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Preface

The SH-DSP is a CPU core belonging to the SuperH RISC engine family. It is a 32-bit RISC
microcontroller based on the SH-2 CPU, optimized for signal processing performance, and
incorporating a DSP unit.

These application notes contain example code that makes use of the special features of the SH-
DSP as well as explanations of how to utilize the hardware. It is hoped that these application notes
will be of use to programmers designing applications that make use of the DSP functions.

Note that though the operation of the example code contained in these application notes has
been verified, it is still necessary to confirm its operation when in an actual implementation.

For more information on the hardware, please refer to the hardware manual for the appropriate
product.

Please feel free to contact Hitachi for detailed information on development systems.
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SH-DSP Code Samples

These application notes contain example code written to illustrate the special features of the SH-
DSP.

Figure 1 shows the format used for listings of source code in the application notes. The main
program code is transferred to XRAM and the program is executed in XRAM. This format is
compatible with the SH7612. When using other SH-DSP models, the following modifications and
cautions apply:

• XRAM starting address setting ..........................................................................................  (1)

• Vector and stack pointer (YRAM ending address + 1 byte) settings .................................  (2)

• Usage of commands with other SH-DSP models ...............................................................  (3)

• Since space for the data used by the main program is reserved in XRAM or YRAM,
changes to XRAM or YRAM address settings to match microcontroller used .................  (4)

;***************************************************************************
;*                         Symbol definition
;***************************************************************************
;       [      XRAM address (SH7612)     ]
XRAM_TOP .EQU H'1000E000 ------------------------------------- (2)
;***************************************************************************
;*                      Program transfer routine
;***************************************************************************

 .SECTION VECT,CODE,LOCATE=H'0
;

.DATA.L     _PRES ;_PRES     ------------------- (1) 

.DATA.L     H'10020000 ;SP

.SECTION ROM,CODE,LOCATE=H'1000

_PRES: MOV.L #XRAM_TOP,R1
MOV.L #MAIN,R10
MOV.L #MAIN_E,R11

PRG_MOVE:
MOV.W @R10+,R0
MOV.W R0,@R1
ADD #2,R1
CMP/GE R11,R10
BF PRG_MOVE
MOV.L #XRAM_TOP,R0
JMP @R0 ;Branch to program starting address   
NOP ;at transfer destination

Main program ---------------------------------- (3)

    
    Data -------------------------------------- (4)

.END

Figure 1   Source Code Format
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Section 1   Example of Calling Functions (DSP Library)
from C Source Code

1.1 C Source Code Employing Functions (DSP Library)

The example code below, “dsplbr.c,” illustrates calling the “Mean” function in the DSP library
(shdsplib.lib) from C source code.

/*
<<SH-DSP Application Notes>>

-- DSP library usage example --
"dsplbr.c"

*/
#include "ensigdsp.h" /* Mean value definition */
#define N 6 /* Input data number */

short dat[6]={45,61,516,3000,-974,10214} /* Input data */

#pragma section X /* XRAM address */
static short datx[N];

#pragma section Y /* YRAM address */
static short daty[N];

#pragma section ANS /* Address for storing mean value */
static short answer;

#pragma section

main()
{

short i,output[1]; /* output for storing variable i    
      and Mean function calculation 

   result */
int src_x; /* Argument specifying storage area 

   for input data */
for(i=0;i<N;i++)

{
datx[i] = dat[i]; /* Copy input data to XRAM */
daty[i] = dat[i]; /* Copy input data to YRAM */
}

/* select XRAM     */

src_x = 1; /* Use XRAM area for Mean  
      function calculation */

Mean(output,datx,N,src_x); /* Pass Mean function arguments and 
   calculate mean value */

answer = output[0]; /* Store Mean function calculation  
      result at answer address * /

while(1); /* Processing complete */

}

(1)

(2)

(3)

(4)

*1   Refer to 1.3 Function Execution Process for details.

*1
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(1) The format of the functions in the library shdsplib.lib are defined in the header file
ensigndsp.h.

(2) To ensure efficient X bus data transfer with the DSP unit, it is necessary to place datX[N] in
XRAM. Section X needs to be set when linking to addresses in XRAM. (See 1.2 Linking
Assignments.)

(3) To ensure efficient Y bus data transfer with the DSP unit, it is necessary to place datY[N] in
YRAM. Section Y needs to be set when linking to addresses in XRAM. (See 1.2 Linking
Assignments.)

(4) If srx_x = 1, an area in XRAM is used for Mean function calculations. If srx_x = 0, an area in
YRAM is used.

1.2 Linking Assignments

When using the DSP library the utmost care must be taken to ensure that the section setting is
correct. The example code dsplbr.c shown in section 1.1 has two sections, X and Y. If XRAM and
YRAM address are not set for these sections, the functions’ internal calculations cannot be
performed correctly. These addresses are assigned in the subcommand file.

1.2.1 “prglnk1.sub” Subcommand File for Linking

INPUT vect,dsplbr

START BX(1000ff00),BANS(1000fff0),BY(1001e000) ------------------  (1)

LIBRARY shdsplib.lib --------------------------------------------------------------------  (2)

PRINT dsplbr.map

OUTPUT dsplbr.abs

FORM A

DEBUG

EXIT

(1) BX(1000ff00) assigns #pragma section X (section X) of dsplbr.c to address H'1000FF00.

BY(1001e000) assigns #pragma section Y (section Y) of dsplbr.c to address H'1001E000.

(2) This specifies shdsplib.lib, which includes the Mean function, as the library to be edited.
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1.2.2 “ini.bat” Batch File for Creating Absolute Files

asmsh vect.src -cpu=shdsp -debug -lis

shc dsplbr.c -cpu=sh2 -lis -debug -include=ensigdsp.h

lnk -subcommand=prglnk1.sub

1.2.3 “vect.src” Vector Table for “dsplbr.c” Program, which Uses DSP Library

;********************************************************

;*     <<SH-DSP Application Notes>>

;*            -- DSP library usage example --

;*

;*                    "vect.src"

;*******************************************************

.import _main

.section  vect,data,locate=h'0

.data.l _main

.data.l h'10020000

.end
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1.3 Function Execution Process

Excerpts from the example code dsplbr.c shown in section 1.1, and the assembler code resulting
from the functions used, as shown below.

Address     Label   Assembler

1001e2fc _Mean CMP/PZ R7
1001e2fe BF @1001E322:8
1001e300 MOV #H'01,R1
1001e302 CMP/GT R1,R7

1001e486 NEG R2,R2
1001e488 MOV.W R2,@R4
1001e48a RTS

src_x = 1;

Mean(output,datx,N,src_x;)

answer = output[0]

Assembler code resulting from function

...

...

......

In table 1.1, the input data is arranged starting at address H'1000FF00. It is assumed that the data
in RAM has been cleared to 0. The data remains the same after the function is executed.

Table 1.1 Memory Map

XRAM Memory

H'1000FF00 002D 003D 0204 0BB8

H'1000FF08 FC32 27E6 0000 0000
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Table 1.2 Function Execution Process

Excerpt from dsplbr.c Code Register Contents

Mean(output,datx,N,src_x); Before execution:
R4=H'1001FFFC, R5=H'1000FF00, R6=6, R7=1

After execution:
R4=H'1001FFFC, R5=H'1000FF0C, R6=6, R7=H'10000

The function arguments are assigned the declaration sequence R4 to R7, so output=H'1001FFFC,
datx=H'1000FF00, N=6, src_x=1 is passed to the function. The calculation result is held in @R4.

Table 1.3 C Source Code Execution Process (Process Inside Memory Map)

Excerpt from dsplbr.c Code YRAM Memory

answer = output[0]; Before execution:
H'1001FF00 0000   0000   0000   0000

After execution:
H'1001FF00 0860   0000   0000   0000

The C source code then stores the function calculation result from @R4 in answer (H'1001FF0).

Table 1.4 Mean Function Calculation Result

Input Value
(decimal)

Input Value
(hexadecimal)

Logical Value
(decimal)

Logical Value
(hexadecimal)

Output Value
(hexadecimal)

45 H'2D

61 H'3D

516 H'204

3000 H'BB8

–974 H'FC32

10214 H'27E6

2143.666667 H'860
(2144 calculated
as a decimal value)

H'860
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Section 2   X/Y Bus Data Access

2.1 X Memory Read

Overview

The data from the XRAM_ADD address (H'1000FF00) and XRAM_ADD+2 address
(H'1000FF02) is transferred, respectively, to registers X0 and X1.

Description

Table 2.1 shows the types of X memory read instructions and the registers that can be used as
operands. Data can be read from X memory using the commands listed in table 2.1.

When reading data from X memory the transfer data length is 16 bits, so the data is stored as the
upper word of register X0 or X1. When this happens, the lower word of register X0 or X1 is
cleared to 0. Processes (1) and (2) in the flowchart are illustrated below.

Table 2.1 X Memory Read Instruction Types

X Memory Read
Instruction

Source Register
(Ax)

Destination Register
(Dx)

Index Register
(Ix)

MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx

MOVX.W @Ax+Ix,Dx

R4, R5 X0, X1 R8
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31 0Bit: 1516

Register X0 

Stores read data Cleared to 0

XRAM_TOP

XRAM_END

XRAM_ADD

XRAM
031 16 15

*1

31 0Bit: 1516

Register X1

Stores read data Cleared to 0

XRAM_TOP

XRAM_END

XRAM_ADD

XRAM
031 16 15

*1

*1        : Ignored

Process (1)

Process (2)

Flowchart

Transfer XRAM address (H'1000FF00) to register R4

After reading data (0.5) from R4 address 
(H'1000FF00) to register X0, increment R4 address

Read data (0.25) from R4 address (H'1000FF02) to 
register X1

Start

End

(1)

(2)
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Main Program

;**********************************************************************

;* X memory read

;**********************************************************************

MAIN: MOV.L #XRAM_ADD,R4 ;XRAM_ADD address -> register R4

MOVX.W @R4+,X0 ;(H'1000FF00) -> X0

MOVX.W @R4,X1 ;(H'1000FF02) -> X1

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;***************************************************************

;* Data

;***************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

XRAM_ADD: .XDATA.W 0.5,0.25
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2.2 X Memory Write

Overview

The data from the XRAM_ADD1 address (H'1000FF00) and XRAM_ADD1+2 address
(H'1000FF02) is transferred the XRAM_ADD2 address and XRAM_ADD2+2 address.

Description

Table 2.2 shows the types of X memory write instructions and the registers that can be used as
operands. Data can be written to X memory using the commands listed in table 2.2.

When writing data to X memory the transfer data length is 16 bits, so the upper word data from
register A0 or A1, as specified by the instruction, is stored in X memory. When this happens, the
guard bit and lower word of register A0 or A1 is ignored. The X memory write instructions can
use only registers A0 and A1 as source registers (see Table 2.2 X Memory Write Instruction
Types), so when transferring data to register A0 or A1, single data transfers with register A0 or A1
as the destination operand are used. Processes (1) and (2) in the flowchart are illustrated below.

Table 2.2 X Memory Write Instruction Types

X Memory Write
Instruction

Source Register
(Da)

Destination Register
(Ax)

Index Register
(Ix)

MOVX.W Da,@Ax

MOVX.W Da,@Ax+

MOVX.W Da,@Ax+Ix

A0, A1 R4, R5 R8
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31 01516

Register A0

Data written to XRAM

XRAM_TOP

XRAM_ADD2

XRAM_ADD1

Memory map (XRAM)
031 16 15

39Bit:

Process (1)

Ignored Ignored 

31 01516

Register A0

Data written to XRAM

XRAM_TOP

XRAM_ADD2

XRAM_ADD1

Memory map (XRAM)
031 16 15

39Bit:

XRAM_END

XRAM_END

Process (2)

Ignored Ignored 
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Flowchart

Transfer XRAM_ADD1 address (H'1000FF00) to 
register R2

Transfer XRAM_ADD2 address (H'1000FF00) to 
register R4

After transferring data (0.5) from R4 (H'1000FF00) 
address to register A0, increment R4 address

Transfer register A0 data to R2 (H'1000FF04) 
address and increment R2

Transfer data (0.25) from R4 (H'1000FF02) address 
to register A1

Transfer data from register A1 to R2 (H'1000FF06) 
address

Start

End

(1)

(2)
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Main Program

***********************************************************************

;* X memory write

;**********************************************************************

MAIN: MOV.L #XRAM_ADD1,R2 ;XRAM_ADD1 -> R2 register

MOV.L #XRAM_ADD2,R4 ;XRAM_ADD2 -> R4 register

MOVS.W @R2+,A0 ;(H'1000FF00) -> A0 register

MOVX.W A0,@R4+ ;A0 register data -> XRAM_ADD2

MOVS.W @R2,A1 ;(H'1000FF00) -> A1 register

MOVX.W A1,@R4 ;A1 register data -> XRAM_ADD2+2

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;***************************************************************

;* Data

;***************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

XRAM_ADD1: .XDATA.W 0.5,0.25

XRAM_ADD2: .RES.W 2
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2.3 Y Memory Read

Overview

The data from the TRAM_ADD address (H'1001FF00) and YRAM_ADD+2 address
(H'1001FF02) is transferred, respectively, to registers Y0 and Y1.

Description

Table 2.3 shows the types of Y memory read instructions and the registers that can be used as
operands. Data can be read from Y memory using the commands listed in table 2.3.

When reading data from Y memory the transfer data length is 16 bits, so the data is stored as the
upper word of register Y0 or Y1. When this happens, the lower word of register Y0 or Y1 is
cleared to 0. Processes (1) and (2) in the flowchart are illustrated below.

Table 2.3 Y Memory Read Instruction Types

Y Memory Read
Instruction

Source Register
(Ay)

Destination Register
(Dy)

Index Register
(Iy)

MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy

MOVY.W @Ay+Iy,Dy

R6, R7 Y0, Y1 R9
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31 0Bit: 1516

Register Y0 

Stores read data Cleared to 0

YRAM_TOP

YRAM_END

YRAM_ADD

YRAM
031 16 15

*1

31 0Bit: 1516

Register Y1

Stores read data Cleared to 0

YRAM_TOP

YRAM_END

YRAM_ADD

YRAM
031 16 15

*1

*1        : Ignored

Process (1)

Process (2)

Flowchart

Transfer YRAM address (H'1001FF00) to register R6

After reading data (0.5) from R4 address 
(H'1001FF00) to register Y0, increment R6 address

Read data (0.25) from R6 address (H'1001FF02) to 
register Y1

Start

End

(1)

(2)
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Main Program

;**********************************************************************

;* Y memory read

;**********************************************************************

MAIN: MOV.L #YRAM_ADD,R6 ;YRAM_ADD address -> R6 register

MOVX.W @R6+,Y0 ;(H'1001FF00) -> Y0

MOVX.W @R6,Y1 ;(H'1001FF02) -> Y1

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;***************************************************************

;* Data

;***************************************************************

.SECTION YRAM,DATA,LOCATE=H'1001FF00

YRAM_ADD: .XDATA.W 0.5,0.25
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2.4 Y Memory Write

Overview

The data from the YRAM_ADD1 address (H'1001FF00) and YRAM_ADD1+2 address
(H'1001FF02) is transferred the YRAM_ADD2 address and YRAM_ADD2+2 address.

Description

Table 2.4 shows the types of Y memory write instructions and the registers that can be used as
operands. Data can be written to Y memory using the commands listed in table 2.4.

When writing data to Y memory the transfer data length is 16 bits, so the upper word data from
register A0 or A1, as specified by the instruction, is stored in Y memory. When this happens, the
guard bit and lower word of register A0 or A1 is ignored. The Y memory write instructions can
use only registers A0 and A1 as source registers (see Table 2.4 Y Memory Write Instruction
Types), so when transferring data to register A0 or A1, single data transfers with register A0 or A1
as the destination operand are used. Processes (1) and (2) in the flowchart are illustrated below.

