfer INStruCtioncccocuveeiiiiiieeienniieee e, 1
6.1.34 MOV (Move Immediate Data): Data Transfer Instructionccccccceveeeviiiiinnns 1¢
6.1.35 MOV (Move Peripheral Data): Data Transfer Instructionccccccceeeeeeinninn 1
6.1.36 MOV (Move Structure Data): Data Transfer INStructionccccceeeeevieiinnnnnn 1
6.1.37 MOVA (Move Effective Address): Data Transfer Instructionccuueeeee. 19
6.1.38 MOVT (Move T Bit): Data Transfer INStructioncccccevniiieeiiiiiiieee e 19
6.1.39 MUL.L (Multiply Long): Arithmetic INStruction...........cccoeevveeiiiiiiee e 199
6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction...........ccccccevveeennn. 200
6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 201
6.1.42 NEG (Negate): ArithmetiC INSrUCHIONcoeiiiiiiiiiiiiiiiei e 20
6.1.43 NEGC (Negate with Carry): Arithmetic INStruCtioncccccooviiiiiiiiiiiiinnnennnn, 20
6.1.44 NOP (No Operation): System Control INStructioncccccceeeeiiiiiiiiiiiiiieeeeeen 2
6.1.45 NOT (NOT-Logical Complement): Logic Operation Instruction........................ 20
6.1.46 OR (OR Logical) Logic Operation INStrUCHIONceviveeeeiiiiiiiiiiiiiieeeeee e e e eenenns 2(
6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction............ccccooveveveeee i 20
6.1.48 ROTCR (Rotate with Carry Right): Shift Instructioncccccceeiiiiiiiiiiiiienen. 20
6.1.49 ROTL (Rotate Left): Shift INStrUCHON.ceiiiiiiiiiiiie e 2!
6.1.50 ROTR (Rotate Right): Shift INStrUCLIONcccciiiiiiiii e 2
6.1.51 RTE (Return from Exception): System Control InStructionccccovcvveeerne 2!
6.1.52 RTS (Return from Subroutine): Branch Instruction

(Class: Delayed Branch INStruction)ccccvviiiiiieiee e 2
6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction.......................... z
6.1.54 SETT (Set T Bit): System Control INStruCtioncccuviiiieiiiiieeeeiiiiieieeeeee 2
6.1.55 SHAL (Shift Arithmetic Left): Shift INStruction.............cccccviiiiiie, 21¢
6.1.56 SHAR (Shift Arithmetic Right): Shift INStrUCtON............ccooiiiiiiiiiiieeee 22(
6.1.57 SHLL (Shift Logical Left): Shift INStruction..............ccccovieeeiiiee e, 22
6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction..........ccccccceeeiviiiiiiiiiiieeen 22:
6.1.59 SHLR (Shift Logical Right): Shift INStruCtionc.uveiiiiiiiiiiieeeee 22
6.1.60 SHLRn (Shift Logical Right n Bits): Shift INStrucCtionccccooviiiiiiiiiiennnennn. 22!
6.1.61 SLEEP (Sleep): System Control INStruCtioNnooccuveveiiiiiieeeiiiieee e z
6.1.62 STC (Store Control Register): System Control Instruction

(Interrupt Disabled INSTUCION).......cciieeiii e 2.
6.1.63 STS (Store System Register): System Control Instruction

(Interrupt Disabled INSIFUCHION)......c.ciiiiiiiiiie e 2.
6.1.64 SUB (Subtract Binary): Arithmetic INStruCtioN............ccoviiiiiiiiiiiiiiiiieecee e 2
6.1.65 SUBC (Subtract with Carry): Arithmetic INStruCtionccocvveveiiiiiieeeiiieeee. 23
6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction............ 238

RENESAS

6.2

6.3

6.1.67 SWAP (Swap Register Halves): Data Transfer Instructionc.ccceeevvvvnnee
6.1.68 TAS (Test and Set): Logic Operation INStruction............ccccvvveeeeeeiiiicciiniieeeeeeenn.

6.1.69 TRAPA (Trap Always): System Control INStructioncccccvvvveeeeieeeeeeiieinnns 2
6.1.70 TST (Test Logical): Logic Operation INStrUCONcoovviiiiiiiiiiiiiiiieeeeeeiiies z
6.1.71 XOR (Exclusive OR Logical): Logic Operation INStruction................cocccuvvvenneen. 2
6.1.72 XTRCT (Extract): Data Transfer INStrUCHIONeoeiiiiiiieiniieiee e :
DSP Data Transfer INStrUCHIONSooceiiiiiiiii e e e e e e e e e e
6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W)ccccoiimiiieieeeiiniciiieeeen 2!
6.2.2 Single Data Transfers (MOVS.W and MOVS.L)ccccoeeeeiiiiiiiiiiiiiieeeee e Y

6.2.3 Sample Description (Name): Classificationccccuuviiiiiiiiiiiniiieee e
6.2.4 MOVS (Move Single Data between Memory and DSP Register):

DSP Data Transfer INSTrUCHONooiiiiiiiiiiiiee e
6.2.5 MOVX (Move between X Memory and DSP Register):

DSP Data Transfer INStrUCHIONcooovviiiiiiie e
6.2.6 MOVY (Move between Y Memory and DSP Regjister):

DSP Data Transfer INSITUCTIONcvveviiiiiiieee e
6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction.. 2
DSP Operation INSIIUCTIONSueiie ettt e e e e e
6.3.1 PABS (Absolute): DSP Arithmetic Operation INStruction...........cccccccevveeeeeviinnnns 2
6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic

Operation INSIUCHION..........uviiiiiiieee e e e e e e e e e e e e rereaaeeas
6.3.3 PADD PMULS (Addition & Multiply Signed by Signed):

DSP Arithmetic Operation INSTrUCIONcuvviiiiiiiiie e z
6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction 29
6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction...................... 29
6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation InStruction.................ccccvvveee. 2
6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction 3
6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction.. 30
6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction............. 3

6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic

Operation INSIUCHION..........uueiiiiiiie e e e e e e e e e e s e s ereeaees
6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic

Operation INSIUCHION..........uuiiiiiirie e e e e e e e e e e e s e eeeaaeeas

6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction............. K
6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction... 32
6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction..................cc....... 3
6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instructionccccccevuee 3
6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction...............ccccoeeevvvvnee 3
6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic

St INSTIUCTION ... e e e e e e e :

6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction... 350
6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction
6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction. 3€

\
RENESAS

6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed):

DSP Arithmetic Operation INStrUCHIONccvvviiiiieiiee e 3¢
6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction.......... 37
6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction........ 37°¢
Section 7 PIpeling OPEratiON..........cooiiiiiriiiirieeeeeeeee e 38:
7.1 Basic Configuration of PIPEIINEScoiuiiiiiiiiiiiie e :
7.1.1 The Five-Stage PIPElINEooviiiii e e e e :
7.1.2 Slot and PipeliNg FIOW.........ccoiiiiiiiiiieiieeee et e e e e e e e e enenes :
T7.1.3 SIOt LENGLN ..ttt a e :
7.1.4 Number of Instruction EXeCUtion CYCIEScceiiiiiiiiiiiiiiiiiiiieeee e 3
472 o] o1 (T 11T o SRS 385
7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA) 3¢
7.2.2 Contention when the Previous Instruction's Destination Register Is Used........... :
7.2.3 Multiplier ACCESS CONLENLION.......ccceeeieiiiiiiieiee et e e e e e e e e e e e e e e e e s e eeean 3
7.2.4 Contention between Memory Stores and DSP Operationsccceeeeveeeeeeinnnns :
7.3 Programming GUIAEcoooiiiiiiiiiiiiiiiiie ettt e e e e e e e e eeee e a3......
7.3.1 Types of Contention and Affected INStructions.............cococciiiiiiiiiee i, 3
7.3.2 Increasing Instruction EXecution Speed...........oocvveiiiiiiiiiiiiniiieee e (
4 T T Y 1 PP 96...... |
7.4 Operation of INStruction PIPelINES ..ottt :
7.4.1 Data Transfer INSIrUCHONSuiiiiiiiiiiee e ‘
7.4.2 ArithmetiC INSIUCHIONScoii it e e 4
7.4.3 Logic Operation INStIUCHIONS.........ciiuiiiiiiiiiiiee et e e 4
7.4.4 Shift INSIUCHIONS ...cci i s e e e e e e e e s e n e eeeeaees L
7.4.5 Branch INSIIUCLIONScvuiiiiiiiiiie ettt e e st e e s nebreee e e .
7.4.6 System Control INStIUCLIONSceviiieeeiie i z
747 EXCEPLON PrOCESSING....cciiiiiiiiiiititttitie et e ettt e e e e e e e e e e e e e e e e e abaeeees
ApPPeNdiX A CPU INSIIUCTIONScoiiiiiiieiiieeeece e 47!
N R O = U [1 1 1 T 1o O PPRRRRY 475.
Vi

RENESAS

Section 1 Features

1.1 SH-1 and SH-2 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in or
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1 and Sk

CPU features.

Table 1.1

ltem

SH-1 and SH-2 CPU Features

Feature

Architecture

Original Hitachi architecture
32-bit internal data bus

General-register machine

Sixteen 32-bit general registers
Three 32-bit control registers
Four 32-bit system registers

Instruction set

Instruction length: 16-bit fixed length for improved code efficiency

Load-store architecture (basic arithmetic and logic operations are
executed between registers)

Delayed branch system used for reduced pipeline disruption
Instruction set optimized for C language

Instruction execution time

One instruction/cycle for basic instructions

Address space

Architecture makes 4 Gbytes available

On-chip multiplier
(SH-1 CPU)

Multiplication operations (16 bits x 16 bits - 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits - 42 bits) executed in 3/(2)* cycles

On-chip multiplier

Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits

(SH-2 CPU) — 32 bits) or 2 to 4 cycles (32 bits x 32 bits - 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits + 64 bits - 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits — 64 bits)

Pipeline « Five-stage pipeline

Processing states

Reset state

Exception processing state
Program execution state
Power-down state

Bus release state

Power-down states

Sleep mode
Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

RENESAS

1.2 SH-DSP Features

The SH-DSP is a 32-bit microcontroller based on the Hitachi SuperH RISC engine (abbreviated
below as “SuperH”) and incorporating the signal processing performance of a general-use digital
signal processor (DSP). The SuperH already supported some DSP type instructions, such as
multiply and accumulate. In the SH-DSP, the DSP functions have been enhanced, and full DSP
data bus have been implemented. The SH-DSP is backward compatible at the object code level
with the SH-1 and SH-2 CPUs.

The SuperH only has 16-bit instructions. The SH-DSP basically has the same 16-bit instructions,
but it also has additional 32-bit DSP instructions that it uses for parallel processing of DSP type
instructions. The SuperH uses a standard Neumann architecture, but the SH-DSP has the DSP ¢
bus of the expanded Harvard architecture.

Table 1-2 lists the added features of the SH-DSP.

RENESAS

Table 1.2 Features of SH-DSP Series Microprocessor CPUs

Feature

Description

DSP unit

1 cycle multiplier

16 bits x 16 bits — 32 bits (fixed decimal point)
Arithmetic logic unit (ALU)

Barrel shifter

DSP registers

MSB detection

DSP registers

Two 40-bit data registers

Six 32-bit data registers

DSP status register (DSR)

Modulo register (MOD, 32 bits) added to control registers
Repeat counter (RC) added to status registers (SR)

Repeat start register (RS) and repeat end register (RE) added to
control registers

DSP data bus

Expanded Harvard architecture
Simultaneous access of two data bus and one instruction bus

Parallel processing

Maximum of four parallel processes (ALU operation, multiplication,
and two loads or stores)

Address operator

Two address operators
Address operations for accessing two memories

DSP data addressing
modes

Increment, decrement and index

Increment, decrement and index can have modulo addressing or
not

Repeat control

Zero-overhead repeat control (loop)

Instruction set

16 or 32 bits
O 16 bits (for load or store only)
O 32 bits (including for ALU operations and multiplication)

SuperH microprocessor instructions added for accessing DSP
registers.

Pipeline

Five-stage pipeline
Fifth stage is both the WB stage and the DSP stage.

RENESAS

RENESAS

Section 2 Register Configuration

The register set of the SH-1 and SH-2 consists of sixteen 32-bit general registers, three 32-hbit
control registers and four 32-bit system registers.

The SH-DSP maintains upward compatibility with the SH-1 and SH-2 microprocessors on the
object code level. To this end, it has the same registers as the SuperH microprocessors, with th
addition of several other registers. Three control registers have been added: the repeat start rec
(RS), the repeat end register (RE), and the modulo register (MOD). Six other registers have alsc
been added: the DSP status register (DSR), which is a system register, and eight DSP data
registers (A0, Al, X0, X1, YO, Y1, MO, and M1).

The general registers are used the same as in the SH-1 and SH-2 when SuperH type instructior
are involved. With DSP type instructions, however, they are used as address registers and inde
registers for accessing memory.

2.1 General Registers

There are 16 general registers (Rn) numbered RO—-R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an il
register. Several instructions use RO as a fixed source or destination register. R15 is used as thi
hardware stack pointer (SP). Saving and recovering the status register (SR) and program count
(PC) in exception processing is accomplished by referencing the stack using R15.

RENESAS

31 0
RO* 1. RO functions as an index register in the
R1 indirect indexed register addressing
mode and indirect indexed GBR
addressing mode. In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.

R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) *2| 2. R15 functions as a hardware stack

pointer (SP) during exception

processing.

R2

Figure 2.1 General Registers (SH-1 and SH-2)

With DSP type instructions, eight of the 16 general registers are used in addressing the X and Y
data memory and the data memory that uses the | bus (single data).

To access X memory, R4 and R5 are used as the X address register [AX] and R8 is used as the .
index register [IX]. To access the Y memory, R6 and R7 are used as the Y address register [Ay]
and R9 is used as the Y index register [ly]. To access single data using the | bus, R2, R3, R4, an
R5 are used as the single data address register and R8 as the single data index register [Is].

DSP type instructions can simultaneously access X and Y memory. There are two groups of
address pointers for specifying the X and Y data memory addresses.

Figure 2.2 shows the general registers.

RENESAS

31 0
Ro*l

R1
R2, [As]*?
R3, [As]*2
R4, [As, Ax]*2
R5, [As, Ax]*2
R6, [Ay]*
R7, [Ay]*?
RS, [Ix, Is]*2
R9, [ly]*
R10

R11

R12

R13

R14

R15, SP *3

Notes: 1. RO functions as an index register in the indirect indexed register addressing
mode and indirect indexed GBR addressing mode. In some instructions, RO
functions as a source register or destination register.

2. Used as memory address register and memory index register with DSP
instructions.
3. R15 functions as a hardware stack pointer (SP) during exception processing.

Figure 2.2 Organization of General Registers (SH-DSP)

The symbols R2—R9 are used by the assembler. To change a name to something that indicates
role of the register for DSP instructions, use an alias. The assembler writes as follows:

Ix: .REG (R8)
The name Ix becomes the alias R8. Aliases are also assigned as follows:

AX0: .REG (R4)
Axl: .REG (R5)
Ix: REG (RS)
Ay0: .REG (R6)
Ayl: .REG (R7)

ly: .REG (R9)

AsO: .REG (R4); defined when an alias is needed for a single data transfer.
Asl: .REG (R5); defined when an alias is needed for a single data transfer.
As2: .REG (R2); defined when an alias is needed for a single data transfer.

RENESAS

As3: .REG (R3); defined when an alias is needed for a single data transfer.
Is: .REG (R8); defined when an alias is needed for a single data transfer.

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),

and vector base register (VBR) (figure 2.3). The status register indicates processing states. The

global base register functions as a base address for the indirect GBR addressing mode to transfe
data to the registers of on-chip peripheral modules. The vector base register functions as the bas
address of the exception processing vector area (including interrupts).

31 98 76543210
SR| ——————————— MQI3 121110 --ST | SR: Status register

— __ | LT bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBVI/C, DIVOU/S, DIV1, NEGC,
SHARI/L, SHLR/L, ROTR/L, and
ROTCRI/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

— S bit: Used by the multiply/accumulate

instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.

——» Bits 13-10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and

DIV1 instructions.

Global base register (GBR):
31 0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure 2.3 Control Registers (SH-1 and SH-2)

The SH-SDP additionally has a repeat start (RS) register, a repeat end (RE) register, and a modt
(MOD) register.

8
RENESAS

The RS and RE registers are used to control program repetition (loops). The number of iteratior
is specified in the SR register’s repeat counter (RC), the repeat start address is specified in the
register, and the repeat end address is specified in the RE register. The address values stored |
RS and RE registers are not always the same as the physical starting address and ending addr:
the repeat.

The MOD register uses modulo addressing to buffer the repeat data. Modulo addressing is
specified by DMX or DMY, the modulo end address (ME) is specified in the top 16 bits of the
MOD register, and the modulo start address (MS) is specified in the bottom 16 bits. The DMX al
DMY bits cannot simultaneously specify modulo addressing. Modulo addressing can be used fo
X and Y data transfers (MOVX and MOVY). It cannot be used in single data transfers (MOVS).

Figure 2.4 shows the control registers. Table 2.1 shows the bits of the SR register.

312827 161512 11 10 9 8 7 4 3 2 10
|- RC [~ |DmY|DMX| M| Q|13 12 11 10| RF1| RFO|S|T| Status register (SR)
31 0
| RS | Repeat start register (RS)
31 0
| RE | Repeat end register (RE)
31 16 15 0
| ME MS | Modulo register (MOD)
ME: Modulo end address
MS: Modulo start address

Figure 2.4 Organization of the Control Registers (SH-DSP)

RENESAS

Table 2.1 SR Register Bits

Bits Name Function
27-16 Repeat counter (RC) Specifies the number of iterations for repeat (loop) control (2
to 4095)

11 Specification of modulo 1: Modulo addressing mode becomes valid for the Y memory
addressing for Y pointer address register Ay (R6, R7)
(DMY)

10 Specification of modulo 1: Modulo addressing mode becomes valid for the X memory
addressing for X pointer address register Ax (R4, R5)
(DMX)

9 Bit M Used by the DIVOS/U and DIV1 instructions

8 Bit Q

7-4 Interrupt request mask Indicate the level of interrupt request accepted (0-15)
(IMASK)

3-2 Repeat flag (RF1, RFO) Used to control zero-overhead repeating (loop)

00: 1 step repeat
01: 2 step repeat
11: 3 step repeat
10: Repeat of 4 or more steps

1 Saturation operation bit ~ Used by MAC and DSP instructions
(S) 1: Specifies saturation operation (prevents overflows)
0 Bit T For MOVT, CMP/cond, TAS, TST, BT, BF, SETT, CLRT, and
DT instructions:
0: FALSE
1: TRUE

For ADDV/C, SUBV/C, DIVOU/S, DIV1, NEGC, SHARIL,
SHLR/L, ROTR/L and ROTCRI/L instructions:
1: Indicates a carry, borrow, overflow or underflow

31-28, Reserved 0: Always reads 0; Always write 0.
15-12

Dedicated load and store instructions are used to access the RS, RE, and MOD registers. For
example, to access the RS register, do the following:

LDC Rm, RS; Rm - RS

LDCL @Rm+ RS; (Rm) - RS,Rm+4 - Rm

STC RS, Rn; RS - Rn

STCL RS, @-Rn; Rn-4 - Rn,RS - (Rn)
10

RENESAS

The following instructions set addresses in the RS, RE registers for zero overhead repeat contre

LDRS @(disp, PC); disp x2+PC SRS
LDRE @(disp, PC); disp x2+PC - RE

The GBR and VBR registers are the same as the previous SuperH registers. Four control bits
(DMX, DMY, RF1, and RFO bits) and an RC counter have been added to the SR register. The R
RE, and MOD registers are new registers.

2.3 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply
and accumulate registers store the results of multiply and multiply and accumulate operations. T
procedure register stores the return address from the subroutine procedure. The program count
indicates the address of the program executing and controls the flow of the processing. The PC
counter points to four bytes ahead of the instruction currently executing. These registers are the
same as the SuperH microprocessor registers.

31 9 Multiply and accumulate register high
MACH ' (MACH) Multiply and accumulate

MACL register low (MACL)

These are the registers for storing the
results of multiply and accumulate
operations. On the SH-2 CPU, MACH

has 32 valid bits. On the SH-1 CPU, only
the lower 10 bits of MACH are valid, and
data is sign extended to 32 bits when read.

31 0

| PR Procedure register (PR)

This register is used to store the return
destination addresses for subroutine
procedures.

31 0
| PC Program counter (PC)
The PC indicates the next four bytes
(two instructions) following the instruction
currently being executed.

Note: These are used only when executing an instruction that was supported
by SH-1 and SH-2. They are not used for multiplication instructions newly
added for the SH-DSP (PMULS).

Figure 2.5 Organization of the System Registers

11
RENESAS

In addition, the SH-DSP also uses as its system registers the DSP status register (DSR) and five
the eight data registers (A0, X0, X1, YO, Y1), which are all registers of the DSP unit and will be
described later (DSP registers). The AO register is a 40-bit register, but the guard bit section (AO(
is ignored in data read from AO. When data is input to the AO register, the MSB of the data is
copied to the guard bit section (A0G).

2.4 DSP Registers
The DSP unit has nine DSP registers, divided into eight data registers and one control register.

The DSP data registers include two 40-bit registers (A0 and Al) and six 32-bit registers (MO, M1,
X0, X1, YO, and Y1). The Al and A0 registers each has eight guard bits, AOG and A1G.

The DSP data registers are used in transferring and processing DSP data as the operand for the
DSP instruction. There are three types of instructions that access the DSP data registers: DSP d
processing, X data processing, and Y data processing.

The 32-bit DSP status register (DSR) is the control register, which indicates the results of
operations. The DSR register has bits to display the results of the operation, which include a
signed greater than bit (GT), a zero value bit (Z), a negative value bit (N), an overflow bit (V), a
DSP condition bit (DC), and condition select bits, which control the DC bit settings (CS).

The DC bit is one of the status flags; it is very similar to the SuperH CPU core’s T bit. In the case
of conditional DSP type instructions, the execution of DSP data processing is controlled in
accordance with the DC bit. This control is related to DSP unit execution only, and only the DSP
registers are updated. It is not related to the execution instructions of the SuperH microprocessol
CPU core, such as address calculation and load/store instructions. The control bits CS (bits 0 to
specify the condition that the DC bits set.

DSP instructions include both unconditional DSP instructions and conditioned DSP instructions.
Data processing of unconditional DSP instructions updates the condition bits and DC bits, except
for the PMULS, PWAD, PWSB, MOVX, MOVY, and MOVS instructions. Conditional DSP type
instructions are executed in accordance with the status of the DC bit. DSR registers are not
updated, regardless of whether these instructions are executed or not.

Note that five registers, A0, X0, X1, YO, and Y1, can also be used as system registers.

Figure 2.6 shows the DSP registers. Table 2.2 lists the DSR register bit functions.

12
RENESAS

39 32 31 0
AO0G A0 DSP data registers
Al1G Al

MO

M1

X0

X1

YO

Y1

31 87 654 3210
———————— IGTI ZIN| V| CS[2:0] IDC| DSP status register (DSR)

Figure 2.6 Organization of the DSP Registers

Table 2.2 DSR Register Bits

Bits Name Function

31-8 Reserved 0: Always reads 0. Always write 0.

7 Signed greater than bit Indicates whether the operation result is positive (and
(GT) nonzero) or whether operand 1 is larger than operand 2.

1: Operation result is positive or operand 1 is larger.

6 Zero value bit (2) Indicates whether the operation result is zero or whether of
operands 1 and 2 are the same.
1: Operation result is zero or operands 1 and 2 are the same.

5 Negative value bit (N) Indicates whether the operation result is negative or whether
operand 1 is smaller than operand 2.
1: Operation result is negative or operand 1 is smaller.

4 Overflow bit (V) Indicates that the operation result overflowed.
1: Operation result overflowed.
3-1 Condition select bits Specifies the mode for selecting the status of the operation
(Cs) result set in the DC bit. Do not specify 110 or 111.

000: Carry/borrow mode

001: Negative value mode

010: Zero value mode

011: Overflow mode

100: Signed greater than mode

101: Signed equal or greater than mode

0 DSP condition bit (DC) Sets the operation result status in the mode specified by the
CS bits.
0: Specified mode status not achieved
1: Specified mode status achieved.

13
RENESAS

CPU core instructions use the A0, X0, X1, YO, Y1, and DSR registers as a system registers.

2.5 Precautions for Handling of Guard Bit and Overflow

Data operation in the DSP unit is basically executed in 32 bits. Actual operation, however, is mac
in 40-bit length including 8 guard bits. When the guard bits are inconsistent with the value of
MSB of 32 bits, the operation result is handled as overflow. In this case, the N bit indicates the
correct condition of the operation result whether overflow has occurred or not. This is also the
same when the destination operand is a register of 32 bits in length. Each status flag is updated
always assuming guard bits of 8 bits.

If line overflow occurs so that the result is not correctly indicated even though the guard bits are
used, the N flag cannot show the correct condition. Refer to section 8.1, ALU Fixed Decimal Pain
Operation, DC Bit, for details.

2.6 Initial Values of Registers
Table 2.3 lists the values of the registers after reset.

Table 2.3 Initial Values of Registers

Classification Register Initial Value
General registers RO-R14 Undefined
R15 (SP) Value of the stack pointer in the vector

address table

Control registers SR * Bits13to 10 are 1111(H'F), reserved
bits are 0, and other bits are undefined

RC, DMY, DMX, RF1, and RFO are 0
(additional bits on SH-DSP)

RS Undefined

RE

GBR Undefined

VBR H'00000000

MOD Undefined
System registers MACH, MACL, PR Undefined

PC Value of the program counter in the vector

address table

DSP registers A0, AOG, Al, A1G, MO, Undefined

M1, X0, X1, YO, Y1

DSR H'00000000

14
RENESAS

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits). When data in memory is loaded to a register
and the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a
longword when stored into a register.

31 0
Longword

Figure 3.1 Data Format in Registers

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accesse
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, t
data accessed cannot be guaranteed. The hardware stack area, which is referred to by the harc
stack pointer (SP, R15), uses only longword data starting from address 4n because this area st
the program counter (PC) and status register (SR). See the hardware manual for more informat
on address errors.

Addressm+1 Addressm + 3
Address m Address m + 2
Ta1 l 23 15 l 7 0
Byte | Byte Byte | Byte
Address 2n —»| Word Word
Address 4n —»| Longword

§

Figure 3.2 Data Format in Memory (Big Endian)

Byte data is arranged as shown below for products with a built-in little endian function. To
determine whether a specific product supports little endian operation, refer to the corresponding
hardware manual.

15
RENESAS

Address m + 2 Address m
Address m + 3 Address m + 1

Ta1 l 23 15 l 7 ol
Byte | Byte Byte | Byte
Address 2n —», Word Word
Address 4n —»| Longword

Figure 3.3 Data Format in Memory (Little Endian)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and is handled in registers as longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and is
handled as longword data. Consequently, AND instructions with immediate data always clear the
upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code but rather is stored in a
memory table. The memory table is accessed by a immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in Sectiol
7, CPU Core Instruction Features, instruction 8, and table 7.4.

3.4 DSP Type Data Formats

The SH-DSP uses three different data formats for instructions: the fixed decimal point data forma
the integer data format, and the logical data format.

The DSP type of fixed decimal point data format places a binary decimal point between bits 31
and 30. This data format can have guard bits, no guard bits, or be multiplication input. The valid
bit lengths and values displayed vary for each.

DSP type integer data formats place a binary decimal point between bits 16 and 15. This data
format can have guard bits, no guard bits, or be a shift amount. The valid bit lengths and values
displayed vary for each.

The shift amount for arithmetic shift (PSHA) is a seven-bit area between —64 and +63, although
only values between —32 and +32 are valid. The shift amount for logical shifts is a six bit area,
although, in the same fashion, only values between —16 and +16 are valid.

The DSP type logical data format has no decimal point. The data format and valid data length va

with the instruction and DSP register.

16
RENESAS

Figure 3.4 shows the three DSP data formats and the position of the two binary decimal points,
well as the SuperH data format (as reference).

DSP fixed decimal
point data
39 32 3130 0
With guard bits |S| | | —28to +28 231
7y
3130 0
No guard bits | S | ~1to+1-2731
A
39 3130 16 15 0
Multiplication input |S | —1to+1-2715
7y
DSP integer data
39 3231 16 15 0
With guard bits |s | | | —223 10 +223 1
A
31 16 15 0
No guard bits | S | | —215t0 +2151
A
31 22 16 15 0
Arithmetic shift (PSHA) | B | -32t0+32
A
31 21 16 15 0
Logical shift (PSHL) | |s| | -1610+16
A
39 31 16 15 0
DSP logical data | | | (16 bits)
31 0
SuperH integer (word) |S| —231t0 +2811
(reference) A
S: Sign bit
A : Binary decimal point
|:| : Unrelated to processing (ignored)

Figure 3.4 DSP Data Formats

17
RENESAS

35 DSP Instructions and Data Formats

The data format and valid data length varies with the instruction and DSP register. Instructions
that access the DSP data register fall into three categories: DSP data processing, X and Y data
transfer processing, and single data transfer processing.

3.5.1 DSP Data Processing

When the A0 or Al register is used as the source register in DSP fixed decimal point data
processing, the guard bits (32—39) are enabled. When any other register is used as the source
register (MO, M1, X0, X1, YO, or Y1), the register data’s sign-extended portion goes to bits 32—39
When the A0 or Al register is used as the destination register, the guard bits (32—39) are enable:
When any other register is used as the destination register, the resulting data’s bits 32—39 are
ignored.

DSP integer data processing is the same as DSP fixed decimal point data processing. The bottor
word (the bottom 16 bits, or bits 0—15) of the source register, however, is ignored. The bottom
word of the destination register is cleared with zeroes.

The top word (top 16 bits, or bits 16—31) of the source register for DSP logical data processing is
enabled. The bottom word and the guard bits of registers A0 and Al are ignored. The top word o
the destination register is enabled. The bottom word and the guard bits of registers A0 and Al ar
cleared with zeroes.

3.5.2 X and Y Data Transfers

The MOVX.W and MOVY.W instructions access the X and Y memory through the 16-bit X and
Y data buses. The part of data loaded to a register or stored from a register is the top word (bits
16-31). The bottom word is cleared with zeroes.

3.5.3 Single Data Transfers

The MOVS.W and MOVS.L instructions can access any memory through the instruction data bus
(IDB). All DSP registers are connected to the IDB bus, which can serve as either the source and
destination register during a data transfer. There are two data transfer modes: word and longwor
In word mode, data is loaded to the top word of the DSP register or stored from the top word,
except for the AOG and A1G registers. In longword mode, data is loaded to the 32 bits of the DSI
register or stored from the 32 bits, except for the AOG and A1G registers.

In single data transfers, the AOG and A1G registers can be handled as independent registers. Ei
bits of data can be loaded to or stored from the AOG and A1G registers.

18
RENESAS

When the AOG or A1G register is the source register, only eight bits are stored from the register
The top bits are sign extended.

When the AOG or A1G register is the destination register, the bottom eight bits are loaded to the
register. The AO and Al registers are not cleared with zeros, so the values are preserved.

Tables 3.1 and 3.2 list the data formats on the register with the DSP instructions. With some
instructions, not all registers can be accessed. For example, the PMULS instruction can specifie
the Al register as the source register, but not the A0 register. For more information, see the
description of the instruction.

Figure 3.5 shows the relationship between the DSP registers and buses during data transfers.

Table 3.1 Data Format of DSP Instruction Source Register

Guard Bits Register Bits
Register Instruction 39-32 31-16 15-0
A0, Al DSP Fixed decimal, 40 bit data
operation PDMSB,
PSHA
Integer 24 bit data —
Logic, PSHL, — 16 bit data
PMULS
Data MOVX.W, 16 bit data
transfer MOVY.W,
MOVS.W
MOVS.L 32 bit data
AOG, Al1G Data MOVS.W Data — —
transfer MOVS.L Data
X0, X1, YO, DSP Fixed decimal, Sign* 32 bit data
Y1, MO, M1 operation PDMSB,
PSHA
Integer 16 bit data —
Logic, PSHL, — 16 bit data —
PMULS
Data MOVS.W 16 bit data
transfer MOVS.L 32 bit data

Note: The sign is extended and stored in the ALU’s guard bits.

19
RENESAS

Table 3.2

Data Format of DSP Instruction Destination Register

Guard Bits Register Bits
Register Instruction 39-32 31-16 15-0
A0, Al DSP Fixed (Sign extend) 40 bit result
operation decimal,
PSHA,
PMULS
Integer, (Sign extend) 24 bit result Clearto 0
PDMSB
Logic, PSHL Clearto 0 16 bit result Clearto 0
Data transfer MOVS.W Sign extend 16 bit data Clearto O
MOVS.L Sign extend 32 bit data
AO0G, A1G Data transfer MOVS.W Data Not updated
MOVS.L Data Not updated
X0, X1, YO, DSP Fixed — 32 bit result
Y1, MO, M1 operation decimal,
PSHA,
PMULS
Integer, logic, 16 bit result Clearto 0
PDMSB,
PSHL
Data transfer MOVX.W, 16 bit data Clearto O
MOVY.W,
MOVS.W
MOVS.L 32 bit data
20

RENESAS

32 bits

Main bus
16 bits
—3 XDB
16 bits
y YDB
8 bits [7:0] 16 bits 32 bits
MOVS.W,
MOVX.W, 31 16 MOVS.L
MOVS.W, MOVY.W 0
MOVS.L | A0 :
39 32 — Al i
AOG MO |
AlG M1
DSR > X0 :
7 0 > X1 |
> Y0 !
> Y1 |

Figure 3.5 Relationship between DSP Registers and Buses during Data Transfer

RENESAS

21

22

RENESAS

Section 4 Instruction Features

4.1 RISC-Type Instruction Set
All instructions are RISC type. Their features are detailed in this section.
16-Bit Fixed Length: All instructions are 16 bits long, increasing program coding efficiency.

One Instruction/Cycle: Basic instructions can be executed in one cycle using the pipeline systen
Instructions are executed in 50 ns at 20 MHz, in 35 ns at 28.7MHz.

Data Length: Longword is the standard data length for all operations. Memory can be accessed
bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data (table 4.1). Immediate data is sign-extended for arithmetic
operations or zero-extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU
MOV.W @(disp,PC),R1 Data is sign-extended to 32 ~ ADD.W #H'1234,R0
ADD RLRO bits, and R1 becomes

H'00001234. It is next
--------- operated upon by an ADD
.DATAW H1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

Load-Store Architecture: Basic operations are executed between registers. For operations that
involve memory access, data is loaded to the registers and executed (load-store architecture).
Instructions such as AND that manipulate bits, however, are executed directly in memory.

Delayed Branch Instructions: Unconditional branch instructions are delayed. Pipeline disruption
during branching is reduced by first executing the instruction that follows the branch instruction,
and then branching (table 4.2). With delayed branching, branching occurs after execution of the
slot instruction. However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction, the bre
will still be made using the value of the register prior to the change as the branch destination
address.

23
RENESAS

Table 4.2 Delayed Branch Instructions

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU
BRA TRGET Executes an ADD before ADD.W R1,RO
ADD R1RO branching to TRGET. BRA TRGET

Multiplication/Accumulation Operation:

SH-1 CPU: 16bitx 16bit — 32-bit multiplication operations are executed in one to three cycles.
16bit x 16bit + 42bit— 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH-2/SH-DSP CPU:16bitx 16bit » 32-bit multiplication operations are executed in one to two
cycles. 16bix 16bit + 64bit— 64-bit multiplication/accumulation operations are executed in two
to three cycles. 32b# 32bit - 64-bit multiplication and 32bik 32bit + 64bit— 64-bit
multiplication/accumulation operations are executed in two to four cycles.

T Bit: The T bit in the status register changes according to the result of the comparison, and in
turn is the condition (true/false) that determines if the program will branch (table 4.3). The numbe
of instructions after T bit in the status register is kept to a minimum to improve the processing
speed.

Table 4.3 T Bit

SH-1/SH-2/SH-DSP CPU Description Example for Other CPU

CMP/GE R1,RO T bit is set when RO = R1. The CMPW R1,RO
program branches to TRGETO.

BT TRGETO When RO = R1 and to TRGET1. BGE TRGETO

BF TRGET1 When RO < R1. BLT TRGET1

ADD #-1RO T bit is not changed by ADD. SUBW #1,R0

CMP/EQ #0,RO T bit is set when RO = 0. BEQ TRGET

BT TRGET The program branches if RO = 0.

Immediate Data: Byte immediate data is located in instruction code. Word or longword
immediate data is not input via instruction codes but is stored in a memory table. The memory
table is accessed by an immediate data transfer instruction (MOV) using the PC relative
addressing mode with displacement (table 4.4).

24
RENESAS

Table 4.4 Immediate Data Accessing

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU
8-bit immediate MOV #H12,RO MOV.B #H'12,R0
16-bit immediate MOV.W @(disp,PC),R0 MOV.W #H'1234,R0

.DATAW H1234

32-bit immediate MOV.L @(disp,PC),R0O MOV.L #H'12345678,R0

.DATA.L H12345678

Note: The address of the immediate data is accessed by @(disp, PC).

Absolute Address:When data is accessed by absolute address, the value already in the absolut:
address is placed in the memory table. Loading the immediate data when the instruction is
executed transfers that value to the register and the data is accessed in the indirect register
addressing mode.

Table 4.5 Absolute Address

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1 MOV.B @H"12345678,R0
MOV.B @R1,RO

.DATAL H12345678

16-Bit/32-Bit Displacement:When data is accessed by 16-bit or 32-bit displacement, the pre-
existing displacement value is placed in the memory table. Loading the immediate data when th
instruction is executed transfers that value to the register and the data is accessed in the indirec
indexed register addressing mode.

Table 4.6 Displacement Accessing

Classification SH-1/SH-2/SH-DSP CPU Example for Other CPU

16-bit displacement ~ MOV.W @(disp,PC),RO MOV.W @(H1234,R1),R2
MOVW @(ROR1)R2

.DATAW H1234

25
RENESAS

4.2 Addressing Modes

Addressing modes effective address calculation by the CPU core are described below.

Table 4.7 Addressing Modes and Effective Addresses
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operand is —
register the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register
addressing
Post- @Rn + The effective address is the content of register Rn. A Rn
increment constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing
Byte: Rn + 1
® = Rn
Longword:
1/2i4 Rn+4 - Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn—1
decrement subtracting a constant from Rn. 1 is subtracted fora - Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn — 2
register longword operation. ~ RN
addressing
Longword:
Rn—-4 - Rn
_ (Instruction
executed
with Rn after
calculation)
26

RENESAS

Table 4.7

Addressing Modes and Effective Addresses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for
with a word operation, or is quadrupled for a longword Word: Rn +
displace- operation. disp x 2
ment Longword:
Rn + disp x 4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO
indexed
register
addressing
®
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: GBR +
displace- quadrupled for a longword operation. disp x 2
ment Longword:
GBR + disp x
disp “GBR 4
(zero-extended) + disp x 1/2/4
Indirect @(RO, The effective address is the GBR value plus RO. GBR + RO
indexed GBR)
GBR
addressing

27

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
PC relative @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and disp is doubled for a word operation, Longword:
displace- or is quadrupled for a longword operation. For a PC & '
ment longword operation, the lowest two bits of the PC are H'EEFEEEEC
masked. +disp x 4
(for longword)
PC + disp x 2
H'FFFFFFFC or
: PC&H'FFFFFFFC
disp + disp x 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC + disp x 2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
_ disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x 2
with a 12-bit displacement (disp), doubled, and
added to the PC.
~disp PC + disp x 2
(sign-extended)
28

RENESAS

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
PC relative Rn* The effective address is the register PC plus Rn. PC +Rn
addressing
(cont)
Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.

#mm:8 The 8-bit immediate data (imm) for the MOV, ADD, —

and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instruction is —

zero-extended and is quadrupled.

Note: Applies to the SH-2 and SH-DSP. This addressing mode is not supported by the SH-1.

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operanc
The meaning of the operand depends on the instruction code. The symbols are used as follows

e xxxx: Instruction code

* mmmm: Source register
« nnnn: Destination register
e iiii: Immediate data

» dddd: Displacement

Table 4.8 Instruction Formats

Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
XXXX XXXX XXXX XXXX
n format — nnnn: Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH,Rn
XXXX [NN | XXXX XXXX or system register
register

RENESAS

29

Table 4.8

Instruction Formats

Instruction Formats (cont)

Source Operand Destination

Operand

Example

n format (cont)

Control register or
system register

nnnn: Indirect
pre-decrement

STC.L SR,@-Rn

register
m format mmmm: Direct Control register or LDC Rm,SR
register system register
15 0 mmmm: Indirect Control register or LDC.L @Rm+,SR
XXXX[mmmm| XXXX XXXX post-increment system register
register
mmmm: Direct — JMP @Rm
register
mmmm: PC — BRAF Rm
relative using Rm*
nm format mmmm: Direct nnnn: Direct ADD Rm,Rn
register register
15 0 mmmm: Direct nnnn: Indirect MOV.L Rm,@Rn
XXXX | nnnn mmmm| Xxxx register register
mmmm: Indirect MACH, MACL MAC.W
post-increment @Rm+,@Rn+
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)
mmmm: Indirect nnnn: Direct MOV.L @Rm+,Rn
post-increment register
register
mmmm: Direct nnnn: Indirect MOV.L Rm,@-Rn
register pre-decrement
register
mmmm: Direct nnnn: Indirect MOV.L
register indexed register ~ Rm,@(RO,Rn)
md format mmmmdddd: RO (Direct MOV.B
15 0 indirect register register) @(disp,Rm),RO
XXXX XXXX [mmmm| dddd with displacement
nd4 format RO (Direct nnnndddd: MOV.B
15 0 register) Indirect register RO,@(disp,Rn)
XXXX XXXX | nnnn | dddd with displacement
Note: In multiply/accumulate instructions, nnnn is the source register.
30

RENESAS

Table 4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct nnnndddd: Indirect MOV.L
15 0 register register with Rm,@(disp,Rn)
XXXX | nnnn |mmmm| dddd displacement
mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp,Rm),Rn
with
displacement
d format dddddddd: RO (Direct register) MOV.L
15 0 Indirect GBR @(disp,GBR),R0
XXXX XxxX | dddd dddd W.'th
displacement
RO(Direct dddddddd: Indirect MOV.L
register) GBR with RO,@(disp,GBR)
displacement
dddddddd: PC RO (Direct register) MOVA
relative with @(disp,PC),RO
displacement
dddddddd: PC — BF label
relative
d12 format dddddddddddd: — BRA label
15 0 PC relative (label = disp +
xxxx | dddd dddd dddd PC)
nd8 format dddddddd: PC nnnn: Direct MOV.L
15 0 relative with register @(disp,PC),Rn
XXXX | nnnn | dddd dddd displacement
i format iiiiiiii: Immediate Indirect indexed AND.B
GBR #mm,@(RO,GBR)
15 0 iiiiiiii: Immediate RO (Direct register) AND #imm,RO
XXXX XXXX | Qiii dqiii
iiiiiiii: Immediate — TRAPA #imm
ni format iiiiiiii: Immediate nnnn: Direct ADD #imm,Rn
15 0 register
XXXX | nnnn | qiii Qi

Note: Applies to the SH-2 and SH-DSP. The BRAF instruction is not supported by the SH-1.

RENESAS

31

4.4 DSP

DSP operations and data transfers are listed below:

ALU Fixed Decimal Point Operations: These are fixed decimal point operations with either 40-
bit (with guard bits) or 32-bit (with no guard bits) fixed decimal point data. These include
addition, subtraction, and comparison instructions.

ALU Integer Operations: These are integer arithmetic operations with either 24-bit (with guard
bits) or 16-bit (with no guard bits) integer data. They include increment and decrement
instructions.

ALU Logical Operations: These are logical operations with 16-bit logical data. They include
AND, OR, and exclusive OR.

Fixed Decimal Point Multiplication: This is fixed decimal point multiplication (arithmetic
operation) of the top 16 bits of fixed decimal point data. Condition bits such as the DC bit are not
updated.

Shift Operations: These are arithmetic and logical shift operations. Arithmetic shift operations
are arithmetic shifts of 40 bits (with guard bits) or 32 bits (with no guard bits) of fixed decimal
point data. Logical shift operations are logical operations on 16 bits of logical data. The amount o
the arithmetic shift operation is —32 to +32 (negative for right shifts, positive for left shifts); for
logical shifts, the amount is —16 to +16.

MSB Detection Instruction: This operation finds the amount of the shift to normalize the data. It
finds the position of the MSB bit in either 40-bit (with guard bits) or 32-bit (with no guard bits)
fixed decimal point data as either 24 bits (with guard bits) or 16 bits (with no guard bits) integer
data.

Rounding Operation: Rounds 40-bit fixed decimal point data (with guard bits) to 24 bits or 32-
bit (with no guard bits) fixed decimal point data to 16 bits.

Data Transfers: Data transfers consist of X and Y data transfers, which load or store 16-bit data
to and from X and Y memory, and single data transfers, which load and store 16- or 32-bit data
from all memories. Two X and Y data transfers can be processed in parallel. Condition bits such
as the DC bit are not updated.

The operation instructions include both conditional operation instructions and instructions that are
conditionally executed depending on the DC bit. Condition bits such as the DC bit are not update
by conditional instructions. Their settings vary for arithmetic operations, logical operations,
arithmetic shifts, and logical shifts. or MSB detection instructions and rounding instructions, set
the condition bits like for arithmetic operations.

32
RENESAS

Arithmetic operations include overflow preventing instructions (saturation operations). When
saturation operation is specified with the S bit in the SR register, the maximum (positive) or
minimum (negative) value is stored when the result of operation overflows.

4.5 DSP Data Addressing

The DSP command performs two different types of memory accesses. One uses the X and Y d:
transfer instructions (MOVX.W and MOVY.W) while the other uses the single data transfer
instructions (MOVS.W and MOVS.L). Data addressing for these two types of instructions also
differs. Table 4.10 summarizes the data transfer instructions.

Table 4.10 Summary of Data Transfer Instructions

X and Y Data Transfer Single Data Transfer
Processing (MOVX.W and Processing (MOVS.W and

Item MOVY.W) MOVS.L)

Address registers Ax: R4, R5; Ay: R6, R7 As: R2, R3, R4, R5

Index registers Ix: R8; ly: R9 Is: R8

Addressing Nop/Inc(+2)/Index addition: Nop/Inc(+2, +4)/Index addition:
Post-increment Post-increment

— Dec(-2, —4): Pre-decrement

Modulo addressing Available Not available

Data buses XDB, YDB IDB

Data length 16 bits (word) 16 or 32 bits (word or
longword)

Bus contention None Occurs

Memory X and Y data memories All memory spaces

Source registers Da: AO, Al Ds: AO/A1, MO/M1, X0/X1,
YO0/Y1, AOG, A1G

Destination registers Dx: X0/X1; Dy: YO/Y1 Ds: AO/A1, MO/M1, X0/X1,

Y0/Y1, AOG, A1G

45.1 X and Y Data Addressing

The DSP command allows X and Y data memories to be accessed simultaneously using the
MOVX.W and MOVY.W instructions. DSP instructions have two pointers so they can access the
X and Y data memories simultaneously. DSP instructions have only pointer addressing; immedi
addressing is not available. Address registers are divided in two. The R4 and R5 registers beco
the X memory address register (Ax) while the R6 and R7 registers become the Y memory addre
register (Ay). The following three types of addressing may be used with X and Y data transfer
instructions.

33
RENESAS

» Address registers with no update: The Ax and Ay registers are address pointers. They are nof
updated.

« Addition index register addressing: The Ax and Ay registers are address pointers. The values
of the Ix and ly registers are added to the Ax and Ay registers respectively after data transfer
(post-increment).

« Increment address register addressing: The Ax and Ay registers are address pointers. +2 is
added to them after data transfer (post-increment).

Each of the address pointers has an index register. Register R8 becomes the index register (Ix) f
the X memory address register (Ax); register R9 becomes the index register (ly) for the Y memor
address register (Ay).

X and Y data transfer instructions are processed in words. X and Y data memory is accessed in
bit units. Increment processing for that purpose adds two to the address register. To decrement
them, set -2 in the index register and specify addition index register addressing. For X and Y dats
addressing, only bits 1 to 15 of the address pointer are valid. When performing X and Y data
addressing, make sure to write 0 to bit O of the address pointer and index register.

Figure 4.1 shows the X and Y data transfer addressing. With using the X or Y bus to access X
memory or Y memory, Ax (R4 or R5) and Ay (R6 or R7) upper reads [?? words] are ignored.
Also, the results of XX AY+, XX Ay + Iv are stored in the lower word of Ay, and the previous
value of the upper word is retained.

R8[Ix] R4[AX] RI[ly] R6[AY]

R5[AX] R7[Ay]
+2 (INC) +2 (INC)

+0 (No update) —| +0 (No update)]

ALU AU*1

Notes: 1. Adder added for DSP processing
2. All three addressing methods (increment, index register addition (Ix, ly), and
no update) are post-increment methods. To decrement the address pointer, set
the index register to —2 or —4.

Figure 4.1 X and Y Data Transfer Addressing

34
RENESAS

45.2 Single Data Addressing

The DSP command has single data transfer instructions (MOVS.W and MOVS.L) that load datz
to DSP registers and store data from DSP registers. With these instructions, the R2—-R5 register
are used as address registers (As) for single data transfers.

There are four types of data addressing for single data transfer instructions.

» Address registers with no update: The As register is the address pointer. It is not updated.

« Addition index register addressing: The As register is the address pointer. The value of the I
register is added to the As register after data transfer (post-increment).

» Increment address register addressing: The As register is the address pointer. +2 or +4 is ac
to it after data transfer (post-increment).

» Decrement address register addressing: The As register is the address pointer. —2 or —4 (or -
or +4) is added to it before data transfer (pre-decrement).

The address pointer uses the R8 register as its index register (Is). Figure 4.2 shows the single ¢
transfer addressing.

R2[As]
R3[As]
R8[Is] R4[As]
—2/-4 (DEC) R5[As]
+2/+4 (INC)
+0 (No update) —|

ALU

Note: There are four addressing methods (no update, index register addition (Is),
increment, and decrement). Index register addition and increment are
post-increment methods. Decrement is a pre-decrement method.

Figure 4.2 Single Data Transfer Addressing

35
RENESAS

45.3 Modulo Addressing

Like other DSPs, the SH-DSP has a modulo addressing mode. Address registers are updated in
same way in this mode. When a modulo end address in which the address pointer value is alreac
set is reached, the address pointer becomes the modulo start address.

Modulo addressing is only effective for X and Y data transfer instructions (MOVX.W and
MOVY.W). When the DMX bit of the SR register is set, the X address register enters modulo
addressing mode; when the DMY bit is set, the Y address register enters modulo addressing mo
Modulo addressing cannot be used on both X and Y address registers at once. Accordingly, do n
set DMX and DMY at the same time. Should they both be set at once, only DMY will be valid.

The MOD register is provided for specifying the start and end addresses for the modulo address
area. The MOD register stores the MS (modulo start) and ME (modulo end). The following shows
how to use the modulo register (MS and ME).

MOV.L ModAddr,Rn; Rn=ModEnd, ModStart

LDC Rn,MOD; ME=ModEnd, MS=ModStart
ModAddr: .DATAW mEnd; Lower 16bit of ModEnd

DATAW mStar; Lower 16bit of ModStart

ModStart: .DATA

ModEnd: .DATA

Set the start and end addresses in MS and ME and then set the DMX or DMY bit to 1. The addre
register contents are compared to ME. If they match ME, the start address MS is stored in the
address register. The bottom 16 bits of the address register are compared to ME. The maximum
modulo size is 64 kbytes. This is ample for accessing the X and Y data memory. Figure 4.3 show
a block diagram of modulo addressing.

36
RENESAS

Instruction (MOVX/MOVY)
31 1615 o PMXDMY 5 4615 o
31 0 RA4[AX] R6[Ay] 31 0
R8[Ix R5[AX R7[A
| x| [AX] CONT (Ay] | RO[ly]
:S | I o +2
| 7l 15 0| —+0
MS
L2] \/
ALU AU
| CMP
| aex | [ME | ABy
15 l 1 15 0 15 1
XAB YAB
Figure 4.3 Modulo Addressing
The following is an example of modulo addressing.
MS=H'C008; ME=H'CO0C; R4=H'CQ0S;
DMX=1; DMY=0; (Sets modulo addressing for address register Ax (R4, R5))
The above setting changes the R4 register as shown below.
R4: H'C008
Inc. R4: H'COOA
Inc. R4: H'CO0C
Inc. R4:HC008 (Becomes the modulo start address when the modulo end address is

reached)

Place data so the top 16 bits of the modulo start and end address are the same, since the modt
start address only swaps the bottom 16 bits of the address register.

Note:

454

When using addition index as the DSP data addressing, the address pointer may excee
this value without matching ME. Should this occur, the address pointer will not return to
the modulo start address.

DSP Addressing Operation

The following shows how DSP addressing works in the execution stage (EX) of a pipeline
(including modulo addressing).

37
RENESAS

if (Operation is MOVX.W MOVY.W) {
ABx=Ax; ABy=Ay’

/* memory access cycle uses Abx and Aby. The addresses to be used have
not been updated */

¥ Axis one of R4,5*

if (DMX==0 || DMX==1 @@ DMY==1)} Ax=Ax+(+2 or R8][Ix} or +0);
/* Inc,Index,Not-Update */

else if (Inot-update) Ax=modulo(Ax, (+2 or R8[IX]));

[* Ay is one of R6,7 */
if (DMY==0) Ay=Ay+(+2 or R9[ly] or +0; /* Inc,Index,Not-Update */
else if (! not-update) Ay=modulo(Ay, (+2 or R9[ly]));
}
else if (Operation is MOVS.W or MOVS.L) {
if (Addressing is Nop, Inc, Add-index-reg) {
MAB=As;

[* memory access cycle uses MAB. The address to be used has not been
updated */

[* Asis one of R2-5*/
As=As+(+2 or +4 or R8]Is] or +0); /* Inc.Index,Not-Update */
else { /* Decrement, Pre-update */
[* As is one of R2-5*/
As=As+(-2 or —4);
MAB=As

/* memory access cycle uses MAB. The address to be used has been updated
*

[* The value to be added to the address register depends on addressing
operations.

For example, (+2 or R8][Ix] or +0) means that
+2: if operation is increment
R8]Ix}: if operation is add-index-reg
+0: if operation is not-update

function modulo (AddrReg, Index) {

38
RENESAS

if (AdrReg[15:0]==ME) AdrReg[15:0]==MS;
else AdrReg=AdrReg+Iindex
return AddrReg;

4.6 Instruction Formats for DSP Instructions

New instructions have been added to the SH-DSP for use in digital signal processing. The new
instructions are divided into two groups.

» Double and single data transfer instructions for memory and DSP registers (16 bits)
« Parallel processing instructions processed by the DSP unit (32 bits)

Figure 4.4 shows their instruction formats.

15 0
CPU core 0000
instructions to
1110
15 10 9 0
Double data | | - |
transfer instructions 111100 Afield
_ 15 109 0
Single data -
transfer instructions | 111101 | Afield |
31 26 25 16 15 0
Parallel processing - :
instructions | 111110 | A field | B field

Figure 4.4 Instruction Formats of DSP Instructions

4.6.1 Double and Single Data Transfer Instructions

Table 4.11 shows the instruction formats for double data transfer instructions. Table 4.12 shows
the instruction formats for single data transfer instructions

39
RENESAS

Table 4.11

Instruction Formats for Double Data Transfers

Category Mnemonic 15 14 13 12 11 10
X memory NOPX 1 1 1 1 0 0 0
data transfers MOVXW @Ax.DX Ax
MOVX.W @AX+,Dx
MOVX.W @AX+Ix,Dx
MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix
Y memory NOPY 1 1 1 1 0 0 0
data transfers MOVYW @Ay.Dy Ay
MOVY.W @Ay+Dy
MOVYW @Ay+ly,Dy
MOVYW Da@Ay
MOVYW Da,@Ay+
MOVYW Da,@Ay+ly
Table 4.11 Instruction Formats for Double Data Transfers (cont)
Category Mnemonic 7 6 5 4 3 2 1
X memory NOPX 0 0 0
data transfers MOVX.W @AX,Dx Dx 0 1
MOVX.W @AX+,Dx 1 0
MOVX.W @AX+Ix,Dx 1 1
MOVX.W Da,@Ax Da 1 0 1
MOVXW Da,@Ax+ 1 0
MOVX.W Da,@Ax+Ix 1 1
Y memory NOPY 0 0 0
data transfers MOVYW @Ay,Dy Dy 0 1
MOVY.W @Ay+Dy 1 0
MOVYW @Ay+ly,Dy 1 1
MOVY.W Da,@Ay Da 1 0 1
MOVYW Da@Ay+ 1 0
MOVY.W Da,@Ay+ly 1 1

Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=A1

40

RENESAS

Table 4.12

Category

Mnemonic

15 14

Instruction Formats for Single Data Transfers

13 12

11

10

Single data
transfer

MOVS.W
MOVS.W
MOVS.W
MOVS.W

@-As,Ds 1 1
@As,Ds

@As+,Ds

@As+Is,Ds

MOVS.W
MOVS.W
MOVS.W
MOVS.W

Ds,@A-s
Ds,@As
Ds,@As+
Ds,@As+Is

MOVS.L
MOVS.L
MOVS.L
MOVS.L

@-As,Ds
@As,Ds
@As+,Ds
@As+lIs,Ds

MOVS.L
MOVS.L
MOVS.L
MOVS.L

Ds,@A-s
Ds,@As
Ds,@As+
Ds,@As+Is

1 1

0

1

As
0: R4
1:R5
2:R2
3:R3

Table 4.12

Category

Mnemonic 7 6

5 4

Instruction Formats for Single Data Transfers (cont)

Single data
transfer

MOVS.W
MOVS.W
MOVS.W
MOVS.W

@-As,Ds Ds
@As,Ds

@As+,Ds

@As+Is,Ds

MOVS.W
MOVS.W
MOVS.W
MOVS.W

Ds,@A-s
Ds,@As
Ds,@As+
Ds,@As+ls

MOVS.L
MOVS.L
MOVS.L
MOVS.L

@-As,Ds
@As,Ds
@As+,Ds
@As+Is,Ds

MOVS.L
MOVS.L
MOVS.L
MOVS.L

Ds,@A-s
Ds,@As
Ds,@As+
Ds,@As+Is

0: ()
1:(%)
2:(%
3: ()
4: (%)
5:A1
6: (%)
7: AO
8: X0
9: X1
A: YO
B:Y1l

C: MO
D: A1G
E:M1
F:A0G

PRPOO| PFRPOO|IFPFRPOO | RPPRPOO|W

POFRPO FPOFRPO| POPFRPO | RPOPFRPRO|IDN

Note:

System reserved code

RENESAS

41

4.6.2

Parallel Processing Instructions

Parallel processing instructions are used by the SH-DSP to increase the execution efficiency of
digital signal processing using the DSP unit. They are 32 bits long and four can be processed in

parallel (one ALU operation, one multiplication, and two data transfers).

Parallel processing instructions are divided into two fields, A and B. The data transfer instruction:
are defined in field A and the ALU operation instruction and multiplication instruction are defined

in field B. These instructions can be defined independently, processed independently, and can b
executed simultaneously in parallel. Table 4.13 lists the field A parallel data transfer instructions;
figure 4.14 shows the field B ALU operation instructions and multiplication instructions. The field

A instructions are identical to the double data transfer instructions shown in Table 4.11.

Table 4.13 Field A Parallel Data Transfer Instructions

Category Mnemonic 31 30 29 28 27 26 25 24 23
X memory NOPX 1 1 1 1 1 0 0 0
data MOVXW @Ax,Dx Ax Dx
transfers MOVXW @Ax+Dx

MOVX.W @AX+x,Dx

MOVX.W Da,@Ax Da

MOVX.W Da,@Ax+

MOVX.W Da,@Ax+Ix
Y memory NOPY 0
data MOVYW @Ay,Dy Ay
transfers MOVYW @Ay+Dy

MOVY.W @Ay+ly,Dy

MOVYW Da,@Ay

MOVYW Da,@Ay+

MOVY.W Da @Ay+ly
42

RENESAS

Table 4.13 Field A Parallel Data Transfer Instructions (cont)

Category Mnemonic 22 19 18 17 16 15-0
X memory NOPX 0 0 Field B
data MOVXW @Ax,Dx 0o 1
transfers MOVXW @Ax+Dx 1 0
MOVXW @Ax+x,Dx 1 1
MOVXW Da,@AX 0o 1
MOVXW Da,@Ax+ 1 0
MOVXW Da,@Ax+x 1 1
Y memory NOPY 0 0 0
data MOVYW @Ay,Dy Dy 0 1
transfers Movyw @Ay+Dy 1 0
MOVY.W @Ay+ly,Dy 1 1
MOVYW Da@Ay Da 0 1
MOVYW Da@Ay+ 1 0
MOVYW Da,@Ay+ly 1 1
Ax: 0=R4, 1=R5 Ay: 0=R6, 1=R7 Dx: 0=X0, 1=X1 Dy: 0=Y0, 1=Y1 Da: 0=A0, 1=A1
43

RENESAS

Category Mnemonic 31-27] 26 | 25-16 [1514 13[12J11]10] o] 8] 7] 6] 5[4 [3]2]1] 0
]] PSHL #imm, Dz 1 0 FieldA|0O O O 0 —-16 <imm < +16 Dz
imm. shift PSHA #imm, Dz 00 0|1|0] —32<imm<+32
00 0 [1]
Reserved 00 1
s PMULS Se, Sf, Dg 0100|Se | sf|sx| sy|Dg|Du
operand | Reserved | | 0 1 0 1]0:xo0 |0:Yo |0:x0|0:Y0 |0:Mo]0:x0
parallel 1:X1 | 1:¥1 |1:X2] 1:¥2 [1:M2]1:Y0
instruction |~ PSUB Sx, Sy, Du 0 1 1 0]2:Y0 |2:X0 |2:A0|2:M0|2:A0 |2:A0
L _P_NlU_L§ _Sg, _Sf_ Izg_ ________ 3:Al | 3:A1 [3:A1|3:M1|3:A1(3:A1
PADD Sx, Sy, Du 0111
_PMULS Se, Sf, Dg _
Three Reserved 10]00j0010 0 Dz
operand F—-——————————— L4101
instructions|__PSUBC Sx, Sy, Dz _ L __11.0] 0: (*1)
| _PADDC Sx, Sy, Dz _ L__J11 1: (%)
| __PCMPSx, Sy __ __J00j01 2: (*1)
| ___Reserved __ _ L __101] 3: (%)
| _PWSBSx, Sy, Dz _ L __41.0 4: (1)
| _PWAD Sx, Sy, Dz _ L __]11 5: Al
| __PABSSx,Dz___ | __100]|10 6: (*1)
| __FRNDSx, Dz _ _ L __40.1 7:A0
| __PABSSy Dz __ | __]1 0] 8: X0
| __PRNDSy,Dz __ I __ 9: X1
0 011 A:YO
01 B:Y1
Reserved 1o C:Mo
11 D: (*1)
E:M1
F: (*9)

® © C) ®

Figure 4.5 Field B ALU Operation Instructions and Multiplication Instructions

RENESAS

® © ® ®

Category Mnemonic 31-27] 26 | 25-16 [1514 131211 10] 9 | 8 [7]6] 5[4 [3]2]1]0
Conditional|(if ¢6) PSHL Sx, Sy, Dz| 1 0 FiedA |1 0|0 0|0 0| ifecc | Sx | Sy Dz
three | (if cc) PSHA Sx, Sy, Dz 01 0:X0| 0:YO | 0:(*%)
operand [(fcc) PSUB Sk, Sy, Dz [C111] LX0LYL | L)
instructions| (if cc) PADD Sx, Sy, Dz 11 01%2 2:YO|2:MO| 2:(*1)
————————————— F——T1=- 3:Y1[3:ML| 3:(*1)
| ___Reserved __ | __100f01 4:(4)
| (if cc) PAND Sx, Sy, Dz L __19.1] 5:AL
| (if cc) PXOR Sx, Sy, Dz L __11.0] 6:(*1)
(if cc) POR Sx, Sy, Dz 11 7:A0
|” (ifcc) PDEC SX, Dz " 7o o[t o |loPCT 8:X0
| “(ifcc) PINC Sx, Dz o1 9:X1
| (if cc) PDEC Sy, Dz 71 0] AYO
| “(fcc) PINC Sy, Dz 71 B:Y1
ikt il 11:DCF C:M0
| _ _(fcc) PCLRDz _ _ | __]00]11 D:(*1)
(if cc) PDMSB Sx, Dz 01 E:M1
| __Reseved ___ __]10] F:(*Y)
(if cc) PDMSB Sy, Dz 11
| (if cc) PNEG Sx, Dz _ [11]oof10
(if cc) PCOPY Sx, Dz 01
|” (ifcc) PNEG Sy, Dz """ 10|
| (if cc) PCOPY Sy, bz_ 1]
Reserved 0 0
| (if cc) PSTS MACH, Dz | __100J1 1] ifcc
| (if cc) PSTS MACL, Dz L __101]
| (if cc) PLDS Dz, MACH L __110]
(if cc) PLDS Dz, MACL 11
T " Reserved T 0 0
0*3
Reserved 1 1

Notes: 1. [if cc]: DCT (DC bit true), DCF (DC bit false), or none (unconditional
instruction)
2. Unconditional
3. System reserved code

Figure 4.5 Field B ALU Operation Instructions and Multiplication Instructions (cont)

RENESAS

4.7 ALU Fixed Decimal Point Operations

4.7.1 Function

ALU fixed decimal point operations basically work with a 32-bit unit to which 8 guard bits are
added for a total of 40 bits. When the source operand is a register without guard bits, the register
sign bit is extended and copied to the guard bits. When the destination operand is a register
without guard bits, the lower 32 bits of the operation result are stored in the destination register.

ALU fixed decimal point operations are performed between registers. The source and destination
operands are selected independently from the DSP register. When there are guard bits in the
selected register, the operation is also executed on the guard bits. These operations are execute
the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’'s DC, N, Z, V, and GT bits
are updated by the operation result. For conditional instructions, however, condition bits are not
updated even when the specified condition is achieved. For unconditional instructions, the bits ar
updated according to the operation result.

The condition reflected in the DC bit is selected with the CS[2:0] bits. The DC bits of the PADDC
and PSUB instructions, however, are updated regardless of the CS bit settings. In the PADDC
instruction, it is updated as a carry flag; in the PSUB instruction, it is updated as a borrow flag.

Figure 4.6 shows the ALU fixed decimal point operation flowchart.

Guard bits Guard bits
{ 3t 0 $ 31 0
L | L
Source 1 Source 2
A A
ALU GT[z| NV [DC]
DSR
Destination
L |
t a1 0
Guard bits

Figure 4.6 ALU Fixed Decimal Point Operation Flowchart

46
RENESAS

When the memory read destination operand is the same as the ALU operation source operand
the data transfer instruction program is written on the same line as the ALU operation, data loac
from memory in the memory access stage (MA) cannot be used as the source operand of the A
operation instruction. When this occurs, the result of the instruction executed first is used as the
source operand of the ALU operation and is updated as the destination operand of the data loac
instruction thereafter. Figure 4.7 is a flowchart of the operation.

MOVX.W @ R4+R8, X0

PADD X0, YO, A0 MOVX.W @ R4+, X0

Slot 1 2 3 4 5 6
EX(ad- | MA DSP
MOVX IF ID | gressing) | (MOVX) | (nop)
MOVX, EX (ad: MA DSP
ADD IF ID dressing) | \(MOVX) | (ADD)
\/‘

The result of the previous step is used.

Figure 4.7 Sample Processing Flowchart

4.7.2 Instructions and Operands

Table 4.14 shows the types of ALU fixed decimal point arithmetic operations. Table 4.15 shows
the correspondence between the operands and registers.

47
RENESAS

Table 4.14 Types of ALU Fixed Decimal Point Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination
PADD Addition Sx Sy Dz (Du)
PSuUB Subtraction Sx Sy Dz (Du)
PADDC Addition with carry Sx Sy Dz
PSUBC Subtraction with borrow Sx Sy Dz
PCMP Compare Sx Sy —
PCOPY Copy data Sx — Dz

— Sy Dz
PABS Absolute value Sx — Dz

— Sy Dz
PNEG Invert sign Sx — Dz

— Sy Dz
PCLR Zero clear — — Dz

Table 4.15 Correspondence between Operands and Registers for ALU Fixed Decimal Point
Arithmetic Operations

Operand X0 X1 YO Y1l MO M1 A0 Al
Sx Yes* Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes
Du* Yes Yes Yes Yes

Notes: 1. Yes: Register can be used with operand.
2. Du: Operand when used in combination with multiplication.

4.7.3 DC Bit

The DC bit is set as follows depending on the specification of the CS0-CS2 bits (condition select
bits) of the DSR register.

48
RENESAS

Carry/Borrow Mode: CS2—CS0 = 000:The DC bit indicates whether a carry or borrow has

occurred from the MSB of the operation result. The guard bits have no affect on this. This mode

the default. Figure 4.8 shows examples when carries and borrows occur.

Example 1: Carry
Guard bits

0000 0000 1111 1111 1111 1111
+) 0000 0000 0000 0000 0000 0001

Example 2: Carry

Guard bits

1111 1111 0111 0000 0000 0000
+) 0011 1111 0001 0000 0000 0000

0000 0001 0000 0000 0000 0000

Position where
carry is detected

Example 3: Borrow
Guard bits

0000 0000 0000 0000 0000 0001
—) 0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0000

Position where
borrow is detected

(1)0011 1110 1000 0000 0OOO 0000

Position where
carry is detected

Example 4: Borrow
Guard bits

0000 0000 0001 0000 0000 0001
—) 0000 0000 0001 0000 0000 0010
1111 1111 1111 1111 1111 1111

Position where
borrow is detected

Figure 4.8 Examples of Carries and Borrows

Negative Mode: CS2—CS0 = 001n this mode, the DC bit is the same as the MSB of the
operation result. When a result is negative, the DC bit is 1. When the result is positive, the DC b
is 0. ALU arithmetic operations are always done in 40 bits. The sign bit indicating positive or
negative is thus the MSB included in the guard bits of the operation result rather than the MSB ¢
the destination operand. Figure 4.9 shows an example of distinguishing negative from positive.

this mode, the DC bit has the same value as the condition bit N.

Example 1: Negative

Guard bits

1100 0000 0000 0000 0000 0000
+) 0000 0000 0000 0000 0000 0001

Example 2: Positive

Guard bits

0011 0000 0000 0000 0000 0000
+) 0000 0000 1000 0000 0000 0001

1100 0000 0000 0000 0000 0001

L Sign bit

0011 0000 1000 0000 0000 0001

L Sign bit

Figure 4.9 Distinguishing Negative and Positive

49

RENESAS

Zero Mode: CS2—CS0 = 010The DC bit indicates whether the operation result is zero. When it
is, the DC bit is 1. When the operation result is nonzero, the DC bit is 0. In this mode, the DC bit
has the same value as the condition bit Z.

Overflow Mode: CS2-CSO0 = 011The DC bit indicates whether the operation result has caused
an overflow. When the operation result without the guard bits has exceeded the bounds of the
destination register, the DC hit is set to 1. The DC bit considers there to be no guard bits, which
makes it an overflow even when there are guard bits. This means that the DC bit is always set to
when large numbers use guard bits. In this mode, the DC bit has the same value as the conditior
bit V. Figure 4.10 shows an example of distinguishing overflows.

Example 1: Overflow Example 2: No overflow
Guard bits Guard bits
1111 1111 1211 1211 1111 1111 1111 1211 11171 11211 1111 1111
+) 1111 1111 1000 0000 0000 0000 +) 1111 1111 1000 0000 0000 0001
1111 1111 0111 1211 1111 1111 1111 1111 1000 0000 0000 0000
L Overflow detection range L Overflow detection range

Figure 4.10 Distinguishing Overflows

Signed Greater Than Mode: CS2—-CS0 = 100¢he DC bit indicates whether the source 1 data
(signed) is greater than the source 2 data (signed) in the result of a comparison instruction PCMF
For that reason, the PCMP instruction is executed before checking the DC bit in this mode. Wher
the source 1 data is larger than the source 2 data, the result of the comparison is positive, so this
mode becomes similar to the negative mode. When the source 1 data is larger than the source 2
data and the bounds of the destination operand are exceeded, however, the sign of the result of
comparison becomes negative. The DC bit is updated. In this mode, the DC bit has the same val
as the condition bit GT. The equation shown below defines the DC bit in this mode. However, VR
becomes a positive value when the result including the guard bit area exceeds the display range
the destination operand.

DC bit = ~ {(N bit A VR)|Z bit}

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the
bit that indicates the result of the SH core’s CMP/GT instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as wel

Signed Greater Than or Equal to Mode: CS2—CS0 = 10The DC bit indicates whether or not

the source 1 data (signed) is greater than or equal to the source 2 data (signed) in the result of tt
execution of a comparison instruction PCMP. For that reason, the PCMP instruction is executed
before checking the DC bit in this mode. This mode is similar to the Signed Greater Than mode
except for checking if the operands are the same. The equation shown below defines the DC bit

50
RENESAS

this mode. However, VR becomes a positive value when the result, including the guard bit area,
exceeds the display range of the destination operand.

DC bit = ~ (N bit A VR)

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as th
bit that indicates the result of the SuperH core’s CMP/GE instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as we

4.7.4 Condition Bits
The condition bits are set as follows:

* The N (negative) bit has the same value as the DC bit when the CS bits specify negative mo
When the operation result is negative, the N bit is 1. When the operation result is positive, th
N bit is O.

» The Z (zero) bit has the same value as the DC bit when the CS bits specify zero mode. Whe
the operation result is zero, the Z bit is 1. When the operation result is nonzero, the Z bitis 0

e The V (overflow) bit has the same value as the DC bit when the CS bits specify overflow
mode. When the operation result exceeds the bounds of the destination register without the
guard bits, the V bit is 1. Otherwise, the V bit is 0.

« The GT (greater than) bit has the same value as the DC bit when the CS bits specify Signed
Greater Than mode. When the comparison result indicates the source 1 data is greater than
source 2 data, the GT bit is 1. Otherwise, the GT bit is 0.

4.7.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function is engaged for the
ALU fixed decimal point arithmetic operation executed by the DSP unit. When the operation
result overflows, the maximum (positive) or minimum (negative) value is stored.

4.8 ALU Integer Operations

ALU integer operations are basically 24-bit operations on the top word (the top 16 bits, or bits 1¢
through 31) and 8 guard bits. In ALU integer operations, the bottom word of the source operand
(the bottom 16 bits, or bits 0-15) is ignored and the bottom word of the destination operand is
cleared with zeros. When the source operand has no guard bits, the sign bit is extended to fill th
guard bits. When the destination operand has no guard bits, the top word of the operation result
(not including the guard bits) are stored in the top word of the destination register.

Integer operations are basically the same as ALU fixed decimal point arithmetic operations. The
are only two types of integer operation instructions, increment and decrement, which change the
second operand by +1 or —1. 16 bits of integer data (word data) is loaded to the DSP register ar

51
RENESAS

stored in the top word. The operation is performed using the top word in the DSP register. When
there are guard bits, they are valid as well. These operations are executed in the DSP stage (the
stage) of the pipeline.

Whenever an ALU integer arithmetic operation is executed, the DSR register's DC, N, Z, V, and
GT bits are basically updated by the operation result. This is the same as for ALU fixed decimal
point operations.

For conditional instructions, condition bits and flags are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result. Figure 4.11 shows the ALU integer operation
flowchart.

Guard bits Guard bits
{31 0) 31 0
L | L
Source 1 Source 2
A A
V
ALU GT|z|N]|V |DC|
DSR
Destination
A
31 0
Guard bits . Ignored
- : Cleared to O

Figure 4.11 ALU Integer Operation Flowchart

52
RENESAS

Table 4.16 lists the types of ALU integer operations. Table 4.17 shows the correspondence
between the operands and registers.

Table 4.16 Types of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination
PINC Increment by 1 SX (+1) Dz

(+1) Sy Dz
PDEC Decrement by 1 Sx (-1) Dz

(-1) Sy Dz

Table 4.17 Correspondence between Operands and Registers for ALU Integer Operations

Operand X0 X1 YO Y1l MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

When the S bit of the SR register is set to 1, the overflow prevention function (saturation
operation) is engaged. The overflow prevention function can be specified for ALU integer
arithmetic operations executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

4.9 ALU Logical Operations

49.1 Function

ALU logical operations are performed between registers. The source and destination operands

selected independently from the DSP register. These operations use only the top word of the

respective operands. The bottom word of the source operand and the guard bits are ignored an
bottom word of the destination operand and guard bits are cleared with zeros. These operations

executed in the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’'s DC, N, Z, V, and GT bits
are basically updated by the operation result. For conditional instructions, condition bits and flag
are not updated even when the specified condition is achieved and the instruction executed. Fo
unconditional instructions, the bits are always updated according to the operation result. The DC
bit is updated as specified in the CS bits. Figure 4.12 shows the ALU logical operation flowchart

53
RENESAS

Guard bits Guard bits
l 31 0 l 31 0
| | Source 1 | | | Source 2
A A
V
ALU GT[z[N[V][DC]
DSR
Destination v
31 0
Guard bits
: Ignored
- :Cleared to 0

Figure 4.12 ALU Logical Operation Flowchart

4.9.2 Instructions and Operands

Table 4.18 lists the types of ALU logical arithmetic operations. Table 4.19 shows the
correspondence between the operands and registers, which is the same as for ALU fixed decime
point operations.

Table 4.18 Types of ALU Logical Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination
PAND AND Sx Sy Dz
POR OR Sx Sy Dz
PXOR Exclusive OR Sx Sy Dz

Table 4.19 Correspondence between Operands and Registers for ALU Logical Arithmetic

Operations
Operand X0 X1 YO Y1 MO M1 AO Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

54
RENESAS

49.3 DC Bit
The DC bit is set in logical operations as follows:
Carry/Borrow Mode: CS2—-CS0 = 000The DC bit is always 0.

Negative Mode: CS2—CSO0 = 001n this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2-CS0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2-CSO0 = 100:he DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal to Mode: CS2—CS0 = 10The DC bit is always 0.

49.4 Condition Bits
The condition bits are set as follows.

e The N bit is the value of bit 31 of the operation result.

* The Z bitis 1 when the operation result is zero; otherwise, the Z bit is 0.
e TheV bitis always 0.

» The GT bit is always O.

410 Fixed Decimal Point Multiplication

Multiplication in the DSP unit is between signed single-length operands. It is processed in one
cycle. When double-length multiplication is needed, use the SuperH RISC engine’s double-leng
multiplication.

Basically, the operation result for multiplication is 32 bits. When a register that has guard bits is
specified as the destination operand, it is sign-extended.

In the DSP unit, multiplication is a fixed decimal point arithmetic operation, not an integer
operation. This means the top words of the constant and multiplicand are entered into the MAC
operator. In SuperH RISC engine multiplication, the bottom words of the two operands are entel
into the MAC operator. The operation result thus is different from the SuperH RISC engine. The
SuperH RISC engine operation result is matched to the LSB of the destination, while the fixed

55
RENESAS

decimal point multiplication operation result is matched to the MSB. The LSB of the operation
result in fixed decimal point multiplication is thus always 0.

Figure 4.13 shows a flowchart of fixed decimal point multiplication.

Guard bits Guard bits
l 31 0 l 31 0
L | | L]
l A 4 A
V
MAC
Destination
Y
[+~—s o]
t a1 0
Guard bits I:I - Ignored

Figure 4.13 Fixed Decimal Point Multiplication Flowchart

Table 4.20 shows the fixed decimal point multiplication instruction. Table 4.21 shows the
correspondence between the operands and registers.

Table 4.20 Fixed Decimal Point Multiplication

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table 4.21 Correspondence between Operands and Registers for Fixed Decimal Point

Multiplication
Operand X0 X1 YO Y1 MO M1 A0 Al
Se Yes Yes Yes Yes
Sf Yes Yes Yes Yes
Dg Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

DSP unit fixed decimal point multiplication completes a single-length 26 16t bit operation in
one cycle. Other multiplication is the same as in the SuperH RISC engines.

56
RENESAS

Multiplication instructions do not update the DC, N, Z, V, GT, or any condition bit of the DSR
register.

The overflow prevention function is valid for DSP unit multiplication. Specify it by setting the S
bit of the SR register is set to 1. When an overflow or underflow occurs, the operation result valt
is the maximum or minimum value respectively. In DSP unit fixed decimal point multiplication,
overflows only occur for H'8008 H'8000 ((—1.0% (—1.0)). When the S bit is 0, the operation

result is H'80000000, which means —1.0 rather than the correct answer of +1.0. When the S bit
1, the overflow prevention function is engaged and the result is H'O07FFFFFFF.

4.11 Shift Operations

The amount of shift in shift operations is specified either through a register or using a direct
immediate value. Other source operands and destination operands are registers. There are two
types of shift operations: arithmetic and logical. Table 4.22 shows the operation types. The
correspondence between operands and registers is the same as for ALU fixed decimal point
operations, except for immediate operands. The correspondence is shown in table 4.23.

Table 4.22 Types of Shift Operations

Mnemonic Function Source 1 Source 2 Destination
PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz
PSHL Sx, Sy, Dz Logical shift Sx Sy Dz
PSHA #imm, Dz Arithmetic shift with Dz imm1 Dz
immediate data
PSHL #imm, Dz Logical shift with immediate Dz imm1 Dz
data

—-32<imml < +32, -16 <imm2 < +16

Table 4.23 Correspondence between Operands and Registers for Shift Operations

Operand X0 X1 YO0 Y1 MO M1 A0 Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

57
RENESAS

4.11.1 Arithmetic Shift Operations

Function: ALU arithmetic shift operations basically work with a 32-bit unit to which 8 guard bits
are added for a total of 40 bits. ALU fixed decimal point operations are basically performed
between registers. When the source operand has no guard bits, the register’s sign bit is copied tc
the guard bits. When the destination operand has no guard bits, the lower 32 hits of the operatior
result are stored in the destination register.

In arithmetic shifts, all bits of the source 1 operand and destination operand are valid. The source
operand, which specifies the shift amount, is integer data. The source 2 operand is specified as ¢
register or immediate operand. The valid amount of shift is —32 to +32. Negative values are shifts
to the right; positive values are shifts to the left. Between —64 and +63 can be specified for the
source 2 operand, but only —32 to +32 is valid. When an invalid number is specified, the results
cannot be guaranteed. When an immediate value is specified for the shift amount, the source 1
operand must be the same as the destination operand. The action of the operation is the same a
fixed decimal point operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever an arithmetic shift operation is executed, the DSR register's DC, N, Z, V, and GT bits
are basically updated by the operation result. This is the same as for ALU fixed decimal point
operations. For conditional instructions, condition bits are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result.

Figure 4.14 shows the arithmetic shift operation flowchart.

Left shift Right shift
79 0Og 31 16 15 0 79 Og 31 16 15 0
I =‘I/ o — |«—0 [P> —I»> \I\‘
Copy MSB
Shift out :(\ % (Copy MSB) Shift out
+32 to -32
) 79 0g31 23221615 0
Shift amount data ™7 [Dz | | Update [6T]z [N]V]DC]
(source 2)
6 0 DSR
I:I . Ignored

Figure 4.14 Arithmetic Shift Operation Flowchart

58
RENESAS

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits:

» Carry/Borrow Mode: CS2—CSO0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

» Negative Mode: CS2—-CS0 = 001: Set to 1 for a negative operation result and O for a positive
operation result. In this mode, the DC bit has the same value as bit N.

e Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, th
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

* Overflow Mode: CS2—CS0 = 011: The DC bit is set to 1 by an overflow. In this mode, the DC
bit has the same value as bit V.

e Signed Greater Than Mode: CS2-CS0 = 100: The DC bit is always 0. In this mode, the DC &
has the same value as bit GT.

» Signed Greater Than or Equal To Mode: CS2—-CS0 = 101: The DC bit is always 0.
Condition Bits: The condition bits are set as follows:

* The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for a negative operation result and O for a positive operation result.

» The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is se
to 1 when the operation result is zero; otherwise, the Z bit is 0.

» The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for an overflow.

* The GT bit is always O.

Overflow Prevention Function (Saturation Operation): When the S bit of the SR register is set

to 1, the overflow prevention function is engaged for the ALU fixed decimal point arithmetic
operation executed by the DSP unit. When the operation result overflows, the maximum (positiv
or minimum (negative) value is stored.

4.11.2 Logical Shift Operations

Function: Logical shift operations use the top words of the source 1 operand and the destinatior
operand. As in ALU logical operations, the guard bits and bottom word of the operands are
ignored. The source 2 operand, which specifies the shift amount, is integer data. The source 2
operand is specified as a register or immediate operand. The valid amount of shift is —16 to +16
Negative values are shifts to the right; positive values are shifts to the left. Between —32 and +3.
can be specified for the source 2 operand, but only —16 to +16 is valid. When an invalid humber
specified, the results cannot be guaranteed. When an immediate value is specified for the shift
amount, the source 1 operand must be the same as the destination operand. The action of the
operation is the same as for fixed decimal point operations and is executed in the DSP stage (tf
last stage) of the pipeline.

59
RENESAS

Whenever a logical shift operation is executed, the DSR register's DC, N, Z, V, and GT bits are
basically updated by the operation result. This is the same as for ALU logical operations. For
conditional instructions, condition bits are not updated even when the specified condition is
achieved and the instruction executed. For unconditional instructions, the bits are always update
according to the operation result.

Figure 4.15 shows the logical shift operation flowchart.

Left shift Right shift
7g Og 31 16 15 0 7g Og 31 16 15 0
. !0 0 .
Shift out Shift out
ZVN %
+16 to —-16
. 79 Og 31 23221615 0
Shift amount data 7] [Dz] | update [GT]z][N]V]DC|
(source 2) 5 0
DSR

|:| - Ignored
- : Cleared to O

Figure 4.15 Logical Shift Operation Flowchart
DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits.

e Carry/borrow mode: CS2—-CSO0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

« Negative Mode: CS2—-CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

e Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is all zeros; otherwise
the DC bit is 0. In this mode, the DC bit has the same value as bit Z.

e Overflow Mode: CS2—CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the
same value as bit V.

« Signed Greater Than Mode: CS2-CS0 = 100: The DC bit is always 0. In this mode, the DC bi
has the same value as bit GT.

« Signed Greater Than Or Equal To Mode: CS2—CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows.

60
RENESAS

» The N bit is the same as the result of the ALU logical operation. It is set to the value of bit 31
of the operation result.

e The Z bit is the same as the result of the ALU logical operation. It is set to 1 when the
operation result is all zeros; otherwise, the Z bit is 0.

» The V bitis always 0.
e The GT bit is always O.

412 The MSB Detection Instruction

4.12.1 Function

The MSB detection instruction (PDMSB: most significant bit detection) finds the amount of shift
for normalizing the data.

The operation result is the same as for ALU integer operations. Basically, the top 16 bits and 8
guard bits are valid for a total 24 bits. When the destination operand is a register that has no gu
bits, it is stored in the top 16 bits of the destination register.

The MSB detection instruction works on all bits of the source operand, but gets its operation res
in integer data. This is because the shift amount for normalization must be integer data for the
arithmetic shift operation. The action of the operation is the same as for fixed decimal point
operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever a PDMSB instruction is executed, the DSR register’'s DC, N, Z, V, and GT bits are
basically updated by the operation result. For conditional instructions, condition bits are not
updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result.

Figure 4.16 shows the MSB detection instruction flowchart. Table 4.24 shows the relationship
between source data and destination data.

61
RENESAS

Guard bits

vy 31 0
L |
Source 1 or 2
v
Priority encoder —>|GT| YA | N | \ |DC|
DSR
Destination
L
S
Guard bits I:I :Cleared to 0

62

Figure 4.16 MSB Detection Flowchart

RENESAS

Table 4.24 Relationship between Source Data and Destination Data

Source Data

Bottom Word

27-4 3

Top Word

Guard Bits

6g 5g-29 1g Og 31 30 29 28 27-4

79

63

RENESAS

Table 4.24

Relationship between Source Data and Destination Data (cont)

Destination Result

Guard Bits Top word
10
70-0g 31-22 21 20 19 18 17 16 Hexadecimal
allo allo 0 1 1 1 1 1 +31
0 1 1 1 1 0 +30
0 1 1 1 0 1 +29
0 1 1 1 0 0 +28
! ! !
allo allo 0 0 0 0 1 0 +2
0 0 0 0 0 1 +1
0 0 0 0 0 0 0
all1 all1 1 1 1 1 1 1 -1
1 1 1 1 1 0 -2
! ! !
all1 all1 1 1 1 0 0 0 -8
1 1 1 0 0 0 -8
! ! !
all1 all1 1 1 1 1 1 0 -2
1 1 1 1 1 1 -1
allo allo 0 0 0 0 0 0 0
0 0 0 0 0 1 +1
0 0 0 0 1 0 +2
! ! !
allo allo 0 1 1 1 0 0 +28
0 1 1 1 0 1 +29
0 1 1 1 1 0 +30
0 1 1 1 1 1 +31

Note: Don't care bits have no effect.

64

RENESAS

4.12.2 Instructions and Operands

Table 4.25 shows the MSB detection instruction. The correspondence between the operands ar
registers is the same as for ALU fixed decimal point operations. It is shown in table 4.26.

Table 4.25 MSB Detection Instruction

Mnemonic Function Source 1 Source 2 Destination
PDMSB MSB detection Sx — Dz
— Sy Dz

Table 4.26 Correspondence between Operands and Registers for MSB Detection

Instructions
Operand X0 X1 YO Y1 MO M1 AO Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

4.12.3 DC Bit

The DC bit is set as follows depending on the mode specified by the CS bits:
Carry/Borrow Mode: CS2-CS0 = 000:The DC bit is always O.

Mode: CS2—-CS0 = 001Set to 1 for a negative operation result and O for a positive operation
result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2-CSO0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2-CS0 = 10(Bet to 1 for a positive operation result and 0 for a
negative operation result. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2-CS0 = 10Bet to 1 for a positive or zero
operation result and 0 for a negative operation result.

65
RENESAS

4.12.4 Condition Bits
The condition bits are set as follows.

« The N bit is the same as the result of the ALU integer operation. It is set to 1 for a negative
operation result and 0 for a positive operation result.

e The Z bit is the same as the result of the ALU integer operation. It is set to 1 when the
operation result is zero; otherwise, the Z bit is 0.

e The V bitis always 0.

« The GT bit is the same as the result of the ALU integer operation. It is set 1 for a positive
operation result and otherwise to 0.

4.13 Rounding

4.13.1 Operation Function

The DSP unit has a function for rounding 32-bit values to 16-bit values. When the value has guar
bits, 40 bits are rounded to 24 bits. When the rounding instruction is executed, H'0000 8000 is
added to the source operand and the bottom word is then cleared to zeros.

Rounding uses all bits of the source and destination operands. The action of the operation is the
same as for fixed decimal point operations and is executed in the DSP stage (the last stage) of tt
pipeline.

The rounding instruction is unconditional. The DSR register's DC, N, Z, V, and GT bits are thus
always updated according to the operation result.

Figure 4.17 shows the rounding flowchart. Figure 4.18 shows the rounding process definitions.

66
RENESAS

Guard bits

v 31 0
[] | | H'00008000
Source 1 or 2 Addition
A4 A4
ALU cT[z[N[V [DC]
DSR
Destination
Y 0
Guard bits
. Clearedto 0
Figure 4.17 Rounding Flowchart
Rounding result 4
| O
|
H'000002 ——-—4-—————- é,) Analog values
i
H'000001 ----1 P !
|
|
O ; >
0 | Actual value
o
o
o
o]
(oY)
o
o
o
o
o
T

H'0000018000 ———T———-—
H'0000020000 "~~~ ~~~~~"~—~

Figure 4.18 Rounding Process Definitions

RENESAS

4.13.2 Instructions and Operands

Table 4.27 shows the instruction. The correspondence between the operands and registers is the
same as for ALU fixed decimal point operations. It is shown in table 4.28.

Table 4.27 Rounding Instruction

Mnemonic Function Source 1 Source 2 Destination
PRND Rounding Sx — Dz
— Sy Dz

Table 4.28 Correspondence between Operands and Registers for Rounding Instruction

Operand X0 X1 YO Y1 MO M1 AO Al
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

4.13.3 DC Bit

The DC bit is updated as follows depending on the mode specified by the CS bits. Condition bits
are updated as for ALU fixed decimal point arithmetic operations.

Carry/Borrow Mode: CS2—-CS0 = 000:The DC bit is set to 1 when a carry or borrow from the
MSB of the operation result occurs; otherwise, it is set to O.

Negative Mode: CS2—CS0 = 001Set to 1 for a negative operation result and O for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—CS0 = 010The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2-CS0 = 011The DC bit is set to 1 by an overflow; otherwise, it is set to 0.
In this mode, the DC bit has the same value as bit V.

Signed Greater Than Mode: CS2-CS0 = 10@Bet to 1 for a positive operation result; otherwise,
it is set to 0. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2-CS0 = 10Bet to 1 for a positive or zero
operation result; otherwise, it is set to O..

68
RENESAS

4.13.4 Condition Bits

The condition bits are set as follows. They are updated as for ALU fixed decimal point arithmetic
operations.

» The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. Itis s
to 1 for a negative operation result and O for a positive operation result.

» The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is St
to 1 when the operation result is zero; otherwise, the Z bit is 0.

» The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is s
to 1 for an overflow; otherwise, the V bit is 0.

» The GT bit is the same as the result of the ALU fixed decimal point arithmetic operation and
the ALU integer operation. It is set 1 for a positive operation result; otherwise, the GT bitis 0

4.13.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function can be specified fc
all rounding processing executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

4.14 Condition Select Bits (CS) and the DSP Condition Bit (DC)

DSP instructions may be either conditional or unconditional. Unconditional instructions are
executed without regard to the DSP condition bit (DC bit), but conditional instructions may
reference the DC bit before they are executed. With unconditional instructions, the DSR registet
DC bit and condition bits (N, Z, V, and GT) are updated according to the results of the ALU
operation or shift operation. The DC bit and condition bits (N, Z, V, and GT) are not updated
regardless of whether the conditional instruction is executed. The DC bit is updated according tc
the specifications of the condition select (CS) bits. Updates differ for arithmetic operations, logic
operations, arithmetic shifts and logical shifts. Table 4.29 shows the relationship between the C:
bits and the DC bit.

69
RENESAS

Table 4.29

CS Bits

2 1 0

Condition Select Bits (CS) and DSP Condition Bit (DC)

Condition Mode

Description

0 0 O

Carry/borrow

The DC bit is set to 1 when a carry or borrow occurs in the
result of an ALU arithmetic operation. Otherwise, it is cleared to
0.

In logical operations, the DC bit is always cleared to 0.

For shift operations (the PSHA and PSHL instructions), the bit
shifted out last is copied to the DC bit.

Negative

In ALU arithmetic operations or arithmetic shifts (PSHA), the
MSB of the result (including the guard bits) is copied to the DC
bit.

In ALU logical operations and logical shifts (PSHL), the MSB of
the result (not including the guard bits) is copied to the DC bit.

Zero

When the result of an ALU or shift operation is all zeros (0), the
DC bit is set to 1. Otherwise, it is cleared to 0.

Overflow

In ALU arithmetic operations or arithmetic shifts (PSHA), when
the operation result (not including the guard bits) exceeds the
destination register’s value range, the DC bit is set to 1.
Otherwise, it is cleared to 0.

In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

Signed greater
than

This mode is like the Greater Than Or Equal To mode, but the
DC bit is cleared to 0 when the operation result is zero (0).
When the operation result (including the guard bits) exceeds
the expressible limits, the TRUE condition is VR.

DC bit = ~{(N bit * VR)|Z bit)}; for arithmetic operations
DC bit = 0; for logical operations

Greater than or
equal to

In ALU arithmetic operations or arithmetic shifts (PSHA), when
the result does not overflow, the value is the inversion of the
negative mode’s DC bit. When the operation result (including
the guard bits) exceeds the expressible limits, the value is the
same as the negative mode’s DC bit.

In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

DC bit = ~(N bit * VR)); for arithmetic operations
DC bit = 0; for logical operations

Reserved

70

RENESAS

4.15 Overflow Prevention Function (Saturation Operation)

The overflow prevention function (saturation operation) is specified by the S bit of the SR registe
This function is valid for arithmetic operations executed by the DSP unit and multiply and
accumulate operations executed by the existing SH-1 and SH-2. An overflow occurs when the
operation result exceeds the bounds that can be expressed as a two’s complement (not includir
the guard bits).

Table 4.30 shows the overflow definitions for fixed decimal point arithmetic operations. Table
4.31 shows the overflow definitions for integer arithmetic operations. Multiply/Accumulate
calculation instructions (MAC) supported by previous SuperH RISC engines are performed on 6
bit registers (MACH and MACL), so the overflow value differs from the maximum and minimum
values. They are defined exactly the same as before.

Table 4.30 Overflow Definitions for Fixed Decimal Point Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result > 12731 12731 007FFFFFFF
Negative Result < -1 -1 FF80000000

Table 4.31 Overflow Definitions for Integer Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result>2715-1 27151 007FFF***
Negative Result <-271° —2-15 FE8000***

Note: Don'’t care bits have no effect.

When the overflow prevention function is specified, overflows do not occur. Naturally, the
overflow bit (V bit) is not set. When the CS bits specify overflow mode, the DC bit is not set
either.

71
RENESAS

4.16 Data Transfers

The SH-DSP can perform up to two data transfers in parallel between the DSP register and on-
chip memory with the DSP unit. The SH-DSP has the following types of data transfers:

1.

2.

X and Y memory data transfers: Data transfer to X and Y memory using the XDB and YDB
buses

Double data transfer: Data transfer only, where transfer in one direction only is permitted
Parallel data transfers: Data transfer that proceeds in parallel to ALU operation processing
Single data transfers: Data transfer to on-chip memory using the IDB bus

Note: Data transfer instructions do not update the DSR register’s condition bits.

Table 4.32 shows the various functions.

Table 4.32 Data Transfer Functions

Parallel
Processing Parallel
with ALU Processing with Instruction
Category Bus Length Operation Data Transfer Length
X and Y memory X bus 16 bits None (double) None (X or Y bus) 16 bits
data transfer Y bus
Available (Xand Y 16 bits
bus)
Available None (X or Y bus) 32 bits
(parallel)
Available (Xand Y 32 hits
bus)
Single data IDB bus 32 bits None None 16 bits
transfer 16 bits

4.16.1 X and Y Memory Data Transfer

X and Y memory data transfers allow two data transfers to be executed in parallel and allow data
transfers to be executed in parallel with DSP data operations. 32-bit instruction code is required
for executing DSP data operations and transfers in parallel. This is called a parallel data transfer.
When executing an X and Y memory data transfer by itself, 16-bit instruction code is used. This i
called a double data transfer.

Data transfers consist of X memory data transfers and Y memory data transfers. X memory data
loaded to either the X0 or X1 register; Y memory data is loaded to the YO or Y1 register. The X0,
X1, YO, and Y1 registers become the destination registers. Data can be stored in the X and Y

72

RENESAS

memory if the AO or Al register is the source register. All these data transfers involve word data
(16 bits). Data is transferred from the top word of the source register. Data is transferred to the 1
word of the destination register and the bottom word is automatically cleared with zeros.

Specifying a conditional instruction as the operation instruction executed in parallel has no effec
on the data transfer instructions.

X and Y memory data transfers access only the X and Y memory; they cannot access other
memory areas.

X pointer (R4, R;)/D Y pointer (R6, R;)/D

0, +2, +R8 0, +2, +R9
XAB[15:1] YAB[15:1]
Y Y
X memory Y memory
(RAM, ROM) (RAM, ROM)
A A
XDBI[15:0] YDBI[15:0]
y y
X0 YO
X1 Y1l
AOQ MO
Al M1

AOGI| A1G|J DSR

I:I : Not affected for storing; cleared for loading

- : Cannot be set

Figure 4.19 Flowchart of X and Y Memory Data Transfers

4.16.2 Single Data Transfers

Single data transfers execute only one data transfer. They use 16-bit instruction code. Single de
transfers cannot be processed in parallel with ALU operations. The X pointer, which accesses X
memory, and two added pointers are valid; the Y pointer is not valid. As with the SuperH RISC

engine, single data transfers can access all memory areas, including external memory. Except f
the DSR register, the DSP registers can be specified as source and destination operands. (The
register is defined as the system register, so it can transfer data with LDS and STS instructions.
The guard bit registers AOG and A1G can be specified for operands as independent registers.

73
RENESAS

Single data transfers use the IAB and IDB buses in place of the X bus and Y bus, so contention
occurs on the IDB bus between data transfers and instruction fetches.

Single data transfers handle word and longword data. Word data transfers involve only the top
word of the register. When data is loaded to a register, it goes to the top word and the bottom wo
is automatically filled with zeros. If there are guard bits, the sign bit is extended to fill them. When
storing from a register, the top word is stored.

When a longword is transferred, 32 bits are valid. When loading a register that has guard bits, the
sign bit is extended to fill the guard bits.

When a guard bit register is stored, the top 24 bits become undefined, and the read out is to the
IDB bus. When the guard bit registers AOG and A1G load word data as the destination registers
the MOVS.W instruction, the bottom byte is written to the register.

Pointer (R2, R3, R4, RVS)/}>

-2,0,+2, +R8
IAB[31:0]

A 4

All memory areas

A
IDB[15:0]

y
X0 YO
X1 Y1
A0 MO
Al M1

[A0G | A1G[[DSR

: Not affected for storing; cleared for loading. See
the text for information about AOG and A1G.

- : Cannot be set

Figure 4.20 Single Data Transfer Flowchart (Word)

74
RENESAS

Pointer (R2, R3, R4, RVS)/}>

4,0, +4, +R8

IAB[31:0]

Y

All memory areas

A
IDB[31:0]

y
X0 YO
X1 Y1
A0 MO
Al M1

| AOG | A1G [DSR

- : Cannot be set

Figure 4.21 Single Data Transfer Flowchart (Longword)

RENESAS

75

Data transfers are executed in the MA stage of the pipeline while DSP operations are executed it
the DSP stage. Since the next data store instruction starts before the data operation instruction h
finished, a stall cycle is inserted when the store instruction comes on the instruction line after the
data operation instruction. This overhead cycle can be avoided by adding one instruction betwee
the data operation instruction and the data transfer instruction. Figure 4.22 shows an example.

MOVX.W A0, @R4+ Insert an unrelated step

MOVX.W @R5, X1 «—| between data operation
MOVX.W A0, @R4+ instruction and store instruction.

PADD X0, YO, AO

Slot 1 2 3 4 5 6 7
MOVX, EX (ad-
b IF D | gressng) | MOVX ADD
MOVX IF ID EX(ad- | yovx DSP
dressing)
R

MOVX IF ID EX (@d- | Tymovx | DSP (nop)

dressing)

Figure 4.22 Example of the Execution of Operation and Data Store Instructions

4.17 Operand Contention

Data contention occurs when the same register is specified as the destination operand for two or
more parallel processing instructions. It occurs in three cases.

1. When the same destination operand is specified for an ALU operation and multiplication (Du,
Dg)

2. When the same destination operand is specified for an X memory load and an ALU operation
(Dx, Du, Dz)

3. When the same destination operand is specified for a Y memory load and an ALU operation
(Dx, Du, Dz)

Results cannot be guaranteed when contention occurs. Table 4.33 shows the operand and regist
combinations that cause contention.

Some assemblers can detect these types of contention, so pay attention to assembler functions
when selecting one.

76
RENESAS

Table 4.33 Operand and Register Combinations That Create Contention

DSP Register

Operation Operand X0 X1 YO0 Y1 MO M1 AO Al
X memory AX
load 1X
Dx ¥2 ¥2
Y memory Ay
load ly
Dy *3 *3
6-operand ALU Sx xt x1 xt x1
operation Sy *1 *1 *1 *1
Du *2 *3 *4 *4
3-operand Se xt x1 *1 x1
multiplication st *1 x1 x1 *1
Dg *1 *1 *4 *4
3-operand ALU Sx xt x1 xt x1
operation Sy *1 *1 *1 *1
Dz ¥2 ¥2 +3 «3 <1 +1 +1 +1
Notes: 1. Register is settable for the operand
2. Dx, Du, and Dz contend
3. Dy, Du, and Dz contend
4. Du and Dg contend
77

RENESAS

4.18 DSP Repeat (Loop) Control

The SH-DSP repeat (loop) control function is a special utility for controlling repetition efficiently.
The SETRC instruction is executed to hold a repeat count in the repeat counter (RC, 12 bits) and
set an execution mode in which the repeat (loop) program is repeated until the RC is 1. Upon
completion of the repeat operation, the content of the RC becomes 0.

The repeat start register (RS) holds the start address of the repeated section. The repeat end
register (RE) holds the ending address of the repeated section. (There are some exceptions. See
4.19.1 Notes.) The repeat counter (RC) holds the repeat count. The procedure for executing repe
control is shown below:

Set the repeat start address in the RS register.
Set the repeat end address in the RE register.
Set the repeat count in the RC counter.
Execute the repeated program (loop).

DR

The following instructions are used for executing 1 and 2:

LDRS @(disp,PC);
LDRE @(disp,PC);

The SETRC instruction is used to execute 3 and 4. Immediate data or a general register may be
used to specify the repeat count as the operand of the SETRC instruction:

SETRC #imm; #imm - Rc, enable repeat control
SETRC Rm; Rm - Rc, enable repeat control

#imm is 8 bits and the RC counter is 12 bits, so to set the RC counter to a value of 256 or greate
use the Rm register. A sample program is shown below.

LDRS RptStart;
LDRE RptEnd;
SETRC #imm; RC=#imm
instro;
; instrl~5 executes repeatedly
RptStart: instrl;
instr2;
instr3;
instr4;
RptENd: instr5;
instré;

78
RENESAS

There are several restrictions on repeat control:

1. At least one instruction must come between the SETRC instruction and the first instruction o
the repeat program (loop).

2. Execute the SETRC instruction after executing the LDRS and LDRE instructions.

3. When there are more than four instructions for the repeat program (loop) and there is no rep
start address (in the above example, it was address instrl) at the long word boundary, one ¢
stall (cycle awaiting execution) is required for each repeat.

4. When there are three or fewer instructions in the loop, branch instructions (BRA, BSR, BT,
BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used. If they are
described, error exemption processing is started and the address values shown in table 4.34
pushed out to the stack area pointed by R15.

Table 4.34 PC Values Pushed Out (1)

Conditions Position Address Pushed Out
RC>=2 Any RptStart
RC=1 Any Program address of illegal instruction

5. If there are four or fewer instructions in the loop, branched instructions (BRA, BSR, BT, BF,
BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC, LDRS
LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used for the last three
instructions in the repeat program (loop). If they are described, error exception processing is
started and the address values shown in table 4.35 are pushed out to the stack area pointed
R15. In case of repeat control instruction (SETRC, LDRS, LDRE), and SR, RS, and RE load
instructions, they cannot be described in positions other than the repeat module. If describec
proper operation cannot be secured.

Table 4.35 PC Values Pushed Out (2)

Conditions Position Address Pushed Out

RC>=2 instr3 Program address of illegal instruction
instr4 RptStart-4
instr5 RptStart-2

RC=1 Any Program address of illegal instruction

6. When there are three or fewer instructions in the loop, PC relative instructions (MOVA
(disp,PC), RO, or the like) can only be used at the first instruction (instrl).

7. If there are four or more instructions in the loop, PC relative instructions (MOVA (disp,PC),
RO, or the like) cannot be used in the final two instructions.

79
RENESAS

8.

10.

80

The SH-DSP does not have a repeat valid flag; repeats become invalid when the RC counter
becomes 0. When the RC counter is not 0 and the PC counter matches the RE register conte
repeating begins. When the RC counter is set to 0, the repeat program (loop) is invalid but the
loop is executed only once and does not return to the starting instruction of the loop as when
RC is 1. When the RC counter is set to 1, the repeat module is executed only once. Though it
does not return to the repeat program (loop) start instruction, the RC counter becomes zero
when the repeat module is executed.

If there are four or more instructions in the loop, the branched instructions including the
subroutine call back and return instructions cannot be used for the “inst3” through “inst5”
instructions as branch destination address. If they are executed, the repeat control does not
work correctly. If the branch destination is “RptStart” or any address ahead of it, content of RC
in the SR register is not updated.

While the repeat is being executed, interruption is restricted. Figure 4.23 shows the flow for
each stage of EX. The initial EX stage of interruption or the bus error exception is usually
started immediately after the EX stage of the instruction is completed (indicated by “A”).
However, in the EX stage of the next instrO, only the bus error exception can be designated b
“B” to continue. At the EX stage of instrl, neither interruption nor bus exception can be
continued by “C”. Only the EX stage of instr2 can be continued.

RENESAS

A: Allinterruption and bus error exceptions are accepted.
B: Only the bus error exception is accepted.
C: No interruption and bus error exceptions are accepted.

When RC>=1

1-step repeat 2-step repeat 3-step repeat
. <A . <A . <A
instr0 _ g instr0 _ g instr0 _ g
Start(End): instrl _ ¢ Start: instrl _ ¢ Start: instrl _ ¢
instr2 _ A End: instr2 _ ¢ instr2 _ ¢
instr3 _ A End: instr3 _ ¢
instrd _ A

More than 4 steps repeat

<A

instr0 « Aor C (when returning from instr n)
Start: instrl < A

o <A
instrn-3 _ g
instrn-2 _ ¢
instrn-1 _ ¢
End: instr n < C
instrntl _ A

When RC=0: All interruptions and bus errors are accepted.

Figure 4.23 Restriction on Acceptance of Interruption by Repeat Module

4.18.1 Actual programming

The repeat start register (RS) and repeat end register (RE) store the repeat start address and re
end address respectively. Addresses stored in these registers are changed depending on the n
of instructions in the repeat program (loop). This rule is shown below.

Repeat_Start: Address of repeat start instruction
Repeat_Start0: Address of instruction one higher than the repeat end instruction

Repeat_Start3: Address of instruction three higher than the repeat end instruction

81
RENESAS

Table 4.35

RS and RE Setup Rule

Number of Instructions in Repeat Program (Loop)

Register 1 2 3 >=4
RS Repeat_start0+8 Repeat_start0+6 Repeat_start0+4 Repeat_Start
RE Repeat_start0+4 Repeat_start0+4 Repeat_start0+4 Repeat_End3+4

An example of an actual repeat program (loop) assuming various cases based on the above tabl

given below:

Case 1: One repeat instruction

LDRS RptStart0+8;(RptStart)
LDRE RptStartO+4;(RptStart)
SETRC RptCount;

RptStart0: instro;

RtpStart:

instrl; Repeat instruction

instr2;

Case 2: Two repeat instructions

LDRS RptStart0O+6;(RptStart)
LDRE RptStartO+4;(RptEnd)
SETRC RptCount;

RptStartO: instro;

RipStart;

instrl; Repeat instruction 1

RptENd: instr2; Repeat instruction 2

82

instr3;

RENESAS

Case 3: Three repeat instructions

LDRS RptStartO+4;(RptStart)
LDRE RptStartO+4;(RptEnd)
SETRC RptCount;
RptStart0: instro;
RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2
RptENd: instr3; Repeat instruction 3
instr4;

Case 4: Four or more instructions

LDRS RptStart;
LDRE RptStart3+4;(RptEnd)
SETRC RptCount;
RptStartO: instro;
RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2
instr3; Repeat instruction 3

RptENd3: instrN-3; Repeat instruction N
instrN-2; Repeat instruction N-2
instrN-1; Repeat instruction N-1
RptENd: instrN; Repeat instruction N
instrN+1;

The above example can be used as a template when programming this repeat program (loop)
sequence. Extension instruction “REPEAT” can simplify the problems of such complicated
labeling and offset. Details are described in Note 2 below.

Note 2. Extension instruction REPEAT
The extension instruction REPEAT can simplify the delicate handling of the labeling
and offset described in Table 4.35 and Note 1. Labels used are shown below.
RptStart: RptStart: Address of first instruction of repeat program (loop)
RptEnd: Address of last instruction of repeat program (loop)
PptCount: Repeat count immediate No.
Use this instruction as described below.

83
RENESAS

Repeat count can be designated as immediate value #imm or register indirect value Ri
Case 1: One repeat instruction

REPEAT RptStart, RptStart, RptCount

instro;
RptStart: instrl; Repeat instruction 1
instr2;

Case 2: Two repeat instructions

REPEAT RptStart, RptEnd, RptCount

instrO;
RptStart: instrl; Repeat instruction 1
RptENd: instr2; Repeat instruction 2

Case 3: Three repeat instructions

REPEAT RptStart, RptEnd, RptCount

instro;
RptStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2

RptENd: instr3; Repeat instruction 3
Case 4: Four or more instructions

REPEAT RptStart, RptStart, RptCount
instrO;

RtpStart: instrl; Repeat instruction 1
instr2; Repeat instruction 2
instr3; Repeat instruction 3

instrN-3; Repeat instruction N-3

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1
RptENd: instrN; Repeat instruction N

instrN+1;

84
RENESAS

Result of extension of each case corresponds to the case 1 in Note 1.

4.19 Conditional Instructions and Data Transfers

Data operation instructions include both unconditional and conditional instructions. Data transfe
instructions that execute both in parallel can be specified, but they will always execute regardles
of whether the condition is met without affecting the data transfer instruction.

The following is an example of a conditional instruction and a data transfer:

DCT PADD X0, YO, AO MOVX.W @R4, X0 MOVY.W A0,@R6+R9

When condition is true:

Before execution: X0=H'33333333, YO= H'’55555555, AO=H'123456789A,
R4=H'00008000, R6=H'00008233, R1=H'00000004
(R4)=H'1111, (R6)=H"2222
After execution: X0=H'11110000, YO= H'55555555, AO=H'00888888,
R4=H'00008002, R6=H'00008237, R1=H'00000004
(R4)=H1111, (R6)=H'1234
When condition is false:

Before execution: X0=H'33333333, YO= H'55555555, AO=H'123456789A,
R4=H'00008000, R6=H'00008233, R1=H'00000004
(R4)=H'1111, (R6)=H"2222

After execution: X0=H'11110000, YO= H'55555555, AO= H'123456789A,
R4=H'00008002, R6=H'00008237, R1=H'00000004
(R4)=H1111, (R6)=H'1234

85
RENESAS

86

RENESAS

Section 5 Instruction Set

The SH-DSP instructions are divided into three groups. CPU instructions are executed by the C
core, and DSP data transfer instructions and DSP operation instructions are executed by the DS
unit. Some CPU instructions support DSP functions. The description of the instruction set is
divided into these three groups.

5.1 Instruction Set for CPU Instructions
Table 5.1 lists instructions by classification.

Table 5.1 Classification of CPU Instructions

Applicable
Instructions
Operation SH- No. of
Classification Types Code Function SH-1 SH-2 DSP Instructions
Data transfer 5 MOV Data transfer O O O 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer
MOVA Effective address transfer O O O
MOVT T bit transfer O O O
SWAP Swap of upper and lower bytes O O O
XTRCT Extraction of the middle of registers O O O
connected
Arithmetic 21 ADD Binary addition O O O s3
operations ADDC Binary addition with carry O O O
ADDV Binary addition with overflowcheck O O O
CMP/cond Comparison O O O
DIV1 Division O O O
DIVOS Initialization of signed division O O O
DIVOU Initialization of unsigned division O O O
DMULS Signed double-length multiplication — O O
DMULU Unsigned double-length multiplication — O O
DT Decrement and test — O O
EXTS Sign extension O O O
EXTU Zero extension O O O
MAC Multiply/accumulate O O O
Double-length multiply/accumulate — O O

operation

87
RENESAS

Table 5.1 Classification of CPU Instructions (cont)

Applicable
Instructions

Operation SH- No. of
Classification Types Code Function SH-1 SH-2 DSP Instructions
Arithmetic MUL Double-length multiplication — O O
operations (32 x 32 bits)
(cont) MULS Signed multiplication (16 x 16 bits) O O O

MULU Unsigned multiplication (16 x 16 bits) (O O O

NEG Negation O O O

NEGC Negation with borrow O O O

suB Binary subtraction O O O

SUBC Binary subtraction with carry o O O

SUBV Binary subtraction with underflow O O O

check

Logic 6 AND Logical AND O O O 14
operations NOT Bit inversion O O O

OR Logical OR O O O

TAS Memory test and bit set O O O

TST Logical AND and T bit set O O O

XOR Exclusive OR o O O
Shift 10 ROTCL One-bit left rotation with T bit O O O 14

ROTCR One-bit right rotation with T bit O O O

ROTL One-bit left rotation O O O

ROTR One-bit right rotation O O O

SHAL One-bit arithmetic left shift O O O

SHAR One-bit arithmetic right shift O O O

SHLL One-bit logical left shift O O O

SHLLn n-bit logical left shift O O O

SHLR One-bit logical right shift O O O

SHLRn n-bit logical right shift O O O

88
RENESAS

Table 5.1 Classification of CPU Instructions (cont)

Applicable
Instructions

Operation SH- No. of
Classification Types Code Function SH-1 SH-2 DSP Instructions
Branch 9 BF Conditional branch (T = 0) O O O 11

Conditional branch with delay — O O
BT Conditional branch (T = 1) O O O
Conditional branch with delay — O O

BRA Unconditional branch O O O

BRAF Unconditional branch — O O

BSR Branch to subroutine procedure O O O

BSRF Branch to subroutine procedure — O O

IMP Unconditional branch O O O

JSR Branch to subroutine procedure O O O

RTS Return from subroutine procedure O O O
System 14 CLRMAC MAC register clear O O O n
control CLRT T bit clear O O O

LDC Load to control register O O O

LDRE Load to repeat end register — — O

LDRS Load to repeat start register — — O

LDS Load to system register O O O

NOP No operation O O O

RTE Return from exception processing O O O

SETRC Set number of repeats — — O

SETT T bit set O O O

SLEEP Shift into power-down state O O O

STC Storing control register data O O O

STS Storing system register data O O O

TRAPA Trap exception handling O O O

Total:65 182

Instruction codes, operation, and execution cycles are listed as shown in table 10.2 by

classification.

RENESAS

89

Table 5.2

Instruction Code Format

Item Format Explanation
Instruction OP.Sz SRC,DEST OP: Operation code
mnemonic Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement**
Instruction MSB -~ LSB mmmm: Source register
code nnnn: Destination register
0000: RO
0001: R1
1111: R15
iiii: Immediate data
dddd: Displacement
Operation -, Direction of transfer
summary (xx) Memory operand
M/QIT Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
N Exclusive OR of each bit
~ Logical NOT of each bit
<<n, >>n n-bit shift
Execution Value when no wait states are inserted*
cycles
Instruction The execution cycles shown in the table are minimums.
execution The actual number of cycles may be increased:
cycles 1. When contention occurs between instruction fetches
and data access, or
2. When the destination register of the load instruction
(memory - register) and the register used by the next
instruction are the same.
T bit —:No change Value of T bit after instruction is executed
Notes: 1. Scaled (x1, x2, or x4) according to the size of the instruction’s operand. For more
information, see section 12, Instruction Descriptions.
2. Instruction execution cycles: The executions cycles shown in the table are minimums.
The actual number of cycles may be increased when (1) contention occurs between
instruction fetches and data access, or (2) when the destination register of the load
instruction (memory - register) and the register used by the next instruction are the
same.
90

RENESAS

51.1 Data Transfer Instructions
Table 5.3 Data Transfer Instructions
Applicable
Instructions
T SH-
Instruction Operation Cycles Bit SH-1 SH-2 DSP
MOV #imm,Rn imm - Sign extension -~ Rn 1 — O O O
MOVW @(disp,PC),Rn (disp x 2 + PC) - Sign 1 — O O O
extension — Rn
MOV.L @(disp,PC),Rn (disp x4 + PC) - Rn 1 — O O O
MOV Rm,Rn Rm - Rn 1 — O O O
MOV.B Rm,@Rn Rm - (Rn) 1 — O O O
MOVW Rm,@Rn Rm - (Rn) 1 — O O O
MOV.L Rm,@Rn Rm - (Rn) 1 — O O O
MOV.B @RmRn (Rm) - Sign extension -~ Rn 1 — O O O
MOVW @RmRn (Rm) — Sign extension — Rn 1 — O O O
MOVL @RmRn (Rm) - Rn 1 — O O O
MOV.B Rm,@-Rn Rn-1 -~ Rn, Rm - (Rn) 1 — O O O
MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 1 — O O O
MOV.L Rm@-Rn Rn—4 — Rn, Rm - (Rn) 1 — O O O
MOV.B @Rm+Rn (Rm) - Sign extension — 1 — O O O
Rn,Rm+1 -~ Rm
MOV.W @Rm+Rn (Rm) - Sign extension — 1 — O O O
Rn,Rm+2 - Rm
MOV.L @Rm+Rn (Rm) -~ Rn,Rm+4 - Rm 1 — O O O
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 1 — O O O
MOVW RO,@(disp,Rn) RO - (disp x 2 + Rn) 1 — O O O
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 1 — O O O
MOV.B @(disp,Rm),R0O (disp + Rm) - Sign 1 — O O O
extension —» RO
MOVW @(disp,Rm),R0 (disp x 2 + Rm) — Sign 1 — O O O
extension - RO
MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 1 — O O O
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 1 — O O O
MOVW Rm,@(RO,Rn) Rm - (RO + Rn) 1 — O O O

RENESAS

91

Table 5.3

Data Transfer Instructions (cont)

Applicable
Instructions
T SH-
Instruction Operation Cycles Bit SH-1 SH-2 DSP
MOV.L Rm@(RORN) Rm - (RO + Rn) 1 — O O O
MOV.B @(RO,Rm),Rn (RO + Rm) - Sign extension —» 1 — O O O
Rn
MOV.W @(RO,Rm),Rn (RO + Rm) - Sign extension - 1 — O O O
Rn
MOV.L @(RORm)Rn (RO +Rm) - Rn 1 — O O O
MOV.B RO,@(disp, RO - (disp + GBR) 1 — O O O
GBR)
MOVW RO,@(disp, RO - (disp x 2 + GBR) 1 — O O O
GBR)
MOV.L RO,@(disp, RO - (disp x 4 + GBR) 1 — O O O
GBR)
MOV.B @(disp,GBR), (disp + GBR) - Sign extension 1 — O O O
RO -~ RO
MOVW @(disp,GBR), (disp x 2+ GBR) - Sign 1 — O O O
RO extension - RO
MOV.L @(disp,GBR), (disp x4 + GBR) - RO 1 — O O O
RO
MOVA @(disp,P,C), disp x4+ PC - RO 1 — O O O
RO
MOVT Rn T -~ Rn 1 — O O O
SWAP.B Rm,Rn Rm - Swap the bottom two 1 — O O O
bytes -~ REG
SWAPW Rm,Rn Rm - Swap two consecutive 1 — O O O
words — Rn
XTRCT Rm,Rn Rm: Middle 32 bits of Rn - Rn 1 — O O O
92

RENESAS

5.1.2 Arithmetic Instructions
Table 5.4 Arithmetic Instructions
Applicable
Instructions
SH-

Instruction Operation T Bit SH-1 SH-2 DSP

ADD RmRn Rn+Rm - Rn — O O O

ADD #immRn Rn+imm - Rn — O O O

ADDC RmRn Rn+Rm+T - Rn, Carry O O O
Carry - T

ADDV Rm,Rn Rn +Rm - Rn, Overflow O O O
Overflow - T

CMP/EQ #mm,RO IfRO=imm,1 - T, Comparison O O O
IfROZimm,0 - T result

CMP/EQ RmRn fRn=Rm,1 - T, Comparison O O O
fFRNn#Rm,0 - T result

CMP/HS Rm,Rn If Rn = Rm with Comparison O O O
unsigned data, 1 - T, result
fRN<Rm,0 - T

CMP/GE Rm,Rn If Rn = Rm with signed Comparison O O O
data,1 - T, result
fRN<Rm,0 - T

CMP/HI Rm,Rn If Rn > Rm with Comparison O O O
unsigned data, 1 - T, result
fRNn<RmM,0 - T

CMP/GT Rm,Rn If Rn > Rm with signed Comparison O O O
data,1 - T, result
fRn<RmM,0 - T

CMP/PL Rn fRN>0,1 - T, Comparison O O
IfRn<0,0 - T result

CMP/PZ Rn fRN=0,1-T, Comparison O O
IfRh<0,0 - T result

CMP/STR RmRn IfRnand Rm have an Comparison O O
equivalent byte, 1 - T, result
If not equivalent byte,
0-T

[D/\VA Rm,Rn Single-step division Calculation O O
(Rn/Rm) result

DIVOS Rm,Rn MSB of Rn - Q, MSB Calculation O O
of Rm - M,M*"Q - T result

DIVOU 0 - MIQIT 0 O O

RENESAS

93

Table 5.4 Arithmetic Instructions (cont)

Instruction

Operation Cycles T Bit

Applicable
Instructions

SH-1 SH-2

SH-
DSP

DMULS.L Rm,_Rn

Signed operation of 2-4*
Rn x Rm - MACH, MACL 32
x 32 - 64 bits

O

O

DMULUL Rm,_Rn

Unsigned operation of 2-4*
Rn x Rm - MACH, MACL 32
x 32 - 64 bits

O

DT Rn

Rn-1 - Rn,ifRN=0,1- 1
T,else0 - T

Comparison
result

EXTSB RmRn

A byte in Rm is sign-extended 1
- Rn

EXTSW RmRn

A word in Rm is sign- 1
extended - Rn

EXTUB RmRn

A byte in Rm is zero-extended 1
- Rn

EXTUW Rm_Rn

A word in Rm is zero- 1
extended - Rn

O] O] O] O

MAC.L @Rm+,@Rn+ Signed operation of (Rn) x

(Rm) + MAC - MAC

3/(2—4)*

MAC.W @Rm+,@Rn+Signed operation of (Rn) x

(Rm) + MAC - MAC
(SH-2) 16 x 16 + 64 — 64 bits
(SH-1) 16 x 16 + 42 _ 42 bits

3/(2)*

O] O] O] O] O] O O

O O] O] O] O] O] O

MUL.L Rm,Rn

Rn xRm - MACL 2—4*
32 x 32 - 32 hits

O

MULSW Rm_Rn

Signed operation of Rn x 1-3*
Rm - MAC
16 x 16 — 32 bits

MULUW Rm,Rn

Unsigned operation of Rn x ~ 1-3*
Rm - MAC
16 x 16 - 32 bits

94

RENESAS

Table 5.4

Arithmetic Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Cycles T Bit SH-1 SH-2 DSP
NEG Rm,Rn 0-Rm - Rn 1 — O O O
NEGC Rm,Rn 0-Rm-T - Rn, Borrow - T 1 Borrow O O O
SUB RmRn Rn-Rm - Rn 1 — O O O
SUBC Rm,Rn Rn—-Rm-T - Rn, Borrow -~ T 1 Borrow O O O
SUBV Rm,Rn Rn—-Rm - Rn, Underflow - T 1 Underflow O O O
Note: The normal minimum number of execution cycles. (The number in parentheses is the

number of cycles when there is contention with following instructions.)