Table 2.4 Y Memory Write Instruction Types

Y Memory Write
Instruction

Source Register
(Da)

Destination Register
(Ax)

Index Register
(Ix)

MOVY.W Da,@Ax

MOVY.W Da,@Ax+

A0, A1 R6, R7

MOVY.W Da,@Ax+Ix

R9



Rev. 1.0, 09/99, page 18 of 115

31 01516

Register A0

Data written to YRAM

YRAM_TOP

YRAM_ADD2

YRAM_ADD1

Memory map (YRAM)
031 16 15

39Bit:

Process (1)

Ignored Ignored 

31 01516

Register A0

Data written to YRAM

YRAM_TOP

YRAM_ADD2

YRAM_ADD1

Memory map (YRAM)
031 16 15

39Bit:

YRAM_END

YRAM_END

Process (2)

Ignored Ignored 

*1

*1

*1

*1

*1        : Ignored
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Flowchart

Transfer YRAM_ADD1 address (H'1001FF00) to 
register R3

Transfer YRAM_ADD2 address (H'1001FF00) to 
register R6

After transferring data (0.5) from R6 (H'1001FF00) 
address to register A0, increment R6 address

Transfer register A0 data to R3 (H'1001FF04) 
address and increment R3

Transfer data (0.25) from R6 (H'1001FF02) address 
to register A1

Transfer data from register A1 to R3 (H'1001FF06) 
address

Start

End

(1)

(2)
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Main Program

***********************************************************************

;* Y Memory Write

;**********************************************************************

MAIN: MOV.L #YRAM_ADD1,R3 ;YRAM_ADD1 -> R3 register

MOV.L #YRAM_ADD2,R6 ;YRAM_ADD2 -> R6 register

MOVS.W @R3+,A0 ;(H'1001FF00) -> A0 register

MOVX.W A0,@R6+ ;A0 register data -> YRAM_ADD2

MOVS.W @R3,A1 ;(H'1001FF00) -> A1 register

MOVX.W A1,@R6 ;A1 register data -> YRAM_ADD2+2

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;****************************************************************

;* Data

;****************************************************************

.SECTION YRAM,DATA,LOCATE=H'1001FF00

YRAM_ADD1: .XDATA.W 0.5,0.25

YRAM_ADD2: .RES.W 2
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Section 3   16-bit Fixed-point Multiplication

Overview

Multiplies the 16-bit data at the XRAM-ADD address (H'1000FF000) and the 16-bit data at the
YRAM-ADD address (H'1001FF002). The result is stored at the ANS address (H'1001FF002).

Description

1. Data Transfer

Transfer of the data from the XRAM-ADD address (H'1000FF000) and the YRAM-ADD
address (H'1001FF002) is performed using X bus data transfer and Y bus data transfer, as
described in 2. X/Y Bus Data Access. In process (1) in the flowchart the XRAM and YRAM
data is read simultaneously, but no contention occurs because the X bus and Y bus are
independent of each other. The format is shown below.

The sequence is [X bus data transfer] then [Y bus data transfer]. If these are described in a
single step, the instructions may be combined as either [X memory read] [Y memory write] or
[X memory write] [Y memory read].

Format: MOVX.W @R5,X1 MOVY.W @R7,Y1
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2. Fixed-point Multiplication

The PMULS instruction is used to perform fixed-point multiplication in process (2) in the
flowchart. The format is shown below. The fixed-point multiplication process is shown in
figure 3.1. Only the upper word data from source 1 and source 2 is valid. For example, if the
longword H'12345678 was read from the source, the portion that would actually be multiplied
would be H'1234.

Format: PMULS Se,Sf,Dg

03139

Source 1 (Se): X0, X1, Y0, A1

MAC
(multiplier)

Destination (Dg): M0, M1, A0, A1

Guard bit

Code extension

: Ignored

031

Only upper word is valid

03139

Source 2 (Sf): Y0, Y1, X0, A1

031

Only upper word is valid

03139

0

1

031

0

1

Figure 3.1   Fixed-point Multiplication Process
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3. Overflow

An overflow can occur during fixed-point multiplication only if the operation is H'8000(–1.0)
× H'8000(–1.0), in which case the calculation result is H'8000(–1.0). This can happen only
when the destination register is a register other than A0 or A1, both of which have guard bits.
If the destination register is A0 or A1, the result of the above calculation is the correct value of
H'008000000(1.0). Refer to table 3.1 for additional fixed-point multiplication execution
examples.

Since the destination register used in the example main program is A0, no overflow problem
occurs.

Table 3.1 Fixed-point Multiplication Execution Examples

Operation Example
State of Operation
Result

Destination
Register Operation Result

M0, M1 H'1000 0000 (0.125)H'4000 (0.5) ×
H'2000 (0.25)

Positive

A0, A1 H'00 1000 0000 (0.125)

M0, M1 H'FFC00 0000 (–1.95×10–3)H'0800 (0.0625) ×
H'FC00 (–0.03125)

Negative

A0, A1 H'FF FFC00 0000 (–1.95×10–3)

M0, M1 H'8000 0000 (–0.1)H'8000 (–1.0) ×
H'8000 (–1.0)

Overflow

A0, A1 H'00 8000 0000 (1.0)
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Flowchart

Transfer XRAM_ADD address (H'1000F000) to 
register R4

Transfer YRAM_ADD address (H'1001F000) to 
register R6

Transfer ANS address (H'1001F002) to register R7

Transfer data from R4 address (H'1000F000) to 
register X0
Transfer data from R6 address (H'1001F000) to 
register Y0

Multiply upper 16 bits of register X0 data and register 
Y0 data, store result in register A0

Transfer data from register A0 to ANS address 
(H'1001F002)

Start

End

(1)

(2)
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Main Program

;*******************************************************************************************

;* 16-bit fixed-point multiplication routine

;*******************************************************************************************

MAIN: MOV.L #0,R4 ;Clear register R4

MOV.L #0,R6 ;Clear register R6

MOV.L #XRAM_ADD,R4 ;XRAM address -> register R4

MOV.L #YRAM_ADD,R6 ;YRAM address -> register R6

MOV.L #ANS,R7 ;ANS address -> register R7

MOVX.W @R4,X0  MOVY.W @R6,Y0 ;XRAM and YRAM address data ->
registers X0 and Y0

        PMULS  X0,Y0,A0 ;16-bit fixed-point
multiplication

               MOVY.W A0,@R7 ;Store multiplication result

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;**************************************************************

;* Data

;**************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000F000

XRAM_ADD: .XDATA.W 0.0625

.SECTION YRAM,DATA,LOCATE=H'1001F000

YRAM_ADD: .XDATA.W 0.03125

ANS: .RES.W 1
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Section 4   Parallel Execution Instruction

Overview

Four data values obtained sequentially from the XRAM-ADD address (H'1000FF000) and the
YRAM-ADD address (H'1001FF000) are added and multiplied. The addition result is stored at the
ANS1 address (H'1000FF004) and the multiplication result at the ANS2 address (H'1001FF004).

Description

1. Structure of Parallel Execution Instruction

The parallel execution instruction is used to transfer data between a DSP register and X
memory or Y memory at the same time a DSP operation is being executed. Table 4.1 shows
the data transfer and DSP operation structure. The parallel execution instruction comprises a
DSP operation portion and a data transfer portion. Table 4.2 lists format examples for the
parallel execution instruction. The DSP operation portion is a single instruction like the regular
PAND, PINC, and PSHA instructions. However, as shown in table 4.2, its has two-instruction
structure the case of the PADD and PMULS instructions, or the PSUB and PMULS
instructions. The data transfer portion consists of two instructions, one the data transfer
instruction for X memory and the other the data transfer instruction for Y memory. Either one
of these data transfer instructions may be used.

Table 4.1 Data Transfer and DSP Operation Structure

Type Bus Used
Data Transfer
Length

Parallel
Processing with
DSP Operation

Parallel Processing
of Data Transfers

Instructio
n Length

No: One or the other
data transfer

16 bits

(1)

No

Yes: Data transfer
with X memory and Y
memory at same time

No: One or the other
data transfer

32 bits

(2)

Double
data
transfer

X bus
Y bus

16 bits

Yes

Yes: Data transfer
with X memory and Y
memory at same time

Single
data
transfer

C bus*1 16 bits
32 bits

No 16 bits

*1:  Note that the name differs depending on the product.
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Table 4.2 Parallel Execution Instruction Format Examples

DSP Operation Portion Data Transfer Portion

PADD X0,Y0,A0 PMULS X0,Y0,A1 MOVX.W A0,@R4 MOVY.W A1,@R6

PSUB X1,Y1,A1 PMULS X0,Y1,A0 MOVX.W @R5,X1 MOVY.W @R7,Y1

PADD X0,Y0,A0 PMULS X0,Y0,A1 MOVX.W A0,@R4

PINC X0,Y0,A0 MOVY.W @R6,Y1

PAND X0,Y0,A0 MOVX.W A0,@R5

PSHA X0,Y0,A0 MOVX.W @R4,X1 MOVY.W A1,@R7

2. Parallel Processing of Double Data Transfer and DSP Operation

Process (1) in the flowchart on the following page is double data transfer with no DSP
operation instruction parallel processing, which is indicated as (1) in table 4.1, and processes
(2) and (3) are double data transfer with parallel processing of DSP operation instructions,
which is indicated as (2) in table 4.1. Processes (2) and (3) consist of four instructions, which is
the maximum number that can be declared in a single step. In this case, one execution state is
used.

3. Effect of DSP Operation Portion Result on Data Transfer Portion

Table 4.3 shows the effect of the DSP operation portion result on the data transfer portion.
Instruction 2 (process (3)) uses A0 and A1 as the destination register for the DSP operation
portion and also as the source register for the data transfer portion. However, the result of the
DSP operation portion is not the data stored in the data transfer portion. In this case the
underlined registers are affected, so the calculation result from instruction 1 (process (2))
operation portion is stored in the instruction 2 (process (3)) data transfer portion.

Figure 4.1 shows the instruction 2 pipeline flow. When instructions are executed in parallel,
each of the instructions is processed independently, as shown in figure 4.1. The reason the
DSP operation portion result does not become the data stored in the data transfer portion in this
case is that the WB/DSP stage, in which DSP operations are performed using PADD and
PMULS, is later than the MA stage, in which memory access is performed using MOVX.W
and MOVY.W.

Note that after the execution of instruction 2 (process (3)), the X1 and Y1 addition and
multiplication results are stored in registers A0 and A1.
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Table 4.3 Effect of DSP Operation Portion Result on Data Transfer Portion

Excerpts from Main Program

;Instruction 1

PADD X0,Y0,A0 PMULS X0,Y0,A1 MOVX.W @R4,X1 MOVY.W @R6,Y1

;Instruction 2

PADD X1,Y1,A0 PMULS X1,Y1,A1 MOVX.W A0,@R5+ MOVY.W A1,@R7+

Content of Registers

Before execution of instruction 2:
X1=H'1000 0000, Y1=H'0800 0000, A0=H'6000 0000, A1=H'1000 0000

After execution of instruction 2:
X1=H'1000 0000, Y1=H'0800 0000, A0=H'1800 0000, A1=H'0100 0000

IF

IF

IF

IF

ID

ID

ID

ID

EX

EX

EX

EX

MA

MA

MA

MA

WB/DSP

WB/DSP

WB/DSP

WB/DSP

X1,Y1,A0

X1,Y1,A1

A0,@R5+

A1,@R7+

PADD

PMULS

MOVX.W

MOVY.W

Slot

Figure 4.1   Instruction 2 Pipeline Flow
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Flowchart

Transfer XRAM_ADD address (H'1000F000) to 
register R4

Transfer ANS1 address (H'1000F004) to register R5

Transfer YRAM_ADD address (H'1001F000) to 
register R6

Transfer ANS2 address (H'1001F004) to register R7

After transferring data (0.5) from R4 address 
(H'1000F000) to register X0, increment address
After transferring data (0.25) from R6 address 
(H'1001F000) to register Y0, increment address

Add data in registers X0 and Y0, store result in 
register A0
Multiply data in registers X0 and Y0, store result in 
register A1
After transferring data (0.25) from R4 address 
(H'1000F000) to register X1, increment address
After transferring data (0.5) from R6 address 
(H'1001F000) to register Y1, increment address

Add data in registers X1 and Y1, store result in 
register A0
Multiply data in registers X1 and Y1, store result in 
register A1
After transferring data register A0 to ANS1 address 
(H'1000F004), increment address
After transferring data register A1 to ANS2 address 
(H'1001F004), increment address

After transferring data register A0 to ANS1 address 
(H'1000F004), increment address
After transferring data register A1 to ANS2 address 
(H'1001F004), increment address

Start

End

(1)

(2)

(3)

(1)
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Main Program

;*******************************************************************************************

;* Parallel data transfer routine

;******************************************************************************************

MAIN: MOV.L #XRAM_ADD,R4

MOV.L #ANS1,R5

MOV.L #YRAM_ADD,R6

MOV.L #ANS2,R7

MOVX.W @R4+,X0 MOVY.W @R6+,Y0

;No parallel processing

PADD X0,Y0,A0 PMULS X0,Y0,A1 MOVX.W @R4,X1 MOVY.W @R6,Y1

;Parallel processing

PADD X1,Y1,A0 PMULS X1,Y1,A1 MOVX.W A0,@R5+ MOVY.W A1,@R7+

;Parallel processing

MOVX.W A0,@R5 MOVY.W A1,@R7

;No parallel processing

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;**********************************************************************

;* Data(X/YRAM)

;**********************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000F000

XRAM_ADD: .XDATA.W 0.5,0.125 ;DSP operation data

ANS1: .RES.W 2 ;DSP operation result storage area

.SECTION YRAM,DATA,LOCATE=H'1001F000

YRAM_ADD: .XDATA.W 0.25,0.0625 ;DSP operation data

ANS2: .RES.W 2 ;DSP operation result storage area
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Section 5   Repeat Instruction

Overview

The average of ten data values stored in XRAM and YRAM is obtained. To accomplish this, the
repeat function is used for transferring data from XRAM and YRAM to the DSP unit, and for
adding the ten data values.

Description

1. DSP Repeat Control

Three settings are required in order to perform repeat control: I the start address setting for the
program to be repeated, II the end address setting for the program to be repeated, III and the
setting for the number of repetitions to be performed. After settings I through III have been
completed, Process IV is to start the program to be repeated. Note that a minimum of one
instruction is required between the processing of III and IV.

The sequence of processes I through IV is shown below.

I LDRS instruction is used to set the repeat start address in the RS register.

II LDRE instruction is used to set the repeat end address in the RE register.

III SETRC instruction is used to set the number of repetitions in the RC register.

: (Minimum of one instruction inserted.)

IV Program to be repeated is started.

Process (1) in the flowchart on the next page corresponds to I through III above. After the
program to be repeated is started (IV), it is repeated within the scope of process (2). Two main
programs are shown in the example, but their function is the same. In (1) repeat control
instructions (LDRS, LDRE, and SETRC) are used, and in (2) the extended instruction
REPEAT is used. REPEAT automatically generates the CPU instructions (LDRS, LDRE, and
SETRC) used to repeat the instructions between the start and end addresses. In the format
shown below if the number of repetitions is omitted, the SETRC instruction is not generated.

Format: REPEAT [start address], [end address], [number of repetitions]
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In program (1) the repeat start and end addresses are different from the actual addresses, and
this is because the address setting change depending on the number of instructions in the
program to be repeated. Table 5.1 shows how the RS and RE settings change depending on the
number of instructions within the range to be repeated. These are the addresses actually
repeated by the program when the repeat start and end addresses are set in RS and RE.
Therefore, it is necessary to label the repeat start and end addresses while keeping the offsets
listed in Table 5.1 in mind. The setting method for RS and RE in program (1) is described on
the next page.

RPT_S0+N: Address N bytes from the instruction preceding the instruction at the start
address of the program to be repeated

RPT_S: Start address of the program to be repeated

RPT_E: End address of the program to be repeated

RPT_E3+4: Address 4 bytes from the instruction three instructions before the instruction at
the end address of the program to be repeated

Table 5.1 RS and RE Setting Values Based on Number of Instructions Within Repeat

Number of Instructions in Program to be Repeated

1 2 3 4

RS RPT_S0 + 8 RPT_S0 + 6 RPT_S0 + 4 RPT_S

RE RPT_S0 + 4 RPT_S0 + 4 RPT_S0 + 4 RPT_E3 + 4
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2. Repeat Control Using CPU Instructions

Example (a) shows the method for setting addresses in RS and RE. If there are three
instructions in the portion to be repeated, RS and RE must be set to the RPT_S0+4 address, as
indicated in Table 5.1. The double data transfer instructions in lines (1) and (2) of this program
have a 16-bit instruction length, so the RPT_S0+4 address corresponds to the RPT_E0 address.
If RS and RE are set to the address RPT_E0, the result is program (b).

LDRS            RPT_S0+4 address ;Repeat start address

LDRE            RPT_S0+4 address ;Repeat end address

SETRC           #5 ;Repeat counter setting/5 repetitions

RPT_S0: (1)  MOVX.W @R5,X1  MOVY.W @R7,Y1 ;Clear X1, Y1 = 1/10

RPT_S: (2)  MOVX.W @R4+,X0 MOVY.W @R6+,Y0

RPT_E0: PADD   X0,Y0,M0

RPT_E:  PADD   X1,M0,X1 ;X1/data total

                        PMULS  X1,Y1,A1 ;A1/average value

(a)  RS and RE Address Setting Method

LDRS            RPT_E0 ;Repeat start address

LDRE            RPT_E0 ;Repeat end address

SETRC           #5 ;Repeat counter setting/5 repetitions

RPT_S0:        MOVX.W @R5,X1  MOVY.W @R7,Y1 ;Clear X1, Y1 = 1/10

RPT_S:        MOVX.W @R4+,X0 MOVY.W @R6+,Y0

RPT_E0: PADD   X0,Y0,M0

RPT_E:  PADD   X1,M0,X1 ;X1/data total

                        PMULS  X1,Y1,A1 ;A1/average value

(b)  RS and RE Address Setting Method
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3. Repeat Control Using Extended Instructions

When the extended instruction REPEAT is used there is no need to perform complicated
labeling, as is the case when using CPU instructions for repeat control. The following
explanation is based on the expanded image of a portion of a repeat program shown as (a)
below. With REPEAT one only needs to declare the labels for the start (RPT_S) and end
(RPT_E) addresses of the program to be repeated, and then the assembler automatically
calculates the address values to be used for the RS and RE settings (RPT_E0 if the code to be
repeated contains three instructions), and generates the LDRS, LDRE, and SETRC
instructions. When the extended instruction REPEAT is actually used, the result is the repeat
program shown in example (b) below.

REPEAT  RPT_S,RPT_E,#5

LDRS            RPT_E0  ;RPT_S0+4

LDRE            RPT-E0  ;RPT_S0+4

SETRC           #5

RPT_S0: MOVX.W @R5,X1   MOVY.W @R7,Y1

RPT_S: MOVX.W @R4+,X0  MOVY.W @R6+,Y0

RPT_E0: PADD   X0,Y0,M0

RPT_E:  PADD   X1,M0,X1

                        PMULS  X1,Y1,A1

(a)  Expanded Image of Repeat Program

REPEAT  RPT_S,RPT_E,#5

RPT_S0: MOVX.W @R5,X1   MOVY.W @R7,Y1

RPT_S: MOVX.W @R4+,X0  MOVY.W @R6+,Y0

RPT_E0: PADD   X0,Y0,M0

RPT_E:  PADD   X1,M0,X1

                        PMULS  X1,Y1,A1

(b)  Repeat Program Using Extended Instruction REPEAT

Expands to CPU instructions for repeat control.
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Flowchart

Transfer XRAM_ADD address to R4

Transfer CLR address to R5

 Transfer YRAM_ADD address to R6

Transfer DIV address to R7

Set RPT_S address as repeat start address (RS)

Set RPT_E address as repeat end address (RE)

Set RC counter in register SR to number of 
repetitions (5 times)

Clear register X1 by transferring R5 address 
(H'1000F00A) data (0) to register X1
Transfer data (0.1) from register R7 (H'1001F00A) to 
register Y1

Transfer R4 address data to register X0 and 
increment R4 address
Transfer R6 address data to register Y0 and 
increment R6 address

Add data from registers X0 and Y0, and store result 
in register M0

Add data from registers X1 and M0, and store result 
in register X1

Multiply data from registers X1 and Y1, and store 
result in register A0

Start

End

(1)

(2)

Repeat program 
number of times 
indicated by 
repetitions setting 
(5 times in this 
case)
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Main Program

(1) Repeat Control Using CPU Instructions

;*******************************************************************************************

;* Repeat routine

;*******************************************************************************************

MAIN: MOV.L #XRAM_ADD,R4

MOV.L #CLR,R5

MOV.L #YRAM_ADD,R6

MOV.L #DIV,R7

LDRS RPT_E0 ;Repeat start address

LDRE RPT_E0 ;Repeat end address

SETRC #5 ;Repeat counter setting/5
repetitions

MOVX.W @R5,X1  MOVY.W @R7,Y1 ;Clear X1, Y1 = 1/10

RPT_S: MOVX.W @R4+,X0  MOVY.W @R6+,Y0

RPT_E0: PADD X0,Y0,M0

RPT_E: PADD X1,M0,X1 ;X1/data total

PMULS  X1,Y1,A1 ;A1/average value

EXIT: BRA EXIT

NOP

MAIN_E: NOP

(2) Repeat Control Using Extended Instruction REPEAT

;*******************************************************************************************

;* Repeat routine

;*******************************************************************************************

MAIN: MOV.L #XRAM_ADD,R4

MOV.L #CLR,R5

MOV.L #YRAM_ADD,R6

MOV.L #DIV,R7

MOV.L #5,R0

REPEAT RPT_S,RPT_E,R0 ;CPU instructions for
repeat control generated
automatically

MOVX.W @R5,X1  MOVY.W @R7,Y1 ;Clear X1, Y1 = 1/10

RPT_S: MOVX.W @R4+,X0  MOVY.W @R6+,Y0

PADD X0,Y0,M0

RPT_E: PADD X1,M0,X1 ;X1/data total

PMULS X1,Y1,A1 ;A1/average value

EXIT: BRA EXIT

NOP

MAIN_E: NO
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Data

* Same data used by main programs (1) and (2)

;*******************************************************************************************

;* Data (X/YRAM)

;*******************************************************************************************

.SECTION XRAM,CODE,LOCATE=H'1000F000

XRAM_ADD: .XDATA.W 0.0625,0.125,0.0625,0.0625,0.03125 ;DSP operation data

CLR; .DATA.W 0 ;DSP operation result storage area

.SECTION YRAM,CODE,LOCATE=H'1001F000

YRAM_ADD: .XDATA.W 0.0625,0.125,0.03125,0.125,0.0625 ;DSP operation data

DIV: .XDATA.W 0.1 ;DSP operation result storage area
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Section 6   Examples of Arguments Passed Between CPU
Instructions and DSP Instructions

Overview

The two 16-bit fixed-point data values stored at the XRAM_ADD address (H'1000F000) and
YRAM_ADD address (H'1001F000) are multiplied using DSP instructions and CPU instructions.

Description

When data is passed between CPU instructions and DSP instructions, R4, R5, R6, and R7 are used
as pointers and the data is passed via XRAM and YRAM. The procedure when the result of a
calculation performed by the DSP is used by the CPU is described below.

As can be seen in (2-1), (3-1), and (3-2), both the (2) DSP multiplication routine and (3) CPU
multiplication routine of the example main program read data stored in XRAM and YRAM.

Example arguments:

PADD X0,Y0,A0 ; Stores result of adding X0 and Y0 in A0
MOVX.W A0,@R4 ; Transfers A0 data to R4 address
MOV.W @R4,R0 ; Transfers R4 address data to R0

Some points need to be kept in mind when transferring data. Some of the DSP instructions are for
handling fixed-point data, and when fixed-point multiplication is performed the result is matched
to the MSB. However, when multiplication is performed using CPU instructions, integer
multiplication is performed and the is matched to the LSB. This means that the calculation result
will differ from that obtained using DSP instructions.

The multiplication process used in (2-1), (3-1), and (3-2) in the (2) DSP multiplication routine and
(3) CPU multiplication routine in the flowchart on the following page is shown in table 6.1. This
shows that the calculation results after execution differ even if the source operand data is identical.
When a DSP instruction (PMULS) is used to multiply integer data, it is necessary to convert the
calculation result from fixed-bit data into integer format by performing a bit shift.
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Table 6.1 DSP and CPU Multiplication Process

Excerpt from Main Program Register Contents

(2)  DSP multiplication routine PMULS X0,Y0,A0 Before execution:
X0=H'4000, Y0=2000

After execution:
A0=H'1000 0000

(3)  CPU multiplication routine MULS.W R0,R1
STS MACL,R14

Before execution:
R0=H'4000, R1=H'2000

After execution:
R14=H'0800 0000
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Flowchart

Transfer XRAM_ADD address (H'1000F000) to 
register R4

Transfer YRAM_ADD address (H'1001F000) to 
register R6

Multiply data from register X0 and register Y0, store 
result in register A0

Transfer data (H'4000) from R4 address 
(H'1000F000) to register R0

Transfer data (H'2000) from R6 address 
(H'1001F000) to register R1

Multiply data from register R0 and register R1

Transfer data (multiplication result) from register 
MACL to register R14

Transfer data (H'4000) from R4 address 
(H'1000F000) to register X0
Transfer data (H'2000) from R6 address 
(H'1001F000) to register Y0

Start

End

(1-1)

(1-2)

(2-1)

(2-2)

(3-1)

(3-2)

(3-3)

(3-4)

(1)

(2)

(3)
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Main Program

;*******************************************************************************************

;* Initial setting routine

;*******************************************************************************************

MAIN: MOV.L #XRAM_ADD,R4

MOV.L #YRAM_ADD,R6

;*******************************************************************************************

;* DSP multiplication routine

;*******************************************************************************************

MOVX.W @R4,X0 MOVY.W @R6,Y0 ;Load 0.5,0.25

PMULS  X0,Y0,A0 ;A0 = multiplication result

;*******************************************************************************************

;* CPU multiplication routine

;*******************************************************************************************

MOV.L @R4,R0 ;H'4000 load

MOV.L @R6,R1 ;H'2000 load

MULS.W R0,R1

STS MACL,R14 ;R14 = multiplication result 

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;**********************************************************************

;* Data

;**********************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000F000

XRAM_ADD: .XDATA.W  0.5 ;DSP operation data

.SECTION YRAM,DATA,LOCATE=H'1001F000

YRAM_ADD .XDATA.W  0.25 ;DSP operation data

.END
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Section 7   32-bit Multiplication

Overview

The 32-bit data value stored at the XRAM_ADD address (H'1000F000) and the 32-bit data value
stored at the YRAM_ADD address (H'1001F000) are multiplied, and the result (64-bit) is
transferred from the ANS address (H'1001F100) to the ANS+7 address (H'1001F107), where it is
stored.

Description

1. Overview of Calculation Method

The addresses where the multiplier and multiplicand of a 32-bit multiplication operation are
stored, and the address where the result is stored, are shown in figure 7.1. Figure 7.2 shows an
overview of the calculation method for 32-bit multiplication. The 32-bit data values (the
multiplier and multiplicand) are separated into their upper and lower 16-bit segments (here
provisionally called A, B, C, and D), which are then multiplied to produce the 64-bit operation
result. The top bit (MSB) of the 16-bit data input to the multiplier is interpreted as the sign bit,
and it has a weight of –20 = –1. Therefore, in the example program the first top bit (MSB) is
replaced with 0, the product of the various segments is calculated, and a correction items are
added using the top bit in order to obtain the 32-bit multiplication result.

Multiplicand (32-bit)XRAM_ADD XRAM_ADD+2

31 016 15

× )

ANS ANS+2 ANS+4 ANS+6

Input

Output
31 016 1563 3248 47

Multiplier (32-bit)YRAM_ADD YRAM_ADD+2

31 016 15

Multiplication result 
(64-bit)

Figure 7.1   32-bit Multiplication



Rev. 1.0, 09/99, page 46 of 115

Multiplicand

Multiplier× )

A B

C D

B × D

+

+

31 016 1563 3248 47

+

B: XRAM_ADD+2 address data
A: XRAM_ADD address data
D: YRAM_ADD+2 address data
C: YRAM_ADD address data

A × C

B × C

A × D

Figure 7.2   Overview of Calculation Method for 32-bit Multiplication
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2. Double-length Calculation Algorithm

If the single-precision number of bits is n, “double-length” refers to 2n bits. Therefore, 2n bit
numbers can be expressed as shown in figure 7.3.

A B

A0 B0
2n–1 n n–1

Multiplicand: E

–e2n–1 · 22n–1 

∑ ei · 2i
2n–2

i=n

*1

*1:  ei, fi = 0 or 1

en–1 · 2n–1 

∑ ei · 2i
n–2

i=0

C D

C0 D0
2n–1 n n–1

Multiplier: F

–f2n–1 · 22n–1 

∑ fi · 2i
2n–2

i=n

*1

fn–1 · 2n–1 

∑ fi · 2i
n–2

i=0

(Upper MSB)

(Lower MSB)

Figure 7.3   Structure of 2n-bit Numbers
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Here, if Σei · 2
i = A0, Σei · 2

i = B0, Σei · 2
i = C0, Σei · 2

i = D0, performing the double-length
multiplication E × F is can be expressed as:

E × F = (–e2n–1 · 2
2n–1 + A0 + e2n–1 · 2

n–1+ + B0) × (–f2n–1 · 2
2n–1 + C0 + f2n–1 · 2

n–1+ + D0)

= e2n–1 · f2n–1 · 2
4n–2 (1)

–e2n–1 · 2
2n–1 (C0 + fn–1 · 2

n–1+ + D0) (2)

–f2n–1 · 2
2n–1 (A0 + en–1 · 2

n–1+ + B0) (3)

+en–1 · 2
n–1 (C0 + fn–1 · 2

n–1+ + D0) (4)

+fn–1 · 2
n–1 (A0 + B0) (5)

+A0 · C0 + A0 · D0 + B0 · C0 + B0 · D0 (6)

In the above equation, (6) is the product of the segments and (1) through (5) are correction
items.

The correction items involve determining whether the sign bit is “0” or “1” and, if it is “1”,
adding it to or deleting it from the product of the segments.

Figure 7.4 shows a 32-bit double-length multiplication algorithm that uses the above equation.
The whole can be subdivided into the following six parts:

In part (1), in order to clear the sign bits of A, B, C, and D to 0, the logical product with
H'7FFF is obtained, resulting in A0, B0, C0, and D0. In part (2), the product is calculated for
the following four segments: A0 · C0, A0 · D0, B0 · C0, and D0 · C0. In parts (3) through (6),
the sum is obtained for each digit, and the results are stored at the ANS, ANS+2, ANS+4, and
ANS+6 addresses.
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A B

× )

31 16 15 0
SS

*1

*2

(1-1)

(1-2)

(1-3)

(1-4)

(2-1)

(2-2)

(2-3)

(2-4)

(3-1)

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)

C D
31 16 15 0

SS

A0
15 0

0

C0
15 0

0

B0
15 0

0

D0
15 0

0

31 16 15 0

31 16 15 0

A0 × D0
31 16 15 0

B0 × C0
31 16 15 0

15 0

ANSWER1

(A0 × D0) Low
15 0

(B0 × C0) Low
15 0

(B0 × D0) High
15 0

+

+

C0 + D
31 16 15 0

A0 + B0
31 16 15 0

+

+
+ )  Correction item (5)

Correction item (4)

ANSWER2
15 0

C

(A0 × C0) Low
15 0

(B0 × C0) High
15 0

(A0 × D0) High
15 0

+

+

31 16 15 0

31 16 15 0

+

+
Correction item (3)

Correction item (2)

C0
15 0

A0
15 0

+

+
+ )                                   Correction item (5)

Correction item (4)

ANSWER3
15 0

C

(A0 × C0) High
15 0

–C0
15 0

–A0
15 0

+

+

H'8000
15 0

ANSWER4
15 0

+
Correction item (3)

Correction item (2)

+ )  Correction item (1)

(1)

(2)

(3)

(4)

(5)

(6)

*1   
*2

S : Sign bit
: Decimal point position

A0 × D0

B0 × D0

–(C0 + D)

–(A0 + B)

Figure 7.4   32-bit Double-length Multiplication Algorithm
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Flowchart

To clear sign bit of A, obtain logical product of A and 
H'7FFF, and designate as A0
Determine sign bit

To clear sign bit of B, obtain logical product of A and 
H'7FFF, and designate as B0
Determine sign bit

To clear sign bit of C, obtain logical product of A and 
H'7FFF, and designate as C0
Determine sign bit

To clear sign bit of D, obtain logical product of A and 
H'7FFF, and designate as D0
Determine sign bit

Multiply A0 and C0, separate upper and lower bits of 
result, and store in XRAM

Multiply B0 and D0, separate upper and lower bits of 
result, and store in YRAM

Multiply A0 and D0, separate upper and lower bits of 
result, and store in XRAM

Multiply B0 and C0, separate upper and lower bits of 
result, and store in YRAM

Store lower bits of B0 and D0 multiplication result at 
ANS+6 address

Add lower bits of A0 × D0, lower bits of B0 × C0, and 
lower bits of B0 × D0

Add lower bits (D) of correction item (4) to result of 
(4-1)

Start

(1-1)

(1-2)

(1-3)

(1-4)

(2-1)

(2-2)

(2-3)

(2-4)

(3-1)

(4-1)

(4-2)

(4-3)

(1)

(2)

(3)

(4)
No

Yes

Is B sign bit 1?