5.1.3 Logic Operation Instructions
Table 5.5 Logic Operation Instructions
Applicable
Instructions
SH-
Instruction Operation Cycles TBit SH-1 SH-2 DSP
AND Rm,Rn Rn&Rm - Rn 1 — O O O
AND #mm,R0O RO & imm - RO 1 — O O O
ANDB #mm,@ROGBR) (RO +GBR)&imm - 3 — O O O
(RO + GBR)
NOT Rm,Rn ~Rm - Rn 1 — O O O
OR Rm,Rn Rn|Rm - Rn 1 — O O O
OR #imm,RO RO |imm - RO 1 — O O O
ORB #mm@(RO,GBR) (RO + GBR)|imm - 3 — O O O
(RO + GBR)
TASB @Rn If(Rn)is 0,1 - T; 4 Test O O O
ifnot0,0 - T. result
Also, 1 — MSB of (Rn)
regardless of value of
(Rn)
TST Rm,Rn Rn & Rm; if the resultis 1 Test O O O
0,1 T, result
Ifnot0,0 - T

RENESAS

95

Table 5.5

Logic Operation Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Cycles TBit SH-1 SH-2 DSP
TST #imm,RO RO & imm; if the result 1 Test O O O
is0,1 - T, result
Ifnot0,0 - T
TST.B #imm,@(RO,GBR) (RO + GBR) & imm; if 3 Test O O O
theresultis0,1 - T, result
Ifnot0,0 - T
XOR Rm,Rn Rn~Rm - Rn — O O O
XOR #imm,R0O RO~ imm - RO 1 — O O O
XORB #mm,@(RO,GBR) (RO + GBR)~imm — 3 — O O O
(RO + GBR)
5.1.4 Shift Instructions
Table 5.6 Shift Instructions
Applicable
Instructions
SH-
Instruction Operation Cycles T Bit SH-1 SH-2 DSP
ROTL Rn T <« Rn - MSB 1 MSB O O O
ROTR RN LSB -~ Rn - T 1 LSB O O O
ROTCL Rn T<RnN<T 1 MSB O O O
ROTCR Rn T-Rn-T 1 LSB O O O
SHAL Rn T<Rn<0 1 MSB O O O
SHAR Rn MSB - Rn - T 1 LSB O O O
SHLL Rn T<Rn<0O 1 MSB O O O
SHLR Rn 0O-Rn-T 1 LSB O O O
SHLL2 Rn Rn<<2 - Rn 1 — O O O
SHLR2 Rn Rn>>2 - Rn 1 — O O O
SHLLS RN Rn<<8 - Rn 1 — O O O
SHLRS8 Rn Rn>>8 - Rn 1 — O O O
SHLL16 Rn Rn << 16 - Rn 1 — O O O
SHLR16 Rn Rn >>16 - Rn 1 — O O O
96

RENESAS

5.1.5 Branch Instructions
Table 5.7 Branch Instructions
Applicable
Instructions
SH-

Instruction Operation Cycles TBit SH-1 SH-2 DSP

BF label IfT=0,dispx2+PC - PC;ifT=1, 3/1* — O O O
nop (where label is disp + PC)

BF/S label Delayed branch, if T=0, disp x 2+ 2/1* — O O
PC - PC;ifT=1, nop

BT label Delayed branch, if T=1,disp x 2+ 3/1* — O O O
PC - PC;ifT=0, nop

BT/S label IfT=1,dispx2+PC - PC; 2/1* — — O O
if T=0, nop

BRA label Delayed branch, disp x 2+ PC ~ PC 2 — O O O

BRAF Rm Delayed branch, Rm + PC - PC 2 — — O O

BSR label Delayed branch, PC - PR, 2 — O O O
dispx2+PC - PC

BSRF Rm Delayed branch, PC - PR, 2 — — O O
Rm + PC - PC

JMP @Rm Delayed branch, Rm - PC 2 — O O O

JSR @Rm Delayed branch, PC - PR, Rm - 2 — O O O
PC

RTS Delayed branch, PR - PC 2 — O O O

Note: One state when it does not branch.

RENESAS

97

5.1.6

System Control Instructions

Table 5.8 System Control Instructions

Applicable

Instructions

SH-

Instruction Operation Cycles TBit SH-1 SH-2 DSP
CLRMAC 0-MACH,MACL 1 — O O O
CLRT 0-T 1 0 O O O
LDC Rm,SR Rm- SR 1 LsB O O O
LDC Rm,GBR Rm- GBR 1 — O O O
LDC Rm,VBR Rm - VBR 1 — O O O
LDC Rm,MOD Rm - MOD 1 — — — O
LDC Rm,RE Rm - RE 1 — — — O
LDC Rm,RS RmM-RS 1 — — — O
LDC.L @Rm+,SR (Rm) - SR,Rm+4 . Rm 3 Lse O O O
LDC.L @Rm+GBR (Rm)-GBR,Rm+4 . Rm 3 — O O O
LDC.L @Rm+VBR (Rm) - VBR,Rm+4 - Rm 3 — O O O
LDC.L @Rm+MOD (Rm)-MOD,Rm+4 - Rm 3 — — — O
LDC.L @Rm+,RE (Rm) - RE,Rm+4 - Rm 3 — — — O
LDC.L @Rm+,RS (Rm) - RS,Rm+4 - Rm 3 — — — O
LDRE @(disp,PC) disp x 2+PC -~ RE 1 — — — O
LDRS @(disp,PC) disp x 2+PC - RS 1 — — — O
LDS Rm,MACH Rm - MACH 1 — O O O
LDS Rm,MACL Rm - MACL 1 — O O O
LDS Rm,PR Rm - PR 1 — O O O
LDS Rm,DSR Rm - DSR 1 — — — O
LDS Rm,A0 Rm - AO 1 — — — O
LDS Rm,X0 Rm - X0 1 — — — O
LDS Rm,X1 Rm - X1 1 — — — O
LDS Rm,YO0 Rm- YO0 1 — — — O
LDS Rm,Y1 Rm- Y1 1 — — — O
LDS.L @Rm+MACH (Rm)-MACH,Rm+4.Rm 1 — O O O
LDS.L @Rm+MACL (Rm)-MACL,Rm+4_Rm 1 — O O O
LDS.L @Rm+PR (Rm) -~ PR,RmM+4 - Rm 1 — O O O
LDS.L @Rm+DSR (Rm) -~ DSR,Rm+4 . Rm 1 — — — O
98

RENESAS

Table 5.8

System Control Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Cycles TBit SH-1 SH-2 DSP
LDS.L @Rm+,A0 (Rm) -~ A0O,Rm+4 - Rm 1 — — — O
LDS.L @Rm+,X0 (Rm) — X0,Rm+4 — Rm 1 — — — O
LDS.L @Rm+X1 (Rm) - X1,Rm+4 - Rm 1 — — — O
LDS.L @Rm+,Y0 (Rm) - YO,Rm+4 - Rm 1 — — — O
LDS.L @Rm+Y1 (Rm)-Y1,Rm+4 - Rm 1 — — — O
NOP No operation 1 — O O O
RTE Delayed branch, stack 4 Lse O O O
area, - PC/SR
SETRC Rn Rn[11:0] -~ RC (SR[27:16]) 1 — — — O
SETRC #mm imm - RC(SR[23:16]),zeros 1 — — — O
- SR[27:24]
SETT 1-T 1 — O O O
SLEEP Sleep 3* — O O O
STC SRRn SR-Rn 1 — O O O
STC GBR,Rn GBR -Rn 1 — O O O
STC VBR,Rn VBR - Rn 1 — O O O
STC MOD,Rn MOD - Rn 1 — — — O
STC RE,Rn RE -~ Rn 1 — — — O
STC RS,Rn RS - Rn 1 — — — O
STC.L SR,@-Rn Rn-4 - Rn,SR - (Rn) 2 — O O O
STC.L GBR,@-Rn Rn—4 - Rn,GBR - (Rn) 2 — O O O
STC.L VBR,@-Rn Rn—4 - Rn,VBR - (Rn) 2 — O O O
STC.L MOD,@-Rn Rn-4 - Rn,MOD - (Rn) 2 — — — O
STC.L RE,@-Rn Rn—4 - Rn,RE - (Rn) 2 — — — O
STC.L RS,@-Rn Rn—4 - Rn,RS - (Rn) 2 — — — O
STS MACH,Rn MACH ~Rn 1 — O O O
STS MACL,Rn MACL - Rn 1 — O O O
STS PR,Rn PR-Rn 1 — O O O
STS DSR,Rn DSR - Rn 1 — — — O
STS AO,RN A0 - Rn 1 — — — O
STS XO,RN X0-Rn 1 — — — O

RENESAS

99

Table 5.8 System Control Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Cycles TBit SH-1 SH-2 DSP
STS X1,Rn X1-Rn 1 — — — O
STS YO,RN YO-Rn 1 — — — O
STS Y1,Rn Y1-Rn 1 — — — O
STS.L MACH,@-Rn Rn—4 . Rn,MACH - (Rn) 1 — O O O
STS.L MACL,@-Rn Rn—4 - Rn,MACL - (Rn) 1 — O O O
STS.L PR,@-Rn Rn—4 - Rn,PR - (Rn) 1 — O O O
STS.L DSR,@-Rn Rn—4 - Rn,DSR - (Rn) 1 — — — O
STS.L A0,@-Rn Rn—4 - Rn,A0 - (Rn) 1 — — — O
STS.L X0,@-Rn Rn—4 - Rn,X0 - (Rn) 1 — — — O
STS.L X1,@-Rn Rn—4 - Rn,X1 - (Rn) 1 — — — O
STS.L Y0,@-Rn Rn—4 - Rn,YO - (Rn) 1 — — — O
STS.L Y1,@-Rn Rn—4 - Rn,Y1 - (Rn) 1 — — — O
TRAPA #imm PCI/SR - stack area, 6 — O O O

(imm x 4+VBR) - PC

Note: The number of execution states before the chip enters the sleep state. This table lists the
minimum execution cycles. In practice, the number of execution cycles increases when the
instruction fetch is in contention with data access or when the destination register of a load
instruction (memory - register) is the same as the register used by the next instruction, or
when the branch destination address of a branch instruction is a 4n + 2 address.

5.1.7 CPU Instructions That Support DSP Functions

Several system control instructions have been added to the CPU core instructions to support DS
functions. The RS, RE, and MOD registers (which support modulo addressing) have been added
and an RC counter has been added to the SR register. LDC and STC instructions have been adc
to access these. LDS and STS instructions have also been added for accessing the DSP registel
DSR, A0, X0, X1, YO, and Y1.

A SETRC instruction has been added for setting the value of the repeat counter (RC) in the SR
register (bits 16—27). When the operand of the SETRC instruction is immediate, 8 bits of
immediate data are set in bits 16-23 of the SR register and bits 24—-27 are cleared. When the
operand is a register, the 12 bits 0—11 of the register are set in bits 16-27 of the SR register.

In addition to the new LDC instructions, the LDRE and LDRS instructions have been added for
setting the repeat start address and repeat end address in the RS and RE registers.

Table 5.9 shows the added instructions.

100
RENESAS

Table 5.9

Added CPU Instructions

Instruction Operation Code Cycles TBit
LDC Rm,MOD Rm - MOD 0100mmmm01011110 1 —
LDC Rm,RE Rm - RE 0100mmmm01111110 1 —
LDC Rm,RS Rm-RS 0100mmmm01101110 1 —
LDC.L @Rm+,MOD (Rm) - MOD,Rm+4 - Rm 0100mmmm01010111 3 —
LDC.L @Rm+,RE (Rm) - RE,Rm+4 - Rm 0100mmmm01110111 3 —
LDC.L @Rm+,RS (Rm)->RS,Rm+4 - Rm 0100mmmmO01100111 3 —
STC MOD,Rn MOD - Rn 0000nnNnNN01010010 1 —
STCRE,RNn RE - Rn 0000nnNNn01110010 1 —
STCRS,Rn RS - Rn 0000nnnNn01100010 1 —
STC.L MOD,@-Rn Rn—4 - Rn,MOD - (Rn) 0100nnnn01010011 2 —
STC.LRE,@-Rn Rn—4 - Rn,RE - (Rn) 0100nnnn01110011 2 —
STC.LRS,@-Rn Rn—4 - Rn,RS - (Rn) 0100nnnNn01100011 2 —
LDS Rm,DSR Rm-DSR 0100mmmm01101010 1 —
LDS.L @Rm+,DSR (Rm) - DSR,Rm+4 - Rm 0100mmmm01100110 1 —
LDS Rm,A0 Rm - AO 0100mmmm01110110 1 —
LDS.L @Rm+,A0 (Rm) - A0,Rm+4 .Rm 0100mmmm01100110 1 —
LDS Rm,X0 Rm - X0 0100mmmm01110110 1 —
LDS.L @Rm+,X0 (Rm) - X0,Rm+4 .Rm 0100mmmmO01100110 1 —
LDS Rm,X1 Rm- X1 0100mmmm01110110 1 —
LDS.L @Rm+,X1 (Rm) - X1,Rm+4 . Rm 0100mmmm01100110 1 —
LDS Rm,YO Rm- YO 0100mmmm01110110 1 —
LDS.L @Rm+,YO (Rm)-YO,Rm+4 . Rm 0100mmmm01100110 1 —
LDS Rm,Y1 Rm-Y1,Rm+4 - Rm 0100mmmm01110110 1 —
LDS.L @Rm,Y1 (Rm)-Y1,Rm+4 . Rm 0100mmmmO01100110 1 —
STSDSR,Rn DSR-Rn 0000nNNN01101010 1 —
STS.L DSR,@-Rn Rn—4 - Rn,DSR - (Rn) 0100nnnNn01100010 1 —
STS AO,Rn AO-Rn 0000nnnn01111010 1 —
STS.LAO,@-Rn Rn—4 - Rn,A0 - (Rn) 0100nnnNn01110010 1 —
STS XO,Rn X0-Rn 0000nNnNn01111010 1 —
STS.L X0,@-Rn Rn—4 - Rn,X0 - (Rn) 0100nnnNn01110010 1 —
STS X1,Rn X1-Rn 0000nnNNN01111010 1 —
STS.L X1,@-Rn Rn—4 - Rn, X1 - (Rn) 0100nnnn01110010 1 —
101

RENESAS

Table 5.9 Added CPU Instructions (cont)

Instruction Operation Code Cycles T Bit
STSYO,Rn YO-Rn 0000nnNnNn10101010 1 —
STS.LYO,@-Rn Rn—4 - Rn,Y0 - (Rn) 0100nnnNn10100010 1 —
STSY1,Rn Y1-Rn 0000nnNnNn10111010 1 —
STS.LY1,@-Rn Rn—4 - Rn,Y1-(Rn) 0100nnnNn10110010 1 —
SETRC Rm Rm[11:0] -~ RC (SR[27:16]) 0100mmmm00010100 1 —
repeat flag — RF1, RFO
SETRC #mm imm - RC(SR[23:16]), 10000010iiiiiii 1 —

zeros - SR[27:24], repeat
flag — RF1, RFO

LDRS @(disp,pc) disp x 2+PC - RS 10001100dddddddd 1 —

LDRE @(disp,pc) disp x 2+PC - RE 10001110dddddddd 1 —

5.2 DSP Data Transfer Instruction Set
Table 5.10 shows the DSP data transfer instructions by category.

Table 5.10 DSP Data Transfer Instruction Categories

Instruction Operation No. of
Category Types Code Function Instructions
Double data transfer 4 NOPX X memory no operation 14
instructions
MOVX X memory data transfer
NOPY Y memory no operation
MOVY Y memory data transfer
Single data transfer 1 MOVS Single data transfer 16
instructions
Total 5 Total 30

The data transfer instructions are divided into two groups, double data transfers and single data
transfers. Double data transfers are combined with DSP operation instructions to create DSP
parallel processing instructions. Parallel processing instructions are 32 bits long and include a
double data transfer instruction in field A. Double data transfers that are not parallel processing
instructions and single data transfer instructions are 16 bits long.

In double data transfers, X memory and Y memory can be accessed simultaneously in parallel.
One instruction is specified each for the respective X and Y memory data accesses. The Ax
pointer is used for accessing X memory; the Ay pointer is used for accessing Y memory. Double
data transfers can only access X and Y memory.

102
RENESAS

Single data transfers can be accessed from any area. In single data transfers, the Ax pointer an
two other pointers are used as the As pointer.

5.2.1 Double Data Transfer Instructions (X Memory Data)

Table 5.11 Double Data Transfer Instructions (X Memory Data)

Instruction Operation Code Cycles TBit
NOPX No Operation 1111000*0*0*00** 1 —
MOVX.W (AX) -~ MSW of Dx,0 - LSW of 111100A*D*0*01** 1 —
@Ax,Dx Dx

MOVX.W (Ax) -»MSW of Dx,0 - LSW of 111100A*D*0*10** 1 —
@AXx+,Dx Dx,Ax+2 - Ax

MOVX.W (AX) -~ MSW of Dx,0 - LSW of 111100A*D*0*11** 1 —
@AX+Ix,Dx Dx,Ax+Ix — Ax

MOVX.W MSW of Da - (Ax) 111100A*D*1*Q1** 1 —
Da,@Ax

MOVX.W MSW of Da - (Ax),Ax+2 - AX 111100A*D*1*10** 1 —
Da,@Ax+

MOVX.W MSW of Da - (Ax),Ax+Ix - AX 111100A*D*1*11** 1 —
Da,@Ax+Ix

5.2.2 Double Data Transfer Instructions (Y Memory Data)

Table 5.12 Double Data Transfer Instructions (Y Memory Data)

Instruction Operation Code Cycles T Bit
NOPY No Operation 111100*0*0*0**00 1 —
MOVY.W (Ay) - MSW of Dy,0 - LSW of 111100*A*D*0*01 1 —
@Ay,Dy Dy

MOVY.W (Ay) - MSW of Dy,0 -LSW of 111100*A*D*0**10 1 —
@Ay+,Dy Dy, Ay+2 - Ay

MOVY.W (Ay) - MSW of Dy,0 - LSW of 111100*A*D*0**11 1 —
@Ay+ly,Dy Dy, Ay+ly - Ay

MOVY.W MSW of Da - (Ay) 111100*A*D*1**01 1 —
Da,@Ay

MOVY.W MSW of Da - (Ay),Ay+2 — Ay 111100*A*D*1*+10 1 —
Da,@Ay+

MOVY.W MSW of Da - (Ay),Ay+ly - Ay 111100*A*D*1**11 1 —
Da,@Ay+ly

103
RENESAS

5.2.3 Single Data Transfer Instructions

Table 5.13 Single Data Transfer Instructions

Instruction Operation Code Cycles T Bit

MOVS.W As—2 - As,(As) - MSW of 111101AADDDDO0000 1 —

@-As,Ds Ds,0 - LSW of Ds

MOVSW @AsDs (As)-MSW of Ds,0LSW of 111101AADDDD0100 1 —
Ds

MOVS.W @As+Ds (As)-MSW of Ds,0.LSW of 111101AADDDD1000 1 —
Ds, As+2 - As

MOVS.W (As) »MSW of Ds,0 - LSW of 111101AADDDD1100 1 —

@As+Ix,Ds Ds, As+Ix - As

MOVS.W As—2 — As,MSW of Ds - (As)* 111101AADDDDO0001 1 —

Ds,@-As

MOVS.W Ds,@As MSW of Ds - (As)* 111101AADDDD0101 1 —

MOVS.W Ds,@As+ MSW of Ds - (As),As+2 - As* 111101AADDDD1001 1 —

MOVS.W MSW of Ds - (As),As+Is - As* 111101AADDDD1101 1 —

Ds,@As+ls

MOVS.L As—4 - As,(As) - Ds 111101AADDDDO0010 1 —

@-As,Ds

MOVS.L @As,Ds (As) -Ds 111101AADDDDO0110 1 —

MOVS.L @As+Ds (As)-Ds,As+4 - As 111101AADDDD1010 1 —

MOVS.L (As) - Ds,As+ls - As 111101AADDDD1110 1 —

@As+Is,Ds

MOVS.L Ds, As—4 - As,Ds - (As) 111101AADDDDO0011 1 —

@-As

MOVS.L Ds,@As Ds - (As) 111101AADDDDO0111 1 —

MOVS.L Ds,@As+ Ds- (As),As+4 - As 111101AADDDD1011 1 —

MOVS.L Ds - (As),As+ls - As 111101AADDDD1111 1 —

Ds,@As+Is

Note: When guard bit registers AOG and A1G (eight-bit registers) are specified as the source
operand Ds, the data is sign-extended and used.

104
RENESAS

Table 5.14 lists the correspondence between DSP data transfer operands and registers. CPU ¢
registers are used as pointer addresses to indicate memory addresses.

Table 5.14 Correspondence between DSP Data Transfer Operands and Registers

SuperH (CPU Core) Registers

R4 R5
Oper- R2 R3 (Ax0) (Ax1) R6 R7 R8 R9
and RO R1 (As2) (As3) (AsO) (Ax0) (Ay0) (Ay1) (9] (ly)

AXx Yes Yes

Ix (Is) Yes

Dx

Ay Yes Yes

ly Yes

Dy

Da

As Yes Yes Yes Yes

Ds

Oper- DSP Registers
and X0 X1 YO Y1 MO M1 A0 Al AOG AlG

AXx

Ix (Is)

Dx Yes Yes

Ay

ly

Dy Yes Yes

Da Yes Yes

As

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes indicates that the register can be set.

5.3 DSP Operation Instruction Set

DSP operation instructions are digital signal processing instructions that are processed by the C
unit. Their instruction code is 32 bits long. Multiple instructions can be processed in parallel. The
instruction code is divided into two fields, A and B. Field A specifies a parallel data transfer

instruction and field B specifies a single or double data operation instruction. Instructions can be

105
RENESAS

specified independently, and their execution is independent and in parallel. Parallel data transfer
instructions specified in field A are exactly the same as double data transfer instructions.

The data operation instructions of field B are of three types: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instruction:
Table 5.15 shows the format of DSP operation instructions. The operands are selected
independently from the DSP register. Table 5.16 shows the correspondence of DSP operation

instruction operands and registers.

Table 5.15 Instruction Formats for DSP Operation Instructions

Classification Instruction Forms Instruction
Double data operation instructions (6 operands) ALUop. Sx, Sy, Du PADD PMULS,
MLTop. Se, Sf, Dg PSUB PMULS

Conditional single 3 operands ALUop. Sx, Sy, Dz PADD, PAND, POR,
data operation DCT ALUop. Sx, Sy PSHA, PSHL, PSUB,
instructions Dz T PXOR
DCF ALUop. Sx, Sy,
Dz
2 operands ALUop. Sx, Dz PCOPY, PDEC,
DCT ALUop. S, Dz PDMSB, PINC, PLDS,
’ PSTS, PNEG
DCF ALUop. Sx, Dz
ALUop. Sy, Dz
DCT ALUop. Sy, Dz
DCF ALUop. Sy, Dz
1 operand ALUop. Dz PCLR, PSHA #imm,
DCT ALUop. Dz PSHL #mm
DCF ALUop. Dz
Unconditional single 3 operands ALUop. Sx, Sy, Du PADDC, PSUBC,
data operation MLTop. Se, Sf, Dg PMULS
instructions T
2 operands ALUop. Sx, Dz PCMP, PABS, PRND
ALUop. Sy, Dz
106

RENESAS

Table 5.16 Correspondence between DSP Operation Instruction Operands and Registers

ALU and BPU Instructions Multiplication Instructions
Register Sx Sy Dz Du Se Sf Dg
AO Yes — Yes Yes — — Yes
Al Yes — Yes Yes Yes Yes Yes
MO — Yes Yes — — — Yes
M1 — Yes Yes — — — Yes
X0 Yes — Yes Yes Yes Yes —
X1 Yes — Yes — Yes — —
YO — Yes Yes Yes Yes Yes —
Y1 — Yes Yes — — Yes —

When writing parallel instructions, first write the field B instruction, then the field A instruction.
The following is an example of a parallel processing program.

PADD A0,M0,A0 PMULSX0,YO,MO MOVX.W @R4+X0 MOVY.W @R6+,YO[]
DCF PINC X1,A1 MOVX.W AO,@R5+R8 MOVY.W@R7+,YO[]
PCMP X1,M0 MOVX.W @R4 [NOPYT[]

Text in brackets ([]) can be omitted. The no operation instructions NOPX and NOPY can be

omitted. Semicolons (;) are used to demarcate instruction lines, but can be omitted. If semicolor

are used, the space after the semicolon can be used for comments.

The individual status codes (DC, N, Z, V, GT) of the DSR register is always updated by

unconditional ALU operation instructions and shift operation instructions. Conditional instruction
do not update the status codes, even if the conditions have been met. Multiplication instructions
also do not update the status codes. DC bit definitions are determined by the specifications of tt

CS bits in the DSR register.

Table 5.17 shows the DSP operation instructions by category.

107
RENESAS

Table 5.17 DSP Operation Instruction Categories

Instruction ~ Operation No. of In-
Classification Types Code Function structions
ALU ALU fixed decimal 11 PABS Absolute value 28
arith- point operation operation
metic instructions PADD Addition
opera- — -
tion PADD Addition and signed
instruc- PMULS multiplication
tions PADDC Addition with carry
PCLR Clear
PCMP Compare
PCOPY Copy
PNEG Invert sign
PSUB Subtraction
PSUB Subtraction and signed
PMULS multiplication
PSUBC Subtraction with borrow
ALU integer 2 PDEC Decrement 12
operation
instructions PINC Increment
MSB detection 1 PDMSB MSB detection 6
instruction
Rounding operation 1 PRND Rounding 2
instruction
ALU logical operation 3 PAND Logical AND
instructions POR Logical OR 9
PXOR Logical exclusive OR
Fixed decimal point 1 PMULS Signed multiplication 1
multiplication instruction
Shift Arithmetic shift 1 PSHA Arithmetic shift 4
operation instruction
Logical shift 1 PSHL Logical shift 4
operation instruction
System control instructions 2 PLDS System register load 12
PSTS Store from system
register
Total 23 Total 78

108

RENESAS

531

ALU Arithmetic Operation Instructions

Table 5.18 ALU Fixed Decimal Point Operation Instructions

Instruction Operation Code Cycles DC Bit
PABS Sx,Dz If Sx=0,Sx - Dz 11117 Qe 1 Update
If Sx<0,0—- Sx - Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0,Sy - Dz 11111 Qb 1 Update
If Sy<0,0-Sy Dz 1010100000yyzzzz
PADD Sx,Sy,Dz Sx+Sy Dz 11171 Qrrex 1 Update
10110001xxyyzzzz
DCT PADD if DC=1,Sx+Sy Dz if O,nop 11111 (rereien 1 —
Sx.Sy,bz 10110010xxyyzzzz
DCF PADD if DC=0,Sx+Sy - Dz if 1,nop 11111 Qrktkikik 1 —
Sx.Sy,bz 10110011xxyyzzzz
PADD Sx,Sy,Du Sx+Sy -Du I O il 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of 0111eeffxxyygguu
Sf-Dg
PADDC Sx,Sy,Dz Sx+Sy+DC - Dz I O il 1 Update
10110000xxyyzzzz
PCLR Dz H'00000000 - Dz 11111 Qrrtebork 1 Update
100011010000zzzz
DCT PCLR Dz if DC=1,H'00000000 - Dz 11117 Qb 1 —
if 0,nop 100011100000zzzz
DCF PCLR Dz if DC=0,H'00000000 - Dz 11117 Qe 1 —
if 1,nop 100011110000zzzz
PCMP Sx,Sy Sx-Sy 11111 Qrterk 1 Update
10000100xxyy0000
PCOPY Sx,Dz Sx - Dz I T il 1 Update
11011001xx00zzzz
PCOPY Sy,Dz Sy -Dz I O il 1 Update
1111100100yyzzzz
DCT PCOPY if DC=1,Sx - Dz if 0,nop 11117 Qrwtetork 1 —
Sx.bz 11011010xx00zzzz

RENESAS

109

Table 5.18 ALU Fixed Decimal Point Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit
DCT PCOPY if DC=1,Sy - Dz if O,nop 11117 Qrreetonk 1 —
Sy.bz 1111101000yyzzzz
DCF PCOPY if DC=0,Sx Dz if 1,nop 11117 Qrrkektork 1 —
Sx.bz 11011011xx00zzzz
DCF PCOPY if DC=0,Sy - Dz if 1,nop 11117 Qrrkektork 1 —
Sy.bz 1111101100yyzzzz
PNEG Sx,Dz 0-Sx - Dz 11117 Qrbekterk 1 Update
11001001xx00zzzz
PNEG Sy,Dz 0-Sy Dz 11117 Qriekterk 1 Update
1110100100yyzzzz
DCT PNEG Sx,Dz if DC=1,0-Sx-Dz 11117 Qreetonk 1 —
if 0,nop 11001010xx00zzzz
DCTPNEG Sy,Dz if DC=1,0-Sy-Dz 11111 Qrreetonk 1 —
if 0,nop 1110101000yyzzzz
DCF PNEG Sx,Dz if DC=0,0-Sx Dz 11117 Qrrkektork 1 —
if 1,nop 11001011xx00zzzz
DCFPNEG Sy,Dz if DC=0,0-Sy Dz 11117 Qrrkektork 1 —
if 1,nop 1110101100yyzzzz
PSUB Sx,Sy,Dz Sx-Sy-Dz 11171 Qrkiarex 1 Update
10100001xxyyzzzz
DCT PSUB if DC=1,Sx—Sy - Dz if 0,nop 11111 (rewrikiarx 1 —
Sx.Sy,bz 10100010xxyyzzzz
DCF PSUB if DC=0,Sx—Sy - Dz if 1,nop 11111 Q#rerikiex 1 —
Sx.Sy,bz 10100011xxyyzzzz
PSUB Sx,Sy,Du Sx-Sy-Du e O il 1 Update
PMULS Se,Sf,Dg MSW of Se x MSW of 0110eeffxxyygguu
Sf- Dg
PSUBC Sx,Sy,Dz Sx-Sy-DC - Dz 111170k 1 Update
10100000xxyyzzzz
110

RENESAS

Table 5.19 ALU Integer Operation Instructions

Instruction Operation Code Cycles DC Bit

PDEC Sx,Dz MSW of Sx— 1 — MSW of 111110weeoms 1 Update
Dz, clear LSW of Dz 10001001xx002222

PDEC Sy,Dz MSW of Sy — 1 — MSW of 111110%eeerex 1 Update
Dz, clear LSW of Dz 1010100100yyzzzz

DCTPDECSxDz IfDC=1, MSW Of Sx — 1 -, 111110wemmeer 1 —
gzs"l‘f’ (‘)’f ri)zp; clear LSWof 10001010xx002222

DCTPDECSyDz IfDC=1, MSW Of Sy — 1 -, 11111(wwommecr 1 —
'\D"Zs‘f}’ g’f r'%zr; clear LSW of 1010101000yyzzzz

DCFPDECSxDz IfDC=0, MSW Of SXx — 1 -, 11111(wkesncer 1 —
'E)"Zs‘ﬂ’ if r'%zr; clear LSW of 10001011xx007227

DCFPDECSyDz IfDC=0, MSW Of Sy — 1 -, 111110wemmes 1 —
gzsv.\fl if r%ZF; clear LSW of 1010101100yyzzzz

PINC Sx,Dz MSW Of Sx + 1 — MSW of 11111 (wmeeerx 1 Update
Dz, clear LSW of Dz 10011001xx002222

PINC Sy,Dz MSW of Sy + 1 — MSW of 11111 (wmesenx 1 Update
Dz, clear LSW of Dz 1011100100yyzzzz

DCTPINCSxDz IfDC=1, MSW Of Sx + 1 — 11111(weemncer 1 —
'E)"Zs‘ﬂ’ g"‘ r'%zr; clear LSW of 10011010xx007222

DCTPINCSyDz IfDC=1, MSW Of Sy + 1 - 111110%emmeer 1 —
gzs"l‘f’ (‘)’f r%ZF; clear LSW of 1011101000yyzzzz

DCFPINCSxDz IfDC=0, MSW Of Sx + 1 - 11111(wwremmecr 1 —
'\DAZSVI}/ f,f r?ozr; clear LSW of 10011011xx00zzzz

DCFPINCSy,Dz If DC=0, MSW Of Sy + 1 — 11111Qwrrmmx 1 —
MSW of Dz, clear LSW of 1011101100yyzzzz

Dz; if 1, nop

RENESAS

111

Table 5.20 MSB Detection Instructions

Instruction Operation Code Cycles DC Bit
PDMSB Sx,Dz Sx data MSB position — B O i 1 Update
'E)"ZSW of Dz, clear LSWof - 10011101xx00zz22
PDMSB Sy,Dz Sy data MSB position - O i 1 Update
gZSW of Dz, clear LSW of 1011110100yyzzzz
DCT PDMSB If DC=1, Sx data MSB 1177 1 Qperierieroniox 1 —
Sx,Dz position - MSW pf Dz, 10011110xx002222
clear LSW of Dz; if 0, nop
DCT PDMSB If DC=1, Sy data MSB 11111 Qrreetonk 1 —
Sy,Dz position - MSW pf Dz, 1011111000yyzzzz
clear LSW of Dz; if 0, nop
DCF PDMSB If DC=0, Sx data MSB T i 1 —
Sx,Dz position - MSW pf Dz, 10011111xx002222
clear LSW of Dz; if 1, nop
DCF PDMSB If DC=0, Sy data MSB 1177 1 Qperiereroniox 1 —
Sy,Dz position - MSW pf Dz, 1011111100yyzzzz
clear LSW of Dz; if 1, nop
Table 5.21 Rounding Operation Instructions
Instruction Operation Code Cycles DC Bit
PRND Sx,Dz Sx+H'00008000 - Dz 11117 Qrraetonk 1 Update
clear LSW of Dz 10011000xx00zzzz
PRND Sy,Dz Sy+H'00008000 - Dz e T il 1 Update
clear LSW of Dz 1011100000yyzzzz
112

RENESAS

5.3.2

ALU Logical Operation Instructions

Table 5.22 ALU Logical Operation Instructions

Instruction Operation Code Cycles DC Bit

PAND Sx,Sy,Dz Sx & Sy - Dz, clear LSW 11111 Qkerierkekk 1 Update
of Dz 10010101xxyyzzz2

DCT PAND If DC=1, Sx & Sy - Dz, 11111 Qkerierekk 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10010110xxyyzzz2

DCF PAND If DC=0, Sx & Sy - Dz, 11171 Qrkarex 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10010111xxyyzzz2

POR Sx,Sy,Dz Sx | Sy — Dz, clear LSW of = 11111 Q#rkrkikioek 1 Update
Dz 10110101xxyyzzzz

DCT POR If DC=1, Sx | Sy - Dz, 11171 Qrkiakek 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110xxyyzzzz

DCF POR If DC=0, Sx | Sy - Dz, 11111 Qrkikik 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzzzz

PXOR Sx,Sy,Dz Sx " Sy - Dz, clear LSW 11111 Qkrirkekk 1 Update
of Dz 10100101xxyyzzzz

DCT PXOR If DC=1, Sx " Sy - Dz, 11111 Qkerierekk 1 —

Sx,Sy,Dz clear LSW of Dz; if 0, nop 10100110xxyyzzz2

DCF PXOR If DC=0, Sx " Sy - Dz, 11171 Qrkarek 1 —

Sx,Sy,Dz clear LSW of Dz; if 1, nop 10100111xxyyzz22

5.3.3 Fixed Decimal Point Multiplication Instructions

Table 5.23 Fixed Decimal Point Multiplication Instructions

Instruction Operation Code Cycles DC Bit

PMULS Se,Sf,Dg MSW of Se x MSW of 11171 Qrkiakek 1 —
Sf-Dg 0100eeff0000gg00

RENESAS

113

5.34 Shift Operation Instructions

Table 5.24 Arithmetic Shift Instructions

Instruction Operation Code Cycles DC Bit
PSHA Sx,Sy,Dz if Sy=0,Sx<<Sy - Dz O il 1 Update
if Sy<0,Sx>>Sy - Dz 10010001xxyyzzzz
DCT PSHA if DC=1 & B O i 1 —
Sx,Sy,Dz Sy=0,Sx<<Sy - Dz 10010010xxyyzzzz
if DC=1 &
Sy<0,Sx>>Sy - Dz
if DC=0,nop
DCF PSHA if DC=0 & I O i 1 —
Sx,Sy,Dz Sy=0,Sx<<Sy Dz 10010011xxyyzzzz
if DC=0 &
Sy<0,Sx>>Sy - Dz
if DC=1,nop
PSHA #imm,Dz if imm=0,Dz<<imm - Dz 11111 Qwerkakk 1 Update
if imm<0,Dz>>imm - Dz 00000iiiiiizzzz
114

RENESAS

Table 5.25 Logical Shift Operation Instructions

Instruction

Operation

Code

Cycles

DC Bit

PSHL Sx,Sy,Dz

if Sy=0,Sx<<Sy - Dz, clear
LSW of Dz
if Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

I o T il
10000001xxyyzzzz

Update

DCT PSHL
Sx,Sy,Dz

if DC=1 &

Sy=0,Sx<<Sy - Dz, clear
LSW of Dz

if DC=1 &

Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

if DC=0,nop

I T il
10000010xxyyzzzz

DCF PSHL
Sx,Sy,Dz

if DC=0 &

Sy=0,Sx<<Sy - Dz, clear
LSW of Dz

if DC=0 &

Sy<0,Sx>>Sy - Dz, clear
LSW of Dz

if DC=1,nop

I T il
10000011xxyyzzzz

PSHL #imm,Dz

if imm=0,Dz<<imm - Dz,
clear LSW of Dz

if imm<0,Dz>>imm - Dz,
clear LSW of Dz

11127 Qpoeaex

Update

RENESAS

115

5.35 System Control Instructions

Table 5.26 System Control Instructions

Instruction Operation Code Cycles DC Bit
PLDS Dz—MACH 11111 0¥k 1 —
Dz MACH 111011010000zzzz

PLDS Dz MACL 11111 0¥wememes 1 —
Dz MACL 111111010000zzzz

DCT PLDS if DC=1,Dz — MACH 111110 wememns 1 —
Dz MACH if 0,nop 111011100000zzzz

DCT PLDS if DC=1,Dz - MACL 11111 Qwemmnk 1 —
bz MACL if 0,nop 1111111000002z2z

DCF PLDS if DC=0,Dz — MACH 11111 (wememins 1 —
DzMACH if 1,nop 111011110000zzzz

DCF PLDS if DC=0,Dz . MACL 11111 (eemtmns 1 —
Dz MACL if 1,nop 111111110000zz2z

PSTS MACH - Dz 11111 0¥k 1 —
MACH.Dz 110011010000zzzz

PSTS MACL . Dz 11111 0¥k 1 —
MACL,Dz 110111010000zzzz

DCT PSTS if DC=1,MACH - Dz 11111 0Fwemerns 1 —
MACH,Dz if 0,nop 110011100000zzzz

DCT PSTS if DC=1,MACL - Dz 11111 (wemsmins 1 —
MACL,Dz if 0,nop 1101111000002z2z

DCF PSTS if DC=0,MACH — Dz 11111 (wemmns 1 —
MACH,Dz if 1,nop 110011110000zzzz

DCF PSTS if DC=0,MACL - Dz 11111 (womtmns 1 —
MACL,Dz if 1,nop 110111110000zz2z

5.3.6 NOPX and NOPY Instruction Code

When there is no data transfer instruction to be processed in parallel with the DSP operation
instruction, a NOPX or NOPY instruction can be written as the data transfer instruction or the
instruction can be omitted. The operation code is the same in either case. Table 5.27 shows the
NOPX and NOPY instruction code.

116
RENESAS

Table 5.27 Sample NOPX and NOPY Instruction Code

Instruction Code

PADD X0, YO, AO MOVX. W @R4+, X0 MOVY.W @R6+R9, YO 1111100010110000
1000000010100000

PADD X0, YO, AO NOPX MOVY.W @R6+R9, YO 1111100000110000
1000000010100000

PADD X0, YO, A0 NOPX NOPY 1111100000000000
1000000010100000

PADD X0, YO, A0 NOPX

PADD X0, YO, AO

MOVX. W @R4+, X0 MOVY.W @R6+R9, YO 1111000010110000
MOVX. W @R4+, X0 NOPY 1111000010000000
MOVS. W @R4+, X0 1111011010000000
NOPX MOVY.W @R6+R9, YO 1111000000110000
MOVY.W @R6+R9, YO
NOPX NOPY 1111000000000000
NOP 0000000000001001

117
RENESAS

118
RENESAS

Section 6 Instruction Descriptions

6.1 Instruction Descriptions

Instructions are described in alphabetical order in three sections: CPU instructions, DSP data
transfer instructions, and DSP operation instructions.

This section describes instructions in alphabetical order using the format shown below in sectiol
6.1.1. The actual descriptions begin at section 6.2.2.

6.1.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Applicable
Format Abstract Code Cycle T Bit Instructions
Assembler input A brief Displayed in Number of The value of Indicates
format; imm and disp description order MSB ~ cycles T bit after the whether the
are numbers, of operation LSB when there instructionis instruction
expressions, or is no wait executed applies to the
symbols state SH-1, SH-2,

or SH-DSP.

Description: Description of operation
Notes: Notes on using the instruction
Operation: Operation written in C language. The following resources should be used.

* Reads data of each length from address Addr. An address error will occur if word data is rea
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char ~ Read_Byte(unsigned long Addr);
unsigned short Read Word(unsigned long Addr);
unsigned long Read_Long(unsigned long Addr);

» Writes data of each length to address Addr. An address error will occur if word data is writter
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char ~ Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);

119
RENESAS

« Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. When execution move
from this function to one of the following instructions and one of the listed instructions
precedes it, it will be considered an illegal slot instruction (the listed instructions become
illegal slot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);
unsigned log IS_32hit_Inst(unsigned long Addr)

If the address (Addr_4) instruction is 32-bit, 2 is returned; 0 is returned if it is 16-bit.
e List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR,;
unsigned long MACH,MACL,PR;
unsigned long PC;

* Definition of SR structures:

struct SRO {
unsigned long dummyO0:4;
unsigned long RCO0:12;
unsigned long dummy1:4;
unsigned long DMYO0:1;
unsigned long DMXO0:1;
unsigned long MO:1;
unsigned long Q0:1;
unsigned long 10:4;
unsigned long RF10:1;
unsigned long RF00:1;
unsigned long S0:1;
unsigned long TO:1;

%

120

RENESAS

« Definition of bits in SR:

#define M ((*(struct SRO *)(&SR)).M0)
#define Q ((*(struct SRO *)(&SR)).Q0)
#define S ((*(struct SRO *)(&SR)).S0)
#define T ((*(struct SRO *)(&SR)).TO)
#define RF1 ((*struct SRO *)(&SR)).RF10)
#define RFO ((*struct SRO *)(&SR)).RF00)

» Error display function:

Error(char *er);

The PC should point to the location four bytes after the current instruction. Thekeferg,
means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics suclalag are assembler control instructions
(listed below). For more information, see thmss Assembler User Manual.

.org
.data.w
.data.l
.sdata
.align 2
.align 4
.arepeat 16
.arepeat 32
.aendr

Location counter set

Securing integer word data

Securing integer longword data

Securing string data

2-byte boundary alignment

2-byte boundary alignment

16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note that the SuperH series cross assembler version 1.0 does not support the conditional asser

functions.

Notes: 1. In addressing modes that use the displacements listed below (disp), the assembler
statements in this manual show the value prior to scatibg<@, andx4) according to
the operand size. This is done to clarify the LSI operation. Actual assembler statemer
should follow the rules of the assembler in question.
@(disp:4, Rn); Indirect register addressing with displacement
@(disp:8, GBR); Indirect GBR addressing with displacement
@(disp:8, PC); Indirect PC addressing with displacement
disp:8, disp:12:; PC relative addressing

121
RENESAS

122

2. 16-bit instruction code that is not assigned as instructions is handled as an ordinary

illegal instruction and produces illegal instruction exception processing.
Example: H'FFFF [ordinary illegal instruction]

. An ordinary illegal instruction or branched instruction (i.e., an illegal slot instruction)

that follows a BRA, BT/S or another delayed branch instruction will cause illegal
instruction exception processing.

Example 1:

BRA LABEL

dataw HFFFF ~ lllegal slot instruction

[H'FFFF is an ordinary illegal instruction from the start]
Example 2:

RTE

BT/S LABEL ~ lllegal slot instruction

. The delayed branch actual occurs after the slot instruction is executed. Except for

branches such as register updates, however, delayed branch instructions are executec
before delayed slot instructions. For example, even when the contents of a register tha
stores a branch destination address in a delay slot are changed, the branch destinatior
remains the register contents prior to the change.

. When there ia an ordinary illegal instruction, branched instruction or an instruction to

renew the SR, RS or RE register (SETRC, LDRS, etc.) in the last three instructions of :
repeat program (loop) with three or less instructions or a program (loop) with four or
more instructions, illegal instruction exception processing is started. Refer to 4.19, DSF
Repeat (Loop) Control, for more information.

RENESAS

6.1.2 ADD (ADD Binary): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ADD RmRn Rm + Rn - Rn 0011nnnnmmmm1100 1 — O O O
ADD #mm,Rn Rn +#imm - Rn 0l1lnnnniiiii 1 — O O O

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extenc
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) * ADD Rm,Rn */

{
R[n}+=R[m];
PC+=2;

}

ADDI(long i,longn) /* ADD #mm,Rn */

{
if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFFOO | (long)i);
PC+=2;

}

Examples:
ADD RO,R1 ;Before execution: RO = H'7FFFFFFIR1 = H'00000001

:After execution: R1 = H'80000000

ADD #H01,R2 :Before execution: R2 = H'00000000
: After execution: R2 = H'00000001

ADD #HFER3 ;Before execution: R3 =H'00000001
;After execution: R3 = H'FFFFFFFF

123
RENESAS

6.1.3 ADDC (ADD with Carry): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ADDC Rm,Rn Rn+Rm+T - 0011nnnnmmmm1110 1 carry O O O

Rn, carry - T

Description: Adds Rm data and the T bit to general register Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bit

Operation:

ADDC (long m,long n) /¥ ADDC Rm,Rn */

{
unsigned long tmp0,tmp1;

tmp1=R[n+R[m];

tmpO=R[n];
R[NJ=tmpl+T;
if (tmpO>tmp1) T=1;
else T=0;
if tmp1>R[n]) T=1;
PC+=2;
}
Examples:
CLRT ;RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC R3R1 ;Before execution: T =0, R1 =H'00000001, R3 = H'FFFFFFFF
;After execution: T =1, R1=H0000000
ADDC R2R0O ;Before execution: T =1, RO =H'00000000, R2 = H'00000000
;After execution: T =0, RO = H00000001
124

RENESAS

6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
ADDV Rm,Rn Rn+Rm - Rn, 0011nnnnmmmmi1111 1 Overflow O O O

overflow - T

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overfloy
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) [*ADDV Rm,Rn */
{

long dest,src,ans;

if (long)R[N]>=0) dest=0;

else dest=1;

if (long)R[M]>=0) src=0;

else src=1;

src+=dest;

R[n+=R[m];

if (long)R[n]>=0) ans=0;

else ans=1,

ans+=dest;

if (src==0 || src==2) {
if (ans==1) T=1,
else T=0;

}

else T=0;

PC+=2;

}
Examples:

ADDV RO,R1 :Before execution: RO = H'00000001, R1 =H'7FFFFFFE, T=0
:After execution: R1 =H7FFFFFFF, T=0

ADDV ROR1 :Before execution: RO = H'00000002, R1 = H'7FFFFFFE, T=0
;After execution: R1 = H'80000000, T=1

125
RENESAS

6.1.5 AND (AND Logical): Logic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 1 — O O O
AND #imm,RO RO & imm - RO 11001001Liiiiiiii 1 — O O O
AND.B #imm, (RO + GBR) & 1100110iiiiiiii 3 — O O O

@(RO,GBR) imm - (RO + GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result ir
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.
Operation:

AND(long m,long n) /¥ AND Rm,Rn */

{
R[n]&=R[m]
PC+=2;

}

ANDI(longi) /*AND #imm,R0 */

{
R[0]&=(0x000000FF & (long)i);
PC+=2;

}

ANDM(longi) /* AND.B #imm,@(RO,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R|[0]);
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

126

RENESAS

Examples:

: Before execution:
:After execution:

AND RO,R1

AND #H'OF,RO

:After execution:

ANDB #H80,@(RO,GBR)
;After execution:

; Before execution:

: Before execution:

RO = HAAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = H'FFFFFFFF
RO = H'0000000F

@(RO,GBR) = HA5
@(RO,GBR) = H'80

127

RENESAS

6.1.6 BF (Branch if False): Branch Instruction
Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BF label When T =0, 10001011dddddddd 3/1 — O O O

disp x 2+ PC - PC;

When T = 1, nop

Description: Reads the T bit, and conditionally branches. If T = 0, it branches to the branch
destination address. If T = 1, BF executes the next instruction. The branch destination is an

address specified by PC + displacement. However, in this case it is used for address calculation.
The PC is the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BF with the BRA instruction or

the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(ong d) /*BF disp */

;T is always cleared to O
;Does not branch, because T =0
;Branches to TRGET_F, because T=0

: — The PC location is used to calculate the branch destination
address of the BF instruction

; — Branch destination of the BF instruction

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==0) PC=PC+(disp<<1);
else PC+=2;
}
Example:
CLRT
BT TRGET_T
BF TRGET_F
NOP ;
NOP
TRGET_F:
128

RENESAS

6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BF/S label When T =0, 10001111dddddddd 2/1 — — O O

disp x 2+ PC - PC;
When T = 1, nop

Description: Reads the T bit and conditionally branches. If T = 0, it branches after executing the
next instruction. If T = 1, BF/S executes the next instruction. The branch destination is an addre
specified by PC + displacement. However, in this case it is used for address calculation. The P
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is —256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF with the BRA instruction or the
like.

Note: Since this is a delay brandtstruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instructio
and the next instruction. When the instruction immediately following is a branch
instruction, it is recognized as an illegal slot instruction. When branching, this is a two-
cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) [*BFS disp */
{

long disp;

unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==0) {
PC=PC+(disp<<1);
Delay_Slot(temp+2);

}
else PC+=2;

129
RENESAS

Example:

CLRT

BT/S
NOP
BF/S
ADD
NOP

TRGET_F:

TRGET_T

TRGET F
ROR1

;T is always 0

:Does not branch, because T =0
;Branches to TRGET_F, because T =0
:Executed before branch

; — The PC location is used to calculate the branch destination
address of the BF/S instruction

: — Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delaye
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instructior
the branch will still be made using the value of the register prior to the change as the
branch destination address.

130

RENESAS

6.1.8 BRA (Branch): Branch Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BRA label dispx2+PC ~ PC 1010dddddddddddd 2 — O O O

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement However, in tt
case it is used for address calculation. The PC is the address 4 bytes after this instruction. The .
bit displacement is sign-extended and doubled. Consequently, the relative interval from the brar
destination is —4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction
must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts and address errors are accepted between this instruction and tf
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRA(long d) *BRAdisp */

{
unsigned long temp;
long disp;
if ((d&0x800)==0) disp=(0x00000FFF & (long) d);
else disp=(0xFFFFF0QO | (long) d);
temp=PC;
PC=PC+(disp<<1);
Delay_Slot(temp+2);
}
Example:
BRA TRGET ;Branches to TRGET
ADD RO,R1 ;Executes ADD before branching
NOP ; — The PC location is used to calculate the branch destination
.......... address of the BRA instruction
TRGET: ; « Branch destination of the BRA instruction
131

RENESAS

Note: With delayed branching, branching occurs after execution of the slot instruction. However
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the

branch will still be made using the value of the register prior to the change as the branch
destination address.

132
RENESAS

6.1.9 BRAF (Branch Far): Branch Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BRAF Rm Rm + PC - PC 0000mmmmO00100011 2 S — O O

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rm. However, in this case it is used for address calculation. The PC is the addr
4 bytes after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and tf
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRAF(ongm) /¥ BRAFRm*

{
unsigned long temp;
temp=PC;
PC+=R[m];
Delay_Slot(temp+2);
}
Example:
MOV.L #TARGET-BSRF _PC)R0 ;Sets displacement.
BRA TRGET :Branches to TARGET
ADD RO,R1 ;Executes ADD before branching
BRAF_PC: ;« The PC location is used to calculate the
branch destination address of the BRAF
instruction
NOP
TARGET: ; « Branch destination of the BRAF instruction

133
RENESAS

Note: With delayed branching, branching occurs after execution of the slot instruction. However
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the

branch will still be made using the value of the register prior to the change as the branch
destination address.

134
RENESAS

6.1.10 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code Cycle TBIt

BSR label PC - PR, disp x 2+ PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address. The PC value is store
in the PR, and the program branches to an address specified by PC + displacement However, il
this case it is used for address calculation. The PC is the address 4 bytes after this instruction. -
12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is —4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, the JSR instruction must be used instead. With JSR, the destination address must |
transferred to a register by using the MOV instruction. This BSR instruction and the RTS
instruction are used together for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and tf
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSR(long d) /*BSR disp */

{
long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);
else disp=(0xFFFFF0QO | (long) d);
PR=PC+Is_32bit_Inst(PR+2);
PC=PC+(disp<<1);

Delay_Slot(PR+2);

135
RENESAS

Example:

BSR TRGET Branches to TRGET
MOV R3R4 ;Executes the MOV instruction before branching

ADD RORL ; « The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

TRGET: ; — Procedure entrance
MOV R2,R3 ;
RTS ;Returns to the above ADD instruction
MOV #1,R0 ;Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delaye
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instructior
the branch will still be made using the value of the register prior to the change as the
branch destination address.

136
RENESAS

6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BSRF Rm PC - PR, 0000mmmmO00000011 2 — — O O

Rm + PC - PC

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. However, in this case it is use
for address calculation. The PC is the address 4 bytes after this instruction. Used as a subroutir
procedure call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and tf
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSRF(longm) /*BSRFRm*

{
PR=PC+Is_32bhit_Inst(PR+2);
PC+=R[m];
Delay_Slot(PR+2);
}
Example:
MOV.L #TARGET-BSRF_PC),R0 ; Sets displacement.
BRSF RO :Branches to TARGET
MoV R3,R4 ;Executes the MOV instruction before
branching
BSRF_PC: ; — The PC location is used to calculate the
branch destination with BSRF
ADD RO,R1
TARGET: ; — Procedure entrance
MOV R2,R3 ;
RTS ;Returns to the above ADD instruction
MOV #1LRO ;Executes MOV before branching

137
RENESAS

Note: With delayed branching, branching occurs after execution of the slot instruction.

138

However, instructions such as register changes etc. are executed in the order of delaye
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instructior
the branch will still be made using the value of the register prior to the change as the
branch destination address.

RENESAS

6.1.12 BT (Branch if True): Branch Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BT label When T =1, 10001001dddddddd 31 — O O O

disp x 2+ PC - PC;
When T = 0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. However, in this case it is used for address calculation. The PC is the address 4
bytes after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently,
the relative interval from the branch destination is —256 to +254 bytes. If the displacement is too
short to reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(ong d) /*BT disp *

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==1) PC=PC+(disp<<1);
else PC+=2;
}
Example:
SETT ;T is always 1
BF TRGET_F ;Does not branch, because T =1
BT TRGET. T ;Branches to TRGET T, because T=1
NOP ;
NOP ;« The PC location is used to calculate the branch destination
.......... address of the BT instruction
TRGET_T: ; « Branch destination of the BT instruction

139
RENESAS

6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
BT/S label When T =1, 10001101dddddddd 2/1 — — O O

disp x 2+ PC - PC;
When T =0, nop

Description: Reads the T bit and conditionally branches. If T = 1, BT/S branches after the
following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. However, in this case it is used for
address calculation. The PC is the address 4 bytes after this instruction. The 8-bit displacement i
sign-extended and doubled. Consequently, the relative interval from the branch destination is —2!
to +254 bytes. If the displacement is too short to reach the branch destination, use BT/S with the
BRA instruction or the like.

Note: Since this is a delay brandistruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the immediately following instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two
cycles; when not branching, one cycle.

Operation:

BTS(long d) [*BTS disp */

{
long disp;
unsigned long temp;
temp=PC,;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
if (T==1){
PC=PC+(disp<<1);
Delay_Slot(temp+2);
}
else PC+=2;
}
140

RENESAS

Example:

SETT
BF/S TARGET F
NOP
BT/S TARGET_T
ADD ROR1
NOP
TARGET_T:

;T is always 1

:Does not branch, because T = 1
:Branches to TARGET, because T =1
;Executes before branching.

; — The PC location is used to calculate the branch destination
address of the BT/S instruction

: — Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delay
branch instruction, then delay slot instruction. For example, even if the register in whicl
the branch destination address has been loaded is changed by the delay slot instructic
the branch will still be made using the value of the register prior to the change as the
branch destination address.

141
RENESAS

6.1.14 CLRMAC (Clear MAC Register): System Control Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
CLRMAC 0 - MACH, MACL 0000000000101000 1 — O O O

Description: Clear the MACH and MACL Register.
Operation:

CLRMAC() /CLRMAC*
{

MACH=0;

MACL=0;

PC+=2;
}

Example:

CLRMAC ;Clears and initializes the MAC register
MACW @RO+@R1+ ;Multiply and accumulate operation
MACW @RO+@R1+ ;

142
RENESAS

6.1.15 CLRT (Clear T Bit): System Control Instruction
Applicable
Instructions
SH-
Format Abstract Cycle TBit SH-1 SH-2 DSP
CLRT 0-T 0000000000001000 1 0 O O O

Description: Clears the T bit.

Operation:
CLRT() /*CLRT¥

{
T=0;

PC+=2;
}
Example:

CLRT
;After execution:

:Before execution:

RENESAS

143

6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Applicable
Instructions
SH-

Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
CMP/ Rm,Rn When Rn=Rm, 0011nnNNmmmmMmO000 1 Comparison O O O
EQ 1-T result

CMP/ Rm,Rn When signed and 001lnnnnmmmmO0011 1 Comparison O O O
GE Rn=Rm,1 - T result

CMP/ Rm,Rn When signed and 0011nnnnmmmmo111 1 Comparison O O O
GT Rn>Rm,1 - T result

CMP/ Rm,Rn When unsigned 001lnnnnmmmmO0110 1 Comparison O O O
HI andRn>Rm,1 - T result

CMP/ Rm,Rn When unsigned 0011nnnnmmmmO010 1 Comparison O O O
HS andRn=zRm,1 - T result

CMP/ Rn When Rn>0,1 - T 0100nnnn00010101 1 Comparison O O O
PL result

CMP/ Rn WhenRn=0,1 -~ T 0100nnnn00010001 1 Comparison O O O
Pz result

CMP/ Rm,Rn When a byte in Rn 0010nnnnmmmm21100 1 Comparison O O O
STR equals a byte in Rm, result

1-T

CMP/ #imm,RO When RO = imm, 10001000iiiiiii 1 Comparison O O O
EQ 1-T result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specifie
condition (cond) is satisfied. The T bit is cleared to O if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.2 shows the
mnemonics for the conditions.

144
RENESAS

Table 6.2

CMP Mnemonics

Mnemonics Condition

CMPIEEQ Rm,Rn fRNn=Rm, T=1

CMP/GE Rm,Rn IfRn >Rmwith signed data, T=1
CMP/GT Rm,Rn If Rn > Rm with signed data, T=1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T=1
CMP/HS Rm,Rn IfRn =Rm with unsigned data, T=1
CMP/PL Rn fRN>0,T=1

CMP/PZ Rn IfRn =0,T=1

CMP/STR Rm,Rn Ifabytein RnequalsabyteinRm, T=1
CMP/EQ #imm,RO fFRO=imm, T=1

Operation:

CMPEQ(long m,long n)

*CMP_EQ Rm,Rn */

CMP_GE Rm,Rn/

if (long)R[n}>=(long)R[m]) T=1;

¥ CMP_GT Rm,Rn */

if (long)R[n]>(long)R[m]) T=1;

{
if (R[n]==R[m]) T=1,
else T=0;
PC+=2,
}
CMPGE(long m,long n)
{
else T=0;
PC+=2;
}
CMPGT (long m,long n)
{
else T=0;
PC+=2;
}

RENESAS

145

CMPHI(long m,long n) [*CMP_HIRm,Rn */

{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;
PC+=2;
}
CMPHS(long m,long n) f*CMP_HS Rm,Rn */
{
if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2,
}
CMPPL(long n) /*CMP_PL Rn*/
{
if ((long)R[n]>0) T=1;
else T=0;
PC+=2;
}
CMPPZ(longn) /*CMP_PZRn*/
{
if (long)R[n}>=0) T=1;
else T=0;
PC+=2;
}
146

RENESAS

CMPSTR(long m,long n) /< CMP_STR Rm,Rn */

{
unsigned long temp;
long HH,HL,LH,LL;
temp=R[n]"R[m];
HH=(temp>>12)&0x000000FF;
HL=(temp>>8)&0x000000FF;
LH=(temp>>4)&0x000000FF;
LL=temp&0Ox000000FF;
HH=HH&&HL&&LH&&LL;
if (HH==0) T=1;
else T=0;
PC+=2;

}

CMPIM(long i) ¥ CMP_EQ #mm,R0 */

{
long imm;
if ((i&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFFOO | (long i));
if (R[O]==imm) T=1;
else T=0;
PC+=2;

}

Example:

CMP/GE RO,R1 ;RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ;Does not branch because T =0
CMP/HS RO,R1 ;RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ;Branches because T =1
CMP/STR R2,R3 ;R2 =“ABCD”, R3 = “XYCZ"
BT TRGET_T ;Branches because T =1

147
RENESAS

6.1.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBIt SH-1 SH-2 DSP
DIVOS Rm,Rn MSBofRn - Q, 0010nnnnmmmmo0111 1 Calculaton O O O
MSB of Rm - M, result
MNQ - T

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOS(long m,long n) /*DIVOS Rm,Rn */
{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=I(M==Q);

PC+=2;
}

Example: See DIV1.