I
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Add lower bits (B0) of correction item (5) to result of 
(4-1) or (4-3)

Store result of (4-1), (4-3) or (4-5) at ANS+4 address

Add lower bits (–D) of correction item (2) to result of 
(5-1)

Add lower bits (–B) of correction item (3) to result of 
(5-1) or (5-3)

Add upper bits (C0) of correction item (4) to result of 
(5-1), (5-3) or (5-5)

Add upper bits (A0) of correction item (5) to result of 
(5-3), (5-5) or (5-7)

Add lower bits of A0 × C0, lower bits of B0 × C0, and 
upper bits of A0 × D0

(4-4)

(4-5)

(4-6)

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)

(4)

(5)

No

Yes

Is D sign bit 1?

No

Yes

 Is A sign bit 1?

No

Yes

Is C sign bit 1?

No

Yes

Is B sign bit 1?

No

Yes

Is D sign bit 1?

II

I
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Store result of (5-1), (5-3), (5-5), (5-7) or (5-9) at 
ANS+2 address

Add carry to upper bits of result of (2-1)

Add upper bits (–C0) of correction item (2) to result 
of (6-1)

End

(5-10)

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)

(6-6)

(6-7)

(6-8)

(6)

(5)

No

Yes

Is A sign bit 1?

Add upper bits (–A0) of correction item (3) to result 
of (6-1) or (6-3)

No

Yes

Is C sign bit 1?

Add of correction item (1) (H'8000) to result of (6-1), 
(6-3) or (6-5)

Store result of (6-1), (6-3), (6-5) or (6-7) at ANS 
address

No

Yes

Are A and C sign bits both 1?

II
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Main Program

;*******************************************************************************************

;* 32-bit fixed-point multiplication routine

;*

;* [A][B] × [C][D]

;*

;*******************************************************************************************

MAIN: MOV.L #XRAM_ADD,R4

MOV.L #WORKX,R5 ;XRAM for work

MOV.L #YRAM_ADD,R6

MOV.L #WORKY,R7 ;YRAM for work

;Clear sign

MOV.W #H'7FFF,R0

MOV.W R0,@R7

PCLR A1 MOVX.W @R4+,X0 MOVY.W @R7,Y0 ;A,H'7FFF load

PAND X0,Y0,A0 MOVY.W @R6+,Y1 ;A0,C load

MOV.W R0,@R5 ;H'7FFF -> #WORKX

PSHA #1,X0 MOVX.W @R5,X1 ;A sign chech,H'7FFF load

  DCT  PINC A1,A1 MOVX.W A0,@R5+ ;A0 store

PAND X1,Y1,A0 MOVX.W @R4,X0 ;C0,B load

MOV.L R4,@-R15

MOV.L #SIGNA,R4

PCLR A1 MOVX.W A1,@R4+

PSHA #1,Y1 MOVY.W A0,@R7+ ;C sign check,C0 store

  DCT PINC A1,A1 MOVY.W @R6,Y1 ;B sign check,D load

PAND X0,Y0,A0 MOVX.W A1,@R4+ ;B0

PCLR A1

PSHA #1,X0 MOVX.W A0,@R5

  DCT PINC A1,A1

PAND X1,Y1,A0 MOVX.W A1,@R4+ ;D0,B0 store

PCLR A1

PSHA #1,Y1

  DCT PINC A1,A1 MOVY.W A0,@R7 ;D0 store

MOVX.W A1,@R4

MOV.L @R15+,R4

;*****************************************************************

;*Segment product calculation routine/   B0 ×D0,A0 ×C0,B0 ×C0,A0 ×D0

;*****************************************************************

MOV.L #WORKX,R5

MOV.L #WORKY,R7

MOVX.W @R5+,X0 MOVY.W @R7+,Y0 ;A0,C0

PMULS X0,Y0,A1 MOVX.W @R5+,X1 MOVY.W @R7+,Y1 ;A0×C0,B0,D0

PMULS X1,Y1,A0 MOVX.W A1,@R5+ ;B0×D0, (A0 ×C0)H store

PSHA #16,A1 MOVY.W A0,@R7+ ;(A0 ×C0)L, (B0 ×D0)H store
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PSHA #16,A0 MOVX.W A1,@R5+ ;(B0 ×D0)L, (A0 ×C0)L store

PMULS X0,Y1,A1 MOVY.W A0,@R7+ ;A0×D0, (B0 ×D0)L store

PSHA #16,A1 MOVX.W A1,@R5+ ;(A0 ×D0)L, (A0 ×D0)H store

PMULS X1,Y0,A1 MOVX.W A1,@R5 ;B0×C0, (A0 ×D0)L store

PSHA #16,A1 MOVY.W A1,@R7+ ;(B0 ×C0)L, (B0 ×C0)H store

MOVY.W A1,@R7 ;(B0 ×C0)L store

;******************

;*ANSWER1 STORE

;******************

MOV.L R7,@-R15 ;push R7

MOV.L #ANS,R7

ADD #6,R7

MOVY.W A0,@R7+ ;Store in ANS1

ADD #-2,R7

MOV.L R7,R14 ;R14=#ANS+2

MOV.L @R15+,R7 ;pop R7

********************************************************************************************

;*2-word calculation routine/    R4=#XRAM_ADD+2,R5=#WORKX+10,R6=#YRAM_ADD+2,R7=#WORKY+10

;*******************************************************************************************

PCOPY X1,M1

MOV.L #-6,R9

PCLR A1 MOVX.W @R5,X1 MOVY.W @R7+R9,Y1 ;(A0×D0)L lode,
 (B0 ×C0)L load

PADD X1,Y1,A0 MOVY.W @R7+,Y1 ;(A0 ×D0)L+(B0 ×C0)L,
 (B0 ×D0)H load

  DCT PINC A1,A1 ;carry check

PADD A0,Y1,A0 ;(A0 ×D0)L+(B0 ×C0)
 L+(B0 ×D0)H

  DCT PINC A1,A1 ;carry check

MOV.W #H'0,R10

MOV.L #SIGND,R0

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is B negative?

BT HOSEI4_L

MOVY.W @R6,Y1 ;Load D

PADD A0,Y1,A0 ;Add D

  DCT PINC A1,A1

HOSEI4_L:

MOV.W @R0,R1

CMP/EQ R10,R1 ;Is D negative?

BT HOSEI5_L

PADD A0,M1,A0 ;Add B0

  DCT PINC A1,A1

HOSEI5_L:

MOV.L R4,@-R15 ;push R4
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MOV.L #CARRY,R4

MOVX.W A1,@R4 ;carry store

MOV.L @R15+,R4 ;pop R4

;******************

;*ANSWER2 STORE

;******************

MOV.L R7,@-R15 ;push R7

MOV.L R14,R7

MOVY.W A0,@R7+ ;ANS2 store

ADD #-2,R7

MOV.L R7,R14 ;R14=#ANS+4

MOV.L @R15+,R7 ;pop R7

;*******************************************************************************************

;*3-word calculation routine/ R4=#XRAM_ADD+2,R5=#WORKX+10,R6=#YRAM_ADD+2,R7=#WORKY+6

;*******************************************************************************************

MOV.L #-4,R8

PCOPY X0,A1 MOVX.W @R5+R8,X0 MOVY.W @R7+,Y1 ;dummy load

MOVX.W @R5+,X0   MOVY.W @R7+,Y1 ;(A0 ×C0)L lode,
 (B0 ×C0)H load

PADD X0,Y1,M1 MOVX.W @R5,X1 ;(A0 ×C0)L+(B0 ×C0)H,
 (A0 ×D0)H load

  DCT PINC M0,M0 ;carry check

PADD X1,M1,A0 ;(A0 ×C0)L+(B0 ×C0)
 H+(A0 ×D0)H

  DCT PINC M0,M0 ;carry check

;Correction

MOV.W #H'0,R10

MOV.L #SIGNA,R0

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is A negative?

BT HOSEI2_L

PSUB A0,Y1,A0 ;Subtract D (correction 2)

  DCT PDEC M0,M0

HOSEI2_L:

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is C negative?

BT HOSEI3_L

MOVX.W @R4,X1

PCOPY X1,M1

PSUB A0,M1,A0 ;Subtract B (correction 3)

  DCT PDEC M0,M0

HOSEI3_L:

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is B negative?

BT HOSEI4_H

PADD A0,Y0,A0 ;Subtract C0 (correction 4)
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  DCT PINC M0,M0

HOSEI4_H:

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is D negative?

BT HOSEI5_H

PCOPY A1,M1

PADD A0,M1,A0 ;Add A0 (correction 5)

  DCT PINC M0,M0

HOSEI5_H:

PCOPY A0,M1

MOV.L #CARRY,R4

MOVX.W @R4,X1 ;Load carry

PADD X1,M1,A0 ;Add carry

  DCT PINC M0,M0 ;Check carry

;**************

;*ANSWER3 STORE

;**************

MOV.L R14,R7

MOVY.W A0,@R7+ ;ANS3 store

ADD #-2,R7

;*******************************************************************************************

;*4-word calculation routine/ R4=#XRAM_ADD+2,R5=#WORKX+8,R6=#YRAM_ADD+2,R7=#WORKY+10

;*******************************************************************************************

PCLR Y1 MOVX.W @R5+R8,X1 ;dummy load

PCLR M1 MOVX.W @R5,X1 ;(A0×C0)H load

PADD X1,M0,A0

  DCT PINC M1,M1

;Correction

MOV.L #SIGNA,R0

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is A negative?

BT HOSEI3_H

PCOPY A1,M0

PSUB A0,M0,A0 ;Subtract C0 (correction 2)

  DCT PDEC M1,M1

MOV.L #H'0,R12

ADD #1,R12

HOSEI2_H:

MOV.W @R0+,R1

CMP/EQ R10,R1 ;Is C negative?

BT HOSEI4_H

PSUB A0,Y0,A0 ;Subtract A0 (correction 3)

  DCT PDEC M1,M1

ADD #1,R12

HOSEI3_H:
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MOV.L #2,R1

CMP/EQ R1,R12 ;Are both A and C negative?

BF FIN

MOV.W #H'8000,R10

MOV.W R10,@R5

MOVX.W @R5,X0

PCOPY X0,M1 ;Add H'8000 (correction 1)

PADD A0,M1,A0

;**************

;*ANSWER4 STORE

;**************

FIN: MOVY.W A0,@R7 ;ANS4 store

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;*******************************************************************************************

;* 32-bit multiplication data (XRAM/YRAM)

;*******************************************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000F000

XRAM_ADD: .XDATA.L 0.25002500 ;Multiplicand

WORKX: .RES.W 6 ;Work area

CARRY: .RES.W 1 ;Carry area

SIGNA: .RES.W 1 ;For determining sign of multiplicand upper word A

SIGNC: .RES.W 1 ;For determining sign of multiplier upper word C

SIGNB: .RES.W 1 ;For determining sign of multiplicand lower word B

SIGND: .RES.W 1 ;For determining sign of multiplier lower word D

.SECTION YRAM,DATA,LOCATE=H'1001F000

YRAM_ADD: .XDATA.L 0.50005000 ;Multiplier

WORKY: .RES.W 6 ;Work area

ANS: .RES.W 4 ;Multiplication result storage area
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Section 8   Trigonometric Functions

Overview

Calculating the trigonometric functions SIN(X) and COS(X).

Description

1. Performing Trigonometric Functions

Figure 8.1 shows curves for SIN(X) and COS(X). If the angle range is –π ≤ X ≤ π, the
relationships expressed in equation (1) exists.

SIN(–X) =  –SIN(X)
COS(–X) =  COS(X)

------------------------------------------------------------------ (1)

Using the relationships expressed in equation (1), the SIN(X) and COS(X) of –π ≤ X ≤ 0 can
be calculated by obtaining the SIN(X) and COS(X) of 0 ≤ X ≤ π and processing the sign.

Next is figure 8.2 (a) and (b). The relationships of SIN(X) and COS(X), with X = π/2 at the
center, are expressed in equation (2).

SIN(X + π/2) =  –SIN(π/2 – X)
COS(X + π/2) =  COS(π/2 – X)

------------------------------------------------------ (2)

1

0–π/2 π/2 π–π

–1

Figure 8.1   SIN(X) and COS(X) Curves
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1 1

–1

0 0π/2 π/2π π

(a)  SIN (X) (b)  COS (X)

Figure 8.2   SIN(X) and COS(X) Curves with X = ππππ/2 at Center

Based on the relationship between equations (1) and (2), the SIN(X) and COS(X) of –π ≤ X ≤
π can be calculated by obtaining the SIN(X) and COS(X) of 0 ≤ X ≤ π and, finally, processing
the sign. The example program divides 0 ≤ X ≤ π/2 into 128 segments. If X = n · π/256 + ∆X
(n = 1, 2, ...., 128), the result is equation (3), based on the addition theorem of trigonometric
functions.

SIN(X) =  SIN(n · π/256 + ∆X) 
=  SIN(n · π/256) · COS(∆X) – COS(n · π/256) · SIN(∆X)

COS(X) =  COS(n · π/256 + ∆X)
=  COS(n · π/256) · COS(∆X) – SIN(n · π/256) · SIN(∆X)

------------ (3)

If we assume that in equation (3) ∆X is extremely small and approximate that SIN(∆X) = ∆X
and COS(∆X) = 1 – (∆X)2/2, the result is equation (4).

SIN(X) =  SIN(n · π/256) · {1 – (∆X)2/2} + ∆X · COS(n · π/256)
COS(X) =  COS(n · π/256) · {1 – (∆X)2/2} – ∆X · SIN(n · π/256)

--------------- (4)

In other words, by calculating equation (4) using ∆X and table data (n · π/256), we can obtain
the SIN(X) and COS(X) of 0 ≤ X ≤ π/2. The final result is then obtained by performing sign
processing.



Rev. 1.0, 09/99, page 61 of 115

2. Converting Input Values

Using conversion equation (5), the example program inputs to the DSP as angle parameters the
input value X for the range –π ≤ X ≤ π and a for the range –1 ≤ X < 1.

X =  π · a
a =  X/π

--------------------------------------------------------------------------------- (5)

X unit: rad
a unit: rad/π

Table 8.1 Relation Between Input Value a and Polarity

Result

Input Value SIN(X) COS(X) |a|

–1 < ≤ a < –0.5
(–π ≤ X < –π/2)

Negative Negative | a | > 0.5

–0.5 ≤ a < 0
(–π/2 ≤ X < 0)

Negative Positive | a | ≤ 0.5

0 ≤ a ≤ 0.5
(0 ≤ X ≤ π/2)

Positive Positive | a | ≤ 0.5

0.5 < a < 1
(π/2 < X < π)

Positive Negative | a | > 0.5

Here the range 0 ≤ X ≤ π/2 corresponds to the range 0 ≤ X ≤ 0.5. Also, the input value a is
converted from the range –1 < a ≤ 1 to the range 0 ≤ a' ≤ 0.5. Figure 8.3 shows the curves
| SIN(X) | and | COS(X) |.