148
RENESAS

6.1.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
DIVOU 0 - M/QIT 0000000000011001 1 0 O O O

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU ¥/

{
M:Q:T:O;
PC+=2;

}

Example: See DIV1.

149
RENESAS

6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
DIV1I RmRn 1 step division 0011nnnnmmmm0100 1 Calculation O O O

(Rn + Rm) result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(dividend) — (divisor)x (quotient) = (remainder)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

150
RENESAS

Operation:

DIV1(long m,long n) *DIV1Rm,Rn*

{

unsigned long tmp0;
unsigned char old_qg,tmp1,;

old_g=Q;
Q=(unsigned char)((0x80000000 & R[n])!=0);
R[nj<<=1;
R[n]|=(unsigned long)T;
switch(old_g)X
case 0:switch(MY{
case 0:tmpO=R[n];
R[n}-=R[m];
tmpl=(R[n}>tmp0);
switch(QX
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmpO=R[n];
R[n}+=R[m];
tmpl=(R[n]<tmpO);
switch(QX
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1.Q=tmp1;
break;

break;

break;

RENESAS

151

case 1:switch(M){
case 0:tmpO=R]n];
R[n}+=R[m];
tmpl=(R[n]<tmp0);
switch(QX
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmpO=R[n];
Rn}-=R[m];
tmpl=(R[n[>tmp0);
switch(Q){
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1.Q=tmp1;
break;

}
break;

}

break;
}
T:(Q::M);
PC+=2;

152
RENESAS

Example 1:

;R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned

SHLL16 RO ;Upper 16 bits = divisor, lower 16 bits =0

TST RO,RO ;Zero division check

BT ZERO_DIV ;

CMP/HS RO,R1 ;Overflow check

BT OVER_DIV ;

DIVOU ;Flag initialization

.arepeat 16 ;

DIV1 RO,R1 ;Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTUW R1,R1 ;R1 = Quotient
Example 2:

; R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST RO,RO ;Zero division check
BT ZERO_DIV ;

CMP/HS ;RO,R1 ;Overflow check

BT OVER_DIV ;

DIVOU ;Flag initialization
.arepeat 32 ;

ROTCL R2 ;Repeat 32 times
DIVl RO,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient

153
RENESAS

Example 3:

;R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 RO ;Upper 16 bits = divisor, lower 16 bits =0

EXTS.W R1,R1 ;Sign-extends the dividend to 32 bits

XOR R2,R2 R2=0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ;Decrements if the dividend is negative

DIVOS RO,R1 ;Flag initialization

.arepeat 16 ;

DIV1 RO,R1 ;Repeat 16 times

.aendr

EXTS.W R1,R1 ;

ROTCL R1 ;R1 = quotient (one’s complement)

ADDC R2,R1 ;Increments and takes the two’s complement if the MSB of the

quotient is 1

EXTS.W R1,R1 ;R1 = quotient (two’s complement)

Example 4:

;R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ;Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 iR3=0

SUBC R3,R2 ;Decrements and takes the one’s complement if the dividend is
negative

DIVOS RO,R1 ;Flag initialization

.arepeat 32 ,

ROTCL R2 ;Repeat 32 times

DIVl RO,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient (one’s complement)

ADDC R3,R2 ;Increments and takes the two’s complement if the MSB of the
guotient is 1. R2 = Quotient (two’s complement)

154

RENESAS

6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
DMULSLL Rm, With sign, Rn x 0011nnnnmmmm1101 2to4 — — O O
Rn Rm - MACH,
MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,longn) /*DMULS.L Rm,Rn*/

{
unsigned long RnL,RNH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[NJ*R[m])<0) fnLmL=-1;
else fnLmL=0;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

155
RENESAS

tempO=RmL*RnL;

templ=RmH*RnL,;
temp2=RmL*RnH,;
temp3=RmH*RnH,;

Res2=0
Resl=templ+temp2;
if (Res1<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO0+temp1;
if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fNLmL<0) {
Res2=~Res2;
if (Res0==0)
Res2++;
else
Res0=(~Res0)+1;

}
MACH=Res?2;
MACL=Res0;
PC+=2;
}
Example:
DMULS.L ROR1 ;Before execution: RO = H'FFFFFFFE, R1 = H'00005555
;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,RO ;Operation result (top)
STS MACL,RO ;Operation result (bottom)
156

RENESAS

6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
DMULU.L Rm, Withoutsign, Rn x 0011nnnnmmmm0101 2to4 — — O O
Rn Rm - MACH,
MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmet
operation.

Operation:

DMULU(long m,longn) /* DMULU.L Rm,Rn */

{
unsigned long RnL,RNH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;

RNL=R[n|&0X0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[mI&0X0000FFFF;
RmH=(R[m]>>16)&0X0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL,;
temp2=RmL*RnH;
temp3=RmH*RnH,;

Res2=0
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;
if (ResO<tempO0) Res2++;

157
RENESAS

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;
MACL=Res0;
PC+=2;
}
Example:

DMULUL RO,R1

STS MACH,RO
STS MACL,RO
158

;Before execution: RO = H'FFFFFFFE, R1 = H'00005555

;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556
;Operation result (top)

;Operation result (bottom)

RENESAS

6.1.22 DT (Decrement and Test): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
DT Rn Rn-1 - Rn; 0100nnnNN00010000 1 Comparison — O O
When Rn is 0, result
1-T,
when Rn is

nonzero,0 - T

Description: The contents of general register Rn are decremented by 1 and the result compared
0 (zero). When the result is O, the T bit is set to 1. When the result is not zero, the T bit is set to

Operation:

DT(longn) DT Rn*

{
RIn}-;
if (R[n]==0) T=1;
else T=0;
PC+=2,
}
Example:
MOV #4,R5 ;Sets the number of loops.
LOOP:
ADD RO,R1 ;
DT RS ;Decrements the R5 value and checks whether it has become 0.
BF LOOP ;Branches to LOOP is T=0. (In this example, loops 4 times.)

159
RENESAS

6.1.23 EXTS (Extend as Signed): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
EXTSB Rm, Sign-extend Rm 0110nnnnmmmm1110 1 - O O O
Rn from byte » Rn
EXTSW Rm, Sign-extend Rm 0110nnnnmmmm1111 1 - O O O

Rn fromword — Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) [*EXTS.BRmM,Rn*

{
RIN=Rm];
if (R[mM]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;

PC+=2;
}
EXTSW(long m,long n) [EXTS.W Rm,Rn */
{
RIN=RIM];
if ((R[M]&0Xx00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFFO000;
PC+=2;
}
Examples:
EXTS.B ROR1 :Before execution: RO = H'00000080
:After execution: R1 = H'FFFFFF80
EXTSW ROR1 :Before execution: RO = H'00008000
;After execution: R1 = H'FFFF8000
160

RENESAS

6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
EXTUB Rm, Zero-extend Rm 0110nnnnmmmm1100 1 - O O O
Rn from byte - Rn
EXTUW Rm, Zero-extend Rm 0110nnnnmmmm1101 1 - O O O

Rn fromword - Rn

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, Os are written in bits 8 to 31 of Rn. If word length is specified, Os are written in bits 16
to 31 of Rn.

Operation:

EXTUB(long m,long n) /*EXTU.B Rm,Rn*/

{
R[n[=R[m];
R[n]&=0x000000FF;
PC+=2;

}

EXTUW(long m,longn) /*EXTU.W Rm,Rn*/

{
R[n}=R[m];
R[N]&=0x0000FFFF;
PC+=2;

}

Examples:

EXTUB RO,R1 ;Before execution: RO = H'FFFFFF80
;After execution: R1 = H'00000080

EXTUW RO,R1 ;Before execution: RO = H'FFFF8000
;After execution: R1 = H'00008000

161
RENESAS

6.1.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
JMP @Rm Rm - PC 0100mmmm00101011 2 — O O O

Description: Branches unconditionally to the address specified by register indirect addressing.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JMP(long m) IMP @Rm */

{
unsigned long temp;
temp=PC;
PC=R[m]+4;
Delay_Slot(temp+2);
}
Example:
MOV.L JMP_TABLE,RO ;Address of RO = TRGET
JMP @RO ;Branches to TRGET
MOV RO,R1 ;Executes MOV before branching
.align 4
JMP_TABLE: .datal TRGET ;Jump table
TRGET: ADD #1,R1 ; « Branch destination
162

RENESAS

6.1.26 JSR (Jump to Subroutine): Branch Instruction (ClassDelayed Branch

Instruction)
Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
JSR @RmPC - PR,Rm - PC 0100mmmm00001011 2 - O O O

Description: Branches to the subroutine procedure at the address specified by register indirect
addressing. The PC value is stored in the PR. The jump destination is an address specified by t
32-bit data in general register Rm. The stored/saved PC is the address four bytes after this
instruction. The JSR instruction and RTS instruction are used together for subroutine procedure
calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and tt
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JSR(long m) ISR @Rm */

{
PR=PC;
PC=R[m]+4;
Delay_Slot(PR+2);
}

163
RENESAS

Example:

MOV.L
JSR
XOR
ADD

JSR_TABLE: .data.l

TRGET:

Note: When a delayed branch instruction is used, the branching operation takes place after th
slot instruction is executed, but the execution of instructions (register update, etc.) takes

164

JSR_TABLE,RO
@RO

R1,R1

RO,R1

4
TRGET

R2,R3

#70,R1

;Address of RO = TRGET
;Branches to TRGET
;Executes XOR before branching

; — Return address for when the subroutine
procedure is completed (PR data)

;Jump table

: — Procedure entrance

:Returns to the above ADD instruction
:Executes MOV before RTS

place in the sequence delayed branch instructiatelayed slot instruction. For

example, even if a delayed slot instruction is used to change the register where the
branch destination address is stored, the register content previous to the change will be

used as the branch destination address.

RENESAS

6.1.27 LDC (Load to Control Register): System Control Instruction (Classinterrupt
Disabled Instruction)

Format Abstract Code Cycle TBIt
LDC Rm,SR Rm - SR 0100mmmmO00001110 1 LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 1 —
LDC Rm,VBR Rm - VBR 0100mmmm00101110 1 —
LDC Rm,MOD Rm - MOD 0100mmmmO01011110 1 —
LDC Rm,RE Rm - RE 0100mmmmO01111110 1 —
LDC Rm,RS Rm - RS 0100mmmm01101110 1 —
LDCL @Rm+SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 3 LSB
LDCL @Rm+GBR (Rm) - GBR,Rm+4 - Rm 0100mmmmO00010111 3 —
LDCL @Rm+VBR (Rm) - VBR,Rm+4 - Rm 0100mmmm00100111 3 —
LDCL @Rm+MOD (Rm) - MOD,Rm+4 - Rm 0100mmmmO01010111 3 —
LDCL @Rm+RE (Rm) -~ RE,Rm+4 - Rm 0100mmmmO01110111 3 —
LDCL @Rm+RS (Rm) - RS,Rm+4 - Rm 0100mmmmo01100111 3 —

Description: Store the source operand into control register SR, GBR, VBR, MOD, RE, or RS.

Note: No interrupts are accepted between this instruction and the next instruction. Address err
are accepted.

Operation:

LDCSR(long m) f*LDC Rm,SR */

{
SR=R[m]&OXOFFFOFFF;
PC+=2;
}
LDCGBR(long m) /* LDC Rm,GBR */
{
GBR=R[m];
PC+=2;
}

165
RENESAS

LDCVBR(long m) /* LDC Rm,VBR */

{
VBR=R[m];
PC+=2;
}
LDCMOD(longm) ~ /*LDC Rm,MOD *
{
MOD=R[m];
PC+=2;
}
LDCRE(long m) /*LDC Rm,RE */
{
RE=R[m];
PC+=2;

}

LDCRS(long m) /*LDC Rm,RS */

{
RSR=R[m];
PC+=2;
}
LDCMSR(long m) /*LDC.L @Rm+,SR*/
{
SR=Read_Long(R[m])&0x0FFFOFFF;
R[M]+=4;
PC+=2;
}

LDCMGBR(longm) /*LDC.L @Rm+,GBR */
{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

166
RENESAS

LDCMVBR(longm) /*LDC.L @Rm+,VBR */
{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2,
}
LDCMMOD(longm) /*LDC.L @Rm+,MOD */
{

MOD=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMRE(long m) /* LDC.L @Rm+,RE */
{

RE=Read_Long(R[m]);

R[m[+=4;

PC+=2,
}

LDCMRS(long m) # LDC.L @Rm+,RS */
{

RS=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

Examples:

LDC RO,SR

:After execution:

LDC.L @R15+,GBR
;After execution:

:Before execution:

:Before execution:

RO = H'FFFFFFFF, SR = H00000000
SR = H'OFFFOFFF

R15 = H'10000000
R15 = H'10000004, GBR = @H'10000000

Note: This is the execution result for the SH-DSP.

167

RENESAS

6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
LDRE @(disp,PC) disp x 2 + PC 10001110dddddddd 1 — — — O

- RE

Description: Stores the effective address of the source operand in the repeat end register RE. Th
effective address is an address specified by PC + displacement. The PC is the address four byte
after this instruction. The 8-hit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: The effective address value designated for the RE reregister is different from the actual
repeat end address. Refer to table 4.35, RS and RE Design Rule, for more information.
When this instruction is arranged immediately after the delayed branch instruction, PC
becomes the "first address +2" of the branch destination.

Operation:

LDRE(longd) /*LDRE @(disp, PC)*/

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
RE=PC+(disp<<1);
PC+=2;

}

168

RENESAS

Example:

LDRS STA ;Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.E ;

169
RENESAS

6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
LDRS @(disp,PC) disp x 2 + PC 10001100dddddddd 1 — — — O

- RS

Description: Stores the effective address of the source operand in the repeat start register RS. Tt
effective address is an address specified by PC + displacement. The PC is the address four byte
after this instruction. The 8-hit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: When the instructions of the repeat (loop) program are below 3, the effective address valt
designated for the RS register is different from the actual repeat start address. Refer to
Table 4.35. "RS and RE setting rule”, for more information. If this instruction is arranged
immediately after the delayed branch instruction, the PC becomes "the first address +2" o
the branch destination.

Operation:

LDRS(ongd) /*LDRS @(disp, PC) */

{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFOO | (long)d);
RS=PC+(disp<<1);
PC+=2;

}

170

RENESAS

Example:

LDRS STA ;Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.D ;

171
RENESAS

6.1.30 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Applicable
Instructions
SH-

Format Abstract Code Cycle TBit SH-1 SH-2 DSP

LDS RMMACH Rm -~ MACH 0100mmmm00001010 1 — O O O

LDS RmMMACL Rm - MACL 0100mmmm00011010 1 — O O O

LDS RmPR Rm - PR 0100mmmm00101010 1 — O O O

LDS RmDSR Rm - DSR 0100mmmm01101010 1 - - = O

LDS Rm,A0 Rm - A0 0100mmmm01111010 1 e — O

LDS Rm,X0 Rm - X0 0100mmmm10001010 1 - - - O

LDS Rm,X1 Rm - X1 0100mmmm10011010 1 - - = O

LDS Rm,YO Rm - YO 0100mmmm10101010 1 e — O

LDS Rm,Y1 Rm - Y1 0100mmmm10111010 1 — — — O

LDSL @Rm+, (Rm) - MACH, 0100mmmm00000110 1 - O O O
MACH Rm+4 - Rm

LDSL @Rm+, (Rm) - MACL, 0100mmmm00010110 1 — O O O
MACL Rm+4 - Rm

LDSL @Rm+PR (Rm) - PR, 0100mmmm00100110 1 — O O O

Rm+4 - Rm

LDSL @Rm+, (Rm) -~ DSR, 0100mmmm01100110 1 - - = O
DSR Rm+4 - Rm

LDSL @Rm+A0 (Rm) - AO, 0100mmmm01110110 1 — — — O

Rm+4 - Rm

LDSL @Rm+, (Rm) - X0, 0100nnnN10000110 1 e — O
X0 Rm+4 - Rm

LDSL @Rm+, (Rm) - X1, 0100nNNN10010110 1 - - — O
X1 Rm+4 - Rm

LDSL @Rm+, (Rm) - YO, 0100nnnNn10100110 1 — — — O
YO Rm+4 -~ Rm

LDSL @Rm+, (Rm) - Y1, 0100nnnn10110110 1 e — O
Y1 Rm+4 - Rm

Description: Store the source operand into the system register MACH, MACL, or PR or the DSP
register DSR, AQ, X0, X1, YO, or Y1. When AO is designated as the destination, the MSB of the
data is copied into AOG.

172
RENESAS

Note: No interrupts are accepted between this instruction and the next instruction. Address err
are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 and SH-DSP CPU, 32 b
are stored in MACH.

Operation:

LDSMACH(long m)
{

f*LDS Rm,MACH */

MACH=R[m];

if (MACH&0x00000200)==0) MACH&=0x000003FF;
else MACH|=0OxFFFFFCQO;

For SH-1 CPU(these 2 lines
not needed for SH-2 and V

PC+=2;N SH-DSP CPU)

}
LDSMACL(long m) /*LDS Rm,MACL */
{

MACL=R[m];

PC+=2;
}
LDSPR(long m) /*LDS Rm,PR */
{

PR=R[m];

PC+=2,
}
LDSDSR(long m) [*LDS Rm,DSR */
{

DSR=R[m]&0x0000000F;

PC+=2;
}
LDSAO(long m) /*LDS Rm,AQ */
{

AO=R[m];

if((A0&0x80000000)==0) AOG=0x00;

else AOG=0xFF;

PC+=2,
}
LDSX0(long m) *LDS Rm, X0*
{

173
RENESAS

X0=R[m];

PC+=2;
}
LDSX1(long m) [*LDS Rm, X1 */
{
X1=R[m];
PC+=2;
}
LDSYO(long m) /*LDS Rm, YO */
{
YO=R[m];
PC+=2;
}
LDSY1(long m) [*LDS Rm, Y1 %
{
Y1=R[m];
PC+=2;
}
LDSMMACH(long m) [*LDS.L @Rm+,MACH */
{
MACH=Read_Long(R[m]);
if (MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU (these 2 lines
else MACH|=0xFFFFFCOO0; not needed for SH-2 and
R[mJ+=4; SH-DSP CPU)
PC+=2;
}
LDSMMACL(long m) /< LDS.L @Rm+,MACL */
{
MACL=Read_Long(R[m]);
R[m[+=4;
PC+=2;
}
LDSMPR(long m) /*LDS.L @Rm+,PR */
{
PR=Read_Long(R[m]);
R[mJ+=4;
PC+=2;
174

RENESAS

}

¥ LDS.L @Rm+,DSR */

DSR=Read_Long(R[m])&0x0000000F;

¥ LDS.L @Rm+,X0*/

¥ LDS.L @Rm+,X1*

¥ LDS.L @Rm+,YO*/

¥ LDS.L @Rm+,Y1*

LDSMDSR(long m)

{
R[m]+=4;
PC+=2;

}

LDSMAQO(long m) /* LDS.L @Rm+,A0 */

{
AO=Read_Long(R[m]);
if(AO&0x80000000)==0) AOG=0x00;
else AOG=0xFF;
R[m]+=4;
PC+=2;

}

LDSMXO0(long m)

{
X0=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

LDSMX1(long m)

{
X1=Read_Long(R[m]);
R[m}+=4,
PC+=2;

}

LDSMYO(long m)

{
YO0=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

LDSMY1(long m)

{

Y1=Read_Long(R[m]);
R[m]+=4;

RENESAS

175

PC+=2;
}

Examples:

LDS RO,PR

LDSL @R15+MACL

176

;Before execution: RO = H'12345678, PR = H'00000000

;After execution: PR = H'12345678

;Before execution: R15 = H'10000000

;After execution: R15 = H'10000004, MACL = @H'10000000

RENESAS

6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
MAC.L @Rm+, Signed operation, 0000Nnnnnmmmm1111 3/2 — — O O

@Rn+ (Rn) x (Rm) + MAC
- MAC

to 4)

Description: Does signed multiplication of 32-bit operands obtained using the contents of gener:

registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register,

C

the final result is stored in the MAC register. Every time an operand is read, they increment Rm
and Rn by four.

When the S bit is cleared to O, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits

starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register

are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long mongn) /*MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temps3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[m]+=4;

if ((long)(tempn”tempm)<0) fnLmL=-1;
else fnLmL=0;
if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;

RENESAS

177

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

tempO=RmL*RnL;

templ=RmH*RnL;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0

Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO0+temp1;
if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0)
Res2=~Res?;
if (Res0==0) Res2++;
else Res0=(~Res0)+1;
}
if(S==1){
ResO=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=(MACH&OX0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){
Res2=0x00008000;
Res0=0x00000000;

178
RENESAS

if(((long)Res2>0)&&(Res2>0x00007FFF)){
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

%
MACH={Res2;
MACL=Res0;
}
else {
ResO=MACL+Res0;
if MACL>Res0) Res2++;
Res2+=MACH
MACH=Res2;
MACL=Res0;
}
PC+=2,
}
Example:
MOVA TBLM,RO
MOV RO,R1
MOVA TBLN,RO
CLRMAC
MAC.L @RO+@R1+
MAC.L @RO+,@R1+
STS MACL,RO
align 2
TBLM data.l H'1234ABCD
.data.l H'5678EF01
TBLN data.l H'0123ABCD
.data.l H'4567DEFO

:Table address
:Table address
;MAC register initialization

:Store result into RO

RENESAS

179

6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MACW @Rm+, With sign, (Rn) x (Rm) 0100nnnnmmmm1111 3/(2) — — O O
@Rn+ + MAC - MAC
MAC @Rm+, o O O
@Rn+

Description: Does signed multiplication dif6-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, ar
the final result is stored in the MAC register. Rm and Rn data are incremented by 2 after the
operation.

When the S bit is cleared to 0, the operation is 16 + 64— 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation i<l + 32— 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) and
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register. The result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bitis 0, the SH-2 and SH-DSP CPU perform>al+ 64 64 bit multiply
and accumulate operation and the SH-1 CPU performs<al&6+ 42— 42 bit multiply
and accumulate operation.

180
RENESAS

Operation:

MACW(ong mongn) /*MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n+=2;
tempm=(long)Read_Word(R[m]);
R[m]+=2;
templ=MACL,;
tempm=((long)(short)tempn*(long)(short)tempm);
if (long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0 {
src=0;
tempn=0;
}
else {
src=1,
tempn=0xFFFFFFFF;
}
src+=dest;
MACL+=tempm,;
if (long)MACL>=0) ans=0;
else ans=1,
ans+=dest;

RENESAS

181

if (5==1) {

if (ans==1) {
Eof (src==0 || src==2)
MACH|=0x00000001;

if (src==0) MACL=0X7FFFFFFF;
if (src==2) MACL=0x80000000;

For SH-1 CPU (these 2 lines
not needed for SH-2 and
SH-DSP CPU)

}
}
else {
MACH+=tempn;
if (tempI>MACL) MACH+=1;
if (MACH&0x00000200)==0) For SH-1 CPU (these 3 lines
MACH&=0x000003FF; not needed for SH-2 and
else MACH|=0xFFFFFCOO; SH-DSP CPU)
}
PC+=2;
}
Example:
MOVA TBLM,RO ;Table address
MOV RO,R1 ;
MOVA TBLN,RO ;Table address
CLRMAC ;MAC register initialization
MAC.W @RO+,@R1+ ;
MAC.W @RO+,@R1+ ;
STS MACL,RO ;Store result into RO
align 2 ;
TBLM .dataw H'1234 ;
.data.w H'5678 ;
TBLN .data.w H0123 ;
.data.w H'4567 ;
182

RENESAS

6.1.33 MOV (Move Data): Data Transfer Instruction
Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
MOV Rm,Rn Rm - Rn 0110nnnnmmmmO011 1 — O O O
MOV.B Rm,@Rn Rm - (Rn) 0010nNnNNMmmmO000 1 — O O O
MOV.W Rm,@Rn Rm - (Rn) 0010nnNNmmmmO001 1 — O O O
MOV.L Rm,@Rn Rm - (Rn) 0010nnNnNmMmmmO010 1 — O O O
MOV.B @Rm,Rn (Rm) - sign 0110nnNNmmmmO000 1 — O O O
extension - Rn
MOV.W @Rm,Rn (Rm) — sign 0110nnNnnmmmmO001 1 — O O O
extension - Rn
MOV.L @Rm,Rn (Rm) -~ Rn 0110nnNnNmmmmO0010 1 — O O O
MOV.B Rm,@-Rn Rn-1 - Rn, 0010nnNnNmmmmO0100 1 — O O O
Rm - (Rn)
MOV.W Rm,@-Rn Rn-2 - Rn, 0010nnNnnmmmmO0101 1 — O O O
Rm - (Rn)
MOV.L Rm,@-Rn Rn-4 - Rn, 0010nnNnnmmmmO0110 1 — O O O
Rm - (Rn)
MOV.B @Rm+,Rn (Rm) - sign 0110nnnnmmmm0100 1 — O O O
extension - Rn,
Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) - sign 0110nnnnmmmmo0101 1 — O O O
extension - Rn,
Rm+2 - Rm
MOV.L @Rm+,Rn (Rm) - Rn, 0110nnNnnmmmmO0110 1 — O O O
Rm+4 - Rm
MOV.B Rm,@(RO,Rn) Rm - (RO +Rn) 0000nnnnmmmmO0100 1 — O O O
MOV.W Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnnnmmmmO0101 1 — O O O
MOV.L Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnnnmmmmO0110 1 — O O O
MOV.B @(RO,Rm),Rn (RO +Rm) - sign 0000nnnnmmmm1100 1 — O O O
extension - Rn
MOV.W @(RO,Rm),Rn (RO +Rm) - sign 0000nnnnmmmm1101 1 — O O O
extension - Rn
MOV.L @(RO,Rm),Rn (RO+Rm) — Rn 0000nnnnmmmm1110 1 — O O O

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

183
RENESAS

Operation:

MOV(long m,long n) MOV Rm,Rn */
{
R[n}=Rm};
PC+=2;
}
MOVBS(long m,long n) *MOV.B Rm,@Rn */
{
Write_Byte(R[n],R[m]);
PC+=2;
}
MOVWS(long m,long n) *MOV.W Rm,@Rn */
{
Write_ Word(R[n],R[m]);
PC+=2;
}
MOVLS(long m,long n) *MOV.L Rm,@Rn*/
{
Write_Long(R[n],R[m]);
PC+=2;
}
MOVBL(long m,long n) *MOV.B @Rm,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0X000000FF;
else R[n]|=0xFFFFFFQO;
PC+=2;
}
184

RENESAS

MOVWL (long m,long n) *MOV.W @Rm,Rn */
{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;
}
MOVLL(long m,long n) MOV.L @Rm,Rn*/
{
R[n]=Read_Long(R[m]);
PC+=2;
}
MOVBM(long m,long n) *MOV.B Rm,@-Rn */
{
Write_Byte(R[n}-1,R[m]);
R[n}=1,;
PC+=2,
}
MOVWM(long m,long n) ¥ MOV.W Rm,@-Rn */
{
Write_Word(R[n}-2,R[m]);
RInl—=2;
PC+=2;
}
MOVLM(long m,long n) *MOV.L Rm,@-Rn*/
{
Write_Long(R[nH4,R[mY);
Rn}=4;
PC+=2;
}

RENESAS

185

MOVBP(long m,long n) /*MOV.B @Rm+,Rn */
{

R[n]=(long)Read_Byte(R[m]);

if (R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFOO;

if (N'=m) R[mJ+=1;

PC+=2;
}
MOVWP(long m,long n) MOV.W @Rm+,Rn */
{
R[n]=(long)Read_Word(R[m]);
if (R[N]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF000O0;
if (n'=m) R[m[+=2;
PC+=2;
}
MOVLP(long m,long n) A MOV.L @Rm+,Rn*/
{
R[n]=Read_Long(R[m]);
if (N'=m) R[m]+=4;
PC+=2;
}

MOVBSO0(long m,long n) *MOV.B Rm,@(RO,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);

PC+=2,
}

MOVWSO0(long m,long n) * MOV.W Rm,@(RO,Rn) */
{

Write_ Word(R[n]+R[0],R[m]);

PC+=2;

186
RENESAS

MOVLSO0(long m,long n) /¥ MOV.L Rm,@(R0O,Rn) */
{

Write_Long(R[n]+R[0],R[M]);

PC+=2;
}

MOVBLO(long m,long n) /* MOV.B @(R0,Rm),Rn */
{

R[n]=(long)Read_Byte(R[m]+R[0]);

if (R[N)&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFQO;

PC+=2;
}

MOVWLO(long m,long n) / MOV.W @(RO,Rm),Rn */
{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;
}

MOVLLO(long m,long n) *MOV.L @(RO,Rm),Rn */

{
R[n]=Read_Long(R[m]+R[0]);

PC+=2;
}
Example:

MOV ROR1 :Before execution:
:After execution:

MOV.W RO,@R1 :Before execution:
;After execution:

MOV.B @RO,R1 :Before execution:
:After execution:

MOV.W RO,@-R1 :Before execution:

:After execution:

RO = HFFFFFFFF, R1 = H00000000
R1 = HFFFFFFFF

RO = H'FFFF7F80
@R1 = H7F80

@RO = H'80, R1 = H'00000000
R1 = H'FFFFFF80

RO = HAAAAAAAA, R1 = H'FFFF7F80
R1 = HFFFF7F7E, @R1 = H'AAAA

187

RENESAS

MOV.L @RO+R1 :Before execution: RO = H'12345670

:After execution: RO = H'12345674, R1 = @H'12345670
MOV.B R1,@(RO,R2) :Before execution: R2 = H'00000004, RO = H'10000000
;After execution: R1 = @H'10000004
MOV.W @(RO,R2),R1 ;Before execution: R2 = H'00000004, RO = H'20000000
:After execution: R1 = @H'10000004

188
RENESAS

6.1.34 MOV (Move Immediate Data): Data Transfer Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOV #mm,Rn imm - sign 1110nnnniiiiiii 1 — O O O
extension —» Rn
MOV.W @(disp, (disp x 2 + PC) - sign 1001nnnndddddddd 1 — O O O
PC),Rn extension —» Rn
MOV.L @(disp, (disp x4 + PC) -» Rn 1101nnnndddddddd 1 — O O O
PC),Rn

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displaceme
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table can be up to PC + 510 bytes. The PC points tc
the starting address of the second instruction after this MOV instruction. If the data is a longwor
the 8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval fror
the table can be up to PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note: The optimum table assignment is at the rear end of the module or one instruction after tf
unconditional branch instruction. If the optimum assignment is impossible for the reason
of no unconditional branch instruction in the 510 byte/1020 byte or some other reason,
means to jump past the table by the BRA instruction are required. By assigning this
instruction immediately after the delayed branch instruction, the PC becomes the "first

address + 2".
Operation:

MOVI(long i,long n) MOV #imm,Rn */

{
if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xFFFFFFOO | (Ilong)i);
PC+=2;

}

189
RENESAS

MOVWiI(long d,long n)

{

long disp;

disp=(0x000000FF & (long)d);
R[n]=(long)Read_Word(PC+(disp<<1));
if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFFO000;

PC+=2;
}

MOVLI(long d,long n)

{

long disp;

disp=(0x000000FF & (long)d);
R[n]=Read_Long((PC&OXFFFFFFFC)+(disp<<2));

PC+=2;
}

Example:

Address
1000
1002
1004
1006

1008

100A

100C

100E IMM
1010

1012 NEXT
1014

1018

190

MOV
MOV.W
ADD
TST

MOVT
BRA
MOV.L
.data.w
.data.w
JMP
CMP/EQ

.align
.data.l

#H'80,R1
IMM,R2
#-1,RO
RO,RO

R13
NEXT
@(4,PC),R3
H'9ABC
H'1234
@R3
#0,RO

4
H'12345678

/¥ MOV.W @(disp,PC),Rn */

* MOV.L @(disp,PC),Rn */

‘R1 = H'FFFFFF80
'R2 = H'FFFF9ABC, IMM means @(H'08,PC)

;. — PC location used for address calculation for the
MOV.W instruction

;Delayed branch instruction
:R3 =H'12345678
:Branch destination of the BRA instruction

: « PC location used for address calculation for the
:MOV.L instruction

RENESAS

6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction

Applicable
Instructions
T SH-

Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOV.B (disp + GBR) - sign 11000100dddddddd 1 — O O O
@(disp,GBR),R0 extension - RO
MOV.W (disp x 2+ GBR) - sign 11000101dddddddd 1 - 0 O O
@(disp,GBR),R0 extension - RO
MOV.L (disp x 4 + GBR) - RO 11000110dddddddd 1 — O O O
@(disp,GBR),R0
MOV.B RO - (disp + GBR) 11000000dddddddd 1 — O O O
RO,@(disp,GBR)
MOV.W RO - (disp x 2 + GBR) 11000001dddddddd 1 — O O O
R0,@(disp,GBR)
MOV.L RO - (disp x 4 + GBR) 11000010dddddddd 1 — O O O

RO,@(disp,GBR)

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but ol
the RO register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte
the only change made is to zero-extend the 8-bit displacement. Consequently, an address withil
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacemen
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. Whe
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
guadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBF
data is transferred to a general register. When the source operand is in memory, the loaded dat
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0O. RO cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.1 Using RO after MOV

191
RENESAS

Operation:

MOVBLG(long d) /¥ MOV.B @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Byte(GBR+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFQO;
PC+=2;

}

MOVWLG(long d) * MOV.W @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Word(GBR+(disp<<1));
if (R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}

MOVLLG(long d) * MOV.L @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]-Read_Long(GBR+(disp<<2));
PC+=2;

192
RENESAS

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write_Byte(GBR+disp,R[0]);

PC+=2;
}
MOVWSG(long d) # MOV.W RO,@(disp,GBR) */
{
long disp;
disp=(0x000000FF & (long)d);
Write_Word(GBR+(disp<<1),R[0]);
PC+=2;
}

MOVLSG(long d) /* MOV.L RO,@(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;

}

Examples:

MOVL @(2,GBR),RO

MOV.B RO,@(1,GBR)

:After execution:

:After execution:

:Before execution:

:Before execution:

@(GBR + 8) = H'12345670
RO = H'12345670

RO = H'FFFF7F80
@(GBR + 1) = H'80

193

RENESAS

6.1.36 MOV (Move Structure Data): Data Transfer Instruction
Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOV.B RO - (disp + Rn) 10000000nnnndddd 1 — O O
RO,@(disp,Rn)
MOV.W RO - (disp x 2 + Rn) 10000001nnnndddd 1 - 0 O O
RO,@(disp,Rn)
MOV.L Rm - (disp x 4 + Rn) 0001nnnnmmmmdddd 1 — O O O
Rm,@(disp,Rn)
MOV.B (disp + Rm) - sign 10000100mmmmdddd 1 — O O O
@(disp,Rm),R0O extension - RO
MOV.W (disp x2+Rm) - sign 10000101mmmmdddd 1 — O O O
@(disp,Rm),R0O extension - RO
MOV.L disp x 4 + Rm) - Rn 0101nnnnmmmmdddd 1 — O O O

@(disp,Rm),Rn

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a |
or word is selected, only the RO register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can b

specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.

Consequently, an address within +30 bytes can be specified. When the data is a longword, the

4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforemention
@(RO,Rn) mode must be used. When the source operand is in memory, the loaded data is store

the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. The instruction order

in figure 6.2 will give better results.

MOV.B @(2, R1), RO
AND
ADD

#80, RO
#20, R1

—

MOV.B @(2, R1), RO

ADD
AND

#20, R1
#80, RO

194

Figure 6.2 Using RO after MOV

RENESAS

Operation:

MOVBS4(long d,long n) / MOV.B RO,@(disp,Rn) */

{
long disp;
disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;
}
MOVWS4(long d,long n) /* MOV.W RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Word(R[n]+(disp<<1),R[0]);
PC+=2;
}
MOVLS4(long m,long d,long n) *MOV.L Rm,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;
}
MOVBL4(long m,long d) # MOV.B @(disp,Rm),R0 */
{
long disp;
disp=(0x0000000F & (long)d);
R[0]=Read_Byte(R[m]+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;
PC+=2;
}

195
RENESAS

MOVWL4(long m,long d) # MOV.W @(disp,Rm),RO */

{
long disp;
disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));
if (R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}

MOVLL4(long m,long d,long n)
*MOV.L @(disp,Rm),Rn */

{
long disp;
disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));
PC+=2;

}

Examples:
MOV.L @(2,R0),R1 ;Before execution: @ (RO + 8) = H'12345670

:After execution: R1 =H'12345670

MOV.L RO,@HFR1) ;Before execution: RO =H'FFFF7F80
;After execution: @(R1 + 60) = H'FFFF7F80

196
RENESAS

6.1.37 MOVA (Move Effective Address): Data Transfer Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOVA disp x4+ PC - RO 11000111dddddddd 1 — O O O

@(disp,PC),R0

Description: Stores the effective address of the source operand into general register RO. The 8-
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC is the address four bytes after this instruction, but the lowe
two bits of the PC are corrected to B'00.

Note: |If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(ongd) /* MOVA @(disp,PC),R0 *

{
long disp;
disp=(0x000000FF & (long)d);
R[0]=(PC&OXFFFFFFFC)+(disp<<2);
PC+=2;
}
Example:

Address.org H1006

1006 MOVA STRRO ;Address of STR» RO

1008 MOV.B @ROR1 ;R1="X" ~ PC location after correcting the lowest
two bits

100A ADD R4,R5 ; « Original PC location for address calculation for the

MOVA instruction
.align 4
100C STR: .sdata “XYZP12"

2002 BRA TRGET ;Delayed branch instruction
2004 MOVA @(O,PC)RO ;Address of TRGET + 2. RO
2006 NOP ;

197
RENESAS

6.1.38 MOVT (Move T Bit): Data Transfer Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOVT Rn T > Rn 0000nNNn00101001 1 — O O O

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

Operation:

MOVT(ongn) ~MOVTRn*

{
R[n]=(0x00000001 & SRY);
PC+=2,
}
Example:

XOR R2R2 ;R2=0

CMP/PZ R2 T=1
MOVT RO s RO=1
CLRT T=0

MOVT R1 sR1=0

198
RENESAS

6.1.39 MUL.L (Multiply Long): Arithmetic Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MULL RmRn Rn xRm - MACL 0000nnnnmmmmQ0111 2 (to4) — — O O

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 hits of the result in the MACL register. The MACH register data does not
change.

Operation:

MUL.L(long m,longn) /*MUL.L Rm,Rn*

{
MACL=R[n*R[m];
PC+=2;
}
Example:
MULL ROR1 ;Before execution: RO = H'FFFFFFFE, R1 = H'00005555
;After execution: MACL = H'FFFF5556
STS MACLRO ;Operation result

199
RENESAS

6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MULS.W Rm,Rn Signed operation, Rn x 0010nnnnmmmm1111 1(to3) — O O O

MULS Rm,Rn Rm - MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register date
does not change.

Operation:

MULS(long m,longn) /*MULS Rm,Rn*/

{
MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2;
}
Example:

MULS RO,R1 :Before execution: RO = H'FFFFFFFE, R1 = H'00005555
:After execution: MACL = H'FFFF5556
STS MACL,R0O Operation result

200
RENESAS

6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Applicable

Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MULUW Rm,Rn Unsigned, 0010nnnnmmmm1110 1 (t03) — O O O

MULU Rm,Rn Rn xRm - MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,longn) #*MULU Rm,Rn*/
{
MACL=((unsigned long)(unsigned short)R[n]
*(unsigned long)(unsigned short)R[m]);
PC+=2,
}

Example:

MULU RO,R1 :Before execution: RO = H'00000002, R1 = H'FFFFAAAA
:After execution: MACL = H'00015554
STS MACL,RO ;Operation result

201
RENESAS

6.1.42 NEG (Negate): Arithmetic Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
NEG Rm,Rn 0—-Rm - Rn 0110nnnnmmmm1011 1 — O O O

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) *NEG Rm,Rn */

{
R[n]=0-R[m];
PC+=2,
}
Example:
NEG ROR1 ;Before execution: RO = H'00000001
;After execution: R1 = H'FFFFFFFF
202

RENESAS

6.1.43 NEGC (Negate with Carry): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
NEGC RmRn 0—Rm-T - Rn, 0110nnnnmmmm1010 1 Borrow O O O

Borrow - T

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sigr
of a value that has more than 32 bits.

Operation:

NEGC(long mJongn) /*NEGC Rm,Rn*/
{

unsigned long temp;

temp=0-R[m];
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R[n]) T=1,
PC+=2,

}

Examples:

CLRT ; Sign inversion of R1 and RO (64 bits)

NEGC R1R1 ;Before execution: R1=H'00000001, T=0
;After execution: R1=H'FFFFFFFF, T=1

NEGC RORO ;Before execution: RO =H'00000000,T=1
;After execution: RO =H'FFFFFFFF, T=1

203
RENESAS

6.1.44 NOP (No Operation): System Control Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
NOP No operation 0000000000001001 1 — 0 O O

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /*NOP*

{
PC+=2;
}
Example:
NOP ;Executes in one cycle
204

RENESAS

6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmoO0111 1 — O O O

Description: Takes the one’s complement of general register Rm data, and stores the result in R
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) *NOT Rm,Rn*/

{
Rn}=~R[m];
PC+=2;
}
Example:

NOT ROR1 ;Before execution: RO = HHAAAAAAAA
After execution: R1 = H'55555555

205
RENESAS

6.1.46 OR (OR Logical) Logic Operation Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 — O O O
OR #mm,RO RO | imm - RO 1100101 Liiiiiiii 1 - O O O
OR.B #imm,@(R0,GBR) (RO + GBR) | 1100111 Liiiiiiii 3 — O O O

imm - (RO + GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed wi
8-bit immediate data.

Operation:

OR(long m,long n) /*OR Rm,Rn */

{
RIn]|=R[m];
PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{
R[0]|=(0xO00000FF & (long)i);
PC+=2;

}

ORM(longi) /* OR.B #mm,@(R0O,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

206

RENESAS

Examples:

OR RO,R1 :Before execution:

:After execution:

OR #H'FO,RO :Before execution:

:After execution:

ORB #H50,@(R0O,GBR) ;Before execution:

;After execution:

RO = H'AAAA5555, R1 = H'55550000

R1 = HFFFF5555

RO = H'00000008
RO = H'0O00000F8

@(RO,GBR) = HA5
@(RO,GBR) = HF5

RENESAS

207

6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ROTCL Rn T<Rn T 0100nnnNN00100100 1 MsB O O O

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.3).

MSB LSB

ROTCL <—| }‘_‘

Figure 6.3 Rotate with Carry Left
Operation:

ROTCL(longn) /*ROTCLRn?*
{

long temp;

if (R[N]&0x80000000)==0) temp=0;
else temp=1,
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
if (temp==1) T=1,;
else T=0;
PC+=2;
}

Example:

ROTCL RO :Before execution: RO = H'80000000, T=0
:After execution: RO = H'00000000, T=1

208
RENESAS

6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ROTCR Rn T-Rn T 0100nnNnN00100101 1 LsB O O O

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, ant
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR ﬁ -

Figure 6.4 Rotate with Carry Right
Operation:

ROTCR(longn) /*ROTCRRn*
{

long temp;

if (R[]&0x00000001)==0) temp=0;
else temp=1,
R[n>>=1;
if (T==1) R[n]|=0x80000000;
else R[N}&=0x7FFFFFFF;
if (temp==1) T=1,
else T=0;
PC+=2;
}

Examples:

ROTCR RO ;Before execution: RO = H'00000001, T=1
:After execution: RO = H'80000000, T=1

209
RENESAS

6.1.49 ROTL (Rotate Left): Shift Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ROTL Rn T < Rn < MSB 0100nnnn00000100 1 MsB O O O

Description: Rotates the contents of general register Rn to the left by one bit, and stores the resu
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

-

Figure 6.5 Rotate Left
Operation:

ROTL(longn) *ROTLRn*
{
if ((R[n]&0x80000000)==0) T=0;
else T=1,;
R[nj<<=1;
if (T==1) R[n]|=0x00000001;
else R[n|&=0xFFFFFFFE;
PC+=2;
}

Examples:

ROTL RO :Before execution: RO = H'80000000, T=0
:After execution: RO = H'00000001, T=1

210
RENESAS

6.1.50 ROTR (Rotate Right): Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 Lse O O O

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

—

Figure 6.6 Rotate Right
Operation:

ROTR(longn) ~ROTRRn*

{
if (RIN}&0X00000001)==0) T=0;
else T=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Examples:
ROTR RO ;Before execution: RO = H'00000001, T=0

:After execution: RO = H'80000000, T=1

211
RENESAS

6.1.51 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
RTE Delayed branch, 0000000000101011 4 Lse O O O

Stack area — PC/SR

Description: Returns from an interrupt routine. The PC and SR values are restored from the stacl
and the program continues from the address specified by the restored PC value. The T bit is use
as the LSB bit in the SR register restored from the stack area.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() F#~RTE*

{
unsigned long temp;
temp=PC;
PC=Read_Long(R[15])+4;
R[15]+=4;
SR=Read_Long(R[15])&0x0FFFOFFF;
R[15]+=4;
Delay_Slot(temp+2);

}

Example:
RTE ;Returns to the original routine

ADD #8R14 ;Executes ADD before branching

212
RENESAS

Note: With delayed branching, branching occurs after execution of the slot instruction. Howeve
instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the

branch will still be made using the value of the register prior to the change as the branch
destination address.

213
RENESAS

6.1.52 RTS (Return from Subroutine): Branch Instruction (Class Delayed Branch
Instruction)

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
RTS Delayed branch, 0000000000001011 2 — 0 O O

PR - PC

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is us
to return to the program from a subroutine program called by a BSR, BSRF, or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTS) F#RTS*

{
unsigned long temp;
temp=PC;
PC=PR+4;
Delay_Slot(temp+2);
}
214

RENESAS

Example:

MOV.L TABLE,R3 ;R3 = Address of TRGET

JSR @R3 ;Branches to TRGET

NOP ;Executes NOP before branching

ADD RO,R1 ; — Return address for when the subroutine procedure is

completed (PR data)

TABLE: .datal TRGET ;Jump table
TRGET: MOV R1,RO ; — Procedure entrance
RTS ;PR data— PC
MOV #12,R0 ;Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delay
branch instruction, then delay slot instruction. For example, even if the register in whicl
the branch destination address has been loaded is changed by the delay slot instructic
the branch will still be made using the value of the register prior to the change as the
branch destination address.

215
RENESAS

6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SETRC Rm Rm[11:0] 0100mmmmO00010100 1 —_ — — O
RCCSR[27:16]
Repeat control flag
- RF1, RFO
SETRC #mm imm - RC [23:26] 10000010iiiiiii 1 —_ — — O

zeros - SR[27:24],
Repeat control flag
- RF1, RFO

Description: Sets the repeat count to the SR register’s RC counter. When the operand is a regist
the bottom 12 bits are used as the repeat count. When the operand is an immediate data value, ¢
bits are used as the repeat count. Set repeat control flags to RF1, RFO bits of the SR register. Us
of the SETRC instruction is subject to any limitations. Refer to section 4.19, DSP Repeat (Loop)
Control, for more information.

Operation:

SETRC(longm) /*SETRC Rm*
{

long temp;

temp=(R[m] & 0x00000FFF)<<16;
SR&=0x00000FF3;

SR|=temp;
RF1=Repeat_Control_Flagl;
RFO=Repeat_Control_Flag0;
PC+=2,

216
RENESAS

SETRClI(long i) * SETRC #imm */

{
long temp;
temp=((long)i & 0x000000FF)<<186;
SR&=0x00000FFF;
SR|=temp;
RF1=Repeat_Control_Flag1;
RFO=Repeat_Control_Flag0;
PC+=2;
}
SETRC #imm SETRC Rn
7 0 31 12 11 0
imm RN | | 12 bits |
/ Repeat control flag / Repeat control flag
31 27 23 1615 3 ‘20/ 31 27 16 15 3‘20/
SR 0 | 8bits sr| | 12bis | [1]
1<imm <255 1 <Rm[11:0] <4095
Figure 6.7 SETRC Instruction
Example:
LDRS STA ;Set repeat start address to RS.
LDRE END ;Set repeat end address to RE.
SETRC #32 ;Repeat 32 times from inst.A to inst.C.
inst.0 ;
STA: instA ;
inst.B ;
END: inst.C ;
inst.D ;

RENESAS

217

6.1.54 SETT (Set T Bit): System Control Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SETT 1T 0000000000011000 1 1 O O O

Description: Sets the T bit to 1.
Operation:

SETT() A SETT?¥

{
T=1;
PC+=2;
}
Example:

SETT ;Before execution: T=0
After execution: T=1

218
RENESAS

6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
SHAL Rn T<Rn 0 0100nnnNN00100000 1 MsSB O O O

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.8).

MSB LSB

SHAL |<— 0

Figure 6.8 Shift Arithmetic Left
Operation:

SHAL(longn) /*SHAL Rn (Same as SHLL) */

{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[nj<<=1;
PC+=2;
}
Example:

SHAL RO :Before execution: RO = H'80000001, T=0
After execution: RO =H'00000002, T=1

219
RENESAS

6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 Lse O O O

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.9).

MSB LSB

SHAR Iil

Figure 6.9 Shift Arithmetic Right

Operation:

SHAR(longn) /*SHARRn*

{
long temp;
if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[n]&0x80000000)==0) temp=0;
else temp=1,
RIn>>=1;
if (temp==1) R[n]|=0x80000000;
else R[n)&=0x7FFFFFFF;
PC+=2;
}
Example:
SHAR RO ;Before execution: RO = H'80000001, T=0
;After execution: RO = H'C0000000, T=1
220

RENESAS

6.1.57 SHLL (Shift Logical Left): Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
SHLL Rn T<Rn 0 0100nnNN00000000 1 MsSB O O O

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.10).

MSB LSB

SHLL |<—0

Figure 6.10 Shift Logical Left
Operation:

SHLL(longn) /*SHLL Rn (Same as SHAL) */

{
if (R[N}&0X80000000)==0) T=0;
else T=1;
R[n]<<:1;
PC+=2;

}

Examples:
SHLL RO ;Before execution: RO = H'80000001, T =0

:After execution: RO = H'00000002, T=1

221
RENESAS

6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SHLL2 RN Rn<<2 - Rn 0100nnnNN00001000 1 — O O O
SHLLS Rn Rn<<8 - Rn 0100nNnn00011000 1 — O O O
SHLL16 Rn Rn<<16 - Rn 0100nNnn00101000 1 — O O O

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.11).

MSB LSB
SHLL2
<o
MSB LSB
SHLL8
- o
MSB LSB
SHLL16 | |
//
| -

Figure 6.11 Shift Logical Left n Bits

222
RENESAS

Operation:

SHLL2(longn) /*SHLL2 Rn*/

{
Rlnj<<=2;
PC+=2;
}
SHLL8(longn) /*SHLL8 Rn*/
{
R[n]<<=8;
PC+=2;
}
SHLL16(long n) /* SHLL16 Rn */
{
R[n]<<=16;
PC+=2,
}
Examples:
SHLL2 RO :Before execution: RO = H'12345678
;After execution: RO = H'48D159E0
SHLL8 RO :Before execution: RO = H'12345678
;After execution: RO = H'34567800
SHLL16 RO :Before execution: RO = H'12345678
;After execution: RO = H'56780000

223
RENESAS

6.1.59 SHLR (Shift Logical Right): Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle TBit SH-1 SH-2 DSP
SHLR Rn 0-Rn-T 0100nNNN00000001 1 LsB O O O

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.12).

MSB LSB

SHLR 0—>|

Figure 6.12 Shift Logical Right
Operation:

SHLR(longn) /*SHLR Rn*

{
if (R[n]&0x00000001)==0) T=0;
else T=1;
R[n}>>=1,
R[N]&=0x7FFFFFFF;
PC+=2;
}
Examples:
SHLR RO :Before execution: RO = H'80000001, T=0
;After execution: RO = H'40000000, T=1
224

RENESAS

6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SHLR2 RN Rn>>2 - Rn 0100nnnNnN00001001 1 — O O O
SHLRS8 RN Rn>>8 - Rn 0100nNnn00011001 1 — O O O
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 — O O O

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.13).

MSB LSB
SHLR2
o
MSB LSB
SHLRS8 |
o —
MSB LSB
SHLR16 |
\\
o |

Figure 6.13 Shift Logical Right n Bits

225
RENESAS

Operation:

SHLR2(long n) /*SHLR2 Rn*/

{
R[n>>=2;
R[N]&=0x3FFFFFFF;
PC+=2,

}

SHLR8(longn) /* SHLR8 Rn*/

{
R[n}>>=8;
R[N]&=0x00FFFFFF;
PC+=2,

}

SHLR16(long n) * SHLR16 Rn */
{

R[n]>>=16;
R[n]&=0x0000FFFF;
PC+=2;
}
Examples:
SHLR2 RO :Before execution:
:After execution:
SHLR8 RO :Before execution:
:After execution:
SHLR16 RO :Before execution:
;After execution:
226

RO = H'12345678
RO = H'048D159E

RO = H'12345678
RO = H'00123456

RO = H'12345678
RO = H'00001234

RENESAS

6.1.61 SLEEP (Sleep): System Control Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SLEEP Sleep 0000000000011011 3 — 0 O O

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU internal status is maintained, and the CPU waits for an interrupt request. If a
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP() /* SLEEP ¥/

{
PC-=2;
wait_for_exception;

}
Example:

SLEEP ;Enters power-down mode

227
RENESAS

6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled
Instruction)
Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
STC SR,Rn SR - Rn 0000nnNNN00000010 1 — O O O
STC GBR,Rn GBR - Rn 0000nNNN00010010 1 — O O O
STC VBR,Rn VBR - Rn 0000nNNN00100010 1 - 0 O O
STC MOD,Rn MOD - Rn 0000nnnNn01010010 1 —_ - — O
STC RE,Rn RE - Rn 0000nnNnNn01110010 1 —_ — — O
STC RS,Rn RS - Rn 0000nnNnNn01100010 1 —_ — — O
STC.L SR,@-Rn Rn-4 - Rn,SR - (Rn) 0100nnnn00000011 2 — O O O
STC.L GBR,@-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 — O O O
STC.L VBR,@-Rn Rn—4 - Rn, VBR - (Rn) 0100nnnn00100011 2 - 0 O O
STC.L MOD,@-Rn Rn—-4 - Rn, 0100nnnn01010011 2 —_ - — O
MOD - (Rn)
STC.L RE,@-Rn Rn-4 - Rn, RE - (Rn) 0100nnnn01110011 2 —_ — — O
STC.L RS,@-Rn Rn-4 - Rn,RS - (Rn) 0100nnnn01100011 2 —_ - — O

Description: Stores control register SR, GBR, VBR, MOD, RE, or RS data into a specified

destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address erro

are accepted.

Operation:

STCSR(long n)

{
R[n]=SR;
PC+=2;

228

FSTC SRRn*

RENESAS

STCGBR(long n) /* STC GBR,Rn */

{
R[N]=GBR;
PC+=2;
}
STCVBR(long n) /* STC VBR,Rn */
{
R[n]=VBR;
PC+=2;
}
STCMOD(longn) /*STC MOD,Rn*/
{
R[n]=MOD;
PC+=2,
}
STCRE(longn) /*STC RE,Rn*/
{
RIN=RE;
PC+=2;
}
STCRS(longn) f*STCRS,Rn*/
{
R[n=RS;
PC+=2;
}
STCMSR(long n) #* STC.L SR,@-Rn */
{
R[n]-=4;
Write_Long(R[n],SR);
PC+=2;
}

RENESAS

229

STCMGBR(longn) /*STC.L GBR,@-Rn*/
{

Rn}-=4;

Write_Long(R[n],GBR);

PC+=2,
}
STCMVBR(longn) /*STC.L VBR,@-Rn*
{

Rn]-=4;

Write_Long(R[n],VBR);

PC+=2;
}
STCMMOD(longn) /*STC.L MOD,@-Rn*/
{

R[n]-=4;

Write_Long(R[n],MOD);

PC+=2;
}

STCMRE(long n) * STC.L RE,@-Rn */
{

R[n]-=4;

Write_Long(R[n],RE);

PC+=2;
}

STCMRS(long n) /* STC.L RS,@-Rn */
{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;
}

Examples:

STC SR,RO :Before execution:
;After execution:
:Before execution:

;After execution:

STCL GBR@-R15

230

RO = H'FFFFFFFF, SR = H'00000000
RO = H'00000000

R15 = H'10000004

R15 = H'10000000, @R15 = GBR

RENESAS

6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled
Instruction)
Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
STS MACH,Rn MACH - Rn 0000nNNN00001010 1 — O O O
STS MACL,Rn MACL - Rn 0000nNNN00011010 1 — O O O
STS PR,Rn PR - Rn 0000nnNnNn00101010 1 — O O O
STS DSR,Rn DSR - Rn 0000nnNnNn01101010 1 —_ - — O
STS AO,Rn A0 - Rn 0000nnNnn01111010 1 —_ — — O
STS XO,Rn X0-Rn 0000nnNnNn10001010 1 —_ — — O
STS X1,Rn X1-Rn 0000nNNN10011010 1 — — — O
STS YO,Rn Y0-Rn 0000nnNNN10101010 1 — — — O
STS Y1,Rn Y1-Rn 0000nnNnNn10111010 1 —_ — — O
STS.L MACH,@-Rn Rn-4 - Rn, 0100nNNN00000010 1 — O O O
MACH - (Rn)
STS.L MACL,@-Rn Rn-4 - Rn, 0100nnnn00010010 1 — O O O
MACL - (Rn)
STS.L PR,@-Rn Rn—-4 - Rn, 0100nnnNn00100010 1 — O O O
PR - (Rn)
STS.L DSR,@-Rn Rn-4 - Rn, 0100nnnn01100010 1 —_ — — O
DSR - (Rn)
STS.L A0,@-Rn Rn-4 - Rn, A0 - (Rn) 0100nnnn01100010 1 —_ — — O
STS.L X0,@-Rn Rn—4 - Rn,X0 - (Rn) 0100nnnn10000010 — — O
STS.L X1,@-Rn Rn—4 - Rn,X1 - (Rn) 0100nnnn10010010 — — O
STS.L YO0,@-Rn Rn—-4 - Rn,Y0 - (Rn) 0100nnnn10100010 — — O
STS.L Y1,@-Rn Rn—-4 - Rn,Y1 - (Rn) 0100nnnn10110010 — — O

Description: Stores data from system register MACH, MACL, or PR or DSP register DSR, A0,
X0, X1, YO, or Y1 into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address err
are accepted.

If the system register is MACH in the SH-1 series, the value of bit 9 is transferred to and stored
the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 and SH-DSP, the 32 bits of
MACH are stored directly.

231
RENESAS

Operation:

STSMACH(longn) /*STS MACH,Rn*/

{
R[N]=MACH;
if (R[n]&0x00000200)==0) For SH-1 CPU (these 2 lines not
R[n]&=0x000003FF; needed for SH-2 and SH-DSP CPU)
else R[n]|=0xFFFFFCQO;
PC+=2;
}
STSMACL(longn) /*STS MACL,Rn*
{
R[N]=-MACL,;
PC+=2;
}
STSPR(long n) *STSPR,Rn*
{
R[n]=PR;
PC+=2;
}
STSDSR(long n) /¥ STS DSR,Rn */
{
R[N=DSR;
PC+=2;
}
STSAO(long n) f*STS AO,Rn*/
{
R[n]=AQ;
PC+=2,
}
STSXO(long n) [* STS XO,Rn*/
{
R[n]=XO0;
PC+=2;
}
232

RENESAS

STSX1(long n)
{

R[N=X1;
PC+=2;
}
STSYO(long n)
{
RInI=YO;
PC+=2;
}
STSY1(long n)
{
R[n]=Y1;
PC+=2,
}

FSTS X1,Rn*/

FSTS YO,Rn*/

FSTSYLRn*

STSMMACH(ongn) /* STS.L MACH,@—Rn */

{
Rnl—=4;

if (MACH&0x00000200)==0) i
Write_Long(R[n], MACH&O0x000003FF); For SH-1 CPU

else Write_Long

(R[], MACHIOXFFFFFCO0)

Write_Long(R[n], MACH);

For SH-2 and SH-DSP CPU

I STS.L MACL,@-Rn */

PC+=2;

}

STSMMACL(long n)

{
Rn}—=4;
Write_Long(R[n],MACL);
PC+=2,

}

RENESAS

233

STSMPR(long n) /* STS.L PR,@-Rn */

{
Rlnk=4;
Write_Long(R[n],PR);
PC+=2,

}

STSMDSR(longn) /*STS.L DSR,@-Rn*/
{

R[n}=4;
Write_Long(R[n],DSR);
PC+=2,
}
STSMAO(long n) /* STS.L A0,@—Rn */
{
R[n}=4;
Write_Long(R[n],A0);
PC+=2;
}
STSMXO(long n) /* STS.L X0,@—Rn */
{
R[n}=4;
Write_Long(R[n],X0);
PC+=2;
}
STSMX1(long n) /* STS.L X1,@-Rn */
{
R[n}=4;
Write_Long(R[n],X1);
PC+=2;
}
234

RENESAS

STSMYOQ(long n) /* STS.L YO,@—Rn */
{

RIn}=4;

Write_Long(R[n],YO);

PC+=2,
}

STSMY1(long n) /* STS.L Y1,@-Rn*/
{

R[n}—=4;
Write_Long(R[n],Y1);
PC+=2;
}
Example:

:Before execution:
:After execution:

STS MACH,RO

STSL PR,@-R15 ;Before execution:
;After execution:

RO = H'FFFFFFFF, MACH = H'00000000

RO = H'00000000

R15 = H'10000004
R15 = H'10000000, @R15 = PR

RENESAS

235

6.1.64 SUB (Subtract Binary): Arithmetic Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SUB RmRn Rn-Rm - Rn 0011nnnnmmmm1000 1 — O O O

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #mm,Rn.

Operation:

SUB(long m,long n) /*SUB Rm,Rn */

{
Rn]-=R[m];
PC+=2;
}
Example:

SUB ROR1 ;Before execution: RO = H'00000001, R1 = H'80000000
;After execution: R1 = H'7FFFFFFF

236
RENESAS

6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
SUBC Rm,Rn Rn-—Rm-T - Rn, 0011nnnnmmmm1010 1 Borrow (O O O

Borrow - T

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of

data that has more than 32 bits.