–π –π/2
B B

A A

0 –π –π/2 0π/2 π/2π π

(a)   | SIN(X) | (b)   | COS(X) |

Figure 8.3   Curves | SIN(X) | and | COS(X) |
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When obtaining the SIN(X) and COS(X) of point A in figure 8.3, if we assume that A = π/2 +
B, then a = 0.5 + b. Therefore, it is possible to obtain the deviation | b | relative to X = π/2
using equation (6).

| b |  =  | | a | –0.5 |  -------------------------------------------------------------------------  (6)

Next, based on deviation | b |, equation (7) is used to calculate the conversion of input value a
for the range –1 < a ≤ 1 to a' for the range 0 ≤ a' ≤ 0.5.

a'  =  | | | a | –0.5 | –0.5 | -------------------------------------------------------------------  (7)

3. a' Table Data

The example program uses a table with 128 cells. In other words, the range 0 ≤ a' ≤ 0.5 is
divided into 128 equal segments. The difference in a' due to the angle of each segment is
expressed in equation (8).

0.5/128  =  0.00390625 -------------------------------------------------------------------  (8)

Table 8.2 shows the correspondence between table address n and a' in decimal notation and as
16-bit fixed-point expressions.

Table 8.2 Relationship Between Table Address n and a'

0

1

2

3

4

127

128

0.00000000

0.00390625

0.00781250

0.01171875

0.01562500

0.49609375

0.50000000

Table 
Address

n

n/256;
Decimal Notation

rad]/ π

16-bit Fixed-point Expression

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a'

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

1

1

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

: Decimal point position
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4. Method of Calculating ∆X

As shown in table 8.2, the upper nine bits of the a' data expressed in fixed-point format
correspond to n, and the lower seven bits to the amount of shift from the table data ∆a'. Figure
8.4 shows the bit structure of a'. By obtaining the value of a', it is possible to calculate the
equation (2) table data address (the value of n · π/256) as well as ∆X at the same time. Finally,
table 8.1 is used for sign processing in order to obtain the SIN(X) and COS(X) of –π ≤ X ≤ π.

15 07 6

Shift from table ∆a

: Decimal point position

Table address n

Figure 8.4   Bit Structure of a'

Figure 8.5 shows the relationship with the amount of shift between table values ∆X. Table shift
∆X can also be obtained by using the ∆a of a' and equation (9).

∆X = ∆a · π --------------------------------------------------------------------------------  (9)

0 1

1
(n+1) · π/256

∆X

n · π/256

Figure 8.5   Relation With Amount of Shift Between Table Values
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5. Overflow Processing

If the calculation result is as shown in equation (10), an overflow occurs.

| SIN(X) | ≥  1
| COS(X) |<  0

-------------------------------------------------------------------------- (10)

In such cases the value is corrected using equation (11).

| SIN(X) | =  1 – 2–15

| COS(X) |=  0
------------------------------------------------------------------- (11)

6. Algorithm for Calculating Trigonometric Functions

The algorithm for calculating trigonometric functions is as follows.

(1) Make initial settings.

(2) Load input value a, calculate | | | a | –0.5 | –0.5 | to obtain a'.

(3) Obtain logical product of above and #H'FF80 and calculate upper nine bits (n/256) of a'.
Then calculate n and set value in Y bus index register (R9).

(4) Obtain logical product of above and #H'007F and calculate lower seven bits (∆a') of a'.

(5) Calculate π∆a'; calculate ∆X.

(6) Calculate 1 – (∆X)2/2. Load sin(n × π/256) and cos(n × π/256) from data table in YRAM.

(7) Calculate sin(X).

(8) Process sign of sin(X); store sin(X).

(9) Calculate cos(X).

(10)Process sign of cos(X); store cos(X).
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Execution Example

The sin(X) and cos(X) (OUTPUT) calculation results obtained based on the input value a
(INPUT) are shown in table 8.3.

Table 8.3 sin(x), cos(X) Calculation Results

Logical Value
(decimal)

Logical Value
(hexadecimal)

Output Value
(hexadecimal)Angle

X°

Input
Value
(a = X/ππππ) sin(X) cos(X) sin(X) cos(X) sin(X) cos(X)

0 0 0 1 H'0000 H'7FFF H'0000 H'7FFF

30 0.16667 0.5 0.86603 H'4000 H'6EDA H'3FFE H'6ED9

45 0.25 0.70711 0.70711 H'5A82 H'5A82 H'5A82 H'5A82

89.5 0.49722 0.99996 0.00873 H'7FFE H'011E H'7FFD H'011D

152 0.84444 0.46947 –0.88295 H'3C17 H'8EFC H'3C19 H'8EFD

179.5 0.99722 0.00873 –0.99996 H'011E H'8002 H'011C H'8002

–40 –0.22222 –0.64279 0.76604 H'ADB9 H'620D H'ADBB H'620F

–75 –0.41667 –0.96593 0.25882 H'845D H'2121 H'845D H'2121

–137 –0.76111 –0.681 –0.73135 H'A8B4 H'A263 H'A8B5 H'A263

–180 –1 0 –1 H'0000 H'8000 H'0002 H'8001
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Flowchart

Transfer INPUT address to register R4

Transfer WORK address to register R5

Transfer TABLE_SIN address to register R6

Transfer TABLE_COS address to register R7

Load input value a

Transfer H'FF80 to R5 address (WORK area)

Calculate | | a | –0.5 |

To determine sign, copy a and store value in register 
M1, load 0.5

Calculate | | | a | –0.5 | –0.5 | to obtain a', load 
H'FF80 from address R5

Obtain logical product of a' and H'FF80, calculate 
upper 9 bits (n/256) of a'

Convert n/256 fixed-point data to integer data by 
shifting n/256 6 bits to the right

Transfer integer data n obtained in (2-1) to R5 
address (WORK area)

Zero-extend integer data n passed to CPU unit via R5 
address to long-word size, set Y index register R9

Start

(1)

(2)

(3)

I

(1-1)

(1-2)

(1-3)

(1-4)

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(3-1)

(3-2)

(3-3)

(3-4)
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Calculate 4∆a' by shifting the ∆a' value obtained in 
(4-3) 2 bits to the left
Calculate π/4

Shift ∆X2 value obtained in (6-1) 1 bit to the right to 
obtain 1/2 (∆X2/2)
Load –1 from register R4

Subtract ∆X2/2 value obtained in (6-2) from –1 loaded 
in (6-2) to calculate 1 – ∆X2/2
Load cos(n × π/256) from data table 

Square (∆X2) ∆X value obtained in (5-2)
Load sin(n × π/256) from data table in YRAM

Set operation result status (set using DC bit in register 
DSR) to overflow mode

Multiply ∆X value obtained in (5-2) and cos(n × π/256) 
value loaded in (6-3)

Add operation results from (7-2) and (7-3) to calculate 
sin(X)

Multiply sin(n × π/256) value obtained in (6-1) and 
(1 – ∆X2/2) value obtained in (6-3)

(4)

(5)

(6)

(7)

II

I

Transfer H'007F to R5 address (WORK area)

Load H'007F from R5 address

Multiply 4∆a' and π/4 to calculate ∆X

Obtain logical product of a' and H'007F, calculate 
lower seven bits (∆a') of a'

(4-1)

(4-2)

(4-3)

(5-1)

(5-2)

(6-1)

(6-2)

(6-3)

(7-1)

(7-2)

(7-3)

(7-4)
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Set operation result status (set using DC bit in register 
DSR) to negative value mode

Set operation result status (set using DC bit in register 
DSR) to overflow mode

Multiply DX value obtained in (5-2) and sin(n × π/256) 
value loaded in (6-1)

Multiply 1 – ∆X2/2 and cos(n × π/256) values obtained 
in (6-3)

Add operation results from (9-2) and (9-3) to calculate 
cos(X)

Reverse the sign of the sin(X) value obtained in (7-4)

Transfer the OUTPUT address to register R6

Store sin(X) at the R6 address (OUTPUT+2)

Shift by 1 bit input value a stored in register X1 in 
(8-1)

Decrement sin(X) value obtained in (7-4)

Copy input value a from register M1 to register X1

(7)

(8)

(9)

No

Yes

Did (7-4) operation overflow?

No

Yes

Is the sign bit of a 1 (a < 0)?

III

II

(7-6)

(7-5)

(8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)

(8-7)

(9-1)

(9-2)

(9-3)

(9-4)
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Load 0.5 from R4 address

Set operation result status (set using DC bit in register 
DSR) to negative value mode

Reverse the sign of the cos(X) value obtained in 
(10-4)

Store cos(X) at the R6 address (OUTPUT+2)

Calculate absolute value of input value a stored in 
register M1 to obtain | a |

Clear cos(X) value obtained in (9-4) to 0

Transfer the DAT address to register R4

(10)

(9) No

Yes

Did (9-4) operation overflow?

No

Yes

Is value
of | a | greater than 0.5?

| a | > 0.5?

III

End

(9-6)

(10-1)

(10-2)

(10-3)

(10-4)

(10-5)

(10-6)

(10-7)

(9-5)
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Main Program

;*******************************************************************************************

;* Trigonometric function routine

;*

;* sinX,cosX

;*

;*******************************************************************************************

;*******************************************************************************************

;* Initial setting routine

;*******************************************************************************************

MAIN:

MOV.L #INPUT,R4

MOV.L #WORK,R5

MOV.L #TABLE_SIN,R6

MOV.L #TABLE_COS,R7

;*******************************************************************************************

;* a calculation routine

;*******************************************************************************************

MOVX.W @R4,X0 ;a load

MOV.L #H'FF80,R0 ;For extracting upper 9 bits
of a' (N ×π/64)

MOV.W R0,@R5

MOV.L #DAT,R4

PCOPY X0,M1 MOVX.W @R4+,X1 ;For determining sign of M1,
load 0.5

PCOPY X1,Y1

PSUB X0,Y1,M0

PABS M0,A0 ;||a|-0.5|

PSUB A0,Y1,M0 ;|||a|-0.5|-0.5|

PABS M0,M0 MOVX.W @R5,X0 ;M0 = a', #H'FF80 load

;*******************************************************************************************

;* n calculation, R6 setting routine

;*******************************************************************************************

PAND X0,M0,A0 ;A1 = n/256

PSHA #-6,A0 ;Convert fixed-point n to
integer n

MOVX.W A0,@R5 ;Pass integer n to CPU unit

MOV.W @R5,R1

EXTU.W R1,R1 ;

MOV.L R1,R9 ;

;*******************************************************************************************

;* ∆a' calculation routine

;*******************************************************************************************

MOV.L #H'007F,R0 ;For extracting lower 7 bits
of a' ( ∆a')
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MOV.W R0,@R5

MOVX.W @R5,X1 ;#H'007F load

PAND X1,M0,Y1 ; ∆a'

;*******************************************************************************************

;* ∆X calculation routine

;*******************************************************************************************

PSHA #2,Y1 MOVX.W @R4+,X1 ;4∆a', ∆/4 load

PMULS X1,Y1,A1 ; ∆a' × π

;*******************************************************************************************

;* 1 – ( ∆X2)/2calculation, sin(n × π/256) and cos(n × π/256) loading routine

;*******************************************************************************************

PCOPY A1,X0 MOVY.W @R6+R9,Y0 ;copy,dummy load

PMULS A1,X0,M0 MOVY.W @R6,Y0 ;∆X2,sin(n ×π/256) load

PSHA #-1,M0 MOVX.W @R4,X1 MOVY.W @R7+R9,Y1 ;∆X2/2, -1 lode,dummy load

PSUB X1,M0,A1 MOVY.W @R7,Y1 ;1- ∆X2/2,cos(n ×π/256) load

;*******************************************************************************************

;* sin(X) calculation routine

;*******************************************************************************************

MOV.L #H'6,R0

LDS R0,DSR ;Set overflow mode

PMULS X0,Y1,M0 ; ∆X·cos(n ×π/256)

PMULS A1,Y0,A0 ;(1-( ∆X2)/2)·sin(n ×π/256)

PABS A0,A0

PADD A0,M0,A0 ;A0 = sin(X)

  DCT PDEC A0,A0 ;If overflow occurs, sin(X) – 1

;*******************************************************************************************

;* sin(X) sign processing and storing routine

;*******************************************************************************************

PCOPY M1,X1

MOV.L #H'0,R0,

LDS R0,DSR ;Carry/borrow mode

PSHA #1,X1

  DCT PNEG A0,A0 ;If a < 0, reverse sign

MOV.L #OUTPUT,R6

MOVY.W A0,@R6+ ;Store sin(X)

;*******************************************************************************************

;* cos(X) calculation routine

;*******************************************************************************************

MOV.L #H'6,R0

LDS R0,DSR ;Set overflow mode

PMULS X0,Y0,M0 ; ∆X·SIN(N ×π/64)

PMULS A1,Y1,A0 ;(1-( ∆X· ∆X)/2)·COS(N ×π/64)

PABS A0,A0

PSUB A0,M0,A0

  DCT PCLR A0 ;If overflow occurs, clear cos(X) to 0
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;;******************************************************************************************

;* cos(X) sign processing and storing routine

;*******************************************************************************************

MOV.L #DAT,R4

MOVX.W @R4.X0                 ;0.5 load

PABS M1,M1                 ;|a|

MOV.L #H'2,R0

LDS R0,DSR                 ;Set negative value mode

PCMP X0,M1

  DCT PNEG A0,A0                 ;If | a | < 0.5, reverse sign

MOVY.W A0,@R6

EXIT: BRA EXIT

NOP

MAIN_E: NOP
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Data

;*******************************************************************************************

;* Trigonometric function data routine

;*******************************************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

INPUT: .RES.W 1 ;External input data storage area

WORK: .RES.W 1

DAT: .XDATA.W 0.5,0.78540,-1

            ;For calculating a', for calculating Ñ/4 (1 – ¦X2/2)

.SECTION YRAM,DATA,LOCATE=H'1001F800

TABLE_SIN: .XDATA.W 0,0.01227,0.02454,0.03681,0.04907,0.06132 ;N/0 - 5

.XDATA.W 0.07356,0.08580,0.09802,0.11022,0.12241 ;N/6 - 10

.XDATA.W 0.13458,0.14673,0.15886,0.17096,0.18304 ;N/11 - 15

.XDATA.W 0.19509,0.20711,0.21910,0.23106,0.24298 ;N/16 - 20

.XDATA.W 0.25487,0.26671,0.27852,0.29028,0.30201 ;N/21 - 25

.XDATA.W 0.31368,0.32531,0.33689,0.34842,0.35990 ;N/26 - 30

.XDATA.W 0.37132,0.38268,0.39400,0.40524,0.41643 ;N/31 - 35

.XDATA.W 0.42756,0.43862,0.44961,0.46054,0.47140 ;N/36 - 40

.XDATA.W 0.48218,0.49290,0.50354,0.51410,0.52459 ;N/41 - 45

.XDATA.W 0.53500,0.54532,0.55557,0.56573,0.57581 ;N/46 - 50

.XDATA.W 0.58580,0.59570,0.60551,0.61523,0.62486 ;N/51 - 55

.XDATA.W 0.63439,0.64383,0.65317,0.66242,0.67156 ;N/56 - 60

.XDATA.W 0.68060,0.68954,0.69838,0.70711,0.71573 ;N/61 - 65

.XDATA.W 0.72425,0.73265,0.74095,0.74914,0.75721 ;N/66 - 70

.XDATA.W 0.76517,0.77301,0.78074,0.78835,0.76584 ;N/71 - 75

.XDATA.W 0.80321,0.81046,0.81758,0.82459,0.83147 ;N/76 - 80

.XDATA.W 0.83822,0.84485,0.85136,0.85773,0.86397 ;N/81 - 85

.XDATA.W 0.87009,0.87607,0.88192,0.88764,0.89322 ;N/86 - 90

.XDATA.W 0.89867,0.90399,0.90917,0.91421,0.91911 ;N/91 - 95

.XDATA.W 0.92388,0.92851,0.93299,0.93734,0.94154 ;N/96 - 100

.XDATA.W 0.94561,0.94953,0.95331,0.95694,0.96043 ;N/101 - 105

.XDATA.W 0.96378,0.96700,0.97003,0.97294,0.97570 ;N/106 - 110

.XDATA.W 0.97832,0.98079,0.98311,0.98528,0.98730 ;N/111 - 115

.XDATA.W 0.98918,0.99090,0.99248,0.99391,0.99518 ;N/116 - 120

.XDATA.W 0.99631,0.99729,0.99812,0.99880,0.99932 ;N/121 - 125

.XDATA.W 0.99970,0.99992,1 ;N/126 - 128

TABLE_COS: .XDATA.W 1,0.99992,0.99970,0.99932,0.99880,0.99812 ;N/0 - 5

.XDATA.W 0.99729,0.99631,0.99518,0.99391,0.99248 ;N/6 - 10

.XDATA.W 0.99090,0.98918,0.98730,0.98528,0.98311 ;N/11 - 15

.XDATA.W 0.98079,0.97832,0.97570,0.97294,0.97003 ;N/16 - 20

.XDATA.W 0.96700,0.96378,0.96043,0.95694,0.95331 ;N/21 - 25

.XDATA.W 0.94953,0.94561,0.94154,0.93734,0.93299 ;N/26 - 30

.XDATA.W 0.92851,0.92388,0.91911,0.91421,0.90917 ;N/31 - 35

.XDATA.W 0.90399,0.89867,0.89322,0.88764,0.88192 ;N/36 - 40
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.XDATA.W 0.87607,0.87009,0.86397,0.85773,0.85136 ;N/41 - 45