Operation:

SUBC(long m,jongn) /*SUBC Rm,Rn */

{
unsigned long tmp0,tmp1;
tmp1=R[n]-R[m];
tmpO=R[n];
R[n]=tmp1-T;
if (tmpO<tmpl) T=1;
else T=0;
if (tmp1<R[n]) T=1;
PC+=2;
}
Examples:
CLRT ;RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)
SUBC R3R1 ;Before execution: T =0, R1 = H'00000000, R3 = H'00000001
;After execution: T =1, R1 = HFFFFFFFF
SUBC R2R0 ;Before execution: T =1, RO = H'00000000, R2 = H'00000000
;After execution: T =1, RO = HFFFFFFFF

237
RENESAS

6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
SUBV Rm,Rn Rn—-Rm - Rn, 0011nnnnmmmm1011 1 Underflow O O O

underflow - T

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,jongn) /*SUBV Rm,Rn*/
{

long dest,src,ans;

if (long)R[N]>=0) dest=0;

else dest=1;

if (long)R[M]>=0) src=0;

else src=1;

src+=dest;

R[n-=R[m];

if (long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {
if (ans==1) T=1;
else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV ROR1 ;Before execution: RO = H'00000002, R1 = H'80000001
:After execution: R1 =H7FFFFFFF, T=1

SUBV R2R3 ;Before execution: R2 = HFFFFFFFE, R3 = H7FFFFFFE
;After execution: R3 = H'80000000, T=1

238
RENESAS

6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
SWAP.B Rm,Rn Rm - Swap upper and lower 0110nnnnmmmm1000 1 — O O O
halves of lower 2 bytes — Rn
SWAP.W Rm,Rn Rm - Swap upper and lower 0110nnnnmmmm1001 1 — O O O
word - Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 b
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,longn) #* SWAP.B Rm,Rn */
{

unsigned long temp0,temp1;

temp0=R[m]&OXffff0000;
temp1=(R[m]&0x000000ff)<<8;
RIn}=(R[m]>>8)&0x000000ff;
R[n}=R[n]itemp1jtempo0;
PC+=2,

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn*/
{
unsigned long temp;
temp=(R[m]>>16)&0x0000FFFF;
R[n]=R[m]<<16;
R[n]|=temp;
PC+=2;

239
RENESAS

Examples:

SWAPB ROR1 ;Before execution:

:After execution:

SWAPW ROR1 ;Before execution:

:After execution:

240

RO = H'12345678
R1 = H'12347856

RO = H'12345678
R1 = H'56781234

RENESAS

6.1.68 TAS (Test and Set): Logic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
TAS.B @Rn When (Rn)is0,1 - T,1 - 0100nnnn00011011 4 Test O O O

MSB of (Rn) results

Description: Reads byte data from the address specified by general register Rn, and sets the T |
to 1 if the data is O, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) [*TAS.B @Rn*/

{
long temp;
temp=(long)Read_Byte(R[n]); [* Bus Lock enable */
if (temp==0) T=1,
else T=0;
temp|=0x00000080;
Write_Byte(R[n],temp); /*Bus Lock disable */
PC+=2;

}

Example:
_LOOP TASB @R7 ;R7 =1000
BF _Loor ;Loops until data in address 1000 is 0

241
RENESAS

6.1.69 TRAPA (Trap Always): System Control Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
TRAPA #mm PC/SR - Stack area, 1100001 Tiiiiiii 8 — O O O

(imm x 4 + VBR) - PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack
and the program branches to an address specified by the vector. The vector is a memory addres
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC is the start
address of the next instruction. TRAPA and RTE are both used together for system calls.

Operation:

TRAPA(long i) /* TRAPA #mm */
{

long imm;

imm=(0x000000FF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC-2);

PC=Read_Long(VBR+(imm<<2))+4;
}

Example:

Address
VBR+H80 .datal 10000000 ;

TRAPA #H'20 ;Branches to an address specified by data in address VBR +
H'80
TST #0,R0 ; « Return address from the trap routine (stacked PC value)
100000000 XOR RO,RO ; — Trap routine entrance
100000002 RTE ;Returns to the TST instruction
100000004 NOP ;Executes NOP before RTE

242
RENESAS

6.1.70 TST (Test Logical): Logic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle T Bit SH-1 SH-2 DSP
TST Rn & Rm, when resultis ~ 0010nnnnmmmm1000 1 Test O O O
Rm,Rn 0,1-T results
TST RO & imm, when resultis ~ 11001000iiiiiiii 1 Test O O O
#imm,RO 0,1-T results
TST.B (RO + GBR) & imm, 11001100iiiiiii 3 Test O O O
#imm, whenresultis0,1 - T results
@(RO,GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is O or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-k
immediate data. The RO and memory data do not change.

Operation:

TST(long m,long n) FTST Rm,Rn*/

{
if (R[N]&R[M])==0) T=1;
else T=0;
PC+=2;
}
TSTl(longi) /*TEST #mm,R0 */
{
long temp;
temp=R[0]&(0x000000FF & (long)i);
if (temp==0) T=1,
else T=0;
PC+=2;
}

243
RENESAS

TSTM(longi) /* TST.B #mm,@(RO,GBR)

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp&=(0xO00000FF & (long)i);
if (temp==0) T=1;
else T=0;
PC+=2;
}
Examples:
TST RO,RO :Before execution: RO = H'00000000
;After execution: T=1
TST #H'80,RO :Before execution: RO = H'FFFFFF7F
;After execution: T=1
TST.B #HA5@(R0O,GBR) ;Before execution: @(R0,GBR) = H'A5
:After execution: T=0
244

RENESAS

6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction

Applicable
Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
XOR Rn”~Rm - Rn 0010nnnnmmmm1010 1 — O O O
Rm,Rn
XOR RO~ imm - RO 1100104 0iiiiii 1 — O O O
#imm,RO
XOR.B (RO + GBR) Aimm - 11001110Qiiiiiiiii 3 — O O O

#mm,@(RO,GBR) (RO + GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result il
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusiv
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) *XOR Rm,Rn*/

{
R[n*=R[m];
PC+=2,

}

XORI(longi) /*XOR #imm,RO*/

{
R[0]"=(0x000000FF & (long)i);
PC+=2;

}

XORM(longi) /*XOR.B #imm,@(R0,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp”=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

245
RENESAS

Examples:
XOR RO,R1 ;Before execution: RO = HAAAAAAAA, R1 = H'55555555
;After execution: R1 = H'FFFFFFFF

XOR #HFO,RO ;Before execution: RO = H'FFFFFFFF
;After execution: RO = H'FFFFFFOF

XORB #HA5@(R0O,GBR) ;Before execution: @(R0O,GBR) = H'A5
;After execution; @(R0O,GBR) = H'00

246
RENESAS

6.1.72 XTRCT (Extract): Data Transfer Instruction

Applicable

Instructions
T SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
XTRCT Rm,Rn Rm: Center 32 bits ~ 0010nnnnmmmm1101 1 — O O O

of Rn - Rn

Description: Extracts the middle 32 bits from the 64 bits of coupled general registers Rm and Rr
and stores the 32 bits in Rn (figure 6.14).

MSB LSB MSB LSB
Rm | | Rn

Rn

Figure 6.14 Extract
Operation:

XTRCT(long mlong n) /* XTRCT Rm,Rn */

{
unsigned long temp;
temp=(R[m]<<16)&0xFFFF0000;
R[n]=(R[n]>>16)&0x0000FFFF;
R[n]|=temp;
PC+=2,

}

Example:

XTRCT ROR1 ;Before execution: RO =H'01234567, R1 = H'89ABCDEF
;After execution: R1 = H'456789AB

247
RENESAS

6.2 DSP Data Transfer Instructions

Table 6.3 lists the DSP data transfer instructions in alphabetical order.

Table 6.3 DSP Data Transfer Instructions in Alphabetical Order
Applicable
Instructions
DC SH-
Instruction ~ Operation Code Cycles Bit SH-1 SH-2 DSP
MOVS.L As—4 -, As,(As) - Ds 111101AADDDD0010 1 — — — O
@-As,Ds
MOVS.L (As) - Ds 111101AADDDDO0110 1 — — — O
@As,Ds
MOVS.L (As) -~ Ds,As+4 - As 111101AADDDD1010 1 — — — O
@As+,Ds
MOVS.L (As) - Ds,As+Ix - As 111101AADDDD1110 1 — — — O
@As+Ix,Ds
MOVS.L As—4 -, As,Ds - (As) 111101AADDDDO0011 1 —_ —_ — O
Ds,@-As
MOVS.L Ds - (As) 111101AADDDDO111 1 — — — O
Ds,@As
MOVS.L Ds - (As),As+4 - As 111101AADDDD1011 1 — — — O
Ds,@As+
MOVS.L Ds - (As),As+Ix - As 111101AADDDD1111 1 — — — O
Ds,@As+Ix
MOVS.W As-2 - As,(As) - MSW of 111101AADDDDO0000 1 — — — O
@-As,Ds Ds,0-LSW of Ds
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDD0100 1 — — — O
@As,Ds Ds
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDD1000 1 —_ —_ — O
@As+,Ds Ds, As+2 - As
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDD1100 1 — — — O
@As+Ix,Ds Ds, As+Ix - As
MOVS.W As-2 -, As,MSW of Ds - (As) 111101AADDDD0001 1 — — — O
Ds,@-As
MOVS.W MSW of Ds - (As) 111101AADDDDO0101 1 — — — O
Ds,@As
MOVS.W MSW of Ds - (As),As+2 - As 111101AADDDD1001 1 — — — O
Ds,@As+
MOVS.W MSW of Ds - (As),As+Ix - As 111101AADDDD1101 1 — — — O
Ds,@As+Ix
MOVX.W (AX) - MSW of Dx,0 - LSW of 111100A*D*0*Q1** 1 —_ —_ — O
@AX,Dx Dx
MOVX.W (AX) - MSW of Dx,0 - LSW of 111100A*D*0*10** 1 — — — O
@AXx+,Dx Dx,Ax+2 - AX
248

RENESAS

Table 6.3

DSP Data Transfer Instructions in Alphabetical Order (cont)

Applicable
Instructions
DC SH-
Instruction ~ Operation Code Cycles Bit SH-1 SH-2 DSP
MOVX.W (AX) - MSW of Dx,0 - LSW of 111100A*D*0*11** 1 —_ O O
@AX+Ix,Dx Dx,Ax+Ix - Ax
MOVX.W MSW of Da - (AX) 111100A*D*1*01** 1 — 0O O O
Da,@Ax
MOVX.W MSW of Da - (Ax),Ax+2 - AX 111100A*D*1*10** 1 — 0O O O
Da,@Ax+
MOVX.W MSW of Da - (AX),Ax+IX > Ax 111100A*D*1*11** 1 — 0O O O
Da,@Ax+Ix
MOVY.W (Ay) -~ MSW of Dy,0LSW of 111100*A*D*0**01 1 — O O O
@Ay,Dy Dy
MOVY.W (Ay) > MSW of Dy,0LSW of 111100*A*D*0**10 1 — O O O
@Ay+,Dy Dy, Ay+2 - Ay
MOVY.W (Ay) > MSW of Dy,0LSW of ~ 111100*A*D*0**11 1 — O O O
@Ay+ly,Dy Dy, Ay+ly Ay
MOVY.W MSW of Da - (Ay) 111100*A*D*1**01 1 — 0O O O
Da, @Ay
MOVY.W MSW of Da - (Ay),Ay+2 - Ay 111100*A*D*1**10 1 — 0O O O
Da,@Ay+
MOVY.W MSW of Da— (Ay),Ay+ly = Ay 111100*A*D*1**11 1 — 0O O O
Da,@Ay+ly
NOPx No Operation 1111000*0*0*00** 1 — O O O
NOPY No Operation 111100*0*0*0**00 1 — O O O
Note: MSW = High-order word of operand

LSW = Low-order word of operand

6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W)

These instructions use the XDB and YDB buses to access X and Y memory. Areas other than X
and Y memory cannot be accessed. Memory is accessed in word units. Since independent bus
used, it does not create access contention with instruction fetches (using the Main buses).

X and Y data transfer instructions are executed regardless of conditions even when the data
operation instruction executed in parallel has conditions.

Figure 6.15 shows the load and store operations in X and Y data transfers.

249
RENESAS

31 0 31 0
Instruction code R4 [AX] R6 [Ay] Instruction code
for X data transfer R5 [Ax] R7 [Ay] forY data transfer
operation operation
DSP data 2 15 1 15 1 v v DSP data
register register
XO/X1, AO/AL < iontrol for <—| ABXx | | ABy |—’ Control for > YO/Y1, AO/AL
input/output memory | {7‘ Y memory input/output
control control
XAB 15 bits
YAB 15 bits
X_MEM Y_MEM
™ Xdata Y data [*
memory memory |
X RIW 4 kbytes 4 kbytes Y RW
16 bits
XDB
YDB
16 bits

X_MEM, Y_MEM: Select signals for X and Y data memory

Figure 6.15 Load and Store Operations in X and Y Data Transfers

X memory data transfer operation is shown below. Y memory data transfers are the same.

if (INOP) {
X_MEM=1; XAB=ABx; X RIW=1,
if (load operation) {
DX[31:16]=XDB;
DX[15:0] =0x0000; /* Dxis X0 or X1 */
}
else {XDB=Dx[31:16];X RMW=0;} /*Dxis AO or A1 */
}
else { X_MEM=0; XAB=Unknown; }

250
RENESAS

6.2.2 Single Data Transfers (MOVS.W and MOVS.L)

Single data transfers are instructions that load to and store from the DSP register. They are like
system register load and store instructions. Data transfers between the DSP register and memao
use the main buses. Like CPU core instructions, data accesses can create access contention w
instruction memory accesses.

Single data transfers can use either word or longword data. Figure 6.16 shows the load and stol
operations in single data transfers.

31 0 Instruction code for single
R2 [As] data transfer operation
b BEEETMEREE
R4 [As 1 1
R5 [As
31] 0 Control is f
MAB SHcore |
YvYy
32 bits < >
IAB Control)
—— DSP data register
input/output control
Memory
o <L
32 bits

|AB, IDB: Main buses

Figure 6.16 Load and Store Operations in Single Data Transfers

Load and store operations in single data transfers are shown below.

IAB = MAB;
if (Ms!I=NLS @@ WIL is word access {* MOVS.W */
if (LS==load) {
if (DS!=A0G @@ Ds!=A1GY{
Ds[31:16] = IDB[15:0]; Ds[15:0] = 0x0000;
if (Ds==A0) AOG[7:0] = IDB[15];
if (Ds==A1) A1G[7:0] = IDB[15];

}

else Ds[7:0] = IDB[7:0] /*Dsis AOG or A1G */
}
else { /* Store */

251
RENESAS

if (DSI=A0G @@ Ds!=A1G) IDB[15:0] = Ds[31:16];
[*Dsis AOG or A1G */
else IDB[15:0] = Ds[7:0] with 8-bit sign extension

}
else if(MAI=NLS @@ WIL is longword access) { * MOVS.L */
if (LS==load {
if (Ds!=A0G @@ Ds!=A1G) {
Ds[31:0] = IDB[31.0];
if (Ds==A0) AOG[7:0] = IDB[31];
if (Ds==A1) A1G[7:0] = IDB[31];
}
else Ds[7:0] = IDB[7:0] f*Dsis AOG or A1G */
}
else { /* Store */
if (DS!I=A0G @@ Ds!=A1G) IDB[31:0] = Ds[31:0]
[*Dsis AOG or A1G */
else IDB[31:0] = Ds[7:0] with 24-bit sign extension

6.2.3 Sample Description (Name): Classification

This section explains the breakdown of instructions, descriptions, etc.

section (section 12).

Table 6.4 Sample Description (Name): Classification

given in the rest of this

Applicable
Format Abstract Code Cycle DC Bit Instructions
Assembler A brief Displayedin All DSP The status of Indicates whether
input format. description order MSB ~ instructions the DC bit after the instruction
of operation LSB execute in the instruction applies to the SH-1,
1 cycle is executed SH-2, or SH-DSP.

Format:
[if cc] OP.Sz SRC1,SRC2,DEST

[if cc]: Condition (unconditional, DCT, or DCF)
OP: Operation code

252

RENESAS

Sz: Size

SRC1: Source 1 operand
SRC2: Source 2 operand
DEST: Destination

Table 6.5 Operation Summary

Operation Description

S, e Direction of transfer

(xx) Memory operand

DC Flag bits in the DSR

& Logical AND of each bit

| Logical OR of each bit

A Exclusive OR of each bit

~ Logical NOT of each bit

<<n, >>n n-bit shift

MSW Most significant word (bits 16-31)
LSW Least significant word (bits 0-15)
[n1:n2] Bits n1 to n2

Instruction Code: Shows the source register and destination register.
X Data Transfer Instructions:

A(AX): 0=R4, 1=R5
D(destination, Dx): 0=X0, 1=X1
D (source, Da): 0=A0, 1=A1

Y Data Transfer Instructions:

A(Ay): 0=R6, 1=R7
D(destination, Dy): 0=YO0, 1=Y1
D (source, Da): 0=A0, 1=A1

Single Data Transfer Instructions:

AA(As): 0=R4, 1=R5, 2=R2, 3=R3
DDDD(Ds): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, D=A1G, E=M1
F=A0G

253
RENESAS

DSP Operation Instructions:

ee(Se): 0=X0, 1=X1, 2=Y0, 3=A1

ff(Sf): 0=Y0, 1=Y1, 2=X0, 3=Al

xX(Sx): 0=X0, 1=X1, 2=A0, 3=A1

yy(Sy): 0=Y0, 1=Y1, 2=M0, 3=M1

gg(Dg): 0=M0, 1=M1, 2=A0, 3=A1

uu(Du): 0=X0, 1=Y0, 2=A0, 3=A1

zzzz(Dz): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, E=M1

DC Bit:

Update: Updated according to the operation result and the specifications of the CS (condition
select) bits.
—: Not updated.

Description: Description of operation
Notes: Notes on using the instruction
Operation: Operation written in C language.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction.

254
RENESAS

6.2.4 MOVS (Move Single Data between Memory and DSP Register): DSP Data
Transfer Instruction
Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOVS.W As-2 - As,(As) - MSW of 111101AADDDDO0000 1 — — — O
@-As,Ds Ds,0-LSW of Ds
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDDO0100 1 — — — O
@As,Ds Ds
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDD1000 1 — — — O
@As+,Ds Ds, As+2 - As
MOVS.W (As) - MSW of Ds,0 - LSW of 111101AADDDD1100 1 — — — O
@As+Ix,Ds Ds, As+Ix—As
MOVS.W As-2 - As,MSW of Ds - (As) 111101AADDDDO0001 1 — — — O
Ds,@-As
MOVS.W MSW of Ds - (As) 111101AADDDDO0101 1 — — — O
Ds,@As
MOVS.W MSW of Ds - (As),As+2 - As 111101AADDDD1001 1 — — — O
Ds,@As+
MOVS.W MSW of Ds - (As),As+IX - As 111101AADDDD1101 1 — — — O
Ds,@As+Ix
MOVS.L As—4 - As,(As) - Ds 111101AADDDDO0010 1 — — — O
@-As,Ds
MOVS.L (As) - Ds 111101AADDDDO0110 1 — — — O
@As,Ds
MOVS.L (As) - Ds,As+4 - As 111101AADDDD1010 1 — — — O
@As+,Ds
MOVS.L (As) - Ds,As+Ix - As 111101AADDDD1110 1 — — — O
@As+Ix,Ds
MOVS.L As—4 -, As,Ds - (As) 111101AADDDDO0011 1 — — — O
Ds,@-As
MOVS.L Ds - (As) 111101AADDDDO0111 1 — — — O
Ds,@As
MOVS.L Ds - (As),As+4 - As 111101AADDDD1011 1 — — — O
Ds,@As+
MOVS.L Ds - (As),As+Ix - As 111101AADDDD1111 1 — — — O
Ds,@As+Ix

Description: Transfers the source operand data to the destination. Transfer can be from memon
to register or register to memory. The transferred data can be a word or longword. When a worc
transferred, the source operand is in memory, and the destination operand is a register, the wor
data is loaded to the top word of the register and the bottom word is cleared with zeros. When tt
source operand is a register and the destination operand is memory, the top word of the registe

RENESAS

255

stored as the word data . In a longword transfer, the longword data is transferred. When the
destination operand is a register with guard bits, the sign is extended and stored in the guard bits

Note: When one of the guard bit registers AOG and A1G is the source operand for store
processing, the data is output to the bottom 8 bits (bits 0—7) and the top 24 bits (bits 31-8
become undefined.

Operation: See figure 6.17.

Word data transfer

Memory to register Register to memory
31 o =20 31 0 -2,0,

| As @ +2, +Ix | As @ +2, +Ix

4 \d
| Any memory area |Post update | Any memory area | Post update

IDB[15:0]]
Sign extension ¢ Cleared ‘
le—|S| Ds All0 | | | bs Ignored |
31 16 15 0 31 16 15 0
Longword data transfer
Memory to register Register to memory
31 0o 40, 31 0 -4,0,

| As @ +4, +lx | As @ +4, +Ix

A4

y
["Any memory area | Postupdate [~aAny memory area | POSt update
A

IDB[31:0]
Sign extension v !
1S Ds | L] Ds |
31 0 31 0
IDB: Main bus

Figure 6.17 The MOVS Instruction
Examples:

MOVSW @R4+A0 ;Before execution: R4=H'00000400, @R4=H'8765,
AO=H'123456789A

;After execution: R4=H'00000402, AO=H'FF87650000
MOVSL Al,@-R3 ;Before execution: R3=H'00000800, A1=H'123456789A

256
RENESAS

;After execution: R3=H'000007FC, @(H'000007FC)=H'3456789A

6.2.5 MOVX (Move between X Memory and DSP Register): DSP Data Transfer

Instruction
Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOVX.W @AXx,Dx (AX) - MSW of Dx, 111100A*D*0*Q1** 1 — — — O
0-LSW of Dx
MOVX.W @Ax+,Dx (Ax) - MSW of Dx, 111100A*D*0*10** 1 — — — O
0-LSW of Dx,Ax+2 - Ax
MOVX.W (AX) - MSW of Dx, 111100A*D*Q*11** 1 —_ —_ — O
@AX+Ix,Dx 0-LSW of Dx,Ax+Ix - AX
MOVX.W Da,@Ax MSW of Da - (AXx) 111100A*D*1*Q1** 1 — — — O
MOVX.W Da,@Ax+ MSW of Da - (Ax), 111100A*D*1*10** 1 — — — O
Ax+2 - AX
MOVX.W MSW of Da - (Ax), 111100A*D*1*11** 1 — — — O
Da, @AXx+Ix AX+IX - AX

Note: "*" of the instruction code is MOVY instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be fron
memory to register or register to memory. The transferred data can only be word length for X
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation: See figure 6.18.

Memory to register Register to memory
31 0 0, +2 31 0 0, +2
)
A\ Y
| X memory |Post update | X memory | Post update
XDB[15:0] 4
v Cleared i
[si bx | Alo | | | pa [ignored]
31 16 15 0 31 16 15 0

Figure 6.18 The MOVX Instruction

Examples:

257
RENESAS

MOVXW @R4+XBefore execution: R4=H'08010000, @R4=H'5555, X0=H'12345678
;After execution: R4=H'08010002, X0=H'55550000

6.2.6 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer

Instruction
Applicable
Instructions
DC SH-

Format Abstract Code Cycle Bit SH-1 SH-2 DSP
MOVY.W (Ay) -~ MSW of Dy,0 - LSW of 111100*A*D*0**01 1 — - — O
@Ay,Dy Dy
MOVY.W (Ay) -~ MSW of Dy,0 - LSW of 111100*A*D*0**10 1 — - — O
@Ay+,Dy Dy, Ay+2 - Ay
MOVY.W (Ay) -~ MSW of Dy,0 - LSW of 111100*A*D*0**11 1 — - — O
@Ay+ly,Dy Dy, Ay+ly - Ay
MOVY.W MSW of Da - (Ay) 111100*A*D*1**01 1 — - — O
Da,@Ay
MOVY.W MSW of Da - (Ay),Ay+2 - Ay 111100*A*D*1**10 1 — - — O
Da,@Ay+
MOVY.W MSW of Da - (Ay),Ay+ly - Ay 111100*A*D*1**11 1 — - — O
Da,@Ay+ly

Note: "*" of the instruction code is MOVX instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for Y
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation:

See figure 6.19.

258
RENESAS

Memory to register Register to memory
31 0 31 0

0, +2, 0, +2,
| Ay ®+|+y | Ay @ oy

A 4 Y

| Y memory |Post update | Y memory | Post update
YDB[15:0] “
v Cleared 1
[si Dby | Ao | | | Dpa [ignored|
31 16 15 0 31 16 15 0

Figure 6.19 The MOVY Instruction
Examples:

MOVY.W A0, @R6+,R9 :Before execution: R6=H'08020000, R9=H'00000006,
AO=H'123456789A

;After execution: R6=H'08020006, @(H'08020000)=H'3456

259
RENESAS

6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
NOPX No Operation 1111000*0*0*00** 1 —_ - — O

Description: No access operation for X memory.

6.2.8 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
NOPY No Operation 111100*0*0*0**00 1 —_- — — O

Description: No access operation for Y memory.

260
RENESAS

6.3 DSP Operation Instructions

The DSP operation instructions are listed below in alphabetical order. See section 6.2.3, Sampl
Descriptions (Name): Classification, for an explanation of the format and symbols used in this
description.

Table 6.6 Alphabetical Listing of DSP Operation Instructions
Applicable
Instructions
SH-
Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
PABS Sx,Dz If Sx=0, Sx-Dz 11122Q%**rreex 1 Update — — O
If Sx<0, 0-Sx »Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0, Sy-Dz 11111 Qwssrscions 1 Update — — O
If Sy<0, 0-Sy Dz 1010100000yyzzzz
PADD Sx+ Sy-Dz 11111 Q**rkkkrx 1 Update — —_ O
Sx,Sy,bz 10110001xxyyzzzz
DCT PADD IfDC =1, Sx + Sy - Dz; 11117 Q%**kkrrrx 1 — — — O
Sx,Sy,bz if 0, nop 10110010xxyyzzzz
DCF PADD If DC =0, SX + Sy-Dz; 11122Q%* ek 1 —_ — —_ O
Sx,Sy,Dz if 1, nop 10110011xxyyzzzz
PADD Sx + Sy - Du; 11117 Q%**kkrrrx 1 Update* — — O
Sx,Sy,Du
PMULS MSW of Se x MSW of Sf-Dg 0111eeffxxyygguu
Se,Sf,Dg
PADDC Sx+ Sy +DC-Dz 11122 Q%**kkrrex 1 Update — — O
Sx,Sy,bz 10110000xxyyzzzz
PAND SX & Sy -»Dz; clear LSW of Dz 1111 10***skiik 1 Update — — O
Sx,Sy,bz 10010101xxyyzzzz
DCT PAND If DC =1, SX & SY 5Dz, clear 111110** ki 1 — — — O
Sx,Sy,Dz LSW of Dz; if 0, nop 10010110xxyyzzzz
DCF PAND If DC =0, SX & SY - Dz, clear 11111Q**¥kkkex 1 — — — O
Sx,Sy,Dz LSW of Dz; if 1, nop 10010111xxyyzzzz
PCLR Dz H'00000000 - Dz 11122 Q%**kkrrxx 1 Update — — O
100011010000zzzz
DCT PCLR Dz If DC = 1, H'00000000 -Dz; 11111 Q***kkkkekekek 1 — — — O
if 0, nop 100011100000zzzz
DCF PCLR Dz If DC = 0, H'00000000 - Dz; 11122 Q%**kkrrxx 1 — — — O
if 1, nop 100011110000zz2z
261

RENESAS

Table 6.6

Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
PCMP Sx,Sy Sx - Sy 11112Q%* ek 1 Update — — O
10000100xxyy0000
PCOPY Sx,Dz Sx-Dz 11211 Q***kkkkk 1 Update — — O
11011001xx00zzzz
PCOPY Sy,Dz Sy-Dz 11111 Qrsssns 1 Update — — O
1111100100yyzzzz
DCT PCOPY If DC =1, Sx - Dz; if 0, nop 11112 Q%**rrrrnk 1 — — — O
Sx,bz 11011010xx00zzzz
DCT PCOPY IfDC =1, Sy - Dz; if 0, nop 11112 Q%**rrkrrex 1 — — — O
Sy.Dz 1111101000yyzzzz
DCF PCOPY If DC =0, Sx - Dz; if 1, nop 11112Q%**rrrrex 1 — — — O
Sx.bz 11011011xx00zzz2
DCF PCOPY If DC =0, Sy - Dz; if 1, nop 11112Q%**rrrerex 1 — — — O
Sy.bz 1111101100yyzzzz
PDEC Sx,Dz MSW of Sx—1 -~ MSW of Dz, 11211 Q***kkkkk 1 Update — — O
clear LSW of Dz 10001001xx002222
PDEC Sy,Dz MSW of Sy-1 - MSW of Dz, 11211 Q¥***kkkkkk 1 Update — — O
clear LSW of Dz 10101001xx002222
DCT PDEC If DC = 1, MSW of Sx-1 - 11112 Q%**rrrrnk 1 — — — O
Sx,Dz MSW of Dz, clear LSW of Dz; 10001010xx002222
if 0, nop
DCT PDEC If DC = 1, MSW of Sy-1 -, 11112 Q%**rrkrrnx 1 — — — O
Sy,Dz MSW of Dz, clear LSW of Dz; 10101010xx002222
if 0, nop
DCF PDEC If DC = 0, MSW of Sx-1 - 11112Q%**rrrrrex 1 — — — O
Sx,Dz MSW of Dz, clear LSW of Dz; 1000101 1xx002222
if 1, nop
DCF PDEC If DC = 0, MSW of Sy-1 - 111120%* ek 1 — — — O
Sy,Dz MSW of Dz, clear LSW of Dz; 1010101 1xx002227
if 1, nop
PDMSB Sx,Dz Sx data MSB position - MSW 1111]1Q*xiwkkex 1 Update — — O
of Dz, clear LSW of Dz 10011101xx002227
PDMSB Sy,Dz Sy data MSB position - MSW 11111Q%***¥kkkkx 1 Update — — O
of Dz, clear LSW of Dz 1011110100yyzzzz
262

RENESAS

Table 6.6

Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions
SH-

Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
DCT PDMSB If DC = 1, Sx data MSB 11111 Q**rrrkkkrx 1 — — — O
Sx,Dz position - MSW _of Dz, 10011110xx002227

clear LSW of Dz; if 0, nop
DCT PDMSB If DC = 1, Sy data MSB 11112 Q% *kkrkork 1 — — — O
Sy,Dz position - MSW Qf Dz, 1011111000yyzzzz

clear LSW of Dz; if 0, nop
DCF PDMSB If DC = 0, Sx data MSB 11112 Q% krkrx 1 — — — O
Sx,Dz position - MSW pf Dz, 10011111xx002227

clear LSW of Dz; if 1, nop
DCF PDMSB If DC = 0, Sy data MSB 11117 Q%**kkrrrx 1 — — — O
Sy,Dz position - MSW pf Dz, 1011111100yyzzz2

clear LSW of Dz; if 1, nop
PINC Sx,Dz MSW of Sx + 1 - MSW of Dz, 111110Q****kkkkx 1 Update — — O

clear LSW of Dz 10011001xx00zzzz
PINC Sy,Dz MSW of Sy + 1 -~ MSW of Dz, 111110Q%***¥kkkkx 1 Update — — O

clear LSW of Dz 1011100100yyzzzz
DCT PINC IfDC=1, MSWofSx+1- 11111 Q**rrrkkkrx 1 — — — O
Sx,Dz il}/lgvxoog Dz, clear LSW of Dz; 10011010xx002227
DCT PINC IfDC=1 MSWofSy+1- 11112 Q% *kkkrkcrk 1 — — — O
Sy,Dz il\f/lg\/\r:OoF;‘ Dz, clear LSW of Dz; 1011101000yyzzzz
DCF PINC IfDC =0, MSWof Sx +1 - 11112 Q%**krkrx 1 — — — O
Sx,Dz il\f/lf\l\rioopf Dz, clear LSW of Dz; 10011011xx002227
DCF PINC IfDC=0,MSWof Sy +1 - 11111 Q% rrrkdkrck 1 — — — O
Sy,Dz il\f/lfvr\:oopf Dz, clear LSW of Dz; 1011101100yyzzzz
PLDS Dz -~ MACH 11111 Q**rrwkkkrk 1 — — — O
Dz, MACH 111011010000zzzz
PLDS Dz -~ MACL 11111 Q**kkkkrx 1 — — — O
Dz,MACL 111111010000zzzz
DCT PLDS If DC = 1, Dz - MACH,; 11111 Q**rrkkkrx 1 — — — O
Dz, MACH if 0, nop 111011100000zzzz
DCT PLDS IfDC =1, Dz - MACL; 11112 Q% *kkrckork 1 — — — O
Dz,MACL if 0, nop 111111100000z222
DCF PLDS If DC = 0, Dz - MACH; 11112 Q% *kkrkrx 1 —_ — —_ O
Dz,MACH if 1, nop 111011110000zz22

263

RENESAS

Table 6.6

Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions
SH-
Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
DCF PLDS If DC = 0, Dz - MACL; 11112Q%* ek 1 — — — O
Dz,MACL if 1, nop 111111110000zzzz
PMULS MSW of Se x MSW of Sf-Dg ~ 111110***rxrkkex 1 — — — O
Se,Sf.Dg 0100eeff0000gg00
PNEG Sx,Dz 0-Sx - Dz 11211 Q¥***kkkkkk 1 Update — — O
11001001xx00zzzz
PNEG Sy,Dz 0-Sy - Dz; 111110tk 1 Update — — O
1110100100yyzzzz
DCT PNEG IfDC=1,0-Sx-Dz; 11112 Q%**rrkrrex 1 — — — O
Sx,.Dz if 0, nop 11001010xx00zzzz
DCT PNEG IfDC=1,0-Sy-Dz; 11112Q%**rrrrex 1 — — — O
Sy.bz if 0, nop 1110101000yyzzzz
DCF PNEG If DC=0,0-Sx-Dz; 11112Q%**rrrerex 1 — — — O
Sx,bz if 1, nop 11001011xx00zz22
DCF PNEG IfDC=0,0-Sy-Dz; 11211 Q***kkkkk 1 — — — O
Sy.bz if 1, nop 1110101100yyzzzz
POR Sx | Sy—Dz, clear LSW of Dz =~ 111110***kiik 1 Update — — O
Sx,Sy,Dz 10110101xxyyzzzz
DCT POR If DC = 1, Sx|Sy - Dz, 11112 Q%**rrrrnk 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110xxyyzzzz
DCF POR If DC = 0, Sx|Sy - Dz, 11112 Q%**rrkrrnx 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzzzz
PRND Sx,Dz Sx + H'00008000 - Dz, 11112Q%**rrrrrex 1 Update — — O
clear LSW of Dz 10011000xx00zzzz
PRND Sy,Dz Sy + H'00008000 - Dz, 111120%* ek 1 Update — —_ O
clear LSW of Dz 1011100000yyzzzz
PSHA If Sy=0, Sx<<Sy - Dz; 11211 Q***kkkkk 1 Update — —_ O
Sx,Sy,Dz if Sy<0, Sx>>Sy Dz 10010001xxyyzzzz
DCT PSHA If DC = 1 & Sy=0, SX<<Sy -»Dz; 111110 ****xxxx 1 e e — O
Sx,Sy,Dz ?f DC =1 & Sy<0, Sx>>Sy - Dz, 10010010xxyyzzzz
if DC = 0, nop
264

RENESAS

Table 6.6

Alphabetical Listing of DSP Operation Instructions (cont)

Applicable
Instructions
SH-

Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
DCF PSHA If DC = 0 & Sy=0, SX<<Sy - Dz; 11111Q****kkkkkx 1 — — — O
Sx,Sy,Dz :I Bg = 2 8;1 §g<0’ Sx>>8y-Dz; 10010011xxyyzz22
PSHA If imm=0, Dz<<imm - Dz; I O bbbl 1 Update — — O
#imm,Dz if imm<0, Dz>>imm - Dz 0000Qiiiiiiizzzz
PSHL If Sy=0, Sx<<Sy - Dz, 11111 0%k 1 Update — — O
Sx,Sy,Dz clear LSW of Dz; if Sy<0, 10000001xxyyzzzz

Sx>>Sy - Dz, clear LSW of Dz
DCT PSHL If DC=1 & Sy=0, SX<<Sy - Dz, 11111Q****kkkkix 1 — — — O
Sx,Sy,Dz c_Iear LSW of Dz; 10000010xxyyzzz2

if DC=1 & Sy<0, Sx>>Sy - Dz,

clear LSW of Dz; if DC=0, nop
DCF PSHL If DC=0 & Sy=0, SX<<Sy — Dz, 11111(Q****kkkkkx 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if DC=0 & 10000011xxyyzzz7

Sy<0, Sx>>Sy - Dz, clear LSW

of Dz; if DC=1, nop
PSHL If imm=0, Dz<<imm - Dz, clear 11111Q****¥kkkkx 1 Update — — O
#imm,Dz LSW of Dz; if imm<0, Dz>>imm 00010iiiiiiizzzz

- Dz, clear LSW of Dz
PSTS MACH - Dz 11111 Qrrreesbnns 1 — - — 0O
MACH,Dz 1100110100002zzz
PSTS MACL - Dz 11111 Q**kkkkrk 1 — — — O
MACL,Dz 110111010000zzzz
DCT PSTS If DC=1, MACH - Dz;if 0, nop 11111(Q****kkkkkx 1 — — — O
MACH,Dz 1100111000002zzz
DCT PSTS If DC=1, MACL - Dz;if 0, nop 11111Q%****sxxi 1 — — — O
MACL,Dz 1101111000002z22
DCF PSTS If DC =0, MACH - Dz; 11112 Q%**krkrx 1 —_ — —_ O
MACH,Dz if1, nop 110011110000zz2z
DCF PSTS If DC =0, MACL - Dz; 11111 Q% rrrkdkrck 1 — — — O
MACL.Dz if1,nop 110011110000zzzz

265

RENESAS

Table 6.6 Alphabetical Listing of DSP Operation Instructions (cont)
Applicable
Instructions
SH-
Instruction Operation Code Cycles DCBit SH-1 SH-2 DSP
PSUB Sx-Sy - Dz 11112Q%* ek 1 Update — — O
Sx,Sy,bz 10100001xxyyzzzz
DCT PSUB IfDC =1, Sx — Sy - Dz; 11211 Q***kkkkk 1 — — — O
Sx,Sy,Dz if 0, nop 10100010xxyyzzzz
DCF PSUB If DC =0, Sx — Sy - Dz; 11211 Q¥***kkkkkk 1 — — — O
Sx,Sy,Dz if 1, nop 10100011xxyyzzzz
PSUB Sx — Sy - Du; 11211 Q*wkkckn 1 Update — — O
Sx,Sy,Du MSW of Se x MSW of Sf-Dg 0110eeffxxyygguu
PMULS
Se,Sf,Dg
PSUBC Sx-Sy-DC - Dz 11211 Q¥***kkkkkk 1 Update — — O
Sx,Sy,Dz 10100000xxyyzzzz
PXOR Sx " Sy - Dz, clear LSW of Dz =~ 111110***kiik 1 Update — — O
Sx,Sy,bz 10100101xxyyzzzz
DCT PXOR IfDC =1, Sx* Sy-Dz, 11112 Q%**rrkrrex 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 0, nop 10100110xxyyzzzz
DCF PXOR If DC =0, Sx* Sy - Dz, 11112Q%**rrrrrex 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 1, nop 10100111xxyyzzzz

Note: Updated based on the PADD operation results

DSP instructions are explained using the same form as for CPU instructions. However, in the
description of operation using C, usage of the following DSP resources is presupposed:

1. DSP Register Definitions
The DSP register names are defined based on the union named DSP_Register_Set noted
below. This union is composed of 11 longwords; each of these longwords corresponds to one
of the 11 DSP registers (A0, Al, MO, M1, X0, X1, YO, Y1, AGO, AG1, DSR).

* Definition of Union DSP_Register_Set */

union {

unsigned long int uli{11];

unsigned short int usi[22];

struct {

266

struct {

unsigned short int usi[2];

RENESAS

}ee[11];
}dd;
struct {
struct {
union {
unsigned long int uli;
unsigned short int usi[2];
struct {
unsigned msh: 1;
unsigned : 23;
unsigned g_msb: 1;
unsigned : 7
} bb;
struct {
unsigned : 24;
unsigned Isb8: 8;
}ec;
}mm;
}a0, a1, mo, mi, x0, x1, y0, y1, a0g, alg;
union {
unsigned long int uli;
struct {
unsigned Reserved: 24;
unsigned gz: 1; /* Signed greater than */
unsigned z: 1; /* Zero value */
unsigned n: 1; * Negative value */
unsigned v: 1; /* Overflow */
unsigned cs: 3; /* Condition Selection */
unsigned dc: 1; /* dsp condition bit */
1
}dsr;
}name;
struct {
unsigned short int a[2][2];
unsigned short int m[2][2];
unsigned short int X[2][2];
unsigned short int y[2][2];

RENESAS

267

unsigned short int ag[2][2];
unsigned short int dsr[2];
}word;
} DSP_Register_Set;

The DSP register names are defined as follows, using the union DSP_Register_Set noted above

[* Definition of DSP Register names */

#define MACL DSP_Register_Set.name.a0.mm.uli
#define AO DSP_Register_Set.name.a0.mm.uli
#define AO_HW DSP_Register_Set.name.a0.mm.usi[0]
#define AO_LW DSP_Register_Set.name.a0.mm.usi[1]
#define AO_MSB DSP_Register_Set.name.a0.mm.bb.msb

#define MACH DSP_Register_Set.name.al.mm.uli
#define AL DSP_Register_Set.name.al.mm.uli
#define A1_HW DSP_Register_Set.name.al.mm.usi[0]
#define AL_ LW DSP_Register_Set.name.al.mm.usi[1]
#define A1_MSB DSP_Register_Set.name.al.mm.bb.msb

#define MO DSP_Register_Set.name.m0.mm.uli
#define MO_HW DSP_Register_Set.name.m0.mm.usi[0]
#define MO_LW DSP_Register_Set.name.m0.mm.usi[1]
#define MO_MSB DSP_Register_Set.name.m0.mm.bb.msb

#define M1 DSP_Register_Set.name.m1l.mm.uli
#define M1_HW DSP_Register_Set.name.m1.mm.usi[0]
#define M1_LW DSP_Register_Set.name.ml.mm.usi[1]
#define M1_MSB DSP_Register_Set.name.m1.mm.bb.msb

#define X0 DSP_Register_Set.name.x0.mm.uli
#define XO_HW DSP_Register_Set.name.x0.mm.usi[0]
#define XO_LW DSP_Register_Set.name.x0.mm.usi[1]
#define XO_MSB DSP_Register_Set.name.x0.mm.bb.msb

#define X1 DSP_Register_Set.name.x1.mm.uli
#define X1_HW DSP_Register_Set.name.x1.mm.usi[0]
#define X1_LW DSP_Register_Set.name.x1.mm.usi[1]

268
RENESAS

#define X1_MSB DSP_Register _Set.name.x1.mm.bb.msb

#define YO DSP_Register_Set.name.y0.mm.uli
#define YO_HW DSP_Register_Set.name.y0.mm.usi[0]
#define YO_LW DSP_Register_Set.name.y0.mm.usi[1]
#define YO_MSB DSP_Register_Set.name.y0.mm.bb.msb

#define Y1 DSP_Register_Set.name.yl.mm.uli
#define YL HW DSP_Register_Set.name.yl.mm.usi[0]
#define Y1_LW DSP_Register_Set.name.yl.mm.usi[1]
#define Y1_MSB DSP_Register_Set.name.yl.mm.bb.msb

#define AOG DSP_Register_Set.name.aOg.mm.uli

#define AOG_HW DSP_Register_Set.name.a0g.mm.usi[0]
#define AOG_LW DSP_Register_Set.name.a0g.mm.usi[1]
#define AOG_LSB8 DSP_Register_Set.name.a0g.mm.cc.Isb8
#define AOG_MSB DSP_Register_Set.name.a0g.mm.bb.g_msb

#define A1G DSP_Register_Set.name.alg.mm.uli

#define A1G_HW DSP_Register_Set.name.alg.mm.usi[0]
#define A1G_LW DSP_Register_Set.name.alg.mm.usi[1]
#define A1G_LSB8 DSP_Register_Set.name.alg.mm.cc.Isb8
#define A1G_MSB DSP_Register_Set.name.alg.mm.bb.g_msb

#define DSR DSP_Register_Set.name.dsr.uli

Additionally, the individual bits of the DSR register are defined in the same manner, using the
union DSP_Register_Set, as follows:

#define DSPGTBIT DSP_Register_Set.name.dsr.a.gt
#define DSPZBIT DSP_Register_Set.name.dsr.a.z
#define DSPNBIT DSP_Register_Set.name.dsr.a.n
#define DSPVBIT DSP_Register_Set.name.dsr.a.v
#define DSPCSBITS DSP_Register_Set.name.dsr.a.cs
#define DSPDCBIT DSP_Register_Set.name.dsr.a.dc

2. ALU Input/Output and Variables Representing Operation Results

269
RENESAS

The ALU input/output is defined based on the union named DSP_ALU_Set noted below. This
union is composed of six longwords. Three of these longwords correspond to two inputs and
one output (srcl, src2, dst). The remaining three longwords are used as guard bits for these t
inputs and one output (srclg, src2g, dstg).

* Definition of Union DSP_ALU_Set */
union {
unsigned long int uli[6];
unsigned short int usi[12];
struct {
struct {
unsigned msb: 1,

unsigned: 31;
}srcl, src2, dst;
struct {
union {
unsigned long int ulj;
struct {
unsigned: 24;
unsigned bit7: 1,
unsigned: 7
}a
struct {
unsigned: 24;
unsigned Isb8: §;
}b;
H;
} srclg, src2g, dstg;

in;

}DSP_ALU_Set;
The ALU input/output names are defined as follows, using the union DSP_ALU_Set noted above

[* Definition of ALU input/output in DSP operation instructions */
#define DSP_ALU_SRC1 DSP_ALU_Set.uli[0]
#define DSP_ALU_SRC2 DSP_ALU_Set.uli[1]
#define DSP_ALU_DST DSP_ALU_Set.uli[2]

270
RENESAS

#define DSP_ALU_SRC1G DSP_ALU_Set.uli[3]
#define DSP_ALU_SRC2G DSP_ALU_Set.uli[4]
#define DSP_ALU_DSTG DSP_ALU_Set.uli[5]

#define DSP_ALU_SRC1 HW DSP_ALU_Set.usi[0]
#define DSP_ALU_SRC2_ HW DSP_ALU_Set.usi[2]
#define DSP_ALU_DST HW DSP_ALU_Set.usi[4]

#define DSP_ALU_SRC1 _MSB DSP_ALU_Set.n.srcl.msb
#define DSP_ALU_SRC2_MSB DSP_ALU_Set.n.src2.msb
#define DSP_ALU DST MSB DSP_ALU_Set.n.dstmsb

#define DSP_ALU_SRC1G_BIT7 DSP_ALU_Set.n.srclg.u.a.bit7
#define DSP_ALU_SRC2G_BIT7 DSP_ALU_Set.n.src2g.u.a.bit7
#define DSP_ALU_DSTG_BIT7 DSP_ALU_Set.n.dstg.u.a.bit7

#define DSP_ALU_SRC1G_LSB8 DSP_ALU_Set.n.srclg.u.b.Ish8
#define DSP_ALU_SRC2G_LSB8 DSP_ALU_Set.n.src2g.u.b.Isb8
#define DSP_ALU_DSTG_LSB8 DSP_ALU_Set.n.dstg.u.b.Isb8

Additionally, the variables representing operation results are defined as follows, using the
definitions noted above. These variables are used to calculate the DSR register’'s DC bit within t
description of operation of each instruction.

[* Definition of variables representing DSP operation results */

#define PLUS_OP_G_OV ((~DSP_ALU_SRC1G_BIT7 &&~DSP_ALU_SRC2G_BIT7 &&
DSP_ALU_DSTG_BIT7) || (DSP_ALU_SRC1G_BIT7 && DSP_ALU_SRC2G_BIT7 &&
~DSP_ALU_DSTG_BIT7))

#define MINUS_OP_G_OV ((~-DSP_ALU_SRC1G_BIT7 &8 DSP_ALU_SRC2G_BIT7 &&
DSP_ALU_DSTG_BIT7) || (DSP_ALU_SRC1G_BIT7 &8 ~DSP_ALU_SRC2G_BIT7 &&
~DSP_ALU_DSTG_BIT7))

#define POS_NOT_OV ((DSP_ALU_DSTG_LSB8==0x00) && (DSP_ALU_DST_MSB==0x0))
#define NEG_NOT_OV ((DSP_ALU_DSTG_LSB8==0xif) && (DSP_ALU_DST_MSB==0x1))

3. Multiplier Input/Output

271
RENESAS

The multiplier input/output is defined based on the union named DSP_MUL_Set noted below.
This union is composed of four longwords. One longword each is allocated for the two inputs,
but only the upper 16 bits of both of these (usi [0], usi [2]) are used. Two longwords including
guard bit usage (dst, dstg) correspond to the outputs.

* Definition of Union DSP_MUL_Set */
union {
unsigned long int ulif4];
struct {
unsigned shortint usif4];
struct {
unsigned msh: 1;

unsigned: 31;
}dst;
struct {
unsigned: 24,
unsigned Isb8: §;
}dstg;
}aa;

}DSP_MUL_Set;

The multiplier input/output names are defined as follows, using the union DSP_MUL_Set noted
above.

* Definition of multiplier input/output in DSP operation instructions */
#define DSP_M_SRC1 DSP_MUL_Set.aa.usi[0]

#define DSP_M_SRC2 DSP_MUL_Set.aa.usi[2]

#define DSP_M_DST DSP_MUL_Set.uli[2]

#define DSP_M_DST_MSB DSP_MUL_Set.aa.dst.msb
#define DSP_M_DSTG DSP_MUL_Set.uli[3]

#define DSP_M_DSTG_LSB8 DSP_MUL_Set.aa.dstg.Ish8

4. Variables Used in the Operation Descriptions of other Instructions, etc.

The following variables are used when describing the operation of DSP operation instructions
for which the DCT, DCF conditions can be designated.

In the above definitions, EX_DCT and EX_DCF are variables that become true when the DCT
DCF conditions are designated in instructions. Refer to (1) DSP register definitions for
DSPDCBIT.

272
RENESAS

#define DSP_UNCONDITIONAL_UPDATE (IEX_DCT && !EX_DCF)
#define DSP_CONDITION_MATCH ((EX_DCT && DSPDCBIT) || (EX_DCF && 'DSPDCBIT))
#define DSP_CONDITION_NOT_MATCH ((EX_DCT && IDSPDCBIT)||(EX_DCF && DSPDCBIT))

In DSP arithmetic operations, saturation processing is performed when the SR register’s saturalt
bit is a 1. This saturation bit is called SBIT when describing the operations.

Additionally, the following function is defined to be used in common, to simplify the notation
when describing operations:

/* Function used in common in descriptions of DSP operation instructions */

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

overflow_protection()
{
if(SBIT && overflow_bit) { * Overflow Protection Enable & overflow */
if(DSP_ALU_DSTG_BIT7==0) { /* positive value */
if(DSP_ALU_DSTG_LSB8!=0x0) || (DSP_ALU_DST_MSB!=0)) {
DSP_ALU_DSTG= 0x0;
DSP_ALU_DST = Ox7fffffff;

}
}
else { * negative value */
if((DSP_ALU_DSTG_LSB8!=0xff) || (DSP_ALU_DST_MSBI=1)) {
DSP_ALU_DSTG= Oxff;
DSP_ALU_DST = 0x80000000;
}
}

overflow_bit = O; # No more overflow when protected */

}

The six functions noted below are used for DSR register updating. The DC bit in the DSR regist
is updated in accordance with the operation results of the DSP operation instructions and the
directions of the status selection bit (CS). The other bits in the DSR register are updated in
accordance with the operation results of the DSP operation instructions only.

273
RENESAS

¥ Function to unconditionally update the DC bit (DSPDCBIT) with the borrow
flag */

dc_always_borrow()

{
/* DC update policy: don't care the status of DSPCSBITS */
DSPDCBIT = borrow_bit;
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bhit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;

}

¥ Function to unconditionally update the DC bit (DSPDCBIT) with the carry
flag */

dc_always_carry()

{
/* DC update policy: don't care the status of DSPCSBITS */
DSPDCBIT = carry_hit;
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bhit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;

}

¥ Function to update the DC bit (DSPDCBIT) upon a subtraction */
minus_dc_bit()
{
switch (DSPCSBITS) {
case 0x0: /* Borrow Mode */
DSPDCBIT = borrow_bit;
break;
case Ox1l: /* Negative Value Mode */
DSPDCBIT = negative_bit;
break;
case 0x2: /* Zero Value Mode */
DSPDCBIT = zero_bit;
break;
case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;

274
RENESAS

break;
case Ox4: /* Signed Greater Than Mode */
DSPDCBIT = ~((negative_bit ~ overflow_bit) | zero_bit);
break;
case 0x5: /* Signed Greater Than or Equal Mode */
DSPDCBIT = ~(negative_bit * overflow_bit);
break;
case Ox6: /*Reserved */
case Ox7: /*Reserved */
break;
}
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;
}

[* Function to update the DC bit (DSPDCBIT) upon an addition */
plus_dc_bit()
{
switch (DSPCSBITS) {
case Ox0: /* Carry Mode */
DSPDCBIT = carry_bit;
break;
case Ox1: /*Negative Value Mode */
DSPDCBIT = negative_bit;
break;
case 0x2: [* Zero Value Mode */
DSPDCBIT = zero_bit;
break;
case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;
break;
case Ox4: /* Signed Greater Than Mode */
DSPDCBIT = ~((negative_hit * overflow_bit) | zero_bit);
break;
case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT = ~(negative_bit ~ overflow_bit);

275
RENESAS

break;
case Ox6: /* Reserved */
case Ox7: [*Reserved */
break;
}
DSPGTBIT = ~((negative_bit * overflow_bit) | zero_bit);
DSPZBIT =zero_bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_hit;
}

/* Function to update the DC bit (DSPDCBIT) upon a logical operation */
logical_dc_bit()
{
switch (DSPCSBITS) {
case Ox0: /*Carry Mode */
DSPDCBIT =0;
break;
case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_bit;
break;
case 0x2: [*Zero Value Mode */
DSPDCBIT = zero_bit;
break;
case 0x3: /* Overflow Mode */
DSPDCBIT =0;
break;
case Ox4: /* Signed Greater Than Mode */
DSPDCBIT =0;
break;
case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT =0;
break;
case Ox6: /* Reserved */
case Ox7: [*Reserved */
break;

}
DSPGTBIT =0,

276
RENESAS

DSPZBIT = zero_bit;
DSPNBIT = negative_bit;
DSPVBIT =0;

}

shift_dc_hit()
{
switch (DSPCSBITS) {
case 0x0: /*Carry Mode */
DSPDCBIT = carry_bit;
break;
case Ox1: /* Negative Value Mode */
DSPDCBIT = negative_hit;
break;
case 0x2: [* Zero Value Mode */
DSPDCBIT = zero_bit;
break;
case 0x3: /* Overflow Mode */
DSPDCBIT = overflow_bit;
break;
case Ox4: /* Signed Greater Than Mode */
DSPDCBIT =0;
break;
case Ox5: /* Signed Greater Than or Equal Mode */
DSPDCBIT =0;
break;
case Ox6: /*Reserved */
case 0x7: /*Reserved */
break;
}
DSPGTBIT =0;
DSPZBIT =zero bit;
DSPNBIT = negative_bit;
DSPVBIT = overflow_bit;

RENESAS

277

6.3.1 PABS (Absolute): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PABS Sx,Dz If Sx=0,Sx - Dz 1177 1 Qperiorieroniox 1 Update — — O
If Sx<0,0-Sx-Dz 10001000xx00zzzz
PABS Sy,Dz If Sy=0,Sy - Dz 11111 Qperiereroniox 1 Update — — O

If Sy<0,0-Sy -Dz 1010100000yyzzzz

Description: Finds absolute values. When the Sx and Sy operands are positive, the contents of t
operands are stored to the Dz operand. If the value is negative, the amounts of the Sx and Sy
operand contents are subtracted from 0 and stored in the Dz operand.

The DC bit of the DSR register are updated according to the specifications of the CS bits. The N,
Z,V, and GT bits of the DSR register are updated.

Operation:

/* Casel: PABS Sx,Dz */
[* Case2: PABS Sx,Dz */
{
unsigned char carry_bit, negative_bit, zero_bit, overflow_bit, borrow_bit;
/* ALU Sources assignment */
DSP_ALU_SRC1=0
DSP_ALU SRC1G =0
if (Casel) { /¥ PABS Sx,Dz */
switch (xx) {/* Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC2 = X0;
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G =0x0;
break;
case Ox1: DSP_ALU SRC2 =X1;
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
break;
case 0x2: DSP_ALU_SRC2 =AQ;
DSP_ALU_SRC2G = AQG;
break;

278
RENESAS

case 0x3: DSP_ALU SRC2 =Al,;
DSP_ALU_SRC2G = AlG;
break;

}

else { /*PABS Sy,Dz */
switch (yy) {
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case Ox2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
}

[* ALU Operation */
if(DSP_ALU_SRC2G_BIT7==0) { * positive value */
DSP_ALU_DST =0x0 + DSP_ALU_SRC?2;
carry_bit=0;
DSP_ALU_DSTG_LSB8=0x0 + DSP_ALU_SRC2G_LSB8 + carry_bit;
}
else{ * negative value */
DSP_ALU_DST =0x0- DSP_ALU_SRC2;
borrow_bit =1;
DSP_ALU DSTG_LSB8=0x0-DSP_ALU_SRC2G_LSB8 - borrow_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();
/* ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case Ox5: Al1=DSP_ALU _DST,
AlG =DSP_ALU DSTG & Ox000000FF;

279
RENESAS

if(DSP_ALU_DSTG_BIT7) A1G = Al1G | OXFFFFFFQO;
break

case 0x7: AO0=DSP_ALU DSTG;

AOG =DSP_ALU_DSTG & 0x000000FF;

if(DSP_ALU_DSTG_BIT7) A0OG = AOG | OXFFFFFFOO;

break;

case 0x8: X0=DSP_ALU DST;
break;

case 0x9: X1=DSP_ALU DST;
break;

case Oxa: YO=DSP_ALU DST;
break;

case Oxb: Y1=DSP_ALU DST;
break;

case Oxc:. MO=DSP_ALU DST;
break;

case Oxe: M1=DSP_ALU DST;
break;

default: printf"*\nERROR: lllegal DSP Instruction”); break;
}

negative bit=DSP_ALU_DST BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DST_LSB8==0);

/* DSR register update */
if(DSP_ALU_SRC2G_BIT7==0) {
plus_dc_bit ();
}
else {
overflow_bit=MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_QV);
minus_dc_bit();

}

280
RENESAS

Examples:

PABS X0, MO NOPX NOPY :Before execution: X0=H'33333333, M0=H'12345678

;After execution: X0=H'33333333, M0=H'33333333
PABS X1, X1 NOPX NOPY ;:Before execution: X1=H'DDDDDDDD

;After execution: X1=H'22222223

DC hit is updated depending on the state of CS [2:0].

281
RENESAS

6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PADD Sx+Sy Dz 1177 1 Qperiorieroniox 1 Update — — O
Sx.Sy,bz 10110001xxyyzzzz
DCTPADD if DC=1,Sx+Sy Dz 1111](Q¥srririerk 1 — — — O
Sx.Sy,bz if O,nop 10110010xxyyzzzz
DCFPADD if DC=0,Sx+Sy > Dz 11111(Q¥srririek 1 — — — O
Sx,Sy,Dz if 1,nop 10110011xxyyzzzz

Description: Adds the contents of the Sx and Sy operands and stores the result in the Dz operan
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

Operation:

* PADD Sx,Sy,Dz */

{

unsigned char carry_bit, negative_hit, zero_bit, overflow_bit;
/¥ ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;

case Ox1: DSP_ALU SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;

case 0x2: DSP_ALU_SRC1 =AQ;

282
RENESAS

DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU SRC1 =Al,;
DSP_ALU_SRC1G = AlG;
break;
}
switch (yy) { /* Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MQ0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

[* ALU Operation */

DSP_ALU_DST =DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit= ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU
_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU DSTG_LSB8 =DSP_ALU_SRCI1G_LSB8+ DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

[* ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case 0x5: Al=DSP_ALU_DST;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = Al1G | OXFFFFFFOO;
break
case Ox7: AO0=DSP_ALU_DST;
AOG =DSP_ALU_DSTG & 0x000000FF;

283
RENESAS

if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;

break;

case 0x8: X0=DSP_ALU DST;
break;

case 0x9: X1=DSP_ALU DST;
break;

case Oxa: YO=DSP_ALU DST;
break;

case Oxb: Y1=DSP_ALU DST;
break;

case Oxc:. MO=DSP_ALU DST;
break;

case Oxe: M1=DSP_ALU DST;
break;

default: printf"\nERROR: lllegal DSP Instruction”); break;
}

negative bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DST _LSB8==0);

/* DSR register update */
plus_dc_hit ();
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
/* ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case 0x5: Al=DSP_ALU_DST;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = AlG | OxFFFFFFOO;
break
case 0x7: AO0=DSP_ALU_DSTG;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | OXFFFFFFOO;
break;
case 0x8: X0=DSP_ALU_DST;
break;
case 0x9: X1=DSP_ALU_DST;
break;
caseOxa: YO=DSP_ALU DST;

284

RENESAS

break;
case Oxb: Y1=DSP_ALU_DST;

break;
case Oxc: MO=DSP_ALU_DST;

break;
case Oxe: M1=DSP_ALU_DST;

break;
default: printf"\nERROR: lllegal DSP Instruction”); break;
}

}

}

Examples:
PADD X0,YO,AO NOPX NOPY ;Before execution: X0=H'22222222, Y0=H'33333333,

AO0=H'123456789A

After execution: X0=H'22222222, YO=H'33333333,
A0=H'0055555555

In case of unconditional execution, the DC bit is updated
depending on the state of the CS [2:0] bit immediately before the

operation.

285
RENESAS

6.3.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic
Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PADD Sx,Sy,Du Sx + Sy~ Du I O bbbl 1 Update — — O
PMULS Se,Sf,Dg MSW of Se x MSW 0111eeffxxyygguu
of Sf-Dg

Description: Adds the contents of the Sx and Sy operands and stores the result in the Du operan
The contents of the top word of the Se and Sf operands are multiplied as signed and the result
stored in the Dg operand. These two processes are executed simultaneously in parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Note: Since the PMULS is fixed decimal point multiplication, the operation result is different
from that of MULS even though the source data is the same.