.XDATA.W 0.84485,0.83822,0.83147,0.82459,0.81758 ;N/46 - 50

.XDATA.W 0.81046,0.80321,0.76584,0.78835,0.78074 ;N/51 - 55

.XDATA.W 0.77301,0.76517,0.75721,0.74914,0.74095 ;N/56 - 60

.XDATA.W 0.73265,0.72425,0.71573,0.70711,0.69838 ;N/61 - 65

.XDATA.W 0.68954,0.68060,0.67156,0.66242,0.65317 ;N/66 - 70

.XDATA.W 0.64383,0.63439,0.62486,0.61523,0.60551 ;N/71 - 75

.XDATA.W 0.59570,0.58580,0.57581,0.56573,0.55557 ;N/76 - 80

.XDATA.W 0.54532,0.53500,0.52459,0.51410,0.50354 ;N/81 - 85

.XDATA.W 0.49290,0.48218,0.47140,0.46054,0.44961 ;N/86 - 90

.XDATA.W 0.43862,0.42756,0.41643,0.40524,0.39400 ;N/91 - 95

.XDATA.W 0.38268,0.37132,0.35990,0.34842,0.33689 ;N/96 - 100

.XDATA.W 0.32531,0.31368,0.30201,0.29028,0.27852 ;N/101 - 105

.XDATA.W 0.26671,0.25487,0.24298,0.23106,0.21910 ;N/106 - 110

.XDATA.W 0.20711,0.19509,0.18304,0.17096,0.15886 ;N/111 - 115

.XDATA.W 0.14673,0.13458,0.12241,0.11022,0.09802 ;N/116 - 120

.XDATA.W 0.08580,0.07356,0.06132,0.04907,0.03681 ;N/121 - 125

.XDATA.W 0.02454,0.01227,0 ;N/126 - 128

OUTPUT: .RES.W 2 ;External output data storage area
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Section 9   Matrix Operations

Overview

Matrix A (3, 3) and matrix B (3, 3) are multiplied to obtain a 32-bit precision matrix product C (3,
3). Matrixes A and B are set in XRAM and YRAM beforehand. Matrix product C is stored
beginning at YRAM address H'1001FF00.

Description

1. Method of Expressing Matrixes

Figure 9.1 shows matrix A (n,m). The element aij is a component of matrix A. Horizontal rows
of components are called rows, which are numbered from the top as row1, row2, row3, ..., row
i, ... and so on. Vertical columns of components are called columns, which are numbered from
the left as column 1, column 2, column 3, ... column j, ... and so on. The components in the
position where row I and column k intersect is called component (i,j). Component (i,j) of
matrix A (n,m) is expressed as ai,j.

a11

a21

ai1

am1

a12

a22

ai2

am2

a1j

a2j

aij

amj

a1n

a2n

ain

amn

(Column j)

A = (row i)

Figure 9.1   Matrix A

2. Method of Calculating Matrix Product

Figure 9.2 shows the expression of the components of matrix A × matrix B = matrix product C.

a11

a21

a31

a12

a22

a32

a13

a23

a33

b11

b21

b31

b12

b22

b32

b13

b23

b33

c11

c21

c31

*1

*1  ci,j: 32-bit components.

c12

c22

c32

c13

c23

c33

× =

Matrix A Matrix B Matrix Product C

Figure 9.2   Expression of Components of Matrix A ×××× Matrix B = Matrix Product C
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The components ci,j of matrix product C are obtained using the following equation.

Cn,m = Σ (an,i × bi,m)
3

i=1

The components ci,j of matrix product C are obtained by performing a sum of products
calculation on row components an,i of matrix A and column components bi,m of matrix B.

3. Method of Storing Matrix A, Matrix B, and Matrix Product C Components

The components cn,m of matrix product C are obtained by performing a sum of products
calculation on row components an,i of matrix A and column components bi,m of matrix B. The
example subroutine, in order to increase the processing speed, stores the elements in XRAM
and YRAM as shown in figure 9.3

A1

A2 B1 B2 B3

A3

C1

C2

C3

× =

XRAMAddress

A1

a1,1
a1,2
a1,3
a2,1
a2,2
a2,3
a3,1
a3,2
a3,3

#MATRIXA
#MATRIXA+2
#MATRIXA+4
#MATRIXA+6
#MATRIXA+8
#MATRIXA+A
#MATRIXA+C
#MATRIXA+E
#MATRIXA+10

A2

A3

YRAM*1Address

C1

CH1,1
CL1,1
CH1,2
CL1,2
CH1,3
CL1,3
CH2,1
CL2,1
CH2,2
CL2,2
CH2,3
CL2,3
CH3,1
CL3,1
CH3,2
CL3,2
CH3,3
CL3,3

#MATRIXC
#MATRIXC+2
#MATRIXC+4
#MATRIXC+6
#MATRIXC+8
#MATRIXC+A
#MATRIXC+C
#MATRIXC+E
#MATRIXC+10
#MATRIXC+12
#MATRIXC+14
#MATRIXC+16
#MATRIXC+18
#MATRIXC+1A
#MATRIXC+1C
#MATRIXC+1E
#MATRIXC+20
#MATRIXC+22

C2

C3

YRAMAddress

B1

b1,1
b2,1
b3,1
b1,2
b2,2
b3,2
b1,3
b2,3
b3,3

#MATRIXB
#MATRIXB+2
#MATRIXB+4
#MATRIXB+6
#MATRIXB+8
#MATRIXB+A
#MATRIXB+C
#MATRIXB+E
#MATRIXB+10

B2

B3

*1 CHi,j: Upper 16 bits of Ci,j
CLi,j: Lower 16 bits of Ci,j

Matrix A Matrix B Matrix Product C

Figure 9.3   Memory Map with Matrix A, Matrix B, and Matrix Product C
Components Stored
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 4. Algorithm for Calculating Matrix Product C

Figure 9.4 shows the algorithm for calculating matrix product C. The details of the algorithm
are described below.

(1) Clear counter registers, store matrix A in the X address register (R4) and matrix B in the Y
address registers (R6, R7), set the addresses for storing the components of matrix product
C.

(2) Perform sum of products calculation on row components an,i of matrix A and column
components bi,m of matrix B.

(3) Store CHn,m (upper 16 bits of matrix product Cn,m) in MATRIXC+2n address and
CLn,m (lower 16 bits) in MATRIXC+2n+2 address.

(4) Return matrix A column components to first column.

(5) Determine if one row of matrix product Cn,m has been calculated. If n is not 3, return to
process (2). If n is 3, move to process (6).

(6) Shift matrix A row components down one row.

(7) Determine if all three rows of matrix product C have been calculated. If n is not 3, return
to process (2). If n is 3, all of matrix product Cn,m has been calculated and processing
ends.
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Initial setting

Sum of products calculation on row components an,i 
of matrix A and column components bi,m of matrix B

Store CHn,m (upper 16 bits of matrix product Cn,m) 
in MATRIXC+2n address and CLn,m (lower 16 bits) 
in MATRIXC+2n+2 address

Return matrix A column components to first column

Shift matrix A row components down one row

End

(1)

(2)

(3)

(4)

(5)

(6)

(7)

No

Yes

n = 3?

No

Yes

n = 3?

Cn,m =
3

i=1
Σ (Cn,i × Ci,m)

Figure 9.4   Algorithm for Calculating Matrix Product C
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Flowchart

Clear R10 address

Clear R12 address

Transfer MATRIXA (H'1000FF00) address to register 
R4

Transfer MATRIXB (H'1001FF00) address to register 
R6

Transfer MATRIXC (H'1001FF12) address to register 
R7

Use extended instruction REPEAT to set repeat start 
address (LOOP_S), repeat end address (LOOP_E), 
and number of repeats (3 times)

After reading 1 component ai,j from matrix A, 
increment R4 address
After reading 1 component bi,j from matrix B, 
increment R6 address

Clear register M0

Clear register A0

Multiply matrix A component ai,j by matrix B 
component bi,j

Add product of ai,j and bi,j to product from previous 
repeat; ci,j has been calculated once repeat operation 
finishes 

Start

(1)

(2)

I

Repeat program 
number of times 
indicated by number 
of repeats setting (3 
times in the case of 
the example 
program)

α β
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Shift matrix product ci,j obtained in process (2) 16 
bits to the left
Store upper 16 bits of matrix product ci,j (cHi,j) in 
MATRIXC+2n address

Store lower 16 bits (cLi,j) in MATRIXC+2n+2 address

Return matrix A column components to first column

Clear register R12 (clear counter)

Shift matrix A row components down one row

Calculation of 1 row of matrix product C is finished, 
so increment R10 counter register

Calculation of 1 component of matrix product C is 
finished, so increment R12 counter register

End

(3)

(4)

(5)

(6)

(7)

No

Yes

Is calculation of 1
row of matrix product C finished?

R11 = R12?

No

Yes

Is calculation of 3
rows of matrix product C finished?

R13 = R10?

I α β
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Main Program

matrix.src

;*******************************************************************************************

;* Matrix operation routine

;*

;* [A][B]=[C]

;*

;*******************************************************************************************

MAIN: MOV.L #0,R10

MOV.L #0,R12

MOV.L #MATRIXA,R4

MOV.L #MATRIXB,R6

MOV.L #MATRIXC,R7

;****************************************

;Calculate all components/R10, R13

;****************************************

MOV.L #3,R13 ;Set repeat value (number of rows)

MATORIX:

;**********************************

;Calculate row components of n’th row

;**********************************

MOV.L #3,R11 ;Set repeat value (number of columns)

RETSU:

;****************************

;Calculate 1 component

;****************************

BSR SEIBUN

NOP

BSR STORE

NOP

;****************************

ADD #-6,R4 ;Return address to first column of row i
of matrix A

ADD #1,R12 ;Increment counter each time 1 component
of 1 row of matrix product C is
calculated

CMP/EQ R11,R12 ;Is sum of products calculation for 1 row
of matrix product C finished?

BF RETSU

MOV.L #0,R12 ;Clear counter

;**********************************

ADD #6,R4

MOV.L #MATRIXB,R6

ADD #1,R10 ;Increment counter when sum of products
calculation for 1 row of matrix product C
is finished

CMP/EQ R13,R10 ;Is sum of products calculation for last
row of matrix product C finished?
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BF MATORIX

;****************************************

EXIT: BRA EXIT

NOP

;*******************************************************************************************

;Matrix C 1 component calculation routine

;*******************************************************************************************

SEIBUN:

REPEAT LOOP_S,LOOP_E,#3 ;Number of rows in matrix [A]
is number of repeats

PCLR M0 ;Clear for repeat

PCLR A0

LOOP_S:

MOVX.W @R4+,X0 MOVY.W @R6+,Y0 ;aij,bij load

PMULS X0,Y0,M0

LOOP_E: PADD A0,M0,A0

RTS

NOP

;*******************************************************************************************

;Matrix C 1 component storage routine

;*******************************************************************************************

STORE: PSHA #16,A0 MOVY.W A0,@R7+ ;Store upper bits of c
i,j

MOVY.W A0,@R7+ ;Store lower bits of c
i,j

RTS

NOP

;***********************

MAIN_E: NOP

Data

*********************************************************************************

;* Matrix operation data (XRAM/YRAM)

;*********************************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

MATRIXA: . XDATA.W 0.5,0.125,0.5,0.125,0.5,0.125,0.5,0.125,0.5

.SECTION YRAM,DATA,LOCATE=H'1001FF00

MATRIXB: .RES.W 0.25,0.0625,0.25,0.0625,0.25,0.0625,0.25,0.0625,0.25

MATRIXC: .RES.W 18
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Section 10   Inner Product

Overview

The inner product (32-bit precision) of two non-zero n-dimensional space vectors, a (16-bit
components) and b (16-bit components), is calculated. The n-dimensional space vectors a and b
are set in XRAM and YRAM beforehand. The inner product of a and b is stored in YRAM at
address H'1001FF00.

Description

1. Method of Expressing Space Vectors

Figure 10.1 shows an expression of the components of n-dimensional space vector a. An n-
dimensional space vector can be thought of as a vector consisting of a group of n real numbers.
There are two ways of expressing the components of a vector: as a row vector and as a column
vector.

a1, a2, ..., an 

a1

a2

:
an

(b)  Column vector(a)  Row vector

*1

*1

*1  ai: 16-bit

Figure 10.1   Expression of Components of n-dimensional Space Vector a
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2. Method of Calculating Inner Product

Figure 10.2 shows an expression of the components of the inner product of n-dimensional
space vectors a and b. Here the inner product of vectors a and b is expressed as (a,b).

a1, a2, ..., ai, ..., an a1b1 + a2b2 + ... + aibi + ... + anbn

b1

b2

:
bi

:
bn

n-dimensional
space vector
Column vector   

n-dimensional
space vector
Row vector  

*1

*1

*2× =

*1 ai: 16-bit
bi: 16-bit

*2 32-bit

a

b

Figure 10.2   Expression of Components of Inner Product of n-dimensional Space
Vectors a and b

The inner product (a,b) is obtained using the following equation.

= Σ aibi(    )
3

i=1
a,b

Using the above equation, the inner product (a,b) is obtained by performing a sum of products
calculation on components ai of space vector a and components bi of space vector b.
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3. Method of Storing Inner Product (a,b) of n-dimensional Space Vectors a and b

Figure 10.3 shows the method of storing the inner product (a,b) components of n-dimensional
space vectors a and b, which are set in XRAM and YRAM.

XRAMAddress
a1
a2
a3

an–1
an

VECTORA
VECTORA+2
VECTORA+4

VECTORA+2n–2
VECTORA+2n

*1 (     )H: Upper 16 bits of (     )
(     )L: Lower 16 bits of (     )

YRAMAddress
b1
b2
b3

bn–1
bn

VECTORB
VECTORB+2
VECTORB+4

VECTORB+2n–2
VECTORB+2n

YRAMAddress
(     ) H
(     ) L

#IN_PRO
#IN_PRO+2

*1

a,b

a,b
a,b

a,b
a,b

a,b

Figure 10.3   Method of Storing Inner Product (a,b) of n-dimensional
Space Vectors a and b
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4. Algorithm for Calculating Inner Product

Figure 10.4 shows the algorithm for calculating the inner product (a,b). The details of the
algorithm are described below.

(1) Set the addresses where the space vector a and b components are stored as well as the
address for storing the inner product of a and b in X address register (R4) and Y address
registers (R6, R7).

(2) Perform a sum of products calculation on components ai of space vector a and components
bi of space vector b.

(3) Store (a,b)H, the upper 16 bits of inner product (a,b) at the IN_PRO address and (a,b)L,
the lower 16 bits of inner product (a,b), at the IN_PRO+2 address. This completes the
process.