Operation:

¥ PADD Sx,Sy,Du PMULS Se,Sf,Dg */

{

unsigned char carry_bit, negative_hit, zero_bit, overflow_bit;

[* Multiplier Sources assignment */

switch (ee) { * Se Operand selection bit (ee) */
case 0x0: DSP_M_SRC1 =X0_HW;
break;
case Ox1: DSP_M_SRC1 =X1_HW,;
break;
case O0x2: DSP_M_SRC1=Y0_HW,;
break;
case 0x3: DSP_M_SRC1=Al1_HW,;
break;
}

switch (ff) { * Sf Operand selection bit (ff) */
case 0x0: DSP_M_SRC2 =Y0_HW,;

286
RENESAS

break;

case Ox1: DSP_M_SRC2=Y1 HW,;
break;

case 0x2: DSP_M_SRC2 =X0_HW;
break;

case 0x3: DSP_M_SRC2 =Al_HW;
break;

}

[* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if ODSP_ALU_SRC1_MSB)
DSP_ALU_SRC1G_LSB8 = 0xff;

else DSP_ALU_SRCIG_LSBS = 0x0;

break;
case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1 _MSB)
DSP_ALU_SRC1G_LSB8 = 0xff;
else DSP_ALU_SRC1G_LSB8=0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = AlG;
break;
}
switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 = M0;
break;
case 0x3: DSP_ALU SRC2 =M1;
break;

RENESAS

287

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G_LSBS8 = Oxff;
else DSP_ALU_SRC2G_LSBS = 0x0;

[* Multiplier Operation */

/ PMULS Se, Sf, Dg */
if (SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {
DSP_M_DST=0xTfffffff; /* overflow protection */

}

else {
DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1,

}

if OSP_M_DST_MSB) DSP_M_DSTG_LSB8 = Oxff;
else DSP_M DSTG_LSB8 = 0x0;

switch (gg) { /* Dg Operand selection bit (gg) */

case 0x0: MO=DSP_M DST;
break;

case Ox1: M1=DSP_M DST;
break;

case 0x2: AO=DSP_M DST;
if(DSP_M_DSTG_LSB8==0x0) AOG=0x0;
else AOG=0xffffffff;
break;

case 0x3: A1=DSP_M DST;
if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;
else A1G=0xffffffff;
break;

}

[* ALU operation */

DSP_ALU_DST =DSP_ALU_SRC1+DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8+ DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || (POS_NOT_OQV || NEG_NOT_OV);
overflow_protection();

switch (uu) { /* Du Operand selection bit (uu) */

288
RENESAS

case 0x0:
X0 =DSP_ALU_DST;
negative_hit=DSP_ALU_DST_MSB;
zero_bit = (DSP_ALU_DST==0);
break;

case Ox1:
YO =DSP_ALU_DST;
negative_bit=DSP_ALU_DST_MSB;
zero_bit=(DSP_ALU_DST==0);
break;

case 0x2:
A0 =DSP_ALU_DST;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
negative_bit=DSP_ALU_DSTG_BIT7,;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);
break;

case 0x3:
Al =DSP_ALU_DST;
A1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);
break;

}

* DSR register update */
plus_dc_bit();

289
RENESAS

Examples:

PADD A0,M0,A0 PMULS X0,YO,MO NOPX NOPY
;Before execution: X0=H'00020000, Y0=H'00030000,
MO0=H'22222222, A0O=H'0055555555
;After execution: X0=H'00020000, Y0=H'00030000,
MO=H'0000000C, AO=H'0077777777

The DC bit is updated based on the result of the PADD
operation , depending on the state of CD [2:0].

290
RENESAS

6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PADDCSX, Sx+ Sy+DC - Dz 11111 Q#rsririeeiex 1 Carry — — O
Sy, Dz 10110000xxyyzzzz

Description: Adds the contents of the Sx and Sy operands to the DC bit and stores the result in’
Dz operand. The DC bit of the DSR register is updated as the carry flag. The N, Z, V, and GT bi
of the DSR register are also updated.

Note: The DC bit is updated as the carry flag after execution of the PADDC instruction
regardless of the CS bits.

Operation:
F PADD Sx,Sy,Dz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = A1G;
break;
}
switch (yy) { * Sy Operand selection bit (yy) */

291
RENESAS

case Ox0: DSP_ALU_SRC2 =YO0;

break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case Ox2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU SRC2 =ML1;
break;
}
ifOSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = Oxff;
else DSP_ALU_SRC2G = 0x0;
/* ALU Operation */

DSP_ALU_DST =DSP_ALU_SRC1+ DSP_ALU_SRC2 + DSPDCBIT;

carry_bit= (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU_DST MSB)|
(DSP_ALU_SRC1 MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 =DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU_DST,
A1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
break;
case 0x8: X0=DSP_ALU_DST;
break;
case 0x9: X1=DSP_ALU_DST,;
break;
caseOxa: YO=DSP_ALU_DST,
break;

292
RENESAS

case Oxb: Y1=DSP_ALU DST;

break;

case Oxc:. MO=DSP_ALU DST;

break;

case Oxe: M1=DSP_ALU DST;

break;

default: printf"\nERROR:lllegal DSP Instruction”);

break;
}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

[* DSR register update */
dc_always_carry();

Example:

CS[2:0]=*** Always operate as Carry or Borrow mode, regardless of the status

of the DC bit.
PADDC X0,YO,MO NOPX NOPY

PADDC X0,YO,MO0 NOPX NOPY

;Before execution: X0=H'B3333333, Y0=H'55555555
MO=H' 12345678, DC=0

;After execution: X0=H'B3333333, YO0=H'55555555
M0=H'08888888, DC=1

;Before execution: X0=H'33333333, Y0=H'55555555
MO=H' 12345678, DC=1

;After execution: X0=H'33333333, Y0=H'55555555
M0=H'88888889, DC=0

The DC bit is updated as the carry flag, regardless of
the state of the CS bit.

293
RENESAS

6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
PAND Sx & Sy - Dz; clear LSW 11111 Q#rrieex 1 — — O
Sx,Sy,Dz of Dz 10010101xxyyzzzz
DCTPAND IfDC =1, SX & SY »Dz, 11111(Q%+erirkekk 1 —_- — — O
Sx,Sy,Dz clear LSW of Dz; if O, 10010110xxyyzzzz
nop
DCFPAND If DC=0,SX & SY 5Dz, 11111Q#+ekeieik 1 —_- — — O
Sx,Sy,Dz clear LSW of Dz; if 1, 10010111xxyyzzzz
nop

Description: Does an AND of the upper word of the Sx operand and the upper word of the Sy
operand, stores the result in the upper word of the Dz operand, and clears the bottom word of the
Dz operand with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed.

When conditions are specified for DCT and DCF, the instruction is executed when those

conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer

true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC b

is updated.
Operation:

F PAND Sx,Sy,Dz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

/* ALU Sources assignment */
switch (xx) { * Sx Operand selection hit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =AQ0;

294
RENESAS

}

break;
case 0x3: DSP_ALU_SRC1 =A1;
break;

switch (yy) { * Sy Operand selection bit (yy) */

}

DSP_ALU_DST _HW=DSP_ALU_SRC1 HW &DSP_ALU_SRC2 HW;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

case 0x0: DSP_ALU_SRC2 =Y0;
break;

case Ox1: DSP_ALU_SRC2 =Y1;
break;

case 0x2: DSP_ALU_SRC2 =MO0;
break;

case 0x3: DSP_ALU_SRC2 =M1,
break;

/* ALU Destination assignment */

switch (zzzz){ /* Dz Operand selection bit (zzzz) */

case Ox5: Al HW=DSP_ALU DST_HW;,
Al LW =0x0; /* clear LSW */
A1G = 0x0; [* clear Guard bits */

break;
case Ox7: A0 HW=DSP_ALU DST_HW;,
A0_LW = 0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST_HW:;
X0_LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST;
X1_LW =0x0; [* clear LSW */
break;
caseOxa: YO _HW=DSP_ALU DST,
YO LW =0x0; /* clear LSW */
break;

case Oxb: Y1 HW=DSP_ALU DST;

RENESAS

295

Y1 LW =0x0; /* clear LSW */

break;
case Oxc:. MO _HW=DSP_ALU DST;
MO_LW = 0x0; * clear LSW */
break;
case Oxe: M1_HW=DSP_ALU DST;
M1 LW =0x0; /* clear LSW */
break;
default: printf"\nERROR:lllegal DSP Instruction”);
break;
}
carry_bit =0x0;

negative_bit= DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = 0x0;

[* DSR register update */
logical_dc_bit();
}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW;,
Al LW =0x0; /* clear LSW */
Al1G=0x0; /*clear Guard bits */

break;
case Ox7: A0 HW=DSP_ALU DST_HW;,
AO0_LW = 0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST_HW:;
X0 LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST;
X1_LW =0x0; [* clear LSW */
break;

caseOxa: YO _HW=DSP_ALU_DST,

296
RENESAS

YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST;
Y1 LW =0x0; [* clear LSW */
break;
caseOxc: MO_HW=DSP_ALU_DST,
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction”);
break;

}

}
}

Example:

PAND X0,YO,A0 NOPX NOPY ;Before execution: =~ X0=H'33333333, YO=H'55555555
AO=H'123456789A

;After execution: X0=H'33333333, YO0=H'55555555
AO0=H'0011110000

In case of unconditional execution, the DC bit is updated
depending on the state of the CS [2:0] bit immediately before
the operation.

297
RENESAS

6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PCLR Dz H'00000000 - Dz I O i 1 Update — — O
100011010000zzzz
DCT PCLR if DC = 1, H'00000000 - Dz 11122Q%**rrrrxx 1 — — — O
Dz if 0, nop 100011100000zzzz
DCF PCLR if DC = 0, H'00000000 - Dz 11122Q%**rreex 1 — — — O
Dz if 1, nop 100011110000zzzz

Description: Clears the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction i
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The Z bit of the DSR register is set to 1. The N, V, and GT bits are
cleared to 0. If conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the
conditions were true and the instruction was executed.

Operation:

F PCLRDz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/¥ ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al =0x0;
Al1G = 0x0;
break;
case 0x7: A0 =0x0;
AO0G = 0x0;
break;
case 0x8: X0 =0x0;
break;
case 0x9: X1 =0x0;

298
RENESAS

break;

case Oxa: YO =0x0;
break;
case Oxb: Y1 =0x0;
break;
case Oxc: MO = 0x0;
break;
case Oxe: M1 =0x0;
break;
default: printf(\nERROR:lllegal DSP Instruction”);
break;
}
carry_bit =0;

negative_bit=0;

zero_bit

=1;

overflow_hit=0;

[* DSR register update */

plus_dc_bit();

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */

switch (zzzz) {

case 0x5:

[* Dz Operand selection bit (zzzz) */

Al = 0x0;

Al1G =0x0;

break;

case Ox7:

A0 =0x0;

AOG = 0x0;

break;

case 0x8:

break;

case 0x9:

break;

case Oxa:

break;

case Oxb:

break;

X0 = 0x0;

X1 =0x0;

YO = 0x0;

Y1 =0x0;

RENESAS

299

case Oxc: MO =0x0;

break;
case Oxe: M1 =0x0;
break;
default: printf"\nERROR:lllegal DSP Instruction”);
break;
}
}
}
Example:
PCLR A0 NOPX NOPY ;:Before execution: AO0=H'FF87654321
;After execution: A0O=H'0000000000
In case of unconditional execution, the DC bit is
updated depending on the state of the CS [2:0].
300

RENESAS

6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction

Applicable

Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PCMP Sx, Sy Sx-Sy i 1 Update — — O

10000100xxyy0000

Description: Subtracts the contents of the Sy operand from the Sx operand. The DC bit of the
DSR register is updated according to the specifications for the CS bits. The N, Z, V, and GT bits
of the DSR register are also updated.

Operation:

F PCMP Sx,Sy *

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = AQG;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = AlG;
break;
}
switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =YO0;
break;

301
RENESAS

case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =M0;
break;
case 0x3: DSP_ALU SRC2 =M1;
break;
}
if DSP_ALU_SRC2 MSB) DSP_ALU_SRC2G = Oxff;
else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1-DSP_ALU_SRC2;
carry_bit=((DSP_ALU_SRC1 MSB |!DSP_ALU_SRC2_MSB) && 'DSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & 'DSP_ALU_SRC2_MSB);
borrow_bit = Icarry_bit;
DSP_ALU _DSTG_LSB8=DSP_ALU_SRC1G_LSB8-DSP_ALU_SRC2G_LSB8
- borrow_hit;

negative_bit=DSP_ALU_DSTG_BIT7;

zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);
overflow_bit= MINUS_OP_G_OV || (POS_NOT OV || NEG_NOT_OV);

overflow_protection();
/* DSR register update */
minus_dc_hit();
}
Examples:
PCMP X0, YONOPX NOPY ;Before execution: X0=H'22222222, YO=H'33333333
;After execution: X0=H'22222222, Y0=H'33333333
N=1, Z=0, V=0, GT=0
DC bit is updated depending on the state of CS [2:0].
302

RENESAS

6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction
Format Abstract Code Cycle DCBit SH-1 SH-2
PCOPY Sx Dz 11111 Qe

Sx.bz 11011001xx00zzzz

PCOPY Sy Dz 11111 gememens

Sy.bz 1111100100yyzzzz

DCTPCOPY ifDC=1,Sx—Dz 111110"smes

Sx.Dz if 0, nop 11011010xx002z22

DCTPCOPY ifDC=1,Sy—Dz 111110

Sy.Dz if 0, nop 1111101000yyzzzz

DCFPCOPY ifDC =0, Sx—Dz 111110

Sxbz if 1, nop 11011011xx002zzz

DCFPCOPY ifDC=0,Sy—Dz 111110

Sy,bz if 1, nop 1111101100yyzzzz

Description: Stores the Sx and Sy operands in the Dz operand. When conditions are specified fi
DCT and DCF, the instruction is executed when those conditions are TRUE. When they are

FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits are also updated. If conditions are
specified, the DC, N, Z, V, and GT bits are not updated even is the conditions were true and the

instruction was executed.

Operation:

f* Casel:PCOPY Sx,Dz *
P Case2:PCOPY Sy,Dz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

¥ ALU Sources assignment */

if (Casel) {
switch (xx) {

[* PCOPY Sx,Dz */
* Sx Operand selection bit (xx) */
case Ox0: DSP_ALU_SRC1 = X0;

RENESAS

if OSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRCI1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if OSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRCI1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =Al;
DSP_ALU_SRC1G = AlG;
break;
}
DSP_ALU SRC2=0;
DSP_ALU_SRC2G=0;
}
else { /*PCOPY Sy,Dz */
DSP_ALU SRC1=0;
DSP_ALU_SRC1G=0;

switch (yy) {
case 0x0: DSP_ALU_SRC2 =Y0;
break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =M0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G =0x0;

}

DSP_ALU_DST =DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit= (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU_DST MSB)|
(DSP_ALU_SRC1 MSB &DSP_ALU_SRC2_MSB);

304
RENESAS

DSP_ALU_DSTG_LSB8 =DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit

overflow_bit=PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU_DST,
AlG =DSP_ALU DSTG & Ox000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
break;
case 0x8: X0=DSP_ALU_DST,
break;
case 0x9: X1=DSP_ALU_DST,
break;
caseOxa: YO=DSP_ALU_DST,
break;
case Oxb: Y1=DSP_ALU DST;
break;
caseOxc: MO=DSP_ALU_DST,;
break;
case Oxe: M1=DSP_ALU_DST;
break;

default: printf(\nERROR:lllegal DSP Instruction”);
break;

}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bhit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

* DSR register update */
plus_dc_bit();

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

RENESAS

305

[* ALU Destination assignment */
switch (zzzz){ * Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU DST;
Al1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = Al1G | OXFFFFFFQO;
break;
case 0x7: AO0=DSP_ALU DST;
AOG = DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | OxFFFFFFQO;

break;
case 0x8: X0=DSP_ALU DST;
break;
case 0x9: X1=DSP_ALU DST;
break;
caseOxa: YO=DSP_ALU DST;
break;
case Oxb: Y1=DSP_ALU DST;
break;
case Oxc: MO=DSP_ALU DST;
break;
case Oxe: M1=DSP_ALU DST;
break;
default: printf"\nERROR:lllegal DSP Instruction”);
break;
}
}
}
Examples:

PCOPY X0, AO NOPX NOPY :Before execution: X0=H'55555555, AO=H'FFFFFFFF
:After execution: X0=H'55555555, A0O=H'0055555555

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

306
RENESAS

6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction
Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PDEC Sx,Dz MSW of Sx—1 - MSW of Dz, 11111Q****xrrrrx 1 Update — — O
clear LSW of Dz 10001001xx002222
PDEC Sy,Dz MSW of Sy—1 - MSW of Dz, 111110 **xrkkkx 1 Update — — O
clear LSW of Dz 1010100100yyzzzz
DCT PDEC If DC = 1, MSW of Sx-1 - 111120%* ek 1 — —_ —_ O
Sx,Dz MSW of Dz, clear LSW of 10001010xx002227
Dz; if 0, nop
DCT PDEC If DC = 1, MSW of Sy-1 - 11211 Q***kkkkek 1 — —_ — O
Sy,Dz MSW of Dz, clear LSW of 1010101000yyzzzz
Dz; if 0, nop
DCF PDEC If DC =0, MSW of Sx-1 - 11211 Q¥***kkkkkk 1 e —_ — O
Sx,Dz MSW of Dz, clear LSW of 10001011xx002227
Dz; if 1, nop
DCF PDEC If DC =0, MSW of Sy-1 - 11112 Q%**rrrrnk 1 — —_ — O
Sy,Dz MSW of Dz, clear LSW of 1010101100yyzzzz

Dz; if 1, nop

Description: Subtracts 1 from the top word of the Sx and Sy operands, stores the result in the
upper word of the Dz operand, and clears the bottom word of the Dz operand with zeros. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions we
true and the instruction was executed.

Note: The bottom word of the destination register is ignored when the DC bit is updated.

307
RENESAS

Operation:

f* Casel:PDEC Sx,Dz *
F Case2:PDECSyDz *

{

unsigned char carry_bit, borrow_bit, negative_hit, zero_bit, overflow_bit;

/* ALU Sources assignment */
DSP_ALU_SRC2 = 0x1;

DSP_ALU_SRC2G= 0x0;

if (Casel) { /* MSW of Sx -1 - Dz¥
switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 =X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;

case Ox1: DSP_ALU SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;

case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;

case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = AlG;
break;

}
else { * MSWofSy-1 - Dz*
switch (yy) { #* Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC1 =Y0;
break;
case Ox1: DSP_ALU SRC1 =YI;
break;
case 0x2: DSP_ALU_SRC1 =MQ;
break;
case 0x3: DSP_ALU_SRC1 =M1;

308
RENESAS

break;
}
if OSP_ALU_SRC1_MSB) DSP_ALU_SRCI1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
}

DSP_ALU _DST HW=DSP_ALU_SRC1 HW - 1;

carry_bit=((DSP_ALU_SRC1 MSB |!DSP_ALU_SRC2_MSB) && 'DSP_ALU_DST _MSB) |
(DSP_ALU_SRC1_MSB & 'DSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;

DSP_ALU DSTG_LSB8=DSP_ALU_SRC1G_LSB8-DSP_ALU_SRC2G_LSBS - borrow_bit;

overflow_bit= PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW,
Al LW =0x0; [* clear LSW */
A1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;

break;
case Ox7: AO_HW=DSP_ALU_DST_HW,
A0_LW =0x0; /* clear LSW */
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | OxFFFFFFOO;
break;
case 0x8: X0 _HW=DSP_ALU DST_HW,
X0_LW =0x0; [* clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU_DST_HW,
X1 LW =0x0; [* clear LSW */
break;
case Oxa: YO _HW=DSP_ALU DST_HW,
YO_LW =0x0; [* clear LSW */
break;

case Oxb: Y1 HW=DSP_ALU DST_HW;

RENESAS

309

Y1 LW =0x0; /* clear LSW */
break;
case Oxc:. MO HW=DSP_ALU DST_HW;
MO_LW = 0x0; * clear LSW */
break;
case Oxe: M1 _HW=DSP_ALU DST_HW;
M1 LW =0x0; /* clear LSW */
break;

default: printf"\nERROR:lllegal DSP Instruction”);
break;

}
negative_hit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

/* DSR register update */
minus_dc_bit.c"

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */
switch (zzzz){ * Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW;
Al LW =0x0; f* clear LSW */
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;

break;
case 0x7: A0 _HW=DSP_ALU DST_HW;
AO0_LW =0x0; [* clear LSW */
AO0G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
break;
case 0x8: X0 HW=DSP_ALU DST_HW;
X0_LW =0x0; * clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST_HW;,
X1 LW =0x0; [* clear LSW */
break;
caseOxa: YO HW=DSP_ALU DST _HW;
YO_LW =0x0; [* clear LSW */

310
RENESAS

break;
case Oxb: Y1 HW=DSP_ALU DST_HW;,
Y1 LW =0x0; /* clear LSW */

break;
case 0xc:
MO_LW = 0x0;

MO _HW =DSP_ALU DST_HW;
[* clear LSW */

break;
case Oxe:
M1_LW =0x0;

M1_HW =DSP_ALU_DST_HW;
[* clear LSW */

break;

default:
break;

printf("\nERROR:lllegal DSP Instruction");

}
Example:
:Before execution: X0=H'0052330F, M0=H'12345678
:After execution: X0=H'0052330F, M0=H'00510000
:Before execution: X1=H'FC342855

;After execution: X1=H'FC330000
In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

PDEC X0,M0 NOPX NOPY

PDEC X1,X1 NOPX NOPY

RENESAS

311

6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation

Instruction
Applicable
Instructions
SH-

Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PDMSB Sx data MSB position — 11111 Qx*wkrxkoki 1 Update — — O
Sx,Dz IE)/IZSW of Dz, clear LSW of 10011101xx002222
PDMSB Sy data MSB position — 11211 Qx*xxkkk 1 Update — — O
Sy,Dz '|\3/IZSW of Dz, clear LSW of 1011110100yyzzzz
DCT PDMSB If DC =1, Sx data MSB 11111 Q¥*#rkan 1 — — — O
Sx,Dz position - MSW _of Dz, 10011110xx002222

clear LSW of Dz; if 0, nop
DCT PDMSB If DC =1, Sy data MSB 1111 1Q¥*wkknn 1 — — — O
Sy,Dz position - MSW Qf Dz, 1011111000yyzzzz

clear LSW of Dz; if 0, nop
DCF PDMSB If DC =0, Sx data MSB 11111 QF*wkorin 1 — — — O
Sx,Dz position - MSW Qf Dz, 10011111xx002227

clear LSW of Dz; if 1, nop
DCF PDMSB 1If DC =0, Sy data MSB 11111 QF*wrwkorin 1 — — — O
Sy,Dz position -— MSW of Dz, 1011111100yyzzz7

clear LSW of Dz; if 1, nop

Description: Finds the first position to change in the lineup of Sx and Sy operand bits and stores
the bit position in the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction i
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

312

RENESAS

Operation:

f* Casel:PDMSB Sx,Dz */
F Case2:PDMSB Sy,Dz */

{

unsigned char carry_bit, borrow_bit, negative_hit, zero_bit, overflow_bit;

[* ALU Sources assignment */

DSP_ALU_SRC2 =0x0;
DSP_ALU_SRC2G= 0x0;

if (Casel) { /* msb(Sx) - Dz ¥
switch (xx) { /* Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0xO0;

break;
case Ox1: DSP_ALU SRC1 =X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G = 0xO0;

break;

case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;

case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRC1G = A1G;
break;

}
else { * msh(Sy) - Dz*
switch (yy) { /* Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC1 =Y0;
break;
case Ox1: DSP_ALU SRC1 =Y1;
break;
case 0x2: DSP_ALU_SRC1 = M0;
break;
case 0x3: DSP_ALU SRC1 =M1;

RENESAS

313

break;

}
if OSP_ALU_SRC1 _MSB) DSP_ALU_SRCI1G = Oxff;
else DSP_ALU_SRC1G = 0x0;
}
{
shortinti;

unsigned char msb, srcig;
unsigned long src1=DSP_ALU_SRCI;
msh=DSP_ALU_SRC1G_BIT7;
src1g=(DSP_ALU_SRC1G_LSB8 << 1),
for(i=38;((msb==(src1g>>7))&&({>=32));i--) { srclg <<=1; }
if(i==31) {

for(i;((msb==(src1>>31))&&(i>=0));i--) { srcl <<=1; }
}
DSP_ALU_DST = 0x0;
DSP_ALU_DST_HW = (short int) (30-i);

if (DSP_ALU_DST_MSB) DSP_ALU_DSTG_LSB8 = Oxff;
else DSP_ALU_DSTG_LSB8 = 0x0;

}

carry_bit=0;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
overflow_bit=0;

/¥ ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case 0x5: Al HW=DSP_ALU _DST_HW;
Al LW =0x0; * clear LSW */
A1G =DSP_ALU DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;

break;
case Ox7: A0 HW=DSP_ALU DST_HW;,
AO0_LW = 0x0; /* clear LSW */
AOG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
break;

case Ox8: X0 _HW =DSP_ALU DST_HW;

314
RENESAS

X0_LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST HW;
X1_LW =0x0; [* clear LSW */
break;
caseOxa: YO _HW=DSP_ALU DST_HW,
YO LW =0x0; [* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST HW;
Y1 LW =0x0; [* clear LSW */
break;
caseOxc: MO_HW=DSP_ALU _DST_HW,
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST HW;
M1_LW =0x0; [* clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction");
break;

}
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

* DSR register update */
plus_dc_bit();

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al _HW=DSP_ALU_DST_HW,
Al LW =0x0; /* clear LSW */
AlG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OxFFFFFFOO;
break;
case Ox7: A0_HW=DSP_ALU DST_HW,
A0_LW = 0x0; [* clear LSW */
AOG =DSP_ALU_DSTG & 0x000000FF;

RENESAS

315

if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
break;
case 0x8: X0 HW=DSP_ALU DST HW;
X0_LW = 0x0; [* clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU DST_HW;,
X1 LW =0x0; /* clear LSW */
break;
case Oxa: YO HW=DSP_ALU DST HW;
YO_LW =0x0; * clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST_HwW;,
Y1 LW =0x0; /* clear LSW */
break;
case Oxc: MO HW=DSP_ALU DST_HW;
MO_LW = 0x0; * clear LSW */
break;
case Oxe: M1_HW=DSP_ALU DST_HW;
M1 LW =0x0; /* clear LSW */
break;

default: printf""\nERROR:lllegal DSP Instruction”);
break;

}

Example:

PDMSB X0O,M0 NOPX NOPY ;Before execution: X0=H'0052330F, M0=H'12345678
;After execution: X0=H'0052330F, M0=H'00080000
PDMSB X1,X1 NOPX NOPY ;Before execution: X1=H'FC342855
;After execution: X1=H'00050000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

316
RENESAS

6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation

Instruction
Applicable
Instructions
SH-

Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PINC Sx,Dz MSW of Sx + 1 -~ MSW of 11112 Q%**rkkroknk 1 Update — — O

Dz, clear LSW of Dz 10011001xx002222
PINC Sy,Dz MSW of Sy + 1 - MSW of 11112 Q%**rkrknk 1 Update — - O

Dz, clear LSW of Dz 1011100100yyzzzz
DCT PINC IfDC =1, MSW of Sx + 15 111110Q*****xxaex 1 — — — O
Sx,Dz MSW of Dz, clear LSW of 10011010xx002222

Dz; if 0, nop
DCT PINC IfDC =1, MSW of Sy + 1 5 11111Q***rrrrrrx 1 — — — O
Sy,Dz MSW of Dz, clear LSW of 1011101000yyzzz2

Dz; if 0, nop
DCF PINC IfDC =0, MSW of Sx + 15 11111Q****rxrwrk 1 — — — O
Sx,Dz MSW of Dz, clear LSW of 1001101 1xx002222

Dz; if 1, nop
DCF PINC IfDC =0, MSW of Sy + 1 - 111110***rrrkkkx 1 — — — O
Sy,Dz MSW of Dz, clear LSW of 1011101100yyzzz7

Dz; if 1, nop

Description: Adds 1 to the top word of the Sx and Sy operands, stores the result in the upper wc
of the Dz operand, and clears the bottom word of the Dz operand with zeros. When conditions &
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When

they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions we

true and the instruction was executed.

RENESAS

317

Note: The bottom word of the destination register is ignored when the DC bit is updated.

Operation:

f* Casel:PINCSx,Dz *
F Case2:PINCSyDz *

{

unsigned char carry_bit, borrow_bit, negative_hit, zero_bit, overflow_bit;
/* ALU Sources assignment */

DSP_ALU_SRC2 = Ox1;
DSP_ALU_SRC2G= 0x0;

if (Casel) { /* MSW of Sx +1 - Dz¥
switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 =X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;
break;

case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;
break;

case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = AQG;
break;

case 0x3: DSP_ALU_SRC1 =AZ,;
DSP_ALU_SRC1G = AlG;
break;

}
else { * MSWofSy+1 - Dz¥
switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC1 =Y0;
break;
case Ox1: DSP_ALU_SRC1 =Y1;
break;
case 0x2: DSP_ALU_SRC1 =MQ;
break;

318
RENESAS

case 0x3: DSP_ALU_SRC1 =M1;

break;
}
if DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff;
else DSP_ALU_SRC1G =0x0;

}

DSP_ALU_DST HW=DSP_ALU_SRC1 HW + 1;

carry_bit = (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSBS + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

[* ALU Destination assignment */
switch (zzzz){ * Dz Operand selection bit (zzzz) */
case 0x5: Al_HW =DSP_ALU_DST_HW,
Al LW =0x0; * clear LSW */
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;

break;
case 0x7: A0 _HW=DSP_ALU _DST_HW;
AO0_LW =0x0; [* clear LSW */
AOG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = AOG | OxFFFFFFOO;
break;
case 0x8: X0 _HW=DSP_ALU DST_HW,
X0_LW =0x0; [* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST_HW;
X1 LW =0x0; [* clear LSW */
break;
caseOxa: YO HW=DSP_ALU DST_HW;
YO_LW =0x0; [* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST_HW;,
Y1 LW =0x0; [* clear LSW */

319
RENESAS

break;
case Oxc: MO_HW=DSP_ALU_DST_HW,
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST HW;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction”);
break;

}
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

[* DSR register update */
plus_dc_bit();

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW;,
Al LW =0x0; /* clear LSW */
A1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;

break;
case 0x7: A0 _HW=DSP_ALU DST_HW,
AQ_LW =0x0; * clear LSW */
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
break;
case 0x8: X0 HW=DSP_ALU DST_HW:;
X0 LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST_HW,
X1_LW =0x0; [* clear LSW */
break;

case Oxa: YO_HW=DSP_ALU_DST_HW,

320
RENESAS

[* clear LSW */

YO LW =0x0;
break;
case Oxb: Y1_HW =DSP_ALU_DST_HW,
Y1 LW =0x0; [* clear LSW */
break;
caseOxc: MO_HW=DSP_ALU _DST_HW,
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1_HW =DSP_ALU DST_HW,;
M1_LW =0x0; * clear LSW */
break;
default: printf(\nERROR:lllegal DSP Instruction”);
break;
}
}
}
Example:

PINC X0,M0 NOPX NOPY
;After execution:

PINC X1,X1 NOPX NOPY
;After execution:

RENESAS

:Before execution: X0=H'0052330F, M0=H'12345678
X0=H'0052330F, M0O=H'00530000

:Before execution: X1=H'FC342855
X1=H'FC350000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

321

6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
PLDS Dz - MACH 11111 0¥reemsk 1 — — — O
Dz MACH 111011010000zzzz
PLDS Dz - MACL 11111 0¥ ek 1 - — — 0
Dz MACL 111111010000zzzz
DCTPLDS ifDC=1,Dz-MACH 111110 1 - — —- 0
DzMACH it 0 nop 111011100000zzzz
DCTPLDS ifDC=1,Dz-MACL L111110reeee 1 - — - 0
DzMACL it 0, nop 111111100000zzzz
DCFPLDS ifDC=0,Dz—~MACH 111110 1 - — — 0
DzMACH it 1, nop 111011110000zzzz
DCFPLDS ifDC=0,Dz-MACL 111110 1 - — - 0
DzZMACL it 1, nop 111111110000zz2z

Description: Stores the Dz operand in the MACH and MACL registers. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

The DC, N, Z, V, and GT bits of the DSR register are not updated.

Note: Though PSTS, MOVX, and MOVY can be designated in parallel, their execution may
take two cycles.

322
RENESAS

Operation:

f Casel:PLDSDz,MACH *
f Case2:PLDSDz,MACL *

{

if(CASEL{ /*Dz - MACH*
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */
[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: MACH=AL,

break;
case 0x7: MACH = AQ;
break;
case 0x8: MACH = XO0;
break;
case 0x9: MACH = X1,
break;
case Oxa: MACH =Y0;
break;
case Oxb: MACH=Y1,
break;
case Oxc: MACH = MO;
break;
case Oxe: MACH =M1,
break;
default: printf("\nERROR:lllegal DSPInstruction");
break;
}
}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: MACH =Al,;
break;
case 0x7: MACH = AQ;
break;
case 0x8: MACH = XO0;

RENESAS

323

break;
case 0x9: MACH=X1,

break;
case Oxa: MACH =Y0;
break;
case Oxb: MACH=Y1;
break;
case Oxc: MACH = MO;
break;
case Oxe: MACH=M1,
break;
default: printf(\nERROR:lllegal DSP Instruction");
break;
}
}
else{ /*Dz - MACL*

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/¥ ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: MACL =Al;

break;

case 0x7: MACL =AQ;
break;

case 0x8: MACL = X0;
break;

case 0x9: MACL =X1;
break;

case Oxa:. MACL =Y0;
break;

case Oxb: MACL=Y1;
break;

case Oxc: MACL =MO;
break;

case Oxe: MACL =M1,
break;

default: printf"\nERROR:lllegal DSP Instruction”);

break;

324
RENESAS

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case O0x5: MACL =Al;

break;
case 0x7: MACL =AQ;
break;
case 0x8: MACL = X0;
break;
case 0x9: MACL =X1;
break;
case Oxa: MACL =YO0;
break;
case Oxb: MACL=Y1;
break;
case Oxc: MACL = MQ;
break;
case Oxe: MACL =M1,
break;
default: printf"\nERROR:lllegal DSP Instruction");
break;
}
}
}
}
Example:

PLDS AO,MACH NOPX NOPY ;Before execution: AO0=H'123456789A,
MACH=H'66666666

:After execution: AO=H'123456789A,
MACH=H'3456789A

325
RENESAS

6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
PMULS MSW of Se x MSW of 11111 Qe 1 —_ - — O

Se,SfDg St-Dg 0100eeff0000gg00

Description: The contents of the top word of the Se and Sf operands are multiplied as signed anc
the result stored in the Dg operand. The DC, N, Z, V, and GT bits of the DSR register are not

updated.

Note: Since PMULS performs fixed decimal point multiplication, the operation result will be
different from that of MULS, which performs integer multiplication, even though the
source data may be the same.

Operation:

F PMULS Se,SfDg *

{

/* Multiplier Sources assignment */
switch (ee) { [* Se Operand selection bit (ee) */
case 0x0: DSP_M_SRC1=X0_HW;
break;
case Ox1: DSP_M_SRC1=X1 HW,;
break;
case 0x2: DSP_M_SRC1=Y0 HW,;
break;
case 0x3: DSP_M_SRC1=A1 HW;
break;
}
switch (ff) { * Sf Operand selection bit (ff) */
case 0x0: DSP_M_SRC2=Y0_HW;
break;
case Ox1: DSP_M_SRC2=Y1 HW,;
break;
case 0x2: DSP_M_SRC2=X0_HW,;
break;

326
RENESAS

case 0x3: DSP_M_SRC2=A1 HW;
break;
}

F* Multiplier Operation */

if (SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {
DSP_M_DST=0x7fffffff, /* overflow protection */

}

else {

DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1,

}

if ODSP_M_DST_MSB) DSP_M_DSTG_LSB8 = 0xff;

else DSP_M_DSTG_LSB8 = 0x0;

[* Multiplier Destination assignment */
switch (gg) { * Dg Operand selection bit (gg) */

case 0x0: MO=DSP_M_DST;
break;

case Ox1: M1=DSP_M_DST,
break;

case 0x2: A0O=DSP_M_DST;
if(DSP_M_DSTG_LSB8==0x0) AOG=0x0;
else AOG=0xffffffff;
break;

case 0x3: A1=DSP_M_ DST;
if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;
else A1G=0xffffffff;
break;

327
RENESAS

Examples:

PMULS X0,YO,M0 NOPX NOPY ; Before execution: X0=H'00010000, Y0=H'00020000,

PMULS X1,Y1,A0 NOPX NOPY

328

27 ")
MO0=H'33333333
; After execution: X0=H'00010000, Y0=H'00020000,
MO0=H'00000004
%)

The value is doubled when viewed as integer data.

: Before execution: X1=H'FFFE2222, Y1=H'0001AAAA,

AO=H'4444444444

. After execution: X1=H'FFFE2222, Y1=H'0001AAAA,
AO=H'FFFFFFFFFC

() : Fixed-point value

RENESAS

6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PNEG Sx,Dz 0-Sx-Dz 11211 Q%***HkkkAx 1 Update — — O
11001001xx00zzzz
PNEG Sy,Dz 0-Sy-Dz 11112Q%***rrreex 1 Update — — O
1110100100yyzzzz
DCT PNEG Sx,bz ifDC=1,0-Sx-Dz 111120%* ek 1 — — — O
if 0, nop 11001010xx00zzzz
DCTPNEG Sy,Dz ifDC=1,0-Sy-Dz 11211 Q***kkkkek 1 — — — O
if 0, nop 1110101000yyzzzz
DCF PNEG Sx,Dz ifDC=0,0-Sx-Dz 11211 Q¥***kkkkkk 1 — — — O
if 1, nop 11001011xx00zzzz
DCF PNEG Sy,bz ifDC=0,0-Sy-Dz 11112 Q%**rrrrnk 1 — —_ — O
if 1, nop 1110101100yyzzzz

Description: Reverses the sign. Subtracts the Sx and Sy operands from 0 and stores the result |
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions we
true and the instruction was executed.

Operation:

f* Casel:PNEGSx,Dz *
F Case2:PNEGSyDz *

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

DSP_ALU_SRC1=0;
DSP_ALU_SRC1G=0;

[* ALU Sources assignment */
if (Casel) { *0-Sx - Dz*
switch (xx) { * Sx Operand selection bit (xx) */

329
RENESAS

case 0x0: DSP_ALU_SRC2 = X0;
if DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = Oxff;
else DSP_ALU_SRC2G = 0x0;
break;

case Ox1: DSP_ALU SRC2 =X1;
if DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = Oxff;
else DSP_ALU_SRC2G = 0x0;
break;

case 0x2: DSP_ALU_SRC2 =AQ;
DSP_ALU_SRC2G = A0G;
break;

case 0x3: DSP_ALU_SRC2 =Al;
DSP_ALU SRC2G = AlG;
break;

}
else { *0-Sy - Dz*
switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =Y0;
break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =M0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;
}

DSP_ALU DST=DSP_ALU SRC1-DSP _ALU SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |
(DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;

DSP_ALU DSTG LSB8=DSP_ALU SRC1G LSB8-DSP_ALU SRC2G_LSBS - borrow _bit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);

330
RENESAS

overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

¥ ALU Destination assignment */
switch (zzzz){ * Dz Operand selection bit (zzzz) */
case 0x5: A1=DSP_ALU_DST,
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;

break;

case 0x8: X0=DSP_ALU_DST,
break;

case 0x9: X1=DSP_ALU_DST,
break;

caseOxa: YO=DSP_ALU_DST,
break;

case Oxb: Y1=DSP_ALU_DST;
break;

caseOxc: MO=DSP_ALU_DST,;
break;

case Oxe: M1=DSP_ALU_DST;
break;

default: printf"\nERROR:lllegal DSP Instruction");
break;

}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

[* DSR register update */
minus_dc_bit();
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

RENESAS

331

[* ALU Destination assignment */
switch (zzzz){ * Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU DST;
Al1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = Al1G | OXFFFFFFQO;
break;
case 0x7: AO0=DSP_ALU DST;
AOG = DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | OxFFFFFFQO;

break;
case 0x8: X0=DSP_ALU DST;
break;
case 0x9: X1=DSP_ALU DST;
break;
caseOxa: YO=DSP_ALU DST;
break;
case Oxb: Y1=DSP_ALU DST;
break;
case Oxc: MO=DSP_ALU DST;
break;
case Oxe: M1=DSP_ALU DST;
break;
default: printf"\nERROR:lllegal DSP Instruction”);
break;
}
}
}
332

RENESAS

Examples:
;Before execution: X0=H'55555555, AO=H'A987654321

:After execution: X0=H'55555555, AO=H'FFAAAAAAAB

;:Before execution: Y1=H'99999999
;After execution: Y1=H'66666667

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

PNEG X0,A0 NOPX NOPY

PNEG X1,Y1 NOPX NOPY

333
RENESAS

6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction

Applicable
Instructions
SH-

Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
POR Sx | Sy Dz, clear LSW of ~ 111110%stwsties 1 Update — — O
Sx,3y,Dz Dz 10110101xxyyzzzz
DCT POR IfDC =1, Sx| Sy-Dz, 11112Q%**rrrrek 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 0, nop 10110110xxyyzz27
DCF POR If DC =0, Sx | Sy-Dz, 11112Q%**rrrrek 1 — — — O
Sx,Sy,Dz clear LSW of Dz; if 1, nop 10110111xxyyzz27

Description: Takes the OR of the top word of the Sx operand and the top word of the Sy operand
stores the result in the top word of the Dz operand, and clears the bottom word of Dz with zeros.
When Dz is a register that has guard bits, the guard bits are also zeroed. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC b
is updated.

334
RENESAS

Operation:
F PORSxSyDz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */

switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =A0;
break;
case 0x3: DSP_ALU_SRC1 =A1;
break;
}

switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;

}

DSP_ALU_DST _HW =DSP_ALU_SRC1_HW |DSP_ALU_SRC2 HW:;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU_DST_HW,
Al LW =0x0; /* clear LSW */
AlG=0x0; /*clear Guard bits */
break;
case Ox7: AO_HW=DSP_ALU_DST_HW,

RENESAS

335

AO0_LW = 0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case Ox8: X0 HW=DSP_ALU DST_HW;,
X0 LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST;
X1_LW =0x0; [* clear LSW */
break;
caseOxa: YO _HW=DSP_ALU_DST,
YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST;
Y1 LW =0x0; * clear LSW */
break;
caseOxc: MO_HW=DSP_ALU_DST;
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction");
break;

}

carry_bit =0x0;
negative_bit=DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = 0x0;

* DSR register update */
logical_dc_bit();
}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */
/¥ ALU Destination assignment */
switch (zzzz){ I Dz Operand selection bit (zzzz) */
case 0x5: Al HW=DSP_ALU DST_HW;
Al LW =0x0; [* clear LSW */

336
RENESAS

A1G=0x0; /*clear Guard bits */
break;
case 0x7: A0 HW=DSP_ALU DST HW;
AQ_LW =0x0; [* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST HW;
XO0_LW =0x0; [* clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU_DST;
X1 LW =0x0; /* clear LSW */
break;
caseOxa: YO HW=DSP_ALU DST;
YO_LW =0x0; [* clear LSW */
break;
case Oxb: Y1 _HW=DSP_ALU_DST;
Y1 LW =0x0; /* clear LSW */
break;
case Oxc. MO _HW=DSP_ALU DST;
MO_LW = 0x0; * clear LSW */
break;
caseOxe: M1_HW=DSP_ALU DST;
M1 LW =0x0; /* clear LSW */
break;

default: printf"\nERROR:lllegal DSP Instruction”);
break;

}
Example:

POR X0,Y0,A0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555
AO=H'123456789A
;After execution: X0=H'33333333, YO=H'55555555
AO=H'127777789A

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

337
RENESAS

6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PRND Sx + H'00008000 -Dz 11111 (Qrkkeekikx 1 Update — — O
SxDz (lear LSW of Dz 10011000xx00zzzz
PRND Sy +H'00008000 -Dz 11111 (Q*rkkekioekk 1 Update — — O
SYPz (lear LSW of Dz 1011100000yyzzzz

Description: Does rounding. Adds the immediate data H'00008000 to the contents of the Sx and
Sy operands, stores the result in the upper word of the Dz operand, and clears the bottom word
Dz with zeros.

The DC bit of the DSR register is updated according to the specifications for the CS bits. The N,
Z,V, and GT bits of the DSR register are also updated.

Operation:

f* Casel:PRND Sx,Dz */
F Case2:PRNDSy,Dz *

{

unsigned char carry_bit, borrow_bit, negative_hit, zero_bit, overflow_bit;
/¥ ALU Sources assignment */

DSP_ALU_SRC2 = 0x00008000;
DSP_ALU_SRC2G= 0x0;

if (Casel){ /*Sx+ H00008000 - Dz; clr Dz LW */

switch (xx) { /* Sx Operand selection bit (xx) */

case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRCI1G = 0x0;
break;

case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRCI1G = 0x0;
break;

case 0x2: DSP_ALU_SRC1 =AQ;

338
RENESAS

DSP_ALU_SRC1G = AQG;
break;

case 0x3: DSP_ALU_SRC1 =Al;
DSP_ALU_SRC1G = AlG;
break;

}

else { *Sy+ H'00008000 - Dz;clr Dz LW */
switch (yy) { /* Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC1 =Y0;

break;
case Ox1: DSP_ALU_SRC1 =Y1;
break;
case 0x2: DSP_ALU_SRC1 = M0;
break;
case 0x3: DSP_ALU_SRC1 =M1;
break;
}
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G =0x0;

}

DSP_ALU_DST = (DSP_ALU_SRC1 + DSP_ALU_SRC?2) & OxFFFF0000;
carry_bit= (DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & IDSP_ALU_DST_MSB)

|(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 =DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSBS8 + carry_bit;

overflow_hit= PLUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW;,
Al LW =0x0; /* clear LSW */
A1G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
break;
case 0x7: A0 HW=DSP_ALU DST HW;
AQ_LW =0x0; [* clear LSW */

RENESAS

339

AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
break;
case Ox8: X0 HW=DSP_ALU DST_HW;,
X0 LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST HW;
X1_LW =0x0; [* clear LSW */
break;
case Oxa: YO HW=DSP_ALU_DST_HW,
YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST HW;
Y1 LW =0x0; * clear LSW */
break;
case Oxc: MO_HW =DSP_ALU_DST_HW;
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST HW;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction");
break;

}
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

* DSR register update */
plus_dc_bit();

340
RENESAS

Example:
;Before execution: X0=H'0052330F, MO=H'12345678

; After execution: X0=H'0052330F, M0=H'00520000
;:Before execution: X1=H'FC34C087
;After execution: X1=H'FC350000
DC hit is updated depending on the state of CS [2:0].

PRND X0,M0 NOPX NOPY

PRND X1,X1 NOPX NOPY

341
RENESAS

6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift

Instruction
Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PSHA if Sy> =0, Sx<<Sy-Dz 11211 Q%***kkkkkk 1 Update — —_ O
Sx,Sy,bz if Sy<0, Sx>>Sy—>Dz 10010001xxyyzzzz
DCT PSHA if DC =1 & Sy>=0, 11211 Q%***wkkkkk 1 Update — — O
Sx,Sy,bz Sx<<Sy-Dz 10010010xxyyzzzz
if DC =1 & Sy<0,
Sx>>Sy - Dz
if DC =0, nop
DCF PSHA if DC =0 & Sy> =0, 11112 Q%**rrkrnk 1 — — — O
Sx,Sy,bz Sx<<Sy->Dz 10010011xxyyzzzz
if DC =0 & Sy<0,
Sx>>Sy Dz
if DC =1, nop
PSHA if imm> =0, 11112Q%**rrrrnk 1 — — — O
#imm,Dz Dz<<imm - Dz 00010iiiiilizzzz

if imm<0, Dz>>imm - Dz

Description: Arithmetically shifts the contents of the Sx or Dz operand and stores the result in the
Dz operand. The amount of the shift is specified by the Sy operand or the immediate value imm
operand. When the shift amount is positive, it shifts left. When the shift amount is negative, it
shifts right. When conditions are specified for DCT and DCF, the instruction is executed when
those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

342
RENESAS

Operation:

F PSHASxSyDz *
<When register operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */
switch (xx) { [* Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU SRC1 =X1;
if DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = A1G;
break;
}
switch (yy) { [* Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 = Y0 & 0x007F0000;

break;
case Ox1: DSP_ALU_SRC2 =Y1 & 0x007F0000;
break;
case 0x2: DSP_ALU SRC2 = MO0 & 0x007F0000;
break;
case 0x3: DSP_ALU SRC2 =M1 & 0x007F0000;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU SRC2G = 0x0;

if(DSP_ALU_SRC2_HW & 0x0040)==0){ /* Left Shift O<=cnt<=32 */

RENESAS

343

char cnt=(DSP_ALU_SRC2_HW & 0x003F);
if(cnt > 32) {
printf("\nPSHA Sz,Sy,Dz \nError! Shift %2X exceed range.\n",cnt);
exit();
}
DSP_ALU_DST =DSP_ALU_SRC1 << cnt;
DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt) |
(DSP_ALU_SRC1 >> (32-cnt))) & 0x000000FF;
carry_bit= ((DSP_ALU_DSTG & 0x00000001)==0x1);
}
else { * Right Shift 0< cnt <=32 */
char cnt = (~-DSP_ALU_SRC2_HW & 0x003F)+1);
if(cnt > 32) {
printf("\nPSHA Sz,Sy,Dz \nError! shift -%62X exceed range.\n",cnt);
exit();
}
if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */
DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<(32-8)));
DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);
}
else {
DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<(32-cnt)));
}
DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8 >>cnt--;
carry_bit = ((DSP_ALU_SRC1 >> cnt) & 0x00000001)==0x1);
}

overflow_bit=!(POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/¥ ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU DST,;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
break;
case 0x7: AO0O=DSP_ALU DST;

344
RENESAS

AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
break;
case 0x8: X0=DSP_ALU_DST,
break;
case 0x9: X1=DSP_ALU_DST,
break;
caseOxa: YO=DSP_ALU_DST,
break;
case Oxb: Y1=DSP_ALU DST;
break;
caseOxc: MO=DSP_ALU_DST,;
break;
case Oxe: M1=DSP_ALU_DST;
break;
default: printf(\nERROR:lllegal DSP Instruction”);

break;

negative_bit= DSP_ALU_DSTG_BIT7;
zero_hit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

* DSR register update */
shift_dc_bit();

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/¥ ALU Destination assignment */

switch (zzzz){ /* Dz Operand selection bit (zzzz) */

case 0x5: Al=DSP_ALU DST;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO0=DSP_ALU DST;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | OXFFFFFFQO;
break;
case 0x8: X0=DSP_ALU DST;
break;

RENESAS

345

case 0x9: X1=DSP_ALU DST;

break;
caseOxa: YO=DSP_ALU DST;
break;
case Oxb: Y1=DSP_ALU DST;
break;
case Oxc: MO=DSP_ALU DST;
break;
case Oxe: M1=DSP_ALU DST;
break;
default: printf"\nERROR:lllegal DSPInstruction");
break;
}
}

}

F PSHA#mmDz ¥

<When register operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;
unsigned short tmp_imm;

[* ALU Sources assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */

case 0x5: DSP_ALU_SRC1=A1;
DSP_ALU_SRC1G = AlG;

break;
case Ox7: DSP_ALU SRC1=AQ0;
DSP_ALU_SRCI1G = AlG;

break;
case 0x8: DSP_ALU_SRC1 = X0;

break;
case 0x9: DSP_ALU_SRC1=X1;

break;
caseOxa: DSP_ALU_SRC1=Y0;

break;
case Oxb: DSP_ALU_SRC1=Y1;

break;
case Oxc: DSP_ALU_SRC1 = MQ;

346
RENESAS

break;
case Oxe: DSP_ALU_SRC1=M1;
break;

default: printf(\nERROR:lllegal DSP Instruction”);
break;

}
if ODSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = Oxff:
else DSP_ALU_SRC1G = 0x0;

tmp_imm = (#mm) & 0x0000007F); /* Extract 7bit Immidiate Data */

if((tmp_imm & 0x0040)==0) { /* Left Shift O0<=cnt <=32*/
char cnt = (tmp_imm & 0x003F);
iflcnt > 32) {
printf("\nPSHA Dz #lmm,Dz \nError! #imm=%7X exceed range\n",tmp_imm);
exit();
}
DSP_ALU_DST =DSP_ALU_SRC1 <<cnt;
DSP_ALU_DSTG = ((DSP_ALU_SRCI1G << cnt)
|(DSP_ALU_SRC1 >> (32-cnt))) & 0x000000FF;
carry_bit = ((DSP_ALU_DSTG & 0x00000001)==0x1);

}

else { * Right Shift 0< cnt <=32 */
char cnt = ((~tmp_imm & 0x003F)+1);
if(cnt > 32) {

printf"\nPSHL Dz #lmm,Dz \nError! #imm=%7X exceed range\n",tmp_imm);
exit();

}

if(cnt>8) && DSP_ALU_SRC1G_BIT7) { * MSB copy */
DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<(32-8)));
DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);

}

else {
DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<(32-cnt)));

}

DSP_ALU_DSTG_LSBS8 = (char) DSP_ALU_SRC1G_LSB8>> cnt-;
carry_bit = ((DSP_ALU_SRC1 >> cnt) & 0x00000001)==0x1);

347
RENESAS

overflow_bit=!(POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

{* unconditional operation */
/* ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU_DST,
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
break;
case 0x7: AO=DSP_ALU_DST,;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | OXFFFFFFOO;

break;

case 0x8: X0=DSP_ALU_DST,;
break;

case 0x9: X1=DSP_ALU_DST;
break;

caseOxa: YO=DSP_ALU_DST,
break;

case Oxb: Y1=DSP_ALU _DST;
break;

caseOxc:. MO=DSP_ALU_DST;
break;

case Oxe: M1=DSP_ALU_DST;
break;

default: printf"\nERROR:lllegal DSP Instruction");

break;

}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_L.SB8==0);

[* DSR register update */
shift_dc_bit();
}
}
348

RENESAS

Examples:
PSHA X0,YO,AO NOPX NOPY ;Before execution: X0=H'88888888, Y0=H'00020000,
A0=H'123456789A

:After execution: X0=H'88888888, YO=H'00020000,
AO=H'FE22222222

PSHA X0,Y0,X0 NOPX NOPY ;Before execution: X0=H'33333333, YO=H'FFFF0000
;After execution; X0=H'19999999, YO=H'FFFE0000
PSHA #5,A1 NOPX NOPY ;Before execution: Al=H'AAAAAAAAAA
;After execution: Al=H'FD55555555

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

349
RENESAS

6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PSHL If Sy=0, Sx<<Sy - Dz, 11211 Q%***HkkkAx 1 Update — —_ O
Sx,Sy,Dz clear LSW of Dz; if Sy<0, 10000001xxyyzzz7
Sx>>Sy - Dz,
clear LSW of Dz
DCT PSHL If DC=1 & Sy=0, Sx<<Sy - 11111 Q% *srwkskik 1 — — — O
Sx,Sy,Dz I?z, clear LSW of Dz; 10000010xxyyzzzz
if DC=1 & Sy<0, Sx>>Sy -
Dz, clear LSW of Dz;
if DC=0, nop
DCF PSHL If DC=0 & Sy=0, Sx<<Sy - 11111 Q¥ *rwksrik 1 — — — O
Sx,Sy,Dz Dz, clear LSW of Dz; if DC=0 10000011xxyyzzz7
& Sy<0, Sx>>Sy - Dz, clear
LSW of Dz; if DC=1, nop
PSHL If imm=0, Dz<<imm - Dz, 11111 Q% *rkerckokek 1 Update — — O
#imm,Dz clear LSW of Dz; if imm<0, 0000Qiiiiiiizzzz

Dz>>imm - Dz,
clear LSW of Dz

Description: Logically shifts the top word contents of the Sx or Dz operand, stores the result in
the top word of the Dz operand, and clears the bottom word of the Dx operand with zeros. When
Dz is a register that has guard bits, the guard bits are also zeroed. The amount of the shift is
specified by the Sy operand or the immediate value imm operand. When the shift amount is
positive, it shifts left. When the shift amount is negative, it shifts right. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

350
RENESAS

Operation:

<When register operand is used>
F PSHL Sx,Sy,Dz *

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =A0;
break;
case 0x3: DSP_ALU_SRC1 =A1l;
break;
}

switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 = Y0 & 0x003F0000;
break;
case Ox1: DSP_ALU_SRC2 =Y1 & 0x003FO0000;
break;
case 0x2: DSP_ALU_SRC2 = MO0 & 0x003F0000;
break;
case 0x3: DSP_ALU_SRC2 =M1 & 0x003F0000;
break;
}
if(DSP_ALU_SRC2_HW & 0x0020)==0){ /* Left Shift O<=cnt<=16 */
char cnt = (DSP_ALU_SRC2_HW & 0x001F);
if(cnt > 16) {
printf("PSHL Sx,Sy,Dz \nError! Shift %2X exceed range\n",cnt);
exit();
}
DSP_ALU DST_HW=DSP_ALU_SRC1 HW <<cnt-;
carry_bit = ((DSP_ALU_SRC1_HW << cnt) & 0x8000)==0x8000);
}
else { * Right Shift 0<cnt<=16 */
char cnt = (~DSP_ALU_SRC2_HW & 0x000F)+1);

RENESAS

351

352

if(cnt > 16) {

printf("PSHL Sx,Sy,Dz \nError! Shift -%62X exceed range\n",cnt);

exit();

}

DSP_ALU_DST_HW =DSP_ALU_SRC1 HW >>cnt—;

carry_bit = ((DSP_ALU_SRC1_HW >> cnt) & 0x0001)==0x1);
}

if(DSP_UNCONDITIONAL_UPDATE) { * unconditional operation */
/* ALU Destination assignment */
switch (zzzz){ I Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW;
Al LW =0x0; [* clear LSW */
Al1G =0x0; * clear Guard bits */
break;
case Ox7: A0 HW=DSP_ALU DST_HW;
AOQ_LW =0x0; [* clear LSW */
AO0G = 0x0; * clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST_HW;
X0_LW =0x0; * clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU_DST;
X1 LW =0x0; [* clear LSW */
break;
caseOxa: YO HW=DSP_ALU DST;
YO_LW =0x0; * clear LSW */
break;
case Oxb: Y1 _HW=DSP_ALU_DST;
Y1 LW =0x0; [* clear LSW */
break;
case Oxc:. MO _HW=DSP_ALU DST;
MO_LW = 0x0; * clear LSW */
break;
case Oxe: M1 _HW=DSP_ALU_DST;
M1 LW =0x0; * clear LSW */
break;

RENESAS

default: printf"\nERROR:lllegal DSP Instruction”);
break;

}

carry_bit =0x0;
negative_bit=DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = Ox0;

* DSR register update */
shift_dc_bit();
}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al _HW=DSP_ALU_DST_HW,
Al LW =0x0; [* clear LSW */
AlG=0x0; /*clear Guard bits */
break;
case Ox7: AO_HW=DSP_ALU_DST_HW,
A0_LW =0x0; [* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 _HW=DSP_ALU_DST_HW,
X0_LW =0x0; /* clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU DST,
X1 LW =0x0; [* clear LSW */
break;
caseOxa: YO _HW=DSP_ALU DST;
YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU_DST;
Y1 LW =0x0; [* clear LSW */
break;
caseOxc:. MO_HW=DSP_ALU_DST;
MO_LW = 0x0; [* clear LSW */

RENESAS

353

break;
case Oxe: M1_HW=DSP_ALU DST;
M1 LW =0x0; /* clear LSW */
break;

default: printf"\nERROR:lllegal DSP Instruction”);
break;

}

}

F PSHL#lmm,Dz *
<When immediate operand is used>

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;
unsigned short tmp_imm;

[* ALU Sources assignment */

switch (xx) { /* Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 =X0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =A0;
break;
case 0x3: DSP_ALU_SRC1 =A1;
break;
}

switch (yy) { [* Sy Operand selection bit (yy) */

case 0x0: DSP_ALU_SRC2 = YO0 & 0x003F0000;
break;

case Ox1: DSP_ALU_SRC2 =Y1 & 0x003F0000;
break;

case 0x2: DSP_ALU_SRC2 = MO0 & 0x003F0000;
break;

case 0x3: DSP_ALU_SRC2 =M1 & 0x003F0000;
break;

}

tmp_imm = (#lmm) & 0x0000007F); /* Extract 7bit Immediate Data */

354
RENESAS

if(tmp_imm & 0x0020)==0) { /* Left Shift 0<=cnt <16 */
char cnt = (tmp_imm & 0x001F);
ifcnt > 16) {
printf("PSHL Dz,#lmm,Dz \nError! #imm=%6X exceed range\n”,tmp_imm);
exit();
}
DSP_ALU_DST_HW =DSP_ALU_SRC1_HW << cnt-—;
carry_bit = ((DSP_ALU_SRC1_HW << cnt) & 0x8000)==0x8000);

}

else { /* Right Shift O< cnt <=16 */
char cnt = ((~tmp_imm & 0x001F)+1);
if(cnt > 16) {

printf("PSHL Dz,#Imm,Dz \nError! #imm=%6X exceed range\n",tmp_imm);
exit();
}
DSP_ALU _DST_HW =DSP_ALU_SRC1_HW >>cnt--;
carry_bit= ((DSP_ALU_SRC1_HW >> cnt) & 0x0001)==0x1);
}

{/* unconditional operation */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al HW=DSP_ALU_DST_HW;
Al LW =0x0; /* clear LSW */
Al1G=0x0; /*clear Guard bits */

break;
case Ox7: AO_HW=DSP_ALU_DST_HW,
A0_LW =0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: XO0_HW=DSP_ALU_DST_HW,
X0_LW =0x0; /* clear LSW */
break;
case 0x9: X1 _HW=DSP_ALU DST,
X1 LW =0x0; [* clear LSW */
break;

caseOxa: YO _HW=DSP_ALU DST;

RENESAS

355

YO LW =0x0; /* clear LSW */

break;
case Oxb: Y1 HW=DSP_ALU_DST;
Y1 LW =0x0; [* clear LSW */
break;
caseOxc: MO_HW=DSP_ALU_DST;
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 _HW=DSP_ALU DST;
M1_LW =0x0; * clear LSW */
break;
default: printf"\nERROR:lllegal DSPInstruction");
break;
}
carry_bit =0x0;

negative_bit=DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = Ox0;

/* DSR register update */
shift_dc_bit();

}

Examples:

PSHL X0,YO,AO NOPX NOPY ;Before execution: X0=H'22222222, Y0=H'00030000,
AO=H'123456789A

After execution: X0=H'22222222, YO=H'00030000,
A0=H'0011100000

PSHL X1,Y1,X1 NOPX NOPY ;Before execution: X1=H'CCCCCCCC, Y1=H'FFFEO000
;After execution; X1=H'33330000, Y1=H'FFFE0000
PSHL #7,A1 NOPX NOPY ;Before execution: A1=H'55555555
;After execution: A1=H'AA800000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

356
RENESAS

6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction

Applicable
Instructions
DC SH-
Format Abstract Code Cycle Bit SH-1 SH-2 DSP
PSTS MACH — Dz 11111 Qrrwwrnnes 1 — — — O
MACH,Dz 110011010000zzzz
PSTS MACL - Dz 11111 Qrrrwwennns 1 — — — O
MACL,Dz 110111010000zzzz
DCTPSTS ifDC=1, MACH_Dz 11111Q*kkkkiiiix 1 - — — O
MACH.Dz it g nop 1100111000002zz7
DCTPSTS ifDC=1, MACL-Dz 111110k 1 — — — O
MACLDz tg nop 1101111000002227
DCFPSTS ifDC=0, MACH Dz 111110k 1 — — — O
MACHDZ = it1 nop 110011110000zzzz
DCFPSTS ifDC=0, MACLoDz 111110k 1 — — — O
MACLDZ it1 nop 110111110000zzzz

Description: Stores the contents of the MACH and MACL registers in the Dz operand. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed. The DC, N, Z, V, and GT bits of
the DSR register are not updated.

357
RENESAS

Note: Though PSTS, MOVX and MOVY can be designated in parallel, their execution may take
2 cycles.

Operation:

f Casel:PSTSMACHDz *
F Case2:PSTSMACLDz *

{

if(CASEL{ K MACH - Dz *
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al =MACH,;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: A0 =MACH,;
AO0G =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = A0G | OXFFFFFFQO;

break;

case 0x8: X0 =MACH,;
break;

case 0x9: X1 =MACH,;
break;

case Oxa: YO =MACH,;
break;

case Oxb: Y1=MACH;
break;

case Oxc: MO =MACH;
break;

case Oxe: M1 =MACH;
break;

default: printf(\nERROR:lllegal DSP Instruction”);

break;

}

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

358
RENESAS

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al=MACH,;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = Al1G | OXFFFFFFQO;
break;
case 0x7: AO0=MACH,;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = A0G | OxFFFFFFQO;
break;
case 0x8: X0=MACH,;
break;
case 0x9: X1 =MACH,;
break;
case Oxa: YO=MACH,;
break;
case Oxb: Y1=MACH;
break;
case Oxc: MO =MACH,;
break;
case Oxe: M1=MACH,;
break;

default: printf"\nERROR:lllegal DSP Instruction”);
break;

}

}
else{ ~MACL - Dz¥

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al=MACL;
AlG =DSP_ALU DSTG & Ox000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO0=MACL;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;

RENESAS

359

break;
case 0x8: X0=MACL;

break;
case 0x9: X1=MACL;
break;
case Oxa: YO=MACL;
break;
case Oxb: Y1=MACL;
break;
case Oxc: MO =MACL;
break;
case Oxe: M1=MACL;
break;
default: printf(\nERROR:lllegal DSP Instruction");
break;
}
}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */
switch (zzzz) { /* Dz Operand selection bit (zzzz) */
case 0x5: Al=MACL;
AlG =DSP_ALU_DSTG & Ox000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO0=MACL;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;
break;
case 0x8: X0=MACL;
break;
case 0x9: X1=MACL;
break;
case Oxa: YO=MACL;
break;
case Oxb: Y1=MACL;
break;
case Oxc:. MO =MACL;

360
RENESAS

break;
case Oxe: M1=MACL,

break;
default: printf(\nERROR:lllegal DSP Instruction”);
break;
}
}
}
}
Examples:

PSTS MACH,A0 NOPX NOPY :Before execution: AO=H'123456789A, MACH=H'88888888
:After execution: AO=H'FF88888888, MACH=H'88888888

361
RENESAS

6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PSUB Sx,Sy,Dz Sx—-Sy-Dz 11112 Q%**rrkrrex 1 Update — — O
10100001xxyyzzzz
DCT PSUB if DC =1, 11112Q%***rrreex 1 — — — O
Sx,Sy,bz Sx—Sy-Dzif0,nop 10100010xxyyzzzz
DCF PSUB if DC =0, 111120%* ek 1 — — — O
Sx,Sy,Dz

Sx—Sy-Dzif1,nop 10100011xxyyzzzz

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions wer
true and the instruction was executed.

362
RENESAS

Operation:
F PSUBSx,Sy,Dz *

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = AQG;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G =AlG;
break;
}
switch (yy) { * Sy Operand selection bit (yy) */
case Ox0: DSP_ALU_SRC2 =YO0;

break;
case Ox1: DSP_ALU_SRC2 =Y1,
break;
case 0x2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff,
else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1-DSP_ALU_SRC2;
carry_bit =(DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && IDSP_ALU_DST_MSB) |

363
RENESAS

(DSP_ALU_SRC1 MSB &!DSP_ALU SRC2_MSB);
borrow_bit = Icarry_bit;
DSP_ALU DSTG LSB8=DSP_ALU SRC1G_LSB8-DSP_ALU SRC2G_LSBS - borrow_bit;

overflow_bit=MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_QV);
overflow_protection();

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU _DST,
AlG =DSP_ALU_DSTG & Ox000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;

break;

case 0x8: X0=DSP_ALU_DST,
break;

case 0x9: X1=DSP_ALU_DST,
break;

caseOxa: YO=DSP_ALU_DST,
break;

case Oxb: Y1=DSP_ALU_DST;
break;

caseOxc: MO=DSP_ALU_DST;
break;

case Oxe: M1=DSP_ALU_DST;
break;

default: printf(\nERROR:lllegal DSP Instruction");

break;

}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_L.SB8==0);

* DSR register update */

minus_dc_bit();

364
RENESAS

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: A1=DSP_ALU_DST,
AlG =DSP_ALU DSTG & Ox000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFQO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFQO;

break;

case 0x8: X0=DSP_ALU_DST,
break;

case 0x9: X1=DSP_ALU_DST,
break;

caseOxa: YO=DSP_ALU_DST,
break;

case Oxb: Y1=DSP_ALU DST;
break;

caseOxc: MO=DSP_ALU_DST,
break;

case Oxe: M1=DSP_ALU_DST;
break;

default: printf(\nERROR:lllegal DSPInstruction");

break;

365
RENESAS

Examples:
PSUB X0,YO,AO NOPX NOPY ;Before execution: X0=H'55555555, YO=H'33333333,
A0=H'123456789A

X0=H'55555555, Y0=H'33333333,
A0=H'0022222222

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

:After execution:

366
RENESAS

6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic
Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PSUB Sx — Sy-Du 11117 Qriektonk 1 Update — — O
Sx,Sy,Du
PMULS MSW of Se x 0110eeffxxyygguu — — O
Se,Sf,Dg MSW of Sf- Dg

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the resul
the Du operand. The contents of the top word of the Se and Sf operands are multiplied as signe
and the result stored in the Dg operand. These two processes are executed simultaneously in
parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Operation:
F PSUB Sx,Sy,Du PMULS Se,Sf,Dg */

{

unsigned char carry_bit, borrow_bit, negative_hit, zero_bit, overflow_bit;

/* Multiplier Sources assignment */

switch (ee) { * Se Operand selection bit (ee) */
case 0x0: DSP_M_SRC1 =X0_HW;
break;
case Ox1: DSP_M_SRC1=X1_HW,;
break;
case 0x2: DSP_M_SRC1=Y0_HW,;
break;
case 0x3: DSP_M_SRC1=Al1_HW,;
break;
}

switch (ff) { * Sf Operand selection bit (ff) */
case 0x0: DSP_M_SRC2 =YO0_HW,;

367
RENESAS

break;

case Ox1: DSP_M_SRC2=Y1 HW,;
break;

case O0x2: DSP_M_SRC2 =X0_HW;
break;

case 0x3: DSP_M_SRC2 =Al_HW,;
break;

}

/* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 =X0;
if ODSP_ALU_SRC1_MSB)
DSP_ALU_SRC1G_|L SB8 = 0xff;
else DSP_ALU_SRC1G_LSB8 = 0x0;
break;
case Ox1l: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB)
DSP_ALU_SRC1G_LSB8 = 0xff;
else DSP_ALU_SRC1G_LSB8=0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRC1G = A0G;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = AlG;
break;
}
switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =Y(;
break;
case Ox1: DSP_ALU SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MQ0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;

368
RENESAS

if (OSP_ALU_SRC2_MSB) DSP_ALU_SRC2G_LSBS8 = Oxff;
else DSP_ALU_SRC2G_LSBS = 0x0;

[* Multiplier Operation */

/ PMULS Se, Sf, Dg */
if (SBIT==1) && (DSP_M_SRC1==0x8000) && (DSP_M_SRC2==0x8000)) {
DSP_M_DST=0xTfffffff; /* overflow protection */

}

else {
DSP_M_DST=((long)(short)DSP_M_SRC1*(long)(short)DSP_M_SRC2)<<1;

}

if OSP_M_DST_MSB) DSP_M_DSTG_LSB8 = Oxff;
else DSP_M DSTG_LSB8 = 0x0;

switch (gg) { /* Dg Operand selection bit (gg) */

case 0x0: MO=DSP_M_ DST;
break;

case OxL: M1=DSP_M DST;
break;

case 0x2: AO=DSP_M DST;
if(DSP_M_DSTG_LSB8==0x0) AOG=0x0;
else AOG=0xffffffff;
break;

case 0x3: A1=DSP_M DST;
if(DSP_M_DSTG_LSB8==0x0) A1G=0x0;
else A1G=0xffffffff;
break;

}

[* ALU operation */

DSP_ALU_DST=DSP_ALU_SRC1-DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB)&& IDSP_ALU_DST_MSB)|
(DSP_ALU_SRC1 _MSB & IDSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8-DSP_ALU_SRC2G_LSBS - borrow_it;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

369
RENESAS

switch (uu) { /* Du Operand selection bit (uu) */

case 0x0:
X0 =DSP_ALU_DST;
negative_bit= DSP_ALU_DST_MSB;
zero_hit=(DSP_ALU_DST==0);
break;

case Ox1:
YO =DSP_ALU_DST;
negative_bit=DSP_ALU_DST_MSB;
zero_bit = (DSP_ALU_DST==0);
break;

case 0x2:
A0 =DSP_ALU_DST;
AOG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);
break;

case 0x3:
Al =DSP_ALU_DST;
AlG =DSP_ALU_DSTG & 0x000000FF;
if(ODSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
negative_bit=DSP_ALU_DSTG_BIT7,;
zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

break;
}
/* DSR register update */
minus_dc_hit();
}
370

RENESAS

Examples:

PSUB A0,M0,A0 PMULS X0,YO0,
MO NOPX NOPY :Before execution: X0=H'00020000, YO=H'FFFE0000,
MO0=H'33333333, A0=H'0022222222

;After execution: X0=H'00020000, YO=H'FFFE0O00O,
MO=H'FFFFFFF8, A0O=H'55555555

371
RENESAS

6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction

Applicable
Instructions
SH-
Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PSUBC SX—Sy—DC Dz 11111 (Qrrierierix 1 Borrow — — O

Sx,Sy,Dz 10100000xxyyzzzz

Description: Subtracts the contents of the Sy operand and the DC bit from the Sx operand and
stores the result in the Dz operand. The DC bit of the DSR register is updated as the borrow flag
The N, Z, V, and GT bits of the DSR register are also updated.

Note: After the PSUBC instruction is executed, the DC bit is updated as the borrow flag without
regard to the CS bit.

Operation:
F PSUBC Sx,Sy,Dz *

{

unsigned char carry_bit, borrow_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */
switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;
else DSP_ALU_SRC1G = 0x0;
break;
case 0x2: DSP_ALU_SRC1 =AQ;
DSP_ALU_SRCI1G = AQG;
break;
case 0x3: DSP_ALU_SRC1 =A1;
DSP_ALU_SRCI1G = AlG;
break;

372
RENESAS

switch (yy) { * Sy Operand selection bit (yy) */
case 0x0: DSP_ALU_SRC2 =YO0;

break;
case Ox1: DSP_ALU_SRC2 =Y1;
break;
case 0x2: DSP_ALU_SRC2 =MO0;
break;
case 0x3: DSP_ALU_SRC2 =M1,
break;
}
if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;
else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST =DSP_ALU_SRC1-DSP_ALU_SRC2 - DSPDCBIT;

carry_bit=((DSP_ALU_SRC1_MSB | IDSP_ALU_SRC2_MSB) && 'DSP_ALU_DST_MSB)
| (DSP_ALU_SRC1_MSB & IDSP_ALU_SRC2_MSB);

borrow_bit = Icarry_bit;
DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8-DSP_ALU_SRC2G_LSBS - borrow_bit;

overflow_bit= MINUS_OP_G_OV || (POS_NOT_OV || NEG_NOT_OV);
overflow_protection();

/* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case 0x5: Al1=DSP_ALU_DST,
AlG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) A1G = A1G | OXFFFFFFOO;
break;
case 0x7: AO=DSP_ALU_DST,
AOG =DSP_ALU_DSTG & 0x000000FF;
if(DSP_ALU_DSTG_BIT7) AOG = AOG | OXFFFFFFOO;
break;
case 0x8: X0=DSP_ALU_DST,
break;
case 0x9: X1=DSP_ALU_DST,
break;
case Oxa: YO=DSP_ALU_DST,
break;
case Oxb: Y1=DSP_ALU DST;

373
RENESAS

break;
caseOxc: MO=DSP_ALU_DST;

break;
case Oxe: M1=DSP_ALU_DST;
break;
default: printf(\nERROR:lllegal DSPInstruction");
break;

}

negative_bit=DSP_ALU_DSTG_BIT7;
zero_bit= (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

* DSR register update */
dc_always_borrow();

}
Example:

CS[2:0]=***: Always Carry or Borrow Mode
PSUBC X0,YO,M0 NOPX NOPY ;:Before execution: X0=H'33333333, YO0=H'55555555
MO=H'00 12345678, DC=0
;After execution: X0=H'33333333, YO0=H'55555555
MO=H'FFDDDDDDDE, DC=1
PSUBC X0,YO,M0 NOPX NOPY ;:Before execution: X0=H'33333333, YO0=H'55555555
MO=H'00 12345678, DC=1
;After execution: X0=H'33333333, YO0=H'55555555
MO=H'FFDDDDDDDD, DC=1

374
RENESAS

6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction

Applicable
Instructions
SH-

Format Abstract Code Cycle DCBit SH-1 SH-2 DSP
PXOR Sx ~ Sy - Dz, clear LSW of 11122 Q%**kkrrxx 1 Update — — O
Sx,Sy,Dz Dz 10100101xxyyzzzz
DCT PXOR if DC =1, Sx"Sy - Dz, clear 11122Q%**rrrrxx 1 — — — O
Sx,Sy,Dz LSW of Dz; if 0, nop 10100110xxyyzzz2
DCF PXOR if DC =0, Sx"Sy Dz clear 11122Q%**rreex 1 — — — O
Sx,Sy,Dz LSW of Dz; if 1, nop 10100111xxyyzzzz

Description: Takes the exclusive OR of the top word of the Sx operand and the top word of the
Sy operand, stores the result in the top word of the Dz operand, and clears the bottom word of [
with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. If
conditions are specified, the DC, N, Z, V, and GT bits are not updated even is the conditions we
true and the instruction was executed.

Note: The bottom word of the destination register and the guard bits are ignored when the DC
is updated.

375
RENESAS

Operation:

F PXORSx,Sy,Dz *

{

unsigned char carry_bit, negative_bit, zero_bit, overflow_bit;

[* ALU Sources assignment */

switch (xx) { * Sx Operand selection bit (xx) */
case 0x0: DSP_ALU_SRC1 = X0;
break;
case Ox1: DSP_ALU_SRC1 =X1;
break;
case 0x2: DSP_ALU_SRC1 =A0;
break;
case 0x3: DSP_ALU_SRC1 =A1l;
break;
}

switch (yy) { [* Sy Operand selection bit (yy) */
case Ox0: DSP_ALU_SRC2 =YO0;
break;
case Ox1: DSP_ALU_SRC2 =Y1,;
break;
case 0x2: DSP_ALU_SRC2 =M0;
break;
case 0x3: DSP_ALU_SRC2 =M1;
break;

}
DSP_ALU_DST_HW =DSP_ALU_SRC1 HW"DSP_ALU_SRC2_HW,;
if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU_DST_HW,
Al LW =0x0; /* clear LSW */
AlG=0x0; [*clear Guard bits */
break;
case Ox7: AO_HW=DSP_ALU_DST_HW,

376
RENESAS

A0_LW = 0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST_HW;,
X0_LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST;
X1_LW =0x0; [* clear LSW */
break;
caseOxa: YO _HW=DSP_ALU DST,
YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST;
Y1 LW =0x0; [* clear LSW */
break;
case Oxc: MO_HW=DSP_ALU_DST,
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction”);
break;

}

carry_bit =0x0;
negative_bit=DSP_ALU_DST_MSB;
zero_bit =(DSP_ALU_DST_HW==0);
overflow_bit = 0x0;

[* DSR register update */
logical_dc_bit();

}
else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

[* ALU Destination assignment */
switch (zzzz){ /* Dz Operand selection bit (zzzz) */
case Ox5: Al HW=DSP_ALU DST_HW,

377
RENESAS

Al LW =0x0; /* clear LSW */
A1G=0x0; /*clear Guard bits */
break;
case Ox7: A0 HW=DSP_ALU DST_HW;,
AO0_LW = 0x0; /* clear LSW */
AOG =0x0; /*clear Guard bits */
break;
case 0x8: X0 HW=DSP_ALU DST_HW:;
X0 LW =0x0; /* clear LSW */
break;
case 0x9: X1 HW=DSP_ALU DST;
X1_LW =0x0; * clear LSW */
break;
caseOxa: YO _HW=DSP_ALU_DST,
YO LW =0x0; /* clear LSW */
break;
case Oxb: Y1 HW=DSP_ALU DST;
Y1 LW =0x0; * clear LSW */
break;
caseOxc: MO_HW=DSP_ALU_DST;
MO_LW = 0x0; /* clear LSW */
break;
case Oxe: M1 HW=DSP_ALU DST;
M1_LW =0x0; * clear LSW */
break;

default: printf(\nERROR:lllegal DSP Instruction");
break;

378
RENESAS

Example:

PXOR X0,YO,A0 NOPX NOPY ;Before execution: X0=H'33333333, Y0=H'55555555
AO=H'123456789A

;After execution: X0=H'33333333, Y0=H'55555555
A0=H'0066660000

In case of unconditional execution, the DC bit is updated
depending on the state of CS [2:0].

379
RENESAS

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (systen
clock cycles).

7.1 Basic Configuration of Pipelines

7.11 The Five-Stage Pipeline
Pipelines are composed of the following five stages:

1. IF (Instruction fetch)
Fetches instruction from the memory where the program is stored.
2. 1D (Instruction decode)
Decodes the instruction fetched.
3. EX (Instruction execution)
Does data operations and address calculations according to the results of decoding.
4. MA (Memory access)
Accesses data in memory. Generated by instructions that involve memory access, with some
exceptions.
5. WB/DSP (W/D) (Write back (CPU core) or DSP (DSP unit))
Write Back: Returns the results of the memory access (data) to a register. Generated by
instructions that involve memory loads, with some exceptions.

DSP: Does operations using the DSP unit's ALU and MAC. Also, the results of memory
accesses (data) are returned to registers; not generated during writes to memaory or no oper:
(NOP).

These stages flow with the execution of the instructions and thereby constitute a pipeline. At a
given instant, five instructions are being executed simultaneously. The basic pipeline flow is as
shown in figure 7.1. The period in which a single stage is operating is called a slot and is indicat
by two-way arrows { -).

All instructions have at least the 3 stages IF, ID and EX, but not all have stages MA and WB/DS
The way the pipeline flows also varies with the type of instruction. Some pipelines differ,
however, because of contention between IF and MA.

381
RENESAS

> D > P> P > > > . Slot
Instruction1l IF ID EX MA WB/DSP Instruction
Instruction 2 IF ID EX MA WB/DSP stream
Instruction 3 IF ID EX MA WB/DSP
Instruction 4 IF ID EX MA WB/DSP
Instruction 5 IF ID EX MA WB/DSP

—

Time

Figure 7.1 Basic Structure of Pipeline Flow

7.1.2 Slot and Pipeline Flow

The time period in which a single stage operates called a slot. Slots must follow the rules
described below.

All stages (IF, ID, EX, MA, WB/DSP) of an instruction must be executed in 1 slot. Two or more
stages cannot be executed within 1 slot. Since WB/DSP is executed immediately after MA,
however, some instructions may execute MA and WB/DSP within the same slot. Figures 7.2 and

7.3 show impossible pipeline flows.

Instruction Execution: Each stage (IF, ID, EX, MA, WB/DSP) of an instruction must be
executed in one slot. Two or more stages cannot be executed within one slot (figure 7.2), with
exception of WB and MA. Since WB is executed immediately after MA, however, some
instructions may execute MA and WB within the same slot.

> ¢“—> 4> > > > P> > > <> Sot

Instruction 1 IF ID EX
Instruction 2 IF ID EX MA W/D

Note: ID and EX of instruction 1 are executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

Slot Sharing: A maximum of one stage from another instruction may be set per slot, and that
stage must be different from the stage of the first instruction. Identical stages from two different
instructions may never be executed within the same slot (figure 7.3).

382
RENESAS

> > 4> > > <> 4> > > <> Sot
Instruction 1 IF ID EX MA W/D
Instruction2 IF ID EX MA W/D

Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D
Instruction 5 IF ID EX MA W/D

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

7.1.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the

following conditions:

» S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot). This means that the instruction with the longest stage stalls others witt

shorter stages.
* The number of execution cycles for each stage:

O IF The number of memory access cycles for instruction fetch
O ID Always one cycle

O EX Always one cycle

O MA The number of memory access cycles for data access

O WB/DSP Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction i

being stalled.
+“——> «—> > «——> <> <> : St
(2 2 1) 3 (1) (1) <« Number of
Instruction1 IF IF ID — EX MA MA MA WD cycles
Instruction 2 IF IF ID EX — — MA WD

Figure 7.4 Slots Requiring Multiple Cycles

383
RENESAS

7.1.4 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted as the interval between execution of EX
stages. The number of cycles between the start of the EX stage for instruction 1 and the start of 1
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one cycle, the execution time of instruction
2 is one cycle.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4
using a MOV Rm, Rn that follows instruction 3. (In figure 7.5, the execution time of instruction 3
would thus be one cycle.) In this example, the MA of instruction 1 and the IF of instruction 4 are
in contention. For operation during the contention between the MA and IF, see section 7.2.1,
Contention between Instruction Fetch (IF) and Memory Access (MA).

<“——> «——> «—>» <> <» : Slot
2)) 4 @ @

Instructionl IF IF ID — — MA MA MA W/D

Instruction 2 IF IF D — — — —

Instruction 3 IF IF — — — ID MA

(Instruction 4: MOV Rm, Rn IF D [EX])

Figure 7.5 Method for Counting Instruction Execution Cycles

384
RENESAS

7.2 Contention
Contention occurs in four cases. When it occurs, the slot splits and requires at least two cycles.

Contention between instruction fetch (IF) and memory access (MA)

Contention when the previous instruction’s destination register is used

Multiplier access contention

Contention between memory stores (MA) and either DSP operations or memory loads
(WB/DSP)

A owbdpR

7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention (Common):The IF and MA stages both
access memory, so they cannot operate simultaneously. When the IF and MA stages both try tc
access memory within the same slot, the slot splits as shown in figure 7.6. When there is a WB,
is executed immediately after the MA ends.

A B cC D E F G
> > > > > > P> P> <> <> Sot

Instruction1 IF ID EX W/D MA of instruction 1 and IF of

Instruction 2 IE ID EX W/D instruction 4 contend at D

Instruction 3 IE D EX MA of instruction 2 and IF of
) instruction 5 contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G
> 4> 4> “—> «—> 4> <> <> Sot
Instruction1 IF ID EX W/D Split at D
Instruction 2 IF ID — EX W/D Split at E
Instruction 3 IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure 7.6 Operation when IF and MA Are in Contention

The slots in which MA and IF contend are split into two cycles. MA is given priority to execute in
the first half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1 is

385
RENESAS

executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are
executed simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX
of instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of cycles for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

The Relationship Between IF and the Location of Instructions in On-Chip ROM/RAM or

On-Chip Memory (SH1 and SH2):When the instruction is located in the on-chip memory

(ROM or RAM) or on-chip cache of the SuperH microcomputer, the SuperH microcomputer
accesses the on-chip memory in 32-bit units. The SuperH microcomputer instructions are all fixe
at 16 bits, so basically 2 instructions can be fetched in a single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AO = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lowe
case as 'if'. These ‘if's always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundarie
(the position when the bottom two bits of the instruction address are 10 is A1 = 1, A0 = 0), the bu
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 7.7 illustrate:
these operations.

386
RENESAS

< 32hits <> 4> 4> 4> 4> <> <> <> <> <> St

Instruc-]| Instruc- | -+ Instruction 1 ID EX
tion1 || tion2 Instruction 2 if ID EX
Instruc-|| Instruc- | - Instruction 3 ID EX
tion3 || tion 4 Instruction 4 if ID EX
Instruc-]| Instruc- |+ Instruction 5 ID EX
tion5 || tion 6 Instruction 6 if ID EX
(On-chip memory

or on-chip cache
P) : Bus cycle generated

if : No bus cycle

Fetching from an instruction (instruction 1) located on a longword boundary

P P O O O > P > > <> Slot

Instruc-)
tion 2 ||+ Instruction 2 ID EX
-+ Instruction 3 ID EX
Instruc-|| Instruc-))
tion3 |l tion 4 Instruction 4 if ID EX
-+ Instruction 5 ID EX
Instruc-|| Instruc- | . _
tion5 |l tion 6 nstruction 6 if ID EX

: Bus cycle generated
if : No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory

Relationship Between Position of Instructions Located in On-Chip ROM/RAM or On-Chip
Memory and Contention Between IF and MA (SH-1 and SH-2)When an instruction is located

in on-chip memory (ROM/RAM) or on-chip cache, there are instruction fetch stages (‘if’ written
in lower case) that do not generate bus cycles as explained in section 7.4.2 above. When an if i
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of stat
the MA requires for memory access, as illustrated in figure 7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, E
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the
position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

387
RENESAS

_ 32bits A B .
< | P 4> 4> P <> 4P <> 4> <> . Sot

Instruc-|| Instruc- | -~ Instruction 1 IF 1D EX :MA: WB
tionl || ton2 | |nstruction 2 if ID EX MA® WB
Instruc-|| Instruc- | -+ Instruction 3 IF b — EX
tion 3 || tion 4 Instruction 4 fif i — ID EX
Instruc-|| Instruc- | -+ Instruction 5 ID EX
tion5 || tion 6 Instruction 6 if ID EX
(On-chip memory : Splits

or on-chip cache) if ' Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

Relationship between Position of Instructions Located in On-Chip Memory and Contention
between IF and MA: When an instruction is located in on-chip memory, there are instruction
fetch stages (“if”, written in lower case) that do not generate bus cycles. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycle
the MA requires for memory access.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed.

388
RENESAS

7.2.2 Contention when the Previous Instruction’s Destination Register Is Used

Relationship between Load Instructions and the Instructions that Followinstructions that
involve loading from memory return data to the destination register during the WB/DSP stage,
which comes at the end of the pipeline. The WB/DSP stage of such a load instruction (load
instruction 1) will thus not have ended before after the EX stage of the instruction that
immediately follows it (instruction 2) begins.

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. When the destination register of load instruction 1 is the same as the destination, not tl
source, of instruction 2 it will still split.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

* When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1

* When instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm and load instruction 1
were the same

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as shown in figure 7.9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

<> 4> 4> 4“——> 4> 4> <> <> : Sot
Load instruction 1 (MOV @Ra,Rb) IF ID EX W/D

Instruction 2 (ADD Rb,Rc) IF ID —
Instruction 3 IF — ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 7.9 Effects of Memory Load Instructions on the Pipeline (1)

When data is loaded to a register in the previous instruction and the following memory access
instruction uses that register as an address pointer, the memory access is extended until the da
load of the MA stage of the previous instruction ends.

389
RENESAS

P 4> 4> “—p 4P P> <> <> Sot
Load instruction 1 (MOV @Ra,Rb) IF ID EX W/D

Instruction 2 (MOV @Rb,Rc) IF ID — MA W/D
Instruction 3 IF — ID EX MA WD
Instruction 4 IF ID EX MA W/D

Figure 7.10 Effects of Memory Load Instructions on the Pipeline (2)

In the DSP unit, all operation instructions are executed in the WB/DSP stage, so transfers and
operations do not contend. When the destination of the previous MOV instruction is used as the
address pointer for the following instruction, however, contention can occur.

P> 4P 4 4P > 4P <> P> <> <> . Sot
Load instruction 1 (MOVX @Ra,X0) IF ID EX W/D

Instruction 2 (PADD X0,Y0,AQ) IF ID EX MA
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 7.11 Effects of Memory Load Instructions in the DSP Unit on the Pipeline

Relationship between Data Operation Instructions and Store InstructionsiWhen DSP

operations are executed by the DSP unit and the results are stored in memory by the next
instruction, contention occurs just as with memory load instructions. In such cases, the data store
of the MA stage of the following instruction is extended until the data operation of the WB/DSP
stage of the previous instruction ends.

Since the operation is executed in the EX stage by the CPU core, however, no stall cycle is
produced.

Figure 7.12 shows the relationship between DSP unit data operation instructions and store
instructions; figure 7.13 shows the relationship to the CPU core.

> 4 4 4> 4“—> 4> <> <> : Slot
Instruction 1 (PADD X0,Y0,A0) IF ID EX MA

Instruction 2 (MOVX AO,@Ra) IF ID EX — W/D
Instruction 3 IF ID — EX MA W/D
Instruction 4 IF — ID EX MA W/D

Figure 7.12 Relationship between DSP Engine Operation Instructions and Store
Instructions

390
RENESAS

P 4> 4 O > P P > > <> ;. Sot
Instruction 1 (ADD Ra,Rb) IF ID MA W/D

Instruction 2 (MOV Rb,@Rc) IF D MA W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 7.13 Relationship between CPU Core Operation Instructions and Store Instructions

Relationship between Load and Store InstructionsWhen data is loaded from memory to the
destination register and the register is then specified as the source operand for a following store
instruction, the preceding instruction’s load is executed in the WB/DSP stage and the following
instruction’s store is executed in the MA stage. These stages are executed in exactly the same
cycle. Nevertheless, they do not contend. The CPU core and DSP unit use the same data trans
method. In this case, when the data input to the internal bus is stored to the destination register,
same data is simultaneously output again to the internal bus.

> 4 > > > > > > > <> Slot
Instruction 1 (MOV.L @Ra,Rn) IF ID EX MA

Instruction 2 (MOV.L Rn,@Rb) IF ID EX W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 7.14 Relationship between Load and Store Instructions in the CPU Core

“r 4 4> 4 4> O > > <> <> Sot
Instruction 1 (MOVS.L @R4,Ds) IF ID EX MA

Instruction 2 (MOVS.L Ds,@R5) IF ID EX W/D
Instruction 3 IF ID EX MA W/D
Instruction 4 IF ID EX MA W/D

Figure 7.15 Relationship between Load and Store Instructions in the DSP Unit

Relationship between MAC and STS InstructionsThe MAC.W instruction has two MA stages
and two mm (multiplier access) stages. When an STS instruction that stores a MACL or MACH
register in the Rn register comes after a MAC.W instruction, the MA stage of the STS instructior
is executed after the mm stage of the MAC.W instruction ends. Likewise, when an STS instructi
that stores a MACL or MACH register in memory comes after a MAC.W instruction, the MA
stage of the STS instruction is executed after the mm stage of the MAC.W instruction ends.

391
RENESAS

4> 4> 4> 4> 4> 4“————» 4> 4> : Slot
Instruction 1 (MAC.W @Ra+,@Rb+) if ID EX MA MA

Instruction 2 (STS MACL,Rc) IF — ID EX — — W/D
Instruction 3 if 1D — — EX MA W/D

Figure 7.16 Relationship between MAC.W and STS Instructions

Slot 4> 4> 4> 4> <> <« > 4> 4> <>
MACL IF ID EX MA MA imm_mm _mm mm!
STS.L MAC.L memory IF — ID EX '"M———————A! MA
Next instruction F b — — — — EX

Figure 7.17 Example of Multiplier Access Contention—MAC.L and STS.L Instructions

7.2.3 Multiplier Access Contention

Instructions that access multiplier type instructions (Multiply/Accumulate instructions and
multiplication instructions) or the multiply and accumulate calculation registers (MACH and
MACL) contend with multiplier accesses.

In multiplier type instructions, the multiplier operates for either four cycles (for double-length 64
bits instructions) or two cycles (single-length 32 bit instructions) after the MA ends, regardless of
the slot. When the MA (or the second MA, if there are two) of a multiplier type instruction
(Multiply/Accumulate instructions and multiplication instructions) contends with the multiplier
access (mm) of the previous multiplier type instruction, the bus cycle of the MA is extended until
the mm ends. The extended MA becomes a single slot.

The ID of the instruction following a double-length instruction also stalls until one slot later.

Multiplier type instructions and instructions that access the multiply and accumulate calculation
registers have MA stages, so they also contend with IFs. Figure 7.18 shows an example of
multiplier access contention, but it does not address MA and IF contention.

Slot 4> 4> 4> 4> > 4> «————> > > D> >
MACL IF ID EX MA MA mm mm_ mm_mm

—_——— O

MAC.L IF — ID EX MA (M A! mm mm mm mm

(AL N g W'

Next instruction IF — ID EX — — MA

Figure 7.18 Example of Multiplier Access Contention—MAC.L and MAC.L Instructions

392
RENESAS

7.2.4 Contention between Memory Stores and DSP Operations

When an instruction that will store the result of a DSP operation instruction is written immediatel
after the DSP operation instruction is executed, the execution will be too late. To prevent this, a
stall cycle is inserted. For more information, see section 4.17.2, Single Data Transfers.

7.3 Programming Guide

7.3.1 Types of Contention and Affected Instructions

Types of contention and the instructions they affect are summarized below.

Instructions without contention

Instructions with memory accesses (MA) that contend with instruction fetches (IF)
Instructions that store the result of the immediately preceding DSP operation in memory usin
the X bus or Y bus

Instructions with memory accesses (MA) that contend with instruction fetches (IF), also have
write backs (WB/DSP), and may cause contention with memory loads

Instructions with memory accesses (MA) that contend with instruction fetches (IF), also acce
the multiplier (mm), and may cause contention with the multiplier

Instructions that store DSP operation results in memory, because the memory access (MA)
contends with an instruction fetch (IF)

Instructions with memory accesses (MA) that contend with instruction fetches (IF), access th
multiplier (mm), and may cause contention with the multiplier, and also have write backs
(WB/DSP) and may cause contention with memory loads

Instructions that cause contention with MOV.X, MOV.Y, or MOVS.L instructions

393
RENESAS

Table 7.1 shows the correspondence between types of contention and instructions.

Table 7.1 Types of Contention and Instructions

Contention

Cycles Stages Instructions

None

1 3

Inter-register transfer instructions
Inter-register operations (except
multiplier type instructions)
Inter-register logic operation
instructions

Shift instructions

System control ALU instructions

Unconditional branch instructions

311

Conditional branch instructions

2/1

Delayed conditional branch instruction

SLEEP instruction

RTE instruction

TRAP instruction

R ||~ W
GO 0|lw| Ww|w|w

DSP operation instructions MOVX.W
(load) and MOVY.W (load) instructions

MA contends with IF

Iy
N

Memory store instructions
STS.L instruction (PR)

STC.L instruction

Memory logic operations

TAS instruction

RN
a|lo | o b

MOVS.W (load) and MOVS.L (load)
instructions

Causes DSP operation contention

MOVX.W (store) and MOVY.W (store)
instructions

MA contends with IF
Causes memory load contention

Memory load instructions
LDS.L instruction (PR)

LDC.L instruction

MA contends with IF
Causes multiplier contention

Register to MAC transfer instructions
(MACH/MACL)
Memory to MAC transfer instructions
(MACH/MACL)
MAC to memory transfer instructions
(MACH/MACL)

1(to3)* 6

Multiplication instructions

394

RENESAS

Table 7.1 Types of Contention and Instructions (cont)

Contention Cycles Stages Instructions
MA contends with IF 2(to3)* 7 Multiply and accumulate calculation
Causes multiplier contention (cont) instructions
2(to4)* 9 Double-length multiplication
instructions
2(to4)* 9 Double-length multiply and accumulate
calculation instructions
MA contends with IF 1 4 MOVS.W (store) and MOVS.L (store)
Causes DSP operation contention instructions
MA contends with IF 1 5 STS instruction (except PR)

Causes multiplier contention
Causes DSP operation contention
Causes memory load contention

Causes MOVX.W, MOVY.W, 1 5 PLDS and PSTS instructions
MOVS.W or MOVS.L instruction
contention

Note: Indicates the normal number of cycles. The figures in parentheses are the cycles when
contention also occurs with the previous instruction.

7.3.2 Increasing Instruction Execution Speed

Instruction execution speed can be increased by trying, at the programming stage, to keep
contention from occurring. Follow these rules when writing programs to minimize contention:

1. A 32-bit DSP instruction can require up to three memory accesses per cycle: one instruction
(I-bus), one X-data (X-bus), and one Y-data (Y-bus). The SH-DSP has four independently

accessible on-chip memory areas: X-ROM, X-RAM, Y-ROM, and Y-RAM. If more than one
access is performed in the same memory area in a cycle, a stall occurs. Locate the program
(instructions) and the data arrays that the program accesses in different on-chip memory are
This prevents memory bank contention in DSP instructions.

. Follow instructions that compute a value in the DSP unit and write it to a DSP register with
instructions that do not store the same register to memory. This prevents DSP register
contention because storing a DSP register that was the destination of a DSP calculation in tt
previous cycle will cause a stall.

Instruction fetch (IF) can conflict with an SH data memory access (MA) because both use the
same bus. Whether the instruction fetch occurs in a specific cycle depends on the locations
size (16 bit or 32 bit) of the preceding instructions. Try to locate the SH instructions that
perform memory access at longword boundries in on-chip memory and use a 16-bit instructic
as the next instruction. This prevents contention between memory accesses and instruction
fetches.

395
RENESAS

4. Follow instructions that load an SH register (RO to R15) from memory with instructions that dc
not use the same register as the load instruction’s destination register. This prevents memory
load contention caused by write backs (WB/DSP).

Note: The DSP registers (AO to Y1) loaded in the previous cycle can be used in this cycle
without causing any stalls.

5. Do not place two instructions that use the multiplier consecutively (the PMULS instruction is
excepted from this rule). Also try to keep accesses of MACH and MACL registers for getting
the results from the multiplier away from instructions that use the multiplier. This prevents
multiplier contention caused by multiplier accesses (mm).

6. Avoid data transfers to memory or CPU core registers immediately after DSP unit data
operations from those registers storing the operation results. Avoid contention by placing
another instruction before the transfer.

7.3.3 Cycles

Basic instructions are designed to execute in one cycle. One-cycle instructions include both
instructions that cause contention and instructions that do not. Operations and transfers that occl
between registers do not create contention.

There are instructions that require two or more cycles even when there is no contention.
Instructions that change the branch destination addresses, such as branch instructions or the like
memory logic operation instructions, instructions that execute memory accesses twice or more,
such as some system control instructions, and instructions that have memory accesses and
multiplier accesses such as multiplication instructions and multiply and accumulate instructions,
(excluding PMULS) all take two or more cycles.

Instructions that require two or more cycles also include both instructions that cause contention
and instructions that do not.

To write efficient programs, it is essential to avoid contention, keep instruction execution speed
up, and use instructions with fewer stages.

7.4 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rule
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, “Instruction A” refers to the instruction being discussed. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if". When there is contention
between IF and MA, the slot will split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 7.2.1, Contention between Instruction

396
RENESAS

Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation giv
there.

Table 7.2 shows the number of instruction stages and number of execution cycles as follows:

Type: Given by function

Category: Categorized by differences in instruction operation
Stages: The number of stages in the instruction

Cycles: The number of execution cycles when there is no contention
Contention: Indicates the contention that occurs

Instructions: Gives a mnemonic for the instruction concerned

397
RENESAS

Table 7.2

Number of Instruction Stages and Execution Cycles

Type Category Instruction Stages Cycles Contention
Data Register- MOV #imm,Rn
transfer register MOV Rm,RN
instructions transfer
instructions MOVA @(disp,PC),RO
MOVT Rn
SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm,Rn
Memory MOV.W @(disp,PC),Rn Contention
load ~ Mov.L @(disp,PC)RN oceurs if the
instructions MOVE Rm@Rn instruction
MOVW Rm,@Rn placed
MOVL RmM@Rn immediately after
this CPU
MOV.B @Rm+Rn instruction uses
MOVW @Rm+,Rn the same
MOV.L @Rm+,Rn destination
MOV.B @(disp,Rm),RO register
MOV.W @(disp,Rm),RO MA contends
MOV.L @(disp,Rm),Rn with IF
MOV.B @(RO,Rm),Rn
MOVW @(RO,Rm),Rn
MOV.L @(RO,Rm),Rn
MOV.B @(disp,GBR),RO
MOV.W @(disp,GBR),RO
MOV.L @(disp,GBR),RO
398

RENESAS

Table 7.2

Type

Number of Instruction Stages and Execution Cycles (cont)

Category

Instruction

Stages

Cycles

Contention

Data
transfer
instructions
(cont)

Memory
store
instructions

MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV.L

@Rm,Rn
@Rm,Rn
@Rm,Rn
Rm,@-Rn
Rm,@-Rn
Rm,@-Rn
RO,@(disp,Rn)
RO,@(disp,Rn)
Rm,@(disp,Rn)
Rm,@(RO,Rn)
Rm,@(RO,Rn)
Rm,@(RO,Rn)
RO,@(disp,GBR)
RO,@(disp,GBR)
RO,@(disp,GBR)

4

1

MA contends with IF

RENESAS

399

Table 7.2

Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention
Arithmetic ~ Arithmetic ~ ADD Rm,Rn 3 1 —
instructions instructions A #mm.Rn
between
registers ADDC Rm,Rn
(except ADDV Rm,Rn
;;ﬁgplic- CMP/EQ #mmRO
instruc- CMP/EQ Rm_Rn
tions) CMP/HS Rm,Rn
CMP/GE Rm,Rn
CMPHI Rm,Rn
CMP/GT Rm,_Rn
CMP/PZ Rn
CMP/PL Rn
CMP/STR Rm,Rn
DIV1 Rm,Rn
DIVOS Rm,Rn
DIVoU
DT Rn
EXTSB RmRn
EXTSW RmRRn
EXTU.B Rm_Rn
EXTUW Rm,Rn
NEG Rm,Rn
NEGC Rm,Rn
SUB Rm,Rn
SUBC Rm,Rn
SUBV Rm,Rn
Multiply/ MACW @Rm+@Rn#/8*3 2 (to + Multiplier contention
?dd _ 3 occurs when an
Instructions instruction that uses
the multiplier follows a
MAC instruction
* MA contends with IF
400

RENESAS

Table 7.2

Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention
Arithmetic ~ Double- MAC.L @Rm+,@Rn+ 9 2 « Multiplier
instructions length (to 4)*1 contention oceurs
(cont) multiply/ when an
accumulate .)
instruction instruction that
uses the multiplier
follows a MAC
instruction
* MA contends with
IF
Multiplic- MULSW RmRn 6/7*3 1 « Multiplier
ation MULUW Rm,Rn (to 3)* contention occurs
instructions .
when an instruc-
tion that uses the
multiplier follows a
MUL instruction
¢ MA contends with
IF
Double- DMULS.L Rm,Rn 9 2 « Multiplier
1 .
lenlg‘thll DMULUL RmRn (to 4)* contention occurs
multiply,
accumulate MULL ~ RmRn Yvhen an
instruction instruction that
uses the multiplier
follows a MAC
instruction
* MA contends with
IF
Logic Register- AND Rm_Rn 3 1 —
operation register AND #mm.RO
instructions logic '
operation NOT ~ RmRn
instructions OR Rm,Rn
OR #mm,R0
TST RmRn
TST #imm,R0
XOR Rm,Rn
XOR #imm,RO

RENESAS

401

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)
Type Category Instruction Stages Cycles Contention
Logic Memory logic AND.B #mm,@(R0,GBR) 6 3 MA contends with
pperatiqn pperatiqns ORB #mm,@(RO,GBR) IF
instructions instructions
(cont) TSTB #mm,@(RO,GBR)
XORB #imm,@(RO,GBR)
TAS TASB @Rn 6 4 MA contends with
instruction IF
Shift Shift ROTL Rn 3 1 —
instructions instructions ROTR Rn
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHLR Rn
SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn
Branch Conditional ~ BF label 3 3/1*2 —
instructions _branch_ BT label
instructions
Delayed BF/S label 3 2/1%2 —
conditional BT/S label
branch
instructions
Unconditional BRA label 3 2 —
branch BRAF RmM
instructions
BSR label
BSRF Rm
JMP @Rm
JSR @Rm
RTS
402

RENESAS

Table 7.2 Number of Instruction Stages and Execution Cycles (cont)
Type Category Instruction Stages Cycles Contention
System System CLRT 3 1 —
_control _ control LDC RmM,SR
instructions ALU
instructions LDC Rm,GBR

LDC Rm,VBR

LDC Rm,MOD

LDC Rm,RE

LDC Rm,RS

LDRE @(disp,PC)

LDRS @(disp,PC)

LDS Rm,PR

NOP

SETRC Rm

SETRC #imm

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC MOD,Rn

STC RE,Rn

STC RS,Rn

STS PR,Rn

RENESAS

403

Table 7.2

Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention
System LDS.L LDS.L @Rm+,PR 5 1 « Contention
control instructions occurs when an
instructions (PR) instruction that
(cont)
uses the same
destination
register is
placed
immediately
after this
instruction
¢ MA contends
with IF
STS.L STS.L PR,@-Rn 4 1 MA contends with IF
instruction
(PR)
LDC.L LDC.L @RmM+,SR 5 3 « Contention
instructions | pc| @Rm+GBR occurs when an
LDC.L @Rm+VBR instruction that
LDC.L @Rm+MOD uses the same
destination
LDC.L @Rm+,RE . .
register is
LDC.L @RmM+,RS placed
immediately
after this
instruction
¢ MA contends
with IF
STC.L STC.L SR,@-Rn 4 2 MA contends with IF
instructions gre GBR,@-Rn
STCL VBR,@-Rn
STC.L MOD,@-Rn
STCL RE,@-Rn
STC.L RS,@-Rn
404

RENESAS

Table 7.2

Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention
System Register - CLRMAC 4 1 e Contention
_control _ MAC trgnsfer LDS Rm,MACH occurs with
instructions instruction multiplier
(cont) LDS Rm,MACL
* MA contends
with IF
Register - LDS Rm,DSR 4 1 —
DSP tre}nsfer LDS RmM,A0
instruction
LDS Rm,X0
LDS Rm,X1
LDS Rm,YO
LDS Rm,Y1
Memory - LDS.L @Rm+MACH 4 1 « Contention
MAC transfer LDS.L @Rm+MACL occurs with
instructions multiplier
¢ MA contends
with IF
Memory - LDS.L @Rm+DSR 4 1 —
DSP trgnsfer LDS.L @Rm+,A0
instructions
LDS.L @Rm+,X0
LDS.L @Rm+,X1
LDS.L @Rm+,YO
LDS.L @Rm+,Y1

RENESAS

405

Table 7.2

Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Stages Cycles Contention
System MAC - register STS MACH,Rn 5 1 « Contention
_control _ _transfer_ STS MACL,Rn occurs with
instructions instruction L
multiplier
(cont) DSP _ register STS DSRRn « Contention
transfer STS AO,RN occurs when an
Instruction sSTS XO,Rn instruction that
STS XLRn use§ thg same
destination
STS YO,Rn . .
register is
STS Y1,Rn placed
immediately
after this
instruction
e MA contends
with IF
MAC - STS.L MACH,@-Rn 4 1 e Contention
memory STSL MACL@-Rn occurs with
transfer multiplier
instruction
¢ MA contends
with IF
DSP - STS.L DSR@-Rn 4 1 —
memory STSL A0,@-Rn
transfer
instruction STSL X0,@-Rn
STS.L X1,@-Rn
STS.L YO,@-Rn
STSLYL,@-Rn
RTE instruction RTE 4 —
TRAP TRAPA#imm —
instruction
SLEEP SLEEP 3 3 —
instruction
Notes: 1. The normal minimum number of execution cycles. (The number in parentheses is the
number of cycles when there is contention with following instructions.
2. One state when there is no branch.
3. Number of stages of the SH-1 CPU.
406

RENESAS

7.4.1 Data Transfer Instructions

Register-Register Transfer Instructions (Common):Includes the following instruction types:

« MOV #imm, Rn

¢ MOV Rm, Rn

« MOVA @(disp, PC), RO
- MOVT Rn

+ SWAP.B Rm, Rn
« SWAP.W Rm, Rn
« XTRCT Rm, Rn

<> <> <> <> : Slot
lInstruction A IF__ ID _EX]|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.19 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

407
RENESAS

Memory Load Instructions (Common): Include the following instruction types:

« MOV.W @(disp, PC), Rn « MOV.W @(disp, Rm), RO
« MOV.L @(disp, PC), Rn « MOV.L @(disp, Rm), Rn
« MOV.B @Rm, Rn e MOV.B @(RO, Rm), Rn

« MOV.W @Rm, Rn « MOV.W @(RO, Rm), Rn

e MOV.L @Rm, Rn e MOV.L @(RO, Rm), Rn

« MOV.B @Rm+, Rn « MOV.B @(disp, GBR), RO
e MOV.W @Rm+, Rn e MOV.W @(disp, GBR), RO
« MOV.L @Rm+, Rn « MOV.L @(disp, GBR), RO

« MOV.B @(disp, Rm), RO

<> 4> 4> <> 4> <> : Siot
[Instruction A IF__ID EX MA WB|
Next instruction IF ID EX -

Third instruction in series IF ID EX o

Figure 7.20 Memory Load Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.20). If an instruction that uses the
same destination register as this instruction is placed immediately after it, contention will occur.
(See section 7.2.2, Contention when the Previous Instruction’s Destination Register Is Used.)

408
RENESAS

Memory Store Instructions (Common): Include the following instruction types:

« MOV.B Rm, @Rn « MOV.L Rm, @(disp, Rn)
« MOV.W Rm, @Rn + MOV.B Rm, @(RO, Rn)

« MOV.L Rm, @Rn « MOV.W Rm, @(RO, Rn)

+ MOV.B Rm, @-Rn * MOV.L Rm, @(RO, Rn)

« MOV.W Rm, @-Rn + MOV.B RO, @(disp, GBR)
« MOV.L Rm, @-Rn « MOV.W RO, @(disp, GBR)
« MOV.B RO, @(disp, Rn) « MOV.L RO, @(disp, GBR)

« MOV.W RO, @(disp, Rn)

[Instruction A IF__ ID EX MA]
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.21 Memory Store Instructions Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.21). Data is not returned to the regist
so there is no WB stage.

409
RENESAS

7.4.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions) (Common,
or SH-2 CPU, SH-DSP):Include the following instruction types:

- ADD Rm, Rn - DIV1 Rm, Rn
« ADD #imm, Rn e DIVOS Rm, Rn
« ADDC Rm, Rn « DIVOU

« ADDV Rm, Rn « DT Rn (SH-2 CPU, SH-DSP)
+ CMP/EQ #imm, RO « EXTS.B Rm, Rn
« CMP/EQ Rm, Rn e EXTS.W Rm, Rn
» CMP/HS Rm, Rn « EXTU.B Rm, Rn
« CMP/GE Rm, Rn « EXTU.W Rm, Rn
« CMP/HI Rm, Rn « NEG Rm, Rn
« CMP/GT Rm, Rn « NEGC Rm, Rn
» CMP/PZ Rn « SUB Rm, Rn
« CMP/PL Rn « SUBC Rm, Rn
e CMP/STR Rm,Rn « SUBV Rm, Rn

<> 4> <> <> <> : Slot
[Instrucion A IF_ID EX MA|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.22 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

The pipeline has three stages: IF, ID, and EX (figure 7.22). The data operation is completed in th
EX stage via the ALU.

410
RENESAS

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

« MAC.W @Rm+, @Rn+

<> 4> 4> 4> > <> <> <> Sot
lInstruction A IF__ID EX MA MA mm mm|
Next instruction IF — ID EX MA WB
Third instruction in series IF ID EX MA WB

Figure 7.23 Multiply/Accumulate Instruction Pipeline

The pipeline has seven stages: IF, ID, EX, MA, MA, mm, and mm. The second MA reads the
memory and accesses the multiplier. mm indicates that the multiplier is operating. mm operates
two cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W
instruction is stalled for 1 slot. The two MAs of the MAC.W instruction, when they contend with
IF, split the slots as described in Section 7.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA).

When an instruction that does not use the multiplier comes after the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA,
MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter operates il
a normal pipeline. When an instruction that uses the multiplier comes after the MAC.W
instruction, however, contention occurs with the multiplier, so operation is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS.W instruction is located immediately after a MAC.W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

411
RENESAS

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.24).

4> 4> 4> 4> 4> 4D 4“—r> 4> > <> Sot

|MAC.W IF ID EX MA MA mm :mm_mm:

MAC.W IF — ID EX MA :M—A: mm mm mm

Third instruction IF — ID EX — MA -

P O O O P O O O O <> > <> Slot

|MAC.W IF ID EX MA MA mm mm :mm:

Other instruction IF — ID EX MA WB

MAC.W IF ID EX MA :MA: mm mm mm -

Figure 7.24 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 7.25 illustrates a case of this
type. This figure assumes MA and IF contention.

O O O 4 4> O P> —F> > <—r <> Slot
[MACW if ID EX MA MA mm mm mm]

MAC.W IF — ID EX MA — MA'mm:mm mm:
MAC.W f — — ID EX MA:M—A mm mm mm:
MAC.W IF — ID EX — MA M—A mm -

Figure 7.25 Consecutive MAC.Ws without Misalignment

412
RENESAS

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 7.26 illustrates a case of this type. Th

figure assumes MA and IF contention.

D P P P > > > > > 4> <> <> Slot

|MAC.W IF ID EX MA — MA mm :mm_mm:
MAC.W if — — ID EX MA:M—A: mm mm mm

Other instruction IF — ID — — EX MA -
f — — ID EX -

Other instruction
Other instruction

Figure 7.26 MA and IF Contention

413
RENESAS

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.27) to create ¢
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause

stalling. When the MULS.W MA and IF contend, the slot is split.

> O 4 4 44— 4> > > > <> <> Sot
[MACW IF ID EX MA MA mm mm mm.
MULS.W IF — ID EX I E

Other instruction IF ID

> O 4 4 4O 44— > 4> 4> 4> > <> Sot

|MAC.W IF ID EX MA MA mm:mm mm:

Other instruction IF — ID EX
MULS.W IF ID EX M—A :mm mm mm
Other instruction IF ID EX — MA -

> > 4> 4> O > O > 4> 4> 4> > > > Slot

[MACW IF ID EX MA MA mm mm mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX:MA:mm mm mm
Other instruction IF ID EX MA -

Figure 7.27 MULS.W Instruction Immediately After a MAC.W Instruction

414
RENESAS

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.28) to create a single slot. The MA of the STS contends with the IF. Figure 7.28
illustrates how this occurs, assuming MA and IF contention.

> 4> > > P> P 4> P> Sot

[MACW IF ID EX MA — MA:mm mm mm|
STS if — — M——
Other instruction
Other instruction f — — — ID EX
Other instruction IF ID EX .

4> 4> 4> 4> 44— 4—> 4> 4> 4> 4> 4> <> Sot

[MACW _if
STS IF — ID — EX M—A: WB
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 7.28 STS (Register) Instruction Immediately After a MAC.W Instruction

415
RENESAS

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 7.29) to create a single slot. The MA of the STS contends with the IF.
Figure 7.29 illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > 4> 4> > <><>: Slot
[MACW IF ID EX MA —
STS.L f — — ID " M——A {WB
Other instruction IF EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX --ee--

P D D P P> P 4> > > > > > Slot

[MACW if ID EX MA MA mm mm mm]

STS.L IF — ID — EX {M—A:
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX -

Figure 7.29 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

416
RENESAS

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, ac
described later. When the MA of the LDS instruction contends with the operating multiplier

(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.30) to create a single slot. The MA of this LDS contends with IF. Figure 7.30
illustrates how this occurs, assuming MA and IF contention.

<P P> 4> P 4> ————————————— P 4P > > <> > Sot

|MAC.W IF ID EX MA — MA :mm_ mm mm:
LDS f — — ID EX M—A
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MACW if ID EX MA MA mm mm mm:

LDS IF — ID — EX :M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 7.30 LDS (Register) Instruction Immediately After a MAC.W Instruction

417
RENESAS

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.31) to create a single slot. The MA of the LDS contends with IF. Figure 7.31
illustrates how this occurs, assuming MA and IF contention.

O D > P > P 4P > <>: Sot

|MAC.W IF ID EX MA — MA :mm mm_mm:
LDS.L f — — ID EX M—A :
Other instruction IF ID — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

G D P P > > > > > P> <> <> Sot

[MACW if ID EX MA MA mm :

LDS.L if — ID — EX N
Other instruction if — ID
Other instruction IF

Other instruction

Figure 7.31 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

418
RENESAS

Double-Length Multiply/Accumulate Instruction (SH-2 CPU, SH-DSP):Includes the
following instruction type:

* MACL @Rm+, @Rn+

<P 4> > > 4> 4> > 4> <> Sot

[InstructionA IF ID EX MA MA mm mm mm mm]|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.32 Multiply/Accumulate Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.32). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier
operating. The mm operates for four cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 7.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline opera
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

419
RENESAS

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

> 4> 4> 4> 4> 4> > 4> <> 4> <> Sot
|MAC.W IF ID EX MA MA mm
MAC.W IF — ID EX MA:
Third instruction IF — ID

Figure 7.33 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by

MA and IF contention. Figure 7.34 illustrates a case of this type. This figure assumes MA anc
IF contention.

D D D D P > D D D > > <> <> Slot
[MACW if ID EX MA MA mm mm]|
MAC.W IF — ID EX MA
MAC.W if
MAC.W

— MA mm mm
— — ID EX MA MA mm mm
IF — ID EX MA MA mm -

Figure 7.34 Consecutive MAC.Ws with Misalignment

420

RENESAS

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 7.35 illustrates a case of this type. This figure assumes MA and IF contention.

> 4 > —> 4 4> > 4> 4> 4> > <> Sot

MACW IF ID EX MA — MA mm§ K

MAC.W f — — ID EX MA:MA:mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX
Other instruction IF

Figure 7.35 MA and IF Contention
2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 7.36).

“> 4> 4> 4> > 4> 4> > <> <> <> St
|MAC.W IF ID EX MA MA mm :mm:

MAC.L IF — ID EX MA MA: mm mm mm mm

Third instruction IF — ID EX MA

Figure 7.36 MAC.L Instructions Immediately After a MAC.W Instruction

421
RENESAS

When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.37) to
create a single slot. When one or more instructions not related to the multiplier come betwee
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

D D > D 4 > > 4> D > > <> <> Sot

MACW IF ID EX MA MA mm mm:
MULS.W IF — : '
Other instruction IF ID EX — MA

MACW IF ID EX MA MA mm:mm:

Other instruction IF — ID EX
MULS.W IF ID EX :MA:mm mm
Other instruction IF ID EX MA

Figure 7.37 MULS.W Instruction Immediately After a MAC.W Instruction
When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 7.38).

G O P 4 > P D > D D D> 4> P> <> Sot

MACW IF ID EX MA MA mm.mm:
DMULS.L IF — ID EX MA:MA:mm mm mm mm

Other instruction IF — ID EX MA

Figure 7.38 DMULS.L Instructions Immediately After a MAC.W Instruction

422
RENESAS

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.39) to create a single slot. The MA of the STS contends with the IF. Figure 7.39
illustrates how this occurs, assuming MA and IF contention.

P 4 4> 4— P 4> 4 4> 4> 4> > <> Sot

MACW IF ID EX MA — MA:mm mm:
STS f — — ID EX M—A WB
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

MAC.W if ID EX MA MA mm:mm:

STS IF — ID — EX:MA WB
Other instruction if — ID EX
Other instruction IF ID EX MA
Other instruction if ID EX

Figure 7.39 STS (Register) Instruction Immediately After a MAC.W Instruction

423
RENESAS

When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the memory and the multiplier and writing to memory is added to the ST
instruction, as described later. Figure 7.40 illustrates how this occurs, assuming MA and IF

contention.

4> 4> > P 4> P 4> 4> > <> > <> Slot
MACW IF ID EX MA — :
STS.L if — — ID EX:
Other instruction IF

Other instruction
Other instruction

STS.L IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.40 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

424
RENESAS

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, ac
described later. When the MA of the LDS instruction contends with the operating multiplier

(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.41) to create a single slot. The MA of this LDS contends with IF. Figure 7.41
illustrates how this occurs, assuming MA and IF contention.

MACW IF ID EX MA — MA mm mm

LDS if — ID EX M—A
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

+“r 4> O D> <—>

MAC.W

if

LDS
Other instruction
Other instruction
Other instruction

MA

EX

ID EX

if ID EX

. Slot

> > > — P> 4> 4 4> 4> > > <> Sot

Figure 7.41 LDS (Register) Instruction Immediately After a MAC.W Instruction

RENESAS

425

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.42) to create «
single slot. The MA of the LDS contends with IF. Figure 7.42 illustrates how this occurs,
assuming MA and IF contention.

O > D > > P 4> > > > > Slot

MACW IF ID EX MA —

LDS.L if — — ID

Other instruction IF
Other instruction
Other instruction

> 4 4 O 4— P 4> > O > 4> > <> Sot

MACW if ID EX MA MA mm:mm:

LDS.L IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.42 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

426
RENESAS

Double-Length Multiply/Accumulate Instruction (SH-2 CPU, SH-DSP):Includes the
following instruction type:

« MAC.L @Rm+, @Rn+ (SH-2 CPU only)

> 4> > > > > > > <> Slot
[MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.43 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
7.43). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in th
following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

4. When a MULS.W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction
7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

427
RENESAS

1. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.44) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

> O D D > 4> > 4> > <> <> Sot

|MAC.L IF ID EX MA MA mm:mm._mm_ mm:

MAC.L IF — ID EX MA: M——A ‘mm mm mm mm

Third instruction IF — ID EX — — MA -

> 4 4D 4D O D O O 4 4 > > <> Sot

[MACL IF ID EX MA MA mm mm mm . mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA MA mm mm mm mm

Figure 7.44 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7.45
illustrates a case of this type, assuming MA and IF contention.

P O D D P —P> > ——> <> <> Slot
[MACL if ID EX MA '

MAC.L IF — ID :
MAC.L f — — ID EX — MA M—A mm mm mm mm
MAC.L IF — — ID EX — — MA

Figure 7.45 Consecutive MAC.Ls with Misalignment

428
RENESAS

When the second MA of the MAC.L instruction is extended to the end of the mm, contentior
between the MA and IF will split the slot in the usual way. Figure 7.46 illustrates a case of
this type, assuming MA and IF contention.