Initial setting

sum of products calculation on components ai of 
space vector    and components bi of space vector 

Store (     )H, the upper 16 bits of inner product 
(     ) at the IN_PRO address and (     )L, the lower 
16 bits of inner product (     ), at the IN_PRO+2 
address

End

(1)

(2)

(3)

(     ) =
n

i=1
Σ (ai × bi)a,b

a b

a,b
a,b a,b

a,b

Figure 10.4   Algorithm for Calculating Inner Product
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Flowchart

Transfer VECTORA (H'1000FF00) address to register 
R4

Transfer VECTORB (H'1001FF00) address to register 
R6

Transfer IN_PRO (H'1001FF0A) address to register 
R7

Use extended instruction REPEAT to set repeat start 
address (LOOP_S), repeat end address (LOOP_E), 
and number of repeats (n + 2 times)

Store (     )L, the lower 16 bits of inner product (     ), 
at IN_PRO+2 address

Shift obtained inner product (     ) 16 bits to the left to 
obtain (     )L
Store (     )H, the upper 16 bits of inner product (     ) 
at IN_PRO address, increment IN_PRO address

Clear register M0

Clear register A0

After reading 1 component ai of vector a from XRAM, 
increment R4 address
After reading 1 component bi of vector b from YRAM, 
increment R6 address
Multiply ai by bi
Calculate aibi and

Start

End

a,b
a,b

a,b a,b

a,b a,b

(1)

(2)

(3)

j=1

i–1
Σ ajbj

(1-1)

(1-2)

(1-3)

(2-1)

(2-2)

(2-3)

(2-4)

(3-1)

(3-2)
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Main Program

This program calculates the inner product for the three-dimensional space vector {ai, bi (i = 1, 2,
3)}.

in_pro.src

;*******************************************************

;* Inner product calculation routine

;*

;* (a,b)=a1b1+a2b2+a3b3

;*

;*******************************************************

;*******************************************************

;* Initial setting routine

;*******************************************************

MAIN: MOV.L #VECTORA,R4

MOV.L #VECTORB,R6

MOV.L #IN_PRO,R7

;*******************************************************************************************

;* Sum of products calculation routine

;*******************************************************************************************

REPEAT LOOP_S,LOOP_S,#5 ;Number of components in vector a
+ 2 is number of repeats

PCLR A0

PCLR M0

PCLR X0

PCLR Y0

LOOP_S:

PADD A0,M0,A0  PMULS  X0,Y0,M0 MOVX.W @R4+,X0 MOVY.W @R6+,Y0 ;ai,bi load

;*******************************************************************************************

;* Inner product storage routine

;*******************************************************************************************

STORE: PSHA #16,A0 MOVY.W A0,@R7+ ;Store upper bits
of inner product

MOVY.W A0,@R7 ;Store lower bits
of inner product

EXIT: BRA EXIT

NOP

MAIN_E: NOP
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Data

;*****************************************************************

;* Inner product calculation data (XRAM/YRAM)

;*****************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

VECTORA: .XDATA.W 0.5,0.125,0.5,0,0

.SECTION YRAM,DATA,LOCATE=H'1001FF00

VECTORB: .XDATA.W 0.25,0.0625,0.25,0,0

IN_PRO: .RES.W 2
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Section 11   Square Root

Overview

A 16-bit fixed-point square root calculation is performed and a square root with 15-bit precision is
obtained.

Description

1. I/O Value Data Format

Figure 11.1 shows the data format for I/O values. The value, X, whose square root is to be
determined is input in 16-bit format with its uppermost bit set to 0. However, it is also
necessary to perform normalization on X before calculating the square root.

The square root, √X, is output in 16-bit (1 word) format with the uppermost bit set to 0.

Bit: 15 0

0

Input value

Bit: 15 0

0

Output value
Square root,  X

: Decimal point position

X, whose square root 
is to be determined

Figure 11.1   I/O Value Data Format

2. Method of Calculating Square Root

Figure 11.2 illustrates the square root function. The example program calculates an
approximate value for the square root of X using a polyline graph of the sort shown in Figure
11.2 Square Root Function. Next, a gradualization equation is used to converge on a more
accurate value. This is the method used to calculate the square root, √X.

Once normalization is performed on X, the range that can be taken by X, the value whose
square root is to be calculated, is as follows.

0 ≤ X < 1.0
(H'00000 ≤ X ≤ H'7FFF)

In the square root function shown in Figure 11.2, the slope of the polyline graph is created by a
combination of comparatively gentle sections greater than 0.1 and steep sections less than 0.1,
resulting in approximation equations (1) and (2). Using these two equations, an approximate
square root value (y0) is obtained.
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1.0

√0.7

√0.5

0.5

0.41422

√1.0

0 0.1 0.25 0.5 0.7 1.0

y0 = 0.58579 × X + 0.41422

y0 = 3.16228 × X

Value whose square root is
to be determined, X

A
pp

ro
xi

m
at

e 
va

lu
e 

y 0

Figure 11.2   Square Root Function

Input value X > 0.1
y0 = 0.58579 × X + 0.41422  -------------------------------------------------------------   (1)

Input value X ≤ 0.1
y0 = 3.16228 × X  --------------------------------------------------------------------------   (2)
(The actual program uses y0 = 0.79057 × X × 22.)

Note that equation (2) cannot be used without modification for fixed-point calculation.
Therefore, normalization is performed and it is used as y0 = 0.79057 × X × 22.

Next, the value y0 obtained with approximation equations (1) and (2) is assigned to
gradualization equation (3) to obtain a more accurate square root value, √X.

y0 = √X = 1/2 (y0 + X/y0)  -----------------------------------------------------------------  (3)

Here, in item 2 of equation (3), since the value whose square root is being calculated, X, has
been normalized, X/y0 must be a normalized value in order to y0 > X after the calculations of
equations (1) and (2). In the sample program gradualization equation (3) is performed three
times, resulting in a square root value with 15-bit precision.
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3. Algorithm for Fixed-point Square Root Calculation

The algorithm for fixed-point square root calculation is described below.

(1) Initial settings are performed.

(2) It is determined whether X, the value whose square root is to be calculated, is not 0. If X is
0, the square root, √X, is given as 0 and processing ends.

(3) It is determined whether X, the value whose square root is to be calculated, is a negative
number. If X is a negative number, the square root, √X, is given as H'FFFF and processing
ends.

(4) X, the value whose square root is to be calculated, is compared to H'7FFB to determine
whether it is larger or smaller. If X > H'7FFB, the square root, √X, is given as √X(=X) and
processing ends.

(5) X, the value whose square root is to be calculated, is compared to 0.1 to determine
whether it is larger or smaller. If X > 0.1, processing continues with (6). If X ≤ 0.1,
processing continues with (6)'.

(6) Equation (1) is used to calculate approximate square root y0. Processing continues with
(7).

(6)' Equation (2) is used to calculate approximate square root y0. Processing continues with
(7).

(7) Approximate square root y0 is compared to X, the value whose square root is being
calculated, to determine whether it is larger or smaller. If y0 = X, approximate square root
y0 is divided by 2, 0.5 (H'4000) is added, the result is given as the square root, √X, and
processing ends.

(8) If the comparison in (7) shows that X, the value whose square root is being calculated, is
greater than approximate square root y0, gradualization equation X/y0 is not performed. In
this case the square root, √X, is given as H'FFFF and processing ends.

(9) Gradualization equation (3) is used to calculate square root value y, which is given as the
square root, √X, and processing ends.

Figure 11.3 shows the algorithm used for calculating the square root.
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Initial setting

√ X = 0

√ X = H'FFFF

√ X = X

√ X = H'FFFF

Divide approximate square root 
y0 by 2, add 0.5

y0 = 1/2 (y0 + 1)

Calculate approximate square 
root y0 using equation (1)

y0 = 0.58579 × X + 0.41422

Calculate approximate square 
root y0 using equation (2)

y0 = 3.16228 × X

Calculate square root √ X using 
equation (3)

y0 = √ X = 1/2 (y0 + X/y0)

End

(1)

(2)

(3)

(4)

(5)

(6)'

(6)

X = 0?
Yes

No

X < 0?
Yes

No

X > H'7FFB?
Yes

No

X > 0.1?
Yes

No

y0 = X? Yes

No

y0 < X?
Yes

No

(7)

(8)

(9)

Figure 11.3   Algorithm for Calculating Square Root
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Flowchart

No

Yes

Is data value
in register R0 (input value X) 0?

(X = 0?)

Transfer INPUT address to register R4

Transfer EX_OUT address to register R5

Transfer DAT address to register R6

Transfer DAT2 address to register R7

Load input value X in register R0

Load H'0 in register X0

Copy register X0 data (H'0) to register A0

Load H'FFFF in register X0

Copy register X0 data (H'FFFF) to register A0

Start

(1)

(2)

(3)

No

Yes

Is bit 31 of register R1 1?
(X < 0?)

FIN

FIN

I

Exchange lower word of data in register R0 and 
upper word of data in register R1

Shift data in register R1 (upper word is input value X) 
1 bit to the left to determine sign

(1-1)

(1-2)

(1-3)

(1-4)

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)
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No

Yes

Is R0 greater than R1?
X > H'7FFB?

Load input value X in register R0

Load H'7FFB in register R1

Transfer EX_OUT2 address to register R5

Load input value X in register X1
Load data for approximate square root calculation 
output (0.58579) in register Y0

Multiply register X1 and register Y0 (0.58579X)
Load data for approximate square root calculation 
output (0.41422) in register Y1

Multiply register A1 and register Y1 (0.58579X + 
0.41422)

Load input value X in register X0

Copy register X0 data to register A0

(4)

(5)

(6)

No

Yes

α

Is R0 greater than R1?
X > 0.1?

II

I

FIN

Transfer DAT2 address to register R7

Load input value X in register R1

Transfer WORK address to register R4

Load 0.1 in register R1

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

(5-1)

(5-2)

(5-3)

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)



Rev. 1.0, 09/99, page 97 of 115

Transfer KINJI2 address to register R6

Load input value X in register R1

Transfer WORK address to register R4

Multiply register X1 and register Y0 (0.79057X)

Shift 2 bits to left to multiply 0.79057X by 4

Load approximate square root y0 in register R0 via 
@R4

Add register A0 and register Y1 (y0/2 + 0.5), store 
result in register A0

Shift data in register A0 1 bit to right to multiply 
approximate square root y0 by 1/2
Load 0.5 in register Y1

Load input value X in register X1
Load data for approximate square root calculation 
output (0.79057) in register Y0

(6)'

(7)

(8)

No

Yes

No

Yes

Is approximate square  
root y0 equivalent to input value X? 

y0 = X?

III

II

FIN

FIN

Is input value X greater
than approximate square root y0?

X > y0?

Load H'FFFF in register X0

Copy register X0 data (H'FFFF) to register X0

(6'-1)

α

(6'-2)

(6'-3)

(6'-4)

(6'-5)

(6'-6)

(7-1)

(7-2)

(7-3)

(7-4)

(8-1)

(8-2)

(8-3)
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Set register R14 to 3 (number of times to perform 
gradualization equation)

Increment register R13 (repeat counter)

Clear register R13 to 0

Save input value X in register R11

Clear register R12

Initialize for signless division

Perform 1-step division on X using y0

Store T bit in R12, shift R12 1 bit to left

Transfer X/y0 to register Y0 via @R4

Copy register X0 to register Y1

Transfer y (√X) to register Y0 via @R4

Restore input value X in register R1 from register R11

Shift data in register A0 1 bit to right to multiply X by 1/2

Shift data in register X1 1 bit to right to multiply X by 1/2

Add calculation results from (9-12) and (9-13) to 
obtain square root y (√X). Store calculation result in 
register A0

Use extended instruction REPEAT to set repeat start 
address (LOOP_S), repeat end address (LOOP_E), 
and number of repeats (15 times)

(9)

III

IV β

Program repeats number of times 
specified as number of repeats (15 
times in case of sample program)

(9-1)

(9-2)

(9-3)

(9-4)

(9-5)

(9-6)

(9-7)

(9-10)

(9-11)

(9-12)

(9-13)

(9-14)

(9-15)

(9-16)

(9-8)

(9-9)
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Store data from register A0 in register R7 (OUTPUT)

End

(9)

No

β

Yes

Is register R13
greater than register R14?

IV

FIN

(9-18)

(9-17)
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Main Program

rout.src

;*******************************************************************************************

;* Square root calculation routine

;*

;* √X

;*

;*******************************************************************************************

;*******************************************************************************************

;* Initial setting routine

;*******************************************************************************************

MAIN:

MOV.L #INPUT,R4

MOV.L #EX_OUT,R5

MOV.L #KINJI1,R6

MOV.L #DAT1,R7

;*******************************************************************************************

;* Zero check of value to have square root calculated routine

;*******************************************************************************************

MOV.W @R4,R0

CMP/EQ #0,R0

BF ZERO_CH ;If zero, do following
processing

MOVX.W @R4,X0

PCOPY X0,A0

BRA FIN ;End of processing

NOP

;*******************************************************************************************

;* Negative value check of value to have square root calculated routine

;*******************************************************************************************

ZERO_CH:

SWAP R0,R1

SHAL R1

BF MINUS_CH ;If negative, do following
processing

MOVX.W @R5,X0

PCOPY X0,A0

BRA FIN ;End of processing

NOP

;;******************************************************************************************

;* Comparison of value to have square root calculated and F'7FFB routine

;*******************************************************************************************

MINUS_CH:
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MOV.W @R4,R0 ;X load

MOV.W @R7,R1 ;H'7FFB load

CMP/GT R1,R0 ;R0 > R1 ?

BF EQU_SEL ;If X > F'7FFB, do following
processing

MOV.L #EX_OUT2,R5

MOVX.W @R5,X0 ;X load

PCOPY X0,A0

BRA FIN

NOP

;*******************************************************************************************

;* Approximation equation selection routine

;*******************************************************************************************

EQU_SEL:

MOV.L #DAT2,R7

MOV.W @R7,R1

CMP/GT R1,R0

BF Y0_PRO2 ;If X ≤ 0.1, jump

********************************************************************************************

;* Approximate square root y0 calculation routine

;*******************************************************************************************

Y0_PRO1:

MOVX.W @R4,X1 MOVY.W @R6+,Y0 ;Load input value X (value to
have square root calculated)
for use in calculating
approximate square root

MOV.W @R4,R1 ;Keep input value X (value to
have square root calculated)
in R1

MOV.L #WORK,R4

PMULS X1,Y0,A1 MOVY.W @R6+,Y1 ;0.58579X,0.41422 load

PADD A1,Y1,A0 ;0.58579X+0.41422 -> y0

BRA HIKAKU

NOP

;*******************************************************************************************

;* Approximation equation (2) y0 calculation routine

;*******************************************************************************************

Y0_PRO2:

MOV.L #KINJI2,R6

MOVX.W @R4,X1 MOVY.W @R6+,Y0 ;Load input value X (value to
have square root calculated)
for use in calculating
approximate square root

MOV.W @R4,R1 ;Keep input value X (value to
have square root calculated)
in R1

MOV.L #WORK,R4
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PMULS X1,Y0,A1 MOVY.W @R6+,Y1 ;0.58579X,0.41422 load

PSHA #2,A0 ;0.58579X+0.41422 -> y0

********************************************************************************************

;* Comparison of approximate square root and value to have square root
calculated routine/Part 1

;*******************************************************************************************

HIKAKU:

MOVX.W A0,@R4 ;Pass to CPU unit

MOV.W @R4,R0

CMP/EQ R0,R1 ;Approximate square root y0 =
input value X (value to have
square root calculated)?