> > > > > > ¢———————p 4> 4> <> Slot

| MAC.L IF ID EX MA — MA mm:mm mm mm:

MAC L if — — ID EX MA M———A ‘mm mm mm mm
Other intruction F — ID — — — EX
Other intruction f — — — ID

Other intruction

Figure 7.46 MA and IF Contention

429
RENESAS

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.47) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

> 4> 4 4> 4> > <4—p 4> <> Slot

[MACL IF ID EX MA MA mm:mm mm_ mm]

MAC.W IF — ID EX MA:MA———A:mm mm

Third instruction IF — ID EX — — MA -

> 4> 4> 4> 4> 4> 4> 4> > > <> Slot

[MACL IF ID EX MA MA mm mm mm mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA:MA:mm mm

Figure 7.47 MAC.W Instruction Immediately After a MAC.L Instruction

430
RENESAS

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second MA
of the DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.48
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

O 4D D D P > > > > <> Sot

[MACL IF ID EX MA MA mm mm mm mm:

DMULS.L IF — ID EX MA: M—A ‘mm mm mm mm

Other instruction IF — ID — — EX MA -

4> 4D 4 O 4 4D 4 4> 4> 4> 4> 4> > Sot

[MACL IF ID EX MA MA mm mm:.mm _mm:

Other instruction IF — ID EX
DMULS.L IF ID EX MA:M—A :mm mm mm mm
Other instruction IF — ID — EX MA -

> 4> > 4 O > > > > D O > > > Sot

|MAC.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

DMULS.L IF ID EX MAMAmm mm mm mm
Other instruction IF — ID EX MA ...

Figure 7.48 DMULS.L Instruction Immediately After a MAC.L Instruction

431
RENESAS

432

When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 7.49) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

RENESAS

> > > D D D > P > > > > Sot

|MAC.L IF ID EX MA MA
MULS.W IF — ID EX

Other instruction IF —

O 4D 4 4D 4D 44— 4> > <> <> <> Sot

|MAC.L IF ID EX MA MA mm :mm_mm. mm:

Other instruction IF — ID EX
MULS.W IF ID EX:M———A mm mm
Other instruction IF ID EX — — MA -

> D D O O 4D P> 4> > > <> Sot

|MAC.L IF ID EX MA MA mm mm mm_ mm:

Other instruction IF — ID EX MA WB

Other instruction IF ID EX
MULS.W IF ID

Other instruction IF

D D D P D D > P O > > > <> Sot

|MAC.L IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB

Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB
MULS.W IF ID EX MA: mm mm

Other instruction IF ID EX MA ...

Figure 7.49 MULS.W Instruction Immediately After a MAC.L Instruction

433
RENESAS

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.50) to create a single slot. The MA of the STS contends with the IF. Figure 7.50
illustrates how this occurs, assuming MA and IF contention.

O D P > > 4P <> <> 4> Sot

[MACL IF ID EX MA —

STS f — — ID EX:

Other instruction IF
Other instruction

Other instruction

[MAC.L

STS

Other instruction
Other instruction

Other instruction

Figure 7.50 STS (Register) Instruction Immediately After a MAC.L Instruction

434
RENESAS

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an M/
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.51 illustrates how this
occurs, assuming MA and IF contention.

> 4> 4> <—> <> < » <« ><4> <> Slot

STS.L f — — ID EX M—— A
Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX e

O O OO 44— 4> 4> > > 49> Sot
[MACL if ID EX MA MA mm mm mm mm |

STS.L F — ID — EX:N A
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX -

Figure 7.51 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

435
RENESAS

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.52) to create a single slot. The MA of this LDS contends with IF. Figure 7.52
illustrates how this occurs, assuming MA and IF contention.

> > 4> —> <> < > <> <4P><P><>: Slot

Other instruction
Other instruction
Other instruction

[MAC.L

if

LDS
Other instruction
Other instruction
Other instruction

Figure 7.52 LDS (Register) Instruction Immediately After a MAC.L Instruction

436

RENESAS

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the memory and the multiplier is added to the LDS
instruction, as described later. When the MA of the LDS instruction contends with the
operating multiplier (mm), the MA is extended until the mm ends (the M—A shown in the
dotted line box in figure 7.53) to create a single slot. The MA of the LDS contends with IF.
Figure 7.53 illustrates how this occurs, assuming MA and IF contention.

> > > —> <> < > <> <4>><> Sot
[MACL IF ID EX MA — MA mm mm_ mm mm]
LDS.L f — — ID EX: M—
Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX -

[MAC.L
LDS.L
Other instruction

Other instruction

Other instruction

Figure 7.53 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

437
RENESAS

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

* MULS.W Rm, Rn
 MULUW Rm, Rn

> > <> > > > <> <> St
[Instructon A IF ID EX MA mm mm]
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.54 Multiplication Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, mm, and mm. The MA accesses the multiplier. mm
indicates that the multiplier is operating. mm operates for three cycles after the MA ends,
regardless of slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as
described in Section 7.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operatior
is different from normal.

This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction
5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

438
RENESAS

1.

When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions

does not cause stalls (figure 7.55).

> 4> 4> 4> 4> 4“—> 4> > > > <> Sot

[MULSW IF ID EX MA mm mm mm]|

MAC.W IF ID EX MA:M—A :mm mm mm

Third instruction IF — ID EX — MA -

> P P P D 4> > > > <> > > Sot
[MULSW IF ID EX MA mm mm mm]
Other instruction IF ID EX MA WB

MAC.W IF ID EX MA:MA:mm mm mm -

Figure 7.55 MAC.W Instruction Immediately After a MULS.W Instruction

439
RENESAS

2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the

MULS.W instruction contends with the operating multiplier (mm) of another MULS. W

instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.56) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does

not cause stalling. When the MULS.W MA and IF contend, the slot is split.

4 4 O 44— 4> > 4> > > > <> Sot

[MULSW IF ID EX MA :mm mm mm:

MULS.W IF ID EX: M—A mm mm mm

Other instruction IF ID EX — — MA -

> > > P> > > > > > > > > > Sot
[MULSW IF ID EX :
Other instruction IF ID
MULS.W IF
Other instruction IF ID EX — MA .-

O O 4 O O D O O > > > 4> <> <> Sot

|MULS.W IF ID EX MA mm mm :mm:

Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX:MA mm mm mm
Other instruction IF ID EX MA -

Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction

440
RENESAS

When the MA of the MULS.W instruction is extended until the mm ends, contention betweel
MA and IF will split the slot, as is normal. Figure 7.57 illustrates a case of this type, assumir
MA and IF contention.

D D P > > 4> 4> P> 4> <> <> Sot

[MULSW IF ID EX MA :mm mm_ mm]

MULS.W if ID EX:!M———A ‘mm mm mm
Other instruction IF D — — — EX MA -
Other instruction f — — — ID EX -
Other instruction IF ID

Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

441
RENESAS

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.58) to create a single slot. The MA of the STS contends with the IF. Figure 7.58
illustrates how this occurs, assuming MA and IF contention.

P D > > 4> > > > > <> Sot

[MULSW IF ID EX MA :mm mm mm:

STS if ID EX:M———A ‘WB
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm mm mm:

STS IF ID — EX:M—A:WB
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 7.58 STS (Register) Instruction Immediately After a MULS.W Instruction

442
RENESAS

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction
as described later. When the MA of the STS instruction contends with the operating multipli
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 7.59) to create a single slot. The MA of the STS contends with the IF.
Figure 7.59 illustrates how this occurs, assuming MA and IF contention.

> > > > P 4> P> 4> > <> <> Sot

[MULS.W IF
STS.L
Other instruction
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULS.W if
STS.L
Other instruction
Other instruction
Other instruction

Figure 7.59 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

443
RENESAS

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 7.60 illustrates how this
occurs, assuming MA and IF contention.

P D > P 4> > > > > <> Sot

[MULSW IF ID EX MA :mm mm mm:

LDS if ID EX: M—A
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULS.W if
LDS IF ID — EX:M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX .-

Figure 7.60 LDS (Register) Instruction Immediately After a MULS.W Instruction

444
RENESAS

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.61) to create a single slot. The MA of the LDS contends with IF. Figure 7.61
illustrates how this occurs, assuming MA and IF contention.

P D D D 4> 4> > > > <> Sot

[MULSW IF ID EX MA :mm mm mm:

LDS.L if ID EX: M—A
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

D O > > P > D > > > > > St

[MULSW if ID EX MA mm:

LDS.L IF ID — EX:

Other instruction if — ID

Other instruction IF
Other instruction

Figure 7.61 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

445
RENESAS

Multiplication Instructions (SH-2 CPU, SH-DSP): Include the following instruction types:

« MULS.W Rm, Rn
e MULUW Rm, Rn

> 4> 4> > > > <> <> St
[MULSW IF ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.62 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.62). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetc
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction
7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

446
RENESAS

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

- 4> <>

> 4> > > > <> <> <> Sot

[MULSW IF ID EX

MA mm mm|

MAC.W IF ID
Third instruction IF

EX MA MA mm mm

Figure 7.63 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

- 4> <>

> 4> > > > <> <> <> . Sot

[MULSW IF ID EX

MA mm mm|

MAC.L IF ID
Third instruction IF

EX MA MA mm mm mm mm
— ID EX MA -

Figure 7.64 MAC.L Instruction Immediately After a MULS.W Instruction

447
RENESAS

When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.65) to create a single slot. When one or more instructions not related to the multipliel
is located between the two MULS.W instructions, contention between the MULS.Ws does no
cause stalling. When the MULS.W MA and IF contend, the slot is split.

> D 4 D > D 4> D > > <> <> Sot
[MULSW IF ID EX MA‘m m|
MULS.W IF ID EX:M—A mm mm

Other instruction IF ID EX — MA -

> > 4> O > > G 4> > 4> > <> <> Sot

|MULS.W IF ID EX MA mm:mm:

Other instruction IF ID EX
MULS.W IF ID EX:MA: mm mm
Other instruction IF ID EX MA -

Figure 7.65 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 7.66 illustrates a case of this type,
assuming MA and IF contention.

> O D > > > > > 4> <> <> Sot
[MULSW IF ID EX

MULS.W if ID
Other instruction IF ID — — EX MA -
Otherinstructon ~ if — — ID EX -
Other instruction IF ID -

Figure 7.66 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and

448

MA contention)

RENESAS

When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it doe
not contend with the operating multiplier (mm) generated by the MULS.W instruction.

> 4> 4> O > > O 4> > 4> > > <> Slot

[MULSW IF ID EX MA mm mm |
DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA -

Figure 7.67 DMULS.L Instruction Immediately After a MULS.W Instruction

449
RENESAS

5. When an STS (register) instruction is located immediately after a MULS.W instruction
When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.68) to create a single slot. The MA of the STS contends with the IF. Figure 7.68
illustrates how this occurs, assuming MA and IF contention.

<> 4> 4> > > 4> <> > 4> <> <> Sot
|MULS.W IF ID EX MA:
STS if
Other instruction
Other instruction
Other instruction ~ |F ID EX -
<> 4> 4> > 4> > 4> > > 4> <> <> Sot
[MULSW if ID EX MA mm mm:
STS IF ID — EX MA: WB
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX
Figure 7.68 STS (Register) Instruction Immediately After a MULS.W Instruction
450

RENESAS

When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an M/
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.69 illustrates how this
occurs, assuming MA and IF contention.

> 4 4> > 4> 4> 4> 4> > > <> Sot

[MULS.W
STS.L if ID EX M——A
Other instruction IF D — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm mm:

STS.L IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.69 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

451
RENESAS

7. When an LDS (register) instruction is located immediately after a MULS.W instruction
When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

<> 4> 4> > > 4> <> > 4> <> <> Sot
|MULS.W IF ID EX MA:
LDS if
Other instruction
Other instruction
Other instruction ~ |[F ID EX -
<> 4> 4> > 4> > 4> > > 4> <> <> Sot
[MULSW if ID EX MA mm mm:
LDS IF ID — EX MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -
Figure 7.70 LDS (Register) Instruction Immediately After a MULS.W Instruction
452

RENESAS

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.71) to create
single slot. The MA of the LDS contends with IF. Figure 7.71 illustrates how this occurs,
assuming MA and IF contention.

> 4 4> > 4P 4> 4> 4> 4> <> <> Slot

|MULS.W IF ID EX MA:mm mm:

LDS.L if ID EX:M—A:
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4> 4> 4> 4> 4> 4> > 4> > <> <> Slot

[MULSW if ID EX MA mm ‘mm:

LDS.L IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -«

Figure 7.71 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

453
RENESAS

Double-Length Multiplication Instructions (SH-2 CPU, SH-DSP):Include the following
instruction types:

« DMULS.L Rm,Rn
 DMULU.L Rm,Rn

e MUL.L Rm, Rn
<> 4> 4> 4> 4> 4> <> 4> <> : Slot
[Instruction A IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.72 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.72). The
second MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of slot. The ID of the instruction following
the DMULS.L instruction is stalled for 1 slot (see the description of the Multiply/Accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 7.2.1, Contention between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,

MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is different from normal.

This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction
4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

454
RENESAS

1.

When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.73).

P D D > > P> > 4> <> > <> Sot

[DMULSL IF ID EX MA MA mm :mm mm mm:

MAC.L IF — ID EX MA: M—A :mm mm mm mm

Third instruction IF — ID EX — — MA -

> 4 4> > > > 4> > P> > > > <> Sot

|DMULS.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA mm mm mm mm

Figure 7.73 MAC.L Instruction Immediately After a DMULS.L Instruction

455
RENESAS

7.4.3 Logic Operation Instructions

Register-Register Logic Operation Instructions (Common)include the following instruction

types:

¢« AND Rm, Rn e TST Rm,Rn

+ AND #imm, RO e TST #imm, RO
* NOT Rm,Rn ¢« XOR Rm, Rn

« OR Rm, Rn

OR #imm, RO « XOR #imm, RO

<> 4> <> <> <> <> : Slot
lInstruction A IF__ID EX]|
Next instruction IF ID EX -
Third instruction in series IF ID EX -«

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.74). The data operation is completed in th

EX

456

stage via the ALU.

RENESAS

Memory Logic Operations Instructions (Common):Include the following instruction types:

- ANDB #mm, @(RO, GBR)
- ORB #imm, @ (RO, GBR)
« TST.B #mm, @(RO, GBR)
. XOR.B #imm, @(RO, GBR)

P 4> 4> P> 4> <> P> <> . St
[Instruction A IF ID EX MA EX MA]
Next instruction IF — — ID EX

Third instruction in series IF

Figure 7.75 Memory Logic Operation Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.75). The ID of the next
instruction stalls for 2 slots. The MAs of these instructions contend with IF.

457
RENESAS

TAS Instruction (Common): Includes the following instruction type:

« TASB @Rn

> 4> 4> 4> 4> > 4> <> <> Slot
[Instruction A IF_ID EX MA EX MA|
Next instruction F — — — ID EX -
Third instruction in series IF ID EX -

Figure 7.76 TAS Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID of the next
instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

458
RENESAS

7.4.4 Shift Instructions (Common)

* ROTL Rn * SHLR Rn
* ROTR Rn * SHLL2 Rn
+ ROTCL Rn » SHLR2 Rn
*« ROTCR Rn SHLLS Rn
» SHAL Rn *+ SHLRS8 Rn
* SHAR Rn e SHLL16 Rn
+ SHLL Rn * SHLR16 Rn

<> 4> <> 4> <> <> : Slot
lInstruction A IF__ ID _EX]|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.77 General Shift Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is completed in t
EX stage via the ALU.

459
RENESAS

7.4.5 Branch Instructions

Conditional Branch Instructions (Common): Include the following instruction types:

« BF label
« BT label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.
Conditionally branched instructions are not delay branched.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch destinatiol
instruction begins its fetch from the slot following the slot which has the EX stage of
instruction A (figure 7.78).

<> 4> 4> 4> 4> 4> <> 4> <> ;. Sot
[Instruction A IF__ ID _EX]|

Next instruction IF — (Fetched but discarded)
Third instruction in series IF — (Fetched but discarded)
Branch destination — IF ID EX o
..... IE ID EX -

Figure 7.78 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79).

> 4> 4> 4> 4> 4> 4> <> <> : Slot
[Instruction A IF__ID__EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
..... IF ID EX -

Figure 7.79 Branch Instruction when Condition Is Not Satisfied

460
RENESAS

Delayed Conditional Branch Instructions (SH-2 CPU, SH-DSP)tnclude the following
instruction types:

BF/S label
BT/S label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage

1.

When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction aftel
that is fetched and discarded. The branch destination instruction begins its fetch from the slo
following the slot which has the EX stage of instruction A (figure 7.80).

P 4> 4> > 4> 4> P> <> 4P Sot
[Instruction A IF_ ID__EX]

Next instruction IF — ID EX MA WB
Third instruction in series IF — (Fetched but discarded)
Branch destination IF ID EX -
..... IE ID EX -

Figure 7.80 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied

If it is determined that a condition is not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.81).

“r 4> > P 4> P> P> 4> <> Sot
[Instruction A IF_ ID EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
----- IF ID EX o

Figure 7.81 Branch Instruction when Condition Is Not Satisfied

461
RENESAS

Unconditional Branch Instructions (Common, or SH-2 CPU, SH-DSP)Itnclude the following
instruction types:

BRA
BRAF
BSR
BSRF
JMP
JSR
RTS

label

Rm (SH-2, SH-DSP CPU)
label

Rm (SH-2, SH-DSP CPU)
@Rm

@Rm

> 4> 4> > > > 4> <> <> Sot

[Instruction A IE_ ID EX]

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
----- IF ID EX -

The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditionally branched instructions
are delay branched. The branch destination address is calculated in the EX stage. The instructiol
following the unconditional branch instruction (instruction A), that is, the delay slot instruction is

not fetched and discarded as conditional branch instructions are, but is instead executed. Note tt
the ID slot of the delay slot instruction does stall for one cycle. The branch destination instruction

Figure 7.82 Unconditional Branch Instruction Pipeline

starts its fetch from the slot after the slot that has the EX stage of instruction A.

462

RENESAS

7.4.6

System Control Instructions

System Control ALU Instructions (Common, or SH-DSP):Include the following instruction
types:

CLRT
LDC
LDC
LDC
LDC
LDC
LDC
LDRE
LDRS
LDS
NOP

Rm,SR

Rm,GBR

Rm,VBR

Rm,MOD (SH-DSP)
Rm,RE (SH-DSP)
Rm,RS (SH-DSP)
@(disp,PC)
@(disp,PC)

Rm,PR

« SETRC Rm (SH-DSP)
« SETRC #mm (SH-DSP)

« SETT
« STC
« STC
« STC
« STC
« STC
« STC
« STS

SR,Rn
GBR,RnN

VBR,RnN

MOD,Rn (SH-DSP)
RE,Rn (SH-DSP)
RS,Rn (SH-DSP)
PR,RN

<> <> <> <> 4> <> : Sot

[Instruction A IF ID EX]|
Next instruction IF ID
IF

Third instruction in series

Figure 7.83 System Control ALU Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is completed in t
EX stage via the ALU.

RENESAS

463

LDC.L Instructions (Common, or SH-DSP): Include the following instruction types:

. LDCL @Rm+ SR

« LDCL @Rm+, GBR

- LDC.L @Rm+, VBR

« LDCL @Rm+, MOD (SH-DSP)
. LDCL @Rm+, RE (SH-DSP)
- LDCL @Rm+, RS (SH-DSP)

<> 4> <> <> <> <> <> <> Sot
[InstructionA IF_ID EX MA WB|
Next instruction IF — — ID EX -
Third instruction in series IF ID EX -

Figure 7.84 LDC.L Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the following
instruction is stalled two slots.

464
RENESAS

STC.L Instructions (Common, or SH-DSP):Include the following instruction types:

« STCL SR, @-Rn

« STCL GBR, @-Rn

« STCL VBR, @-Rn

. STCL MOD, @-Rn (SH-DSP)
« STCL RE, @-Rn (SH-DSP)
. STCL RS, @-Rn (SH-DSP)

> 4> > > <> <> <> Sot
[Instruction A IF 1D EX MA]
Next instruction IF — ID EX -
Third instruction in series IF ID EX -

Figure 7.85 STC.L Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the next instruction is
stalled one slot.

465
RENESAS

LDS.L Instruction (Common): Includes the following instruction type:

e LDSL @Rm+, PR

[Instruction A IF

Next instruction
Third instruction in series

Figure 7.86 LDS.L Instructions (PR) Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the same as an ordinary
load instruction.

466

RENESAS

STS.L Instruction (Common): Includes the following instruction type
« STS.L PR, @-Rn

<+ 4 4 4O > <>
[Instruction A IF ID EX MA|

. Slot

Next instruction
Third instruction in series

Figure 7.87 STS.L Instruction (PR) Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as an ordinary loac
instruction.

467
RENESAS

Register - MAC Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

« CLRMAC
« LDS Rm, MACH

. LDS Rm, MACL

« LDS Rm,DSR (SH-DSP)
« LDS Rm,AO (SH-DSP)
« LDS Rm,XO (SH-DSP)
« LDS Rm,X1 (SH-DSP)
« LDS Rm,YO (SH-DSP)
« LDS Rm,Y1 (SH-DSP)

> 4> <> <> 4> <> : Slot
[Instruction A IF_ ID EX MA|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.88 Register- MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). MA is a stage for accessing the
multiplier. MA contends with IF. This makes it the same as ordinary store instructions. Since the
multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

468
RENESAS

Memory - MAC Transfer Instructions (Common, or SH-DSP): Include the following
instruction types:

. LDSL @Rm+, MACH

« LDSL @Rm+, MACL

« LDSL @Rm+DSR (SH-DSP)
« LDSL @Rm+A0 (SH-DSP)
« LDSL @Rm+XO0 (SH-DSP)
« LDSL @Rm+X1 (SH-DSP)
. LDSL @Rm+YO0 (SH-DSP)
« LDSL @Rm+Y1 (SH-DSP)

> <> <> > <> <> Slot
lInstruction A IF__ID EX_ MA|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.89 Memory - MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). MA contends with IF. MA is a
stage for memory access and multiplier access. This makes it the same as ordinary load
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

469
RENESAS

MAC - Register Transfer Instructions (Common, or SH-DSP)include the following
instruction types:

« STS MACH, Rn
« STS MACL, Rn
« STS DSR,Rn

« STS AO,Rn

« STS XO0,Rn

« STS X1,Rn

« STS YO,Rn

« STS Y1,Rn

<> 4> <> <> <> <> Sot
lInstruction A IF__ID EX MA WB]|
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.90 MAC - Register Transfer Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). MA is a stage for accessing
the multiplier. MA contends with IF. This makes it the same as ordinary load instructions. Since
the multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

470
RENESAS

MAC - Memory Transfer Instructions (Common, or SH-DSP):Include the following
instruction types:

« STSL MACH, @-Rn

« STSL MACL, @-Rn

« STSL DSR,@-Rn (SH-DSP)
« STSL AO0,@-Rn (SH-DSP)
« STSL X0,@-Rn (SH-DSP)
« STSL X1,@-Rn (SH-DSP)
« STSL YO0,@-Rn (SH-DSP)
« STSL Y1,@-Rn (SH-DSP)

> <> <> > <> <> Sot
lInstruction A IF__ID EX_ MA]
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 7.91 MAC - Memory Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). MA is a stage for accessing the
memory and multiplier. MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

471
RENESAS

RTE Instruction (Common): RTE

> > > > P> <> P> <> <> Slot
[RTE _IF _ID EX MA MA]
Delay slot IF — — — ID EX -
Branch destination IF ID EX -

Figure 7.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs do not contend
with IF. RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled 3 slots.
The IF of the branch destination instruction starts from the slot following the MA of the RTE.

TRAP Instruction (Common): TRAPA #imm

<> > 4> > > > > > > > > > > Sot
[Instruction A IF ID EX EX MA MA MA EX EX]
Next instruction IF
Third instruction in series IF
Branch destination IF ID EX -
------ IF ID EX

Figure 7.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The MAs
do not contend with IF. TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branc
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

SLEEP Instruction (Common): SLEEP

<> <> «>» : Slot
[SLEEP IF ID EX]
Next instruction IF

Figure 7.94 SLEEP Instruction Pipeline

The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mod

472
RENESAS

7.4.7 Exception Processing

Interrupt Exception Processing (Common):The interrupt is received during the ID stage of the
instruction and everything after the ID stage is replaced by the interrupt exception processing
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
7.95). Interrupt exception processing is not a delayed branch. In interrupt exception processing,
overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has t
final EX in the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, IRQ, and on-chiy
peripheral module interrupts.

> > > > > > > > > > > > <> Sot

[Interrupt IF 1D EX EX MA MA EX MA EX EX |
Next instruction IF
Branch destination IF ID EX

...... IF ID

Figure 7.95 Interrupt Exception Processing Pipeline

Address Error Exception Processing:The address error is received during the ID stage of the
instruction and everything after the ID stage is replaced by the address error exception processi
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
7.96). Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from thi
slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. See the Hardware
Manual for information on the causes of address errors.

> 4> 4> 4> O 4> 4> 4> 4> 4> > > <> Sot

[Interrupt IF_ID: EX EX MA MA EX MA EX EX |
Next instruction IF
Branch destination IF ID EX

...... IF 1D

Figure 7.96 Address Error Exception Processing Pipeline

lllegal Instruction Exception Processing (Common)The illegal instruction is received during
the ID stage of the instruction and everything after the ID stage is replaced by the illegal
instruction exception processing sequence. The pipeline has nine stages: IF, ID, EX, EX, MA,
MA, MA, EX, and EX (figure 7.97). lllegal instruction exception processing is not a delayed

473
RENESAS

branch. In illegal instruction exception processing, overrun fetches (IF) occur. Whether there is al
IF only in the next instruction or in the one after that as well depends on the instruction that was t
be executed. In branch destination instructions, the IF starts from the slot that has the final EX in
the illegal instruction exception processing.

lllegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot directl
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs.

O O D O D D > D> > D> > <> Sot

[Interrupt (IF 1D EX EX MA MA MA EX EX |
Next instruction IF
Branch destination IF) IF ID EX

...... IF ID

Figure 7.97 lllegal Instruction Exception Processing Pipeline

474
RENESAS

Appendix A CPU Instructions

Al CPU Instructions

Instructions executed by the CPU core are described in alphabetical order.

Table A.1 CPU Instructions in Alphabetical Order

Instruction Operation Code Cycles T Bit
ADD #imm,Rn Rn +imm - Rn 0111nnnniiiiiii 1 —
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm1100 1 —
ADDC Rm,Rn Rn+Rm+T - Rn, Carry - T 001lnnnnmmmm1110 1 Carry
ADDV Rm,Rn Rn + Rm - Rn, Overflow - T 0011nnnnmmmm1111 1 Over-
flow
AND #imm,R0 RO & imm - RO 11001001iiiiiiii 1 —
AND Rm,Rn Rn& Rm - Rn 0010nnnnmmmm1001 1 —
AND.B #mm,@(RO, (RO + GBR) & imm - (RO + 11001101iiiiiiii 3 —
GBR) GBR)
BF label IfT=0,dispx2+PC - PC; 10001011dddddddd 3/1+1 —
if T=1, nop
BF/S label IfT=0,dispx2+PC - PC; 10001111dddddddd 2/1%1 —
if T=1, nop
BRA label Delayed branch, disp x 2 + PC 1010dddddddddddd 2 —
- PC
BRAF Rm Delayed branch, Rm + PC - 0000mmmmO00100011 2 —
PC
BSR label Delayed branch, PC - PR, 1011dddddddddddd 2 —
dispx2+PC - PC
BSRF Rm Delayed branch, PC - PR, 0000mmmmO0000011 2 —
Rm+ PC - PC
BT label IfT=1,dispx2+PC - PC; 10001001dddddddd 3/1+1 —
if T=0, nop
BT/S label IfT=1,dispx2+PC - PC; 10001101dddddddd 2/1%1 —
if T =0, nop
475

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 1 —
CLRT 0-T 0000000000001000 1 0
CMP/EQ #mm,RO If RO =imm, 10001000iiiiiiii 1 Comparison
1T result
CMP/EQ Rm,Rn fRN=Rm,1 - T 0011nnNNmmmmO000 1 Comparison
result
CMP/GE Rm,Rn If Rn = Rm with signed 0011nnnnmmmmO0011 1 Comparison
data, result
1T
CMP/GT Rm,Rn If Rn > Rm with signed 0011nnnnmmmmO0111 1 Comparison
data, result
1-T
CMP/HI Rm,Rn If Rn > Rm with 0011nnnnmmmmoO0110 1 Comparison
unsigned data, result
CMP/HS Rm,Rn If Rn = Rm with 0011nnNnnmmmmO010 1 Comparison
unsigned data, result
1-T
CMP/PL Rn IfRNn>0,1 - T 0100nNnNn00010101 1 Comparison
result
CMP/PZ Rn IfRn=>0,1-T 0100nnnNn00010001 1 Comparison
result
CMP/STR Rm,Rn If Rn and Rm have an 0010nnnnmmmm1100 1 Comparison
equivalent byte, 1 - T result
DIVOS Rm,Rn MSB of Rn - Q, MSB 0010nnNnnmmmmO0111 1 Calculation
of Rm - M, result
MAQ - T
DIVOU 0 - M/QIT 0000000000011001 1 0
DIV1 Rm,Rn Single-step division 0011nnNnnmmmmO0100 1 Calculation
(Rn/Rm) result
DMULS.L Rm_Rn Signed operation of Rn 0011nnnnmmmm1101 2 to 4*2 —
x Rm -~ MACH,
MACHL
DMULUL RmRn Unsigned operation of 0011nnnnmmmmO0101 2 to 4*2 —
Rn x Rm - MACH,
MACL
476

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit
DT Rn Rn—-1 - Rn,when Rnis 0, 0100nnnn00010000 1 Comp-
1 - T. When Rn is nonzero, arison
0-T result
EXTSB RmRn A byte in Rm is sign- 0110nnnnmmmm1110 1 —
extended - Rn
EXTS.W Rm,Rn A word in Rm is sign- 0110nnnnmmmm21111 1 —
extended - Rn
EXTUB RmRn A byte in Rm is zero- 0110nnnnmmmm1100 1 —
extended - Rn
EXTU.W Rm,Rn A word in Rm is zero- 0110nnNnnmmmm21101 1 —
extended - Rn
JMP @Rm Delayed branch, 0100mmmmO00101011 2 —
Rm - PC
JSR @Rm Delayed branch, 0100mmmmO00001011 2 —
PC - PR,Rm - PC
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 1 —
LDC Rm,MOD Rm - MOD 0100mmmm01011110 1 —
LDC Rm,RE Rm-RE 0100mmmm01111110 1 —
LDC Rm,RS Rm-RS 0100mmmm01101110 1 —
LDC Rm,SR Rm- SR 0100mmmm00001110 1 LSB
LDC Rm,VBR Rm - VBR 0100mmmm00101110 1 —
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 . Rm 0100mmmmO00010111 3 —
LDC.L @Rm+,MOD (Rm) - MOD,Rn+4 - Rn 0100mmmm01010111 3 —
LDC.L @Rm+,RE (Rm) - RE,Rn+4 - Rn 0100mmmm01110111 3 —
LDC.L @Rm+,RS (Rm)-RS,Rn+4 - Rn 0100mmmmO01100111 3 —
LDC.L @RmM+,SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 3 LSB
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 . Rm 0100mmmm00100111 3 —
LDRE @(disp,PC) disp x 2 +PC - RE 10001110dddddddd 1 —
LDRS @(disp,PC) disp x 2 +PC - RS 10001100dddddddd 1 —
LDS Rm,A0 Rm - AO 0100mmmm01111010 1 —
LDS Rm,DSR Rm - DSR 0100mmmm01101010 1 —
LDS Rm,MACH Rm - MACH 0100mmmm00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmm00011010 1 —
LDS Rm,PR Rm - PR 0100mmmm00101010 1 —

RENESAS

477

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

LDS Rm,X0 Rm - X0 0100mmmm10001010 1 —

LDS Rm, X1 Rm- X1 0100mmmm10011010 1 —

LDS Rm,Y0O Rm-YO 0100mmmm10101010 1 —

LDS Rm,Y1 Rm-Y1 0100mmmm10111010 1 —

LDSL @Rm+A0 (Rm) - A0, 0100mmmm01110110 1 —
Rm+4 - Rm

LDSL @Rm+DSR (Rm) - DSR, 0100mmmmO01100110 1 —
Rm+4 - Rm

LDSL @Rm+MACH (Rm) - MACH, 0100mmmm00000110 1 —
Rm+4 - Rm

LDSL @Rm+MACL (Rm) - MACL, 0100mmmm00010110 1 —
Rm+4 - Rm

LDSL @Rm+PR (Rm) - PR, 0100mmmm00100110 1 —
Rm+4 - Rm

LDS.L @RmM+,X0 (Rm) - X0,Rm+4 -~ Rm 0100mmmm210000110 1 —

LDSL @Rm+X1 (Rm) - X1,Rm+4 - Rm 0100mmmm10010110 1 —

LDSL @Rm+YO0 (Rm)-YO,Rm+4 -~ Rm 0100mmmm10100110 1 —

LDS.L @Rm+,Y1 (Rm)-Y1,Rm+4 - Rm 0100mmmm10110110 1 —

MACL @Rm+,@Rn+ Signed operation of (Rn) ~ 0000nnnnmmmm1111 3 (2to —
x (Rm) + MAC - MAC 4)*2

MACW @Rm+@Rn+ Signed operation of (Rn) ~ 0100nnnnmmmm1111 3/(2)*2 —
x (Rm) + MAC - MAC

MOV #imm,Rn #imm - Sign extension 12110nnnniiiiiiii 1 —
- Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmmmO0011 1 —

MOV.B @(disp,GBR), (disp + GBR) - Sign 11000100dddddddd 1 —

RO extension - RO
MOV.B @(disp,Rm), (disp + Rm) - Sign 10000100mmmmdddd 1 —
RO extension - RO

MOV.B @(RO,Rm),Rn (RO + Rm) - Sign 0000NnNNnmmmm1100 1 —
extension - Rn

MOV.B @Rm+,Rn (Rm) - Sign extension 0110nnnnmmmmO0100 1 —
- Rn,
Rm+1 - Rm

MOVB @Rm,Rn (Rm) - Sign extension 0110nnnnmmmmO000 1 —
- Rn

478

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit
MOV.B RO,@(disp, RO - (disp + GBR) 11000000dddddddd 1 —
GBR)
MOV.B RO,@(disp, RO - (disp + Rn) 10000000nnNnndddd 1 —
Rn)
MOV.B Rm@(RORN) Rm - (RO + Rn) 0000nNNNMMmMmMO100 1 —
MOV.B Rm,@-Rn Rn-1 - Rn, 0010nnNnnmmmmO0100 1 —
Rm - (Rn)
MOV.B Rm,@Rn Rm - (Rn) 0010nNnNnmmmmO000 1 —
MOV.L @(disp,GBR), (disp x4 +GBR) - RO 11000110dddddddd 1 —
RO
MOV.L @(disp,PC), (disp x4 +PC) - Rn 1101nnnndddddddd 1 —
Rn
MOV.L @(disp,Rm), (disp x4 + Rm) - Rn 0101nnnnmmmmdddd 1 —
Rn
MOV.L @RORm),Rn (RO+Rm) - Rn 0000nNNNMmmMmMmM1110 1 —
MOVL @Rm+Rn (Rm) - Rn, 0110nnnnmmmmO0110 1 —
Rm+4 - Rm
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO010 1 —
MOV.L RO,@(disp, RO - (disp x4 + GBR) 11000010dddddddd 1 —
GBR)
MOV.L Rm,@(disp, Rm - (disp x4 + Rn) 0001nnnnmmmmdddd 1 —
Rn)
MOV.L Rm@(RORn) Rm - (RO + Rn) 0000nnNnNnmmmmO0110 1 —
MOV.L Rm,@-Rn Rn—4 - Rn, Rm - (Rn) 0010nnnnmmmmoO0110 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nnNnnmmmmO010 1 —
MOV.W @(disp,GBR), (disp x 2 + GBR) - Sign 11000101dddddddd 1 —
RO extension - RO
MOV.W @(disp,PC), (disp x 2 + PC) - Sign 1001nnnndddddddd 1 —
Rn extension - Rn
MOV.W @(disp,Rm), (disp x 2 + Rm) - Sign 10000101mmmmdddd 1 —
RO extension - RO
MOV.W @(RO,Rm),Rn (RO + Rm) - Sign 0000nNNNmmmMmM1101 1 —
extension - Rn
MOV.W @Rm+,Rn (Rm) - Sign extension - 0110nnnnmmmmO0101 1 —
Rn,Rm+2 - Rm
479

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit
MOV.W @Rm,Rn (Rm) - Sign extension 0110nNnnmmmmO001 1 —
- Rn
MOV.W RO,@(disp, RO - (disp x2 + GBR) 11000001dddddddd 1 —
GBR)
MOV.W RO,@(disp, RO - (disp x2 + Rn) 10000001nnnndddd 1 —
Rn)
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNNNMmMMmO101 1 —
MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmmm0101 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nNnNmmmmO001 1 —
MOVA @(disp,PC), disp x4 + PC - RO 11000111dddddddd 1 —
RO
MOVT Rn T - Rn 0000nNNN00101001 1 —
MUL.L Rm,Rn Rn xRm - MACL 0000NNNNMMmMmMO111 210 4*2 —
MULSW Rm,Rn Signed operation of Rn x 0010nnnnmmmm1111 1to3*2 —
Rm - MAC
MULUW Rm,Rn Unsigned operation of Rn 0010nnnnmmmm21110 1to 3*2 —
xRm - MAC
NEG Rm,Rn 0-Rm - Rn 0110nnNnnmmmm21011 1 —
NEGC Rm,Rn 0-Rm-T - Rn, Borrow 0110nnNnnmmmmZ1010 1 Bor-
- T row
NOP No operation 0000000000001001 1 —
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 1 —
OR #imm,R0 RO | imm - RO 1100101 Ziiiiiiii 1 —
OR Rm,Rn Rn|Rm - Rn 0010nnNnnmmmm21011 1 —
OR.B #imm,@ (RO, (RO + GBR) | imm - (RO 1100111 Ziiiiiii 3 —
GBR) + GBR)
ROTCL Rn T<Rn T 0100nnNnNN00100100 1 MSB
ROTCR Rn ToRn->T 0100nnnn00100101 1 LSB
ROTL Rn T « Rn -« MSB 0100nnNnNn00000100 1 MSB
ROTR Rn LSB -~ Rn - T 0100nnNNN00000101 1 LSB
RTE Delayed branch, stack 0000000000101011 4 LSB
area-PC/SR
480

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit
RTS Delayed branch, PR - PC 0000000000001011 2 —
SETRC #mm imm - RC (SR[23:16]), 0 10000010iiiiiii 1 —
~ SR[27:24]
SETRC Rm Rm [11:0]),0 - 0100mmmm00010100 1 —
RC(SR[27:16])
SETT 1T 0000000000011000 1 1
SHAL Rn T<Rn-0 0100nnnn00100000 1 MSB
SHAR Rn MSB - Rn - T 0100nnNnNN00100001 1 LSB
SHLL Rn T<Rn~0 0100nNNNO0000000 1 MSB
SHLL2 Rn Rn<<2 5 Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnNNN00101000 1 —
SHLR Rn 0O-Rn-T 0100nNnNn00000001 1 LSB
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLRS8 Rn Rn>>8 - Rn 0100nnNnNn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —
SLEEP Sleep 0000000000011011 3 —
STC GBR,Rn GBR - Rn 0000nNNN00010010 1 —
STC MOD,Rn MOD - Rn 0000nnnn01010010 1 —
STC RE,Rn RE - Rn 0000nnNNn01110010 1 —
STC RS,Rn RS - Rn 0000nNNN01100010 1 —
STC SR,Rn SR - Rn 0000nnnNN00000010 1 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 1 —
STC.L GBR,@-Rn Rn-4 - Rn, 0100nnNnNn00010011 2 —
GBR - (Rn)
STC.L MOD,@-Rn Rn-4 - Rn, 0100nnnn01010011 2 —
MOD - (Rn)
STC.L RE,@-Rn Rn-4 - Rn, 0100nnNnNn01110011 2 —
RE - (Rn)
STC.L RS,@-Rn Rn-4 - Rn, 0100nnnNn01100011 2 —
RS - (Rn)

RENESAS

481

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn-4 - Rn, 0100nnnNn00000011 2 —
SR - (Rn)

STC.L VBR,@-Rn Rn-4 - Rn, 0100nnnNn00100011 2 —
VBR - (Rn)

STS AO,Rn A0 - Rn 0000nNnNn01111010 1 —

STS DSR,Rn DSR - Rn 0000nNNN01101010 1 —

STS MACH,Rn MACH - Rn 0000nnNN00001010 1 —

STS MACL,Rn MACL - Rn 0000nNNN00011010 1 —

STS PR,Rn PR - Rn 0000NNNN00101010 1 —

STS XO,Rn X0-Rn 0000nnnNn10001010 1 —

STS X1,Rn X1-Rn 0000nNNn10011010 1 —

STS YO,Rn YO~ Rn 0000nNNN10101010 1 —

STS Y1,Rn Y1-Rn 0000nnnNn10111010 1 —

STS.L A0,@-Rn Rn-4 - Rn, 0100nnnNn01110010 1 —
A0 - (Rn)

STS.L DSR,@-Rn Rn-4 - Rn, 0100nnnNn01100010 1 —
DSR - (Rn)

STS.L MACH,@-Rn Rn-4 - Rn, 0100nnNnNN00000010 1 —
MACH - (Rn)

STS.L MACL,@-Rn Rn-4 - Rn, 0100nnNnNn00010010 1 —
MACL - (Rn)

STS.L PR,@-Rn Rn-4 - Rn, 0100nnnNn00100010 1 —
R - (Rn)

STS.L X0,@-Rn Rn—-4 -, Rn,X0 - (Rn) 0100nnnNn10000010 1 —

STS.L X1,@-Rn Rn—4 - Rn,X1 - (Rn) 0100nnNnNn10010010 1 —

STS.L Y0,@-Rn Rn—4 - Rn,YO - (Rn) 0100nnnNn10100010 1 —

STS.L Y1,@-Rn Rn-4 . Rn,Y1 - (Rn) 0100nnnNn10110010 1 —

SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm1000 1 —

SUBC Rm,Rn Rn—-RmM-T - Rn, 0011nnNnnmmmmZ1010 1 Borrow
Borrow - T

SUBV Rm,Rn Rn-Rm - Rn, Underflow 001lnnnnmmmmi1011 1 Under-
->T flow

482

RENESAS

Table A.1 CPU Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles T Bit

SWAP.B Rm,Rn Rm - Swap the two 0110nnNnmmmmZ1000 1 —
lowest-order bytes — Rn

SWAPW Rm,Rn Rm - Swap two 0110nnnnmmmmZ1001 1 —
consecutive words — Rn

TAS.B @Rn If(Rn)is0,1 - T;1 - 0100nnnNn00011011 4 Test
MSB of (Rn) result

TRAPA #imm PC/SR - Stack area, 11000021 Liiiiiiii 8 —
(imm x4 + VBR) - PC

TST #imm,R0O RO & imm; if the result is 0, 11001000Qiiiiii 1 Test
1-T result

TST Rm,Rn Rn & Rm; if the resultis 0, 0010nNNnmMmmm1000 1 Test
1T result

TST.B #mm,@(RO, (RO + GBR) & imm; 11001100iiiiiiii 3 Test

GBR) iftheresultis0,1 - T result

XOR #imm,R0O RO A imm - RO 1100101 0iiiiiiii 1 —

XOR Rm,Rn Rn~Rm - Rn 0010NnnNnmmmmZ1010 1 —

XOR.B #mm,@(R0, (RO + GBR)”imm - (RO 1100111Qiiiiiii 3 —

GBR) + GBR)

XTRCT Rm,Rn Rm: Middle 32 bits of Rn 0010NnnNnnmmmm21101 1 —

-~ Rn

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when it does not branch.

Added CPU Instructions: Table A.2 shows the CPU instructions in the SH-DSP added since the
SH-2 (3 types, 24 instructions). Table A.3 shows the CPU instructions in the SH-2 added since 1
SH-1 (6 types, 9 instructions).

483
RENESAS

Table A.2 CPU Instructions in the SH-DSP Added since the SH-2

Instruction Operation Code Cycles T Bit

LDC Rm,MOD Rm - MOD 0100mmmm01011110 1 —

LDC Rm,RE Rm - RE 0100mmmm01111110 1 —

LDC Rm,RS Rm - RS 0100mmmm01101110 1 —

LDCL @Rm+MOD (Rm) - MOD, 0100mmmm01010111 3 —
Rm+4 - Rm

LDCL @Rm+RE (Rm) - RE, 0100mmmmO01110111 3 —
Rm+4 - Rm

LDCL @Rm+RS (Rm) - RS, 0100mmmm01100111 3 —
Rm+4 - Rm

LDRE dispx2+PC - RE 10001110dddddddd 1 —

@(disp,PC)

LDRS dispx2+PC - RS 10001100dddddddd 1 —

@(disp,PC)

LDS Rm,DSR Rm - DSR 0100mmmm01101010 1 —

LDS Rm,A0 Rm - A0 0100mmmm01111010 1 —

LDS Rm,X0 Rm - X0 0100mmmm210001010 1 —

LDS Rm,X1 Rm - X1 0100mmmm210011010 1 —

LDS Rm,YO Rm-YO 0100mmmm10101010 1 —

LDS Rm,Y1 Rm-Y1 0100mmmm210111010 1 —

LDSL @Rm+DSR (Rm) - DSR, 0100mmmm01100110 1 —
Rm+4 - Rm

LDSL @Rm+A0 (Rm) - AO,Rm+4 - 0100mmmm01110110 1 —
Rm

LDS.L @Rm+,X0 (Rm) - X0,Rm+4 - Rm 0100nNnn10000110 1 —

LDS.L @Rm+,X1 (Rm) > X1,Rm+4 - Rm 0100nNNn10010110 1 —

LDS.L @Rm+,YO (Rm)-Y0,Rm+4 - Rm 0100nNNn10100110 1 —

LDS.L @Rm+,Y1 (Rm)-Y1,Rm+4 - Rm 0100nnNnn10110110 1 —

SETRC Rm Rm[11:0] - RC 0100nnNnNN00010100 1 —
(SR[27:16])

SETRC #mm imm - RC (SR [23:16]), 1000001Qiiiiiiii 1 —
zeros — SR[27:24]

STC MOD,Rn MOD - Rn 0000nNNN01010010 1 —

STC RE,Rn RE - Rn 0000nNNn01110010 1 —

STC RS,Rn RS - Rn 0000nnnn01100010 1 —

484

RENESAS

Table A.2 CPU Instructions in the SH-DSP Added since the SH-2 (cont)

Instruction Operation Code Cycles T Bit
STCL MOD,@-Rn Rn-4 - Rn, MOD - (Rn) 0100nnnn01010011 2 —
STCL RE@-Rn Rn-4 - Rn, RE - (Rn) 0100nnnNn01110011 2 —
STCL RS,@-Rn Rn—4 - Rn, RS - (Rn) 0100nnnNn01100011 2 —
STS DSR,Rn DSR - Rn 0000nnNNN01101010 1 —
STS AO,Rn A0 - Rn 0000nnNNn01111010 1 —
STS XO,Rn X0-Rn 0000nnnNn10001010 1 —
STS X1,Rn X1-Rn 0000nNNn10011010 1 —
STS YO,Rn YO-Rn 0000nnNnNn10101010 1 —
STS Y1,Rn Y1-Rn 0000nnnNn10111010 1 —
STSL DSR,@-Rn Rn—4 - Rn, DSR - (Rn) 0100nnnNn01100010 1 —
STSL A0,@-Rn Rn—4 - Rn, A0 - (Rn) 0100nnnNn01110010 1 —
STS.L X0,@-Rn Rn—4 - Rn, X0 - (Rn) 0100nnnNn10000010 1 —
STS.LX1,@-Rn Rn—4 - Rn, X1 - (Rn) 0100nnnNn10010010 1 —
STS.LYO,@-Rn Rn—4 - Rn, YO0 - (Rn) 0100nnnNn10100010 1 —
STS.LY1,@-Rn Rn—4 - Rn,Y1 - (Rn) 0100nnnNn10110010 1 —
485

RENESAS

Table A.3 CPU Instructions in the SH-2 Added since the SH-1

Instruction Operation Code Cycles T Bit
BF/S label When T =0, disp x 2 + 10001111dddddddd 2/1 —
PC - PC;WhenT=1,
nop
BRAF Rm Delayed branch, Rm + PC 0000mmmm00100011 2 —
- PC
BSRF Rm Delayed branch, PC - 0000MmMmMmMmMO0000011 2 —
PR,Rm +PC - PC
BT/S label When T =1, disp x 2 + 10001101dddddddd 2/1 —
PC - PC; WhenT =0,
nop
DMULS.L Signed Rn x Rm - 0011nnnnmmmm21101 2 (to 4) —
Rm,Rn MACH, MACL 32 x32 -
64 bits
DMULU.L Unsigned Rn x Rm - 0011nnnnmmmm0101 2 (to 4) —
Rm,Rn MACH, MACL 32 x32 -
64 bits
DT Rn Rn-1 - Rn, When Rnis 0100nnnn00010000 1 Compa-
0,1 - T,whenRnis rison
nonzero,0 - T result
MAC.L @Rm+@Rn+ Signed (Rn) x (Rm) + 0000nNNnmMmMmm1111 2 (to 4) —
MAC - MAC
MULL Rm,Rn Rn x Rm - MACL 0000NNNNMmMmMmO0111 2 (to 4) —
486
RENESAS

SH-1/SH-2/SH-DSP Programming Manual

Publication Date: 1st Edition, September 1994
4th Edition, March 1999

Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits Group
Hitachi, Ltd.

Edited by: Technical Documentation Group
UL MediaCo., Ltd.

Copyright © Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

	Cautions
	Introduction
	Contents
	Section 1 Features
	1.1 SH-1 and SH-2 Features
	1.2 SH-DSP Features

	Section 2 Register Configuration
	2.1 General Registers
	2.2 Control Registers
	2.3 System Registers
	2.4 DSP Registers
	2.5 Precautions for Handling of Guard Bit and Overflow
	2.6 Initial Values of Registers

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Immediate Data Format
	3.4 DSP Type Data Formats
	3.5 DSP Instructions and Data Formats
	3.5.1 DSP Data Processing
	3.5.2 X and Y Data Transfers
	3.5.3 Single Data Transfers

	Section 4 Instruction Features
	4.1 RISC-Type Instruction Set
	4.2 Addressing Modes
	4.3 Instruction Format
	4.4 DSP
	4.5 DSP Data Addressing
	4.5.1 X and Y Data Addressing
	4.5.2 Single Data Addressing
	4.5.3 Modulo Addressing
	4.5.4 DSP Addressing Operation

	4.6 Instruction Formats for DSP Instructions
	4.6.1 Double and Single Data Transfer Instructions
	4.6.2 Parallel Processing Instructions

	4.7 ALU Fixed Decimal Point Operations
	4.7.1 Function
	4.7.2 Instructions and Operands
	4.7.3 DC Bit
	4.7.4 Condition Bits
	4.7.5 Overflow Prevention Function (Saturation Operation)

	4.8 ALU Integer Operations
	4.9 ALU Logical Operations
	4.9.1 Function
	4.9.2 Instructions and Operands
	4.9.3 DC Bit
	4.9.4 Condition Bits

	4.10 Fixed Decimal Point Multiplication
	4.11 Shift Operations
	4.11.1 Arithmetic Shift Operations
	4.11.2 Logical Shift Operations

	4.12 The MSB Detection Instruction
	4.12.1 Function
	4.12.2 Instructions and Operands
	4.12.3 DC Bit
	4.12.4 Condition Bits

	4.13 Rounding
	4.13.1 Operation Function
	4.13.2 Instructions and Operands
	4.13.3 DC Bit
	4.13.4 Condition Bits
	4.13.5 Overflow Prevention Function (Saturation Operation)

	4.14 Condition Select Bits (CS) and the DSP Condition Bit (DC)
	4.15 Overflow Prevention Function (Saturation Operation)
	4.16 Data Transfers
	4.16.1 X and Y Memory Data Transfer
	4.16.2 Single Data Transfers

	4.17 Operand Contention
	4.18 DSP Repeat (Loop) Control
	4.18.1 Actual programming

	4.19 Conditional Instructions and Data Transfers

	Section 5 Instruction Set
	5.1 Instruction Set for CPU Instructions
	5.1.1 Data Transfer Instructions
	5.1.2 Arithmetic Instructions
	5.1.3 Logic Operation Instructions
	5.1.4 Shift Instructions
	5.1.5 Branch Instructions
	5.1.6 System Control Instructions
	5.1.7 CPU Instructions That Support DSP Functions

	5.2 DSP Data Transfer Instruction Set
	5.2.1 Double Data Transfer Instructions (X Memory Data)
	5.2.2 Double Data Transfer Instructions (Y Memory Data)
	5.2.3 Single Data Transfer Instructions

	5.3 DSP Operation Instruction Set
	5.3.1 ALU Arithmetic Operation Instructions
	5.3.2 ALU Logical Operation Instructions
	5.3.3 Fixed Decimal Point Multiplication Instructions
	5.3.4 Shift Operation Instructions
	5.3.5 System Control Instructions
	5.3.6 NOPX and NOPY Instruction Code

	Section 6 Instruction Descriptions
	6.1 Instruction Descriptions
	6.1.1 Sample Description (Name): Classification
	6.1.2 ADD (ADD Binary): Arithmetic Instruction
	6.1.3 ADDC (ADD with Carry): Arithmetic Instruction
	6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	6.1.5 AND (AND Logical): Logic Operation Instruction
	6.1.6 BF (Branch if False): Branch Instruction
	6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction
	6.1.8 BRA (Branch): Branch Instruction
	6.1.9 BRAF (Branch Far): Branch Instruction
	6.1.10 BSR (Branch to Subroutine): Branch Instruction
	6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction
	6.1.12 BT (Branch if True): Branch Instruction
	6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction
	6.1.14 CLRMAC (Clear MAC Register): System Control Instruction
	6.1.15 CLRT (Clear T Bit): System Control Instruction
	6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction
	6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	6.1.22 DT (Decrement and Test): Arithmetic Instruction
	6.1.23 EXTS (Extend as Signed): Arithmetic Instruction
	6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	6.1.25 JMP (Jump): Branch Instruction
	6.1.26 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.27 LDC (Load to Control Register): System Control Instruction (Class: Interrupt
	6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction
	6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction
	6.1.30 LDS (Load to System Register): System Control Instruction
	6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	6.1.33 MOV (Move Data): Data Transfer Instruction
	6.1.34 MOV (Move Immediate Data): Data Transfer Instruction
	6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction
	6.1.36 MOV (Move Structure Data): Data Transfer Instruction
	6.1.37 MOVA (Move Effective Address): Data Transfer Instruction
	6.1.38 MOVT (Move T Bit): Data Transfer Instruction
	6.1.39 MUL.L (Multiply Long): Arithmetic Instruction
	6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	6.1.42 NEG (Negate): Arithmetic Instruction
	6.1.43 NEGC (Negate with Carry): Arithmetic Instruction
	6.1.44 NOP (No Operation): System Control Instruction
	6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction
	6.1.46 OR (OR Logical) Logic Operation Instruction
	6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction
	6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction
	6.1.49 ROTL (Rotate Left): Shift Instruction
	6.1.50 ROTR (Rotate Right): Shift Instruction
	6.1.51 RTE (Return from Exception): System Control Instruction
	6.1.52 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction
	6.1.54 SETT (Set T Bit): System Control Instruction
	6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction
	6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction
	6.1.57 SHLL (Shift Logical Left): Shift Instruction
	6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction
	6.1.59 SHLR (Shift Logical Right): Shift Instruction
	6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction
	6.1.61 SLEEP (Sleep): System Control Instruction
	6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instructions)
	6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled Instructions)
	6.1.64 SUB (Subtract Binary): Arithmetic Instruction
	6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction
	6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction
	6.1.68 TAS (Test and Set): Logic Operation Instruction
	6.1.69 TRAPA (Trap Always): System Control Instruction
	6.1.70 TST (Test Logical): Logic Operation Instruction
	6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction
	6.1.72 XTRCT (Extract): Data Transfer Instruction

	6.2 DSP Data Transfer Instructions
	6.2.1 X and Y Data Transfers (MOVX.W and MOVY.W)
	6.2.2 Single Data Transfers (MOVS.W and MOVS.L)
	6.2.3 Sample Description (Name): Classification
	6.2.4 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer Instruction
	6.2.5 MOVX (Move between X Memory and DSP Register): DSP Data Transfer Instruction
	6.2.6 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer Instruction
	6.2.7 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction
	6.2.8 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

	6.3 DSP Operation Instructions
	6.3.1 PABS (Absolute): DSP Arithmetic Operation Instruction
	6.3.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction
	6.3.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction
	6.3.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction
	6.3.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction
	6.3.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction
	6.3.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction
	6.3.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction
	6.3.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction
	6.3.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation Instruction
	6.3.12 [if cc] PLDS (Load System Register): DSP System Control Instruction
	6.3.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction
	6.3.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction
	6.3.16 PRND (Rounding): DSP Arithmetic Operation Instruction
	6.3.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift Instruction
	6.3.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction
	6.3.19 [if cc] PSTS (Store System Register): DSP System Control Instruction
	6.3.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction
	6.3.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	6.3.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction
	6.3.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction
	6.1.1 Sample Description (Name): Classification
	6.1.2 ADD (ADD Binary): Arithmetic Instruction
	6.1.3 ADDC (ADD with Carry): Arithmetic Instruction
	6.1.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	6.1.5 AND (AND Logical): Logic Operation Instruction
	6.1.6 BF (Branch if False): Branch Instruction
	6.1.7 BF/S (Branch if False with Delay Slot): Branch Instruction
	6.1.8 BRA (Branch): Branch Instruction
	6.1.9 BRAF (Branch Far): Branch Instruction
	6.1.10 BSR (Branch to Subroutine): Branch Instruction
	6.1.11 BSRF (Branch to Subroutine Far): Branch Instruction
	6.1.12 BT (Branch if True): Branch Instruction
	6.1.13 BT/S (Branch if True with Delay Slot): Branch Instruction
	6.1.14 CLRMAC (Clear MAC Register): System Control Instruction
	6.1.15 CLRT (Clear T Bit): System Control Instruction
	6.1.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	6.1.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	6.1.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	6.1.19 DIV1 (Divide 1 Step): Arithmetic Instruction
	6.1.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	6.1.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	6.1.22 DT (Decrement and Test): Arithmetic Instruction
	6.1.23 EXTS (Extend as Signed): Arithmetic Instruction
	6.1.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	6.1.25 JMP (Jump): Branch Instruction
	6.1.26 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.27 LDC (Load to Control Register): System Control Instruction (Class: Interrupt Disabled Instruction)
	6.1.28 LDRE (Load Effective Address to RE Register): System Control Instruction
	6.1.29 LDRS (Load Effective Address to RS Register): System Control Instruction
	6.1.30 LDS (Load to System Register): System Control Instruction
	6.1.31 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	6.1.32 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	6.1.33 MOV (Move Data): Data Transfer Instruction
	6.1.34 MOV (Move Immediate Data): Data Transfer Instruction
	6.1.35 MOV (Move Peripheral Data): Data Transfer Instruction
	6.1.36 MOV (Move Structure Data): Data Transfer Instruction
	6.1.37 MOVA (Move Effective Address): Data Transfer Instruction
	6.1.38 MOVT (Move T Bit): Data Transfer Instruction
	6.1.39 MUL.L (Multiply Long): Arithmetic Instruction
	6.1.40 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	6.1.41 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	6.1.42 NEG (Negate): Arithmetic Instruction
	6.1.43 NEGC (Negate with Carry): Arithmetic Instruction
	6.1.44 NOP (No Operation): System Control Instruction
	6.1.45 NOT (NOT—Logical Complement): Logic Operation Instruction
	6.1.46 OR (OR Logical) Logic Operation Instruction
	6.1.47 ROTCL (Rotate with Carry Left): Shift Instruction
	6.1.48 ROTCR (Rotate with Carry Right): Shift Instruction
	6.1.49 ROTL (Rotate Left): Shift Instruction
	6.1.50 ROTR (Rotate Right): Shift Instruction
	6.1.51 RTE (Return from Exception): System Control Instruction
	6.1.52 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	6.1.53 SETRC (Set Repeat Count to RC): System Control Instruction
	6.1.54 SETT (Set T Bit): System Control Instruction
	6.1.55 SHAL (Shift Arithmetic Left): Shift Instruction
	6.1.56 SHAR (Shift Arithmetic Right): Shift Instruction
	6.1.57 SHLL (Shift Logical Left): Shift Instruction
	6.1.58 SHLLn (Shift Logical Left n Bits): Shift Instruction
	6.1.59 SHLR (Shift Logical Right): Shift Instruction
	6.1.60 SHLRn (Shift Logical Right n Bits): Shift Instruction
	6.1.61 SLEEP (Sleep): System Control Instruction
	6.1.62 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instruction)
	6.1.63 STS (Store System Register): System Control Instruction (Interrupt Disabled Instruction)
	6.1.64 SUB (Subtract Binary): Arithmetic Instruction
	6.1.65 SUBC (Subtract with Carry): Arithmetic Instruction
	6.1.66 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	6.1.67 SWAP (Swap Register Halves): Data Transfer Instruction
	6.1.68 TAS (Test and Set): Logic Operation Instruction
	6.1.69 TRAPA (Trap Always): System Control Instruction
	6.1.70 TST (Test Logical): Logic Operation Instruction
	6.1.71 XOR (Exclusive OR Logical): Logic Operation Instruction
	6.1.72 XTRCT (Extract): Data Transfer Instruction

	Section 7 Pipeline Operation
	7.1 Basic Configuration of Pipelines
	7.1.1 The Five-Stage Pipeline
	7.1.2 Slot and Pipeline Flow
	7.1.3 Slot Length
	7.1.4 Number of Instruction Execution Cycles

	7.2 Contention
	7.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)
	7.2.2 Contention when the Previous Instruction’s Destination Register Is Used
	7.2.3 Multiplier Access Contention
	7.2.4 Contention between Memory Stores and DSP Operations

	7.3 Programming Guide
	7.3.1 Types of Contention and Affected Instructions
	7.3.2 Increasing Instruction Execution Speed
	7.3.3 Cycles

	7.4 Operation of Instruction Pipelines
	7.4.1 Data Transfer Instructions
	7.4.2 Arithmetic Instructions
	7.4.3 Logic Operation Instructions
	7.4.4 Shift Instructions (Common)
	7.4.5 Branch Instructions
	7.4.6 System Control Instructions
	7.4.7 Exception Processing

	Appendix A CPU Instructions
	A.1 CPU Instructions