BF NOT_EQ ;If y0 ≠ X, do following
processing

PSHA #-1,A0 MOVY.W @R6,Y1 ;y0/2,0.5 load

PADD A0,Y1,A0 ;y0/2-0.5

BRA FIN ;End of processing

NOP

;*******************************************************************************************

;* Comparison of approximate square root and value to have square root
calculated routine/Part 2

;*******************************************************************************************

NOT_EQ:

CMP/GT R0,R1

BF NOT_GT ;If y0 < X, do following
processing

MOVX.W @R5,X0 ;H'FFFF load

PCOPY X0,A0

BRA FIN

NOP

;*******************************************************************************************

;* Square root y calculation using gradualization equation routine

;*******************************************************************************************

NOT_GT:

MOV.L #3,R14 ;Set number of repeats

MOV.L #0,R13

LENEAR_LP:

ADD #1,R13 ;Increment counter

MOV R1,R11 ;push X

MOV.L #0,R12 ;Clear register R12

REPEAT LOOP_S,LOOP_E,#15

DIV0U ;Signless initialization

LOOP_S:

DIV1 R0,R1 ;R1/R0

LOOP_E:
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ROTCL R12 ;Store T bit

MOV.W R12,@R4

MOVX.W @R4,X0

PCOPY X0,Y1

PSHA #-1,A0 ;y0/2

PSHA #-1,Y1 ;(X/y0)/2

PADD A0,Y1,A0

MOVX.W A0,@R4

MOV.W @R4,R0

MOV R11,R1 ;pop X

CMP/GT R14,R13

BF LENEAR_LP ;If set number of repeats has
been performed, escape

FIN: MOV.L #OUTPUT,R7

MOVY.W A0,@R7 ;Store square root √X

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;*******************************************************************************************

;* Square root calculation data (XRAM/YRAM)

;*******************************************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

INPUT: .RES.W 1 ;External input data storage area

WORK: .RES.W 1 ;Work area

EX_OUT: .DATA.W H'FFFF ;Output value if input value X < 0

EX_OUT2: .XDATA.W 1 ;Output value if input value X > H'7FFB

.SECTION YRAM,DATA,LOCATE=H'1001FF00

KINJI1: .XDATA.W 0.58579,0.41422,0.5 ;Approximation equation (1)

KINJI2: .XDATA.W 0.79057 ;Approximation equation (2)

DAT1: .DATA.W H'7FFB

DAT2: .XDATA.W 0.1

OUTPUT: .RES.W 1 ;External output data storage area
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Execution Example

The input values for X (INPUT) and the square root √X values calculated (OUTPUT) are shown
in table 11.1.

Table 11.1 Square Root √√√√X Calculation Results (3 Executions of Gradualization Equation)

Input Value X
(decimal)

Input Value X
(hexadecimal)

Logical Value
(decimal)
√√√√X

Logical Value
(hexadecimal)
√√√√X

Output Value
(hexadecimal)
√√√√X

0.9999 H'7FFC 0.99995 H'7FFE H'7FFF

0.99987 H'7FFB 0.99993 H'7FFD H'7FFD

0.85 H'6CCD 0.92195 H'7602 H'7602

0.523 H'42F1 0.72319 H'5C91 H'5C90

0.34 H'2BB5 0.5831 H'4AA3 H'4AA2

0.136 H'1168 0.36878 H'2F34 H'2F33

0.087 H'0B23 0.29496 H'25C1 H'25C1

0.01 H'0147 0.1 H'0CCD H'0CC9

0 H'0000 0 H'0000 H'0000

–0.7 H'A667 — — H'FFFF
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Section 12   Square Mean Error

Overview

The square mean error of two variables, a[i] (16-bit components) and b[i] (16-bit components), is
calculated.

(i = 1, 2, ..., n)

Description

1. Method of Obtaining Square Mean Error

In order to obtain the square mean error, first the error e[i] for the two variables, a[i] and b[i],
must be considered. The relevant equation is given as equation (1) below.

*1 e[i] = a[i] – b[i]  -------------------------------------------------------------------------  (1)

 (i = 1, 2, ..., n)

Next, the error distribution Se2 is obtained. The error distribution Se2 can be calculated by
dividing the sum total of the squares of the errors e[i] by the number of components (n). The
components of the squares of the errors e[i] can be expressed as follows.

1/n · Σe[i]2 = 1/n · (a[1] – b[1])2 + (a[2] – b[2]2 + ... + (a[n] – b[n])2

The error distribution Se2 can be obtained using equation (2) below.

Se2 = 1/n · Σ (a[i] – b[i])2
n

i=1
----------------------------------------------------------------- (2)

The square mean error E[Se2] is expressed as the square root of the error distribution Se2. The
relevant equation for obtaining the square mean error E[Se2] is shown as equation (3) below.

1/n · Σ (a[i] – b[i])2E[e2] =
n

i=1
------------------------------------------------------------- (3)

*1 a[i]: 16-bit
b[i]: 16-bit
e[i]: 16-bit
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2. Method of Storing Components of Variables a[i] and b[i]

On order to obtain the square mean error, it is first necessary to calculate the sum total of the
squares of the errors e[i]. To increase processing speed, the components of a[i] and b[i] are
stored in XRAM and YRAM ahead of time as shown in figure 12.1. Note that 0 is stored in
VECTORA+2n, VECTORA+2n+2, VECTORB+2n, and VECTORB+2n+2 of XRAM and
YRAM. The example program will not run properly if zeros are not stored in these locations.

For division by the number of components n, the numeric value 1/n is stored in XRAM. The
actual program does not use a DSP instruction, but rather multiplies values by 1/n.

XRAM
Address

a[1]
a[2]
a[3]

a[n–1]
a[n]

0
0

VECTORA
VECTORA+2
VECTORA+4
VECTORA+6

VECTORA+2n–4
VECTORA+2n–2
VECTORA+2n
VECTORA+2n+2

15 0

XRAM
Address

1/nVECTORA
15 0

YRAM
Address

b[1]
b[2]
b[3]

b[n–1]
b[n]

0
0

VECTORB
VECTORB+2
VECTORB+4
VECTORB+6

VECTORB+2n–4
VECTORB+2n–2
VECTORB+2n
VECTORB+2n+2

15 0

Figure 12.1   Memory Map of Storage of Variables a[i] and b[i], Etc.
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3. Algorithm for Calculating Square Mean Error

The algorithm used to calculate the square mean error is described below.

(1) Perform initial settings.

(2) Set items (2) and (3) so that the number of repeats is number of elements n + 2. Two extra
repeats are added since the following four instructions run in parallel.

Calculate e[i]2 + Σ e[j]2
i–1

j=1
, calculate e[i], load a[i], load b[i]

(3) Calculate the error e[i] for a[i] and b[i].

(4) Divide Σ (a[i] – b[i])2
n

i=1
, which was obtained using processes (2) and (3), by n.

(5) Calculate the square root of the input error distribution Se2. This yields the square mean
error and completes the processing. (For details, see 3. Algorithm for Fixed-point Square
Root Calculation in 11. Square Root.)

Initial setting

Execute the following 4 instructions in parallel

Calculate                      , calculate e[i]2, load a[i], load 

Calculate error for a[i] and b[i]

e[i] = a[i] – b[i]

Divide Σ(a[i] – b[i])2 by n

Calculate square root of Se2

End

(1)

(2)

(3)

(4)

i–1

j=1
e[i]2 + Σe[j]2

(5)

i=1

n
Se2 = 1/2 · Σ (a[i] – b[i])2

Number of repeats is number of 
components n + 2

Figure 12.2
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Flowchart

Transfer VECTORA address to register R4

Transfer SEIBUN_N address to register R5

Transfer VECTORB address to register R6

Clear register A1

Clear register Y0

Clear register Y0

Calculate error e[i] for a[i] and b[i]

Copy contents of register X0 to register A1
Read 1/n to register X1

Multiply Σe[j]2 and 1/n

Add e[i]2 and Σe[j]2 

Calculate e[i]2

After reading a[i] from XRAM, increment R4 address
After reading b[i] from YRAM, increment R6 address

Use extended instruction REPEAT to set repeat start 
address (LOOP_S), repeat end address (LOOP_E), 
and number of repeats (5 times)

Start

(1)

(3)

(4)

(2)

I

j=1

i–1

i=1

n

Program repeats number of 
times specified as number 
of repeats (5 times in case 
of sample program)

(1-1)

(1-2)

(1-3)

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

(3-1)

(4-1)

(4-2)
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Transfer INPUT address to register R4

Store error distribution Se2 (register A1) at input 
address (INPUT) used for square root output

<Square root calculation routine>
(See flowchart in section 11, Square Root for details)

End

(5)

I

(5-1)

(5-2)
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Main Program

The example program calculates the square mean error using three components {a[i], b[i] (i = 1, 2,
3)}

squ_ave.src

;*******************************************************************************************

;* Square mean routine

;*

;* a[i],b[i]

;*

;*******************************************************************************************

;*******************************************************************************************

;* Initial setting routine

;*******************************************************************************************

MAIN:

MOV.L #VECTORA,R4

MOV.L #SEIBUN_N,R5

MOV.L #VECTORB,R6

;*******************************************************************************************

;* Error distribution calculation routine

;*******************************************************************************************

REPEAT LOOP_S,LOOP_E,#5 ;Number of repeats is number of
vector a components + 2

PCLR A1

PCLR Y0

PCLR A0

LOOP_S:

PADD A0,Y0,Y0 PMULS   A1,A1,A0 MOVX.W @R4+,X0 MOVY.W @R6+,Y1 ;a[i],b[i]load

LOOP_E:

PSUB X0,Y1,A1

PCOPY Y0,A1 MOVX.W @R5,X1 ;1/3 load

PMULS X1,A1,A1 ;0.33333 × Σ(a[i] - b[i]) 2

;*******************************************************************************************

;* Value to have square root calculated storage routine

;*******************************************************************************************

MOV.L #INPUT,R4

MOVX.W A1,@R4 ;

;*******************************************************************************************

;* Square root calculation routine

;*******************************************************************************************

;*******************************************************************************************

;* Initial setting routine



Rev. 1.0, 09/99, page 111 of 115

;*******************************************************************************************

SEMI_MAIN:

MOV.L #EX_OUT,R5

MOV.L #DAT,R6

MOV.L #DAT2,R7

;*******************************************************************************************

;* Zero check of value to have square root calculated routine

;*******************************************************************************************

MOV.W @R4,R0

CMP/EQ #0,R0

BF ZERO_CH

MOVX.W @R4,X0 ;H'0 load

PCOPY X0,A0 ;

BRA FIN ;End of processing

NOP

;*******************************************************************************************

;* Negative value check of value to have square root calculated routine

;*******************************************************************************************

ZERO_CH:

SWAP R0,R1

SHAL R1

BF MINUS_CH ;If negative, do
following processing

MOVX.W @R5,X0 ;H'FFFF load

PCOPY X0,A0

BRA FIN ;End of processing

NOP

;*******************************************************************************************

;* Comparison of value to have square root calculated and F'7FFB
routine

;*******************************************************************************************

MINUS_CH:

MOV.W @R4,R0 ;X load

MOV.W @R7,R1 ;H'7FFB load

CMP/GT R1,R0 ;R0 > R1 ?

BF EQU__SEL ;If R1 is greater, jump

MOV.L #EX_OUT2,R5

MOVX.W @R5,X0 ;X load

PCOPY X0,A0

BRA FIN

NOP

;*******************************************************************************************

;* Approximation equation selection routine
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;*******************************************************************************************

EQU_SEL:

MOV.L #DAT2,R7

MOV.W @R7,R1

CMP/GT R1,R0

BF Y0_PRO2

;*******************************************************************************************

;* Approximation equation (1) y0 calculation routine

;*******************************************************************************************

Y0_PRO1:

MOVX.W @R4,X1 MOVY.W @R6+,Y0 ;Load input value X
(value to have square
root calculated) for use
in calculating
approximate square root

MOV.W @R4,R1 ;Keep input value X
(value to have square
root calculated) in R1

MOV.L #WORK,R4

PMULS X1,Y0,A1 MOVY.W @R6+,Y1 ;0.58579X,0.41422 load

PADD A1,Y1,A0 ;0.58579X+0.41422-> y0

BRA HIKAKU

NOP

;*******************************************************************************************

;* Approximation equation (2) y0 calculation routine

;*******************************************************************************************

Y0_PRO2:

MOV.L #KINJI2,R6 MOVX.W @R4,X1 MOVY.W @R6+,Y0 ;Load input value X
(value to have square
root calculated) for use
in calculating
approximate square root

MOV.W @R4,R1 ;Keep input value X
(value to have square
root calculated) in R1

MOV.L #WORK,R4

PMULS X1,Y0,A0 ;0.79057 × X

PSHA #2,A0 ;(0.79057 × X) × 4

;*******************************************************************************************

;* Comparison of approximate square root and value to have square root
calculated routine/Part 1

;*******************************************************************************************

HIKAKU:

MOVX.W A0,@R4 ;Pass to CPU unit

MOV.W @R4,R0

CMP/EQ R0,R1 ;Approximate square root
= input value X (value
to have square root
calculated)?
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BF NOT_EQ

PSHA #-1,A0 MOVY.W @R6,Y1 ;y0/2,0.5 load

PADD A0,Y1,A0 ;y0/2-0.5

BRA FIN

NOP

;*******************************************************************************************

;* Comparison of approximate square root and value to have square root
calculated routine/Part 2

;*******************************************************************************************

NOT_EQ:

CMP/GT R0,R1

BF NOT_GT

MOVX.W @R5,X0 ;H'FFFF load

PCOPY X0,A0

BRA FIN

NOP

;

;*******************************************************************************************

;* Square root y calculation using gradualization equation routine

;*******************************************************************************************

NOT_GT:

MOV.L #3,R14 ;Set number of repeats

MOV.L #0,R13

LENEAR_LP:

ADD #1,R13 ;Increment counter

MOV R1,R11

MOV.L #0,R12

REPEAT DIV_S,DIV_E,#15

DIV0U ;Signless initialization

DIV_S:

DIV1 R0,R1 ;R1/R0

DIV_E:

ROTCL R12 ;Store T bit

MOV.W R12,@R4

MOVX.W @R4,X0

PCOPY X0,Y1

PSHA #-1,A0 ;y0/2

PSHA #-1,Y1 ;(X/y0)/2

PADD A0,Y1,A0

MOVX.W A0,@R4

MOV.W @R4,R0

MOV R11,R1

CMP/GT R14,R13

BF LENEAR_LP
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FIN: MOV.L #OUTPUT,R7

MOVY.W A0,@R7 ;Store square root √X

EXIT: BRA EXIT

NOP

MAIN_E: NOP

Data

;*******************************************************************************************

;* Square mean calculation data (XRAM/YRAM)

;*******************************************************************************************

.SECTION XRAM,DATA,LOCATE=H'1000FF00

VECTERA: .XDATA.W 0.5,0.125,0.5,0,0

SEIBUN_N: .XDATA.W 0.33333 ;1/number of components (n)

;* For calculating square root *

INPUT: .RES.W 1

WORK: .RES.W 1

EX_OUT: .DATA.W H'FFFF

EX_OUT2: .XDATA.W 1

.SECTION YRAM,DATA,LOCATE=H'1001FF00

VECTERB: .XDATA.W 0.25,0.0625,0.25,0,0

;; * For calculating square root *

KINJI1: .XDATA.W 0.58579,0.41422,0.5 ;Approximation equation (1)

KINJI2: .XDATA.W 0.79057 ;Approximation equation (2)

DAT1: .DATA.W H'7FFB

DAT2: .XDATA.W 0.1

OUTPUT: .RES.W 1
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Section 13   Effects of DSP Instructions on Program
Performance

The number of execution cycles required by each function program file is listed in tables 13.1 and
13.2.

The test conditions used for table 13.1 were as follows: an E8000 (SH7612) emulator was used,
the main program of each program file was allocated to XRAM, and the data was allotted to
XRAM and YRAM.

The test conditions used for table 13.2 were as follows: a simulator (SH-DSP) was used, the main
program of each program file was allocated to XROM, and the data was allotted to XRAM and
YRAM.

Table 13.1 Performance of Programs Employing DSP Instructions

Program Filename Function
No. of Execution
Cycles Notes

pmuls32.src 32-bit multiplication 116

tri_fun.src Trigonometric function 62

matrix.src Matrix operation 238 3 × 3 matrix operation

in_pro.src Inner product 15 3-dmensional space vectors

rout.src Square root 104

squ_ave.src Square mean error 114 n = 3 (3 components)

Table 13.2 Performance of Programs Employing DSP Instructions

Program Filename Function
No. of Execution
Cycles Notes

pmuls32.src 32-bit multiplication 172

tri_fun.src Trigonometric function 80

matrix.src Matrix operation 378 3 × 3 matrix operation

in_pro.src Inner product 21 3-dmensional space vectors

rout.src Square root 272

squ_ave.src Square mean error 292 n = 3 (3 components)
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