HD6800, HD6SA00, HD68B0O0O —
MPU (Micro Processing Unit)

The HD680O is a monolithic 8-bit microprocessor forming
the central control function for Hitachi’s HMCS6800 family. HD6800P, HD6BAOOP, HD68BOOP
Compatible with TTL, the HD6800 as with all HMCS6800
system parts, requires only one 5V power supply. and no ex-
tenal TTL devices for bus interface. The HD68AOO and
HD68BOO are high speed versions.

The HD680O is capable of addressing 65k bytes of mem-
ory with its 16-bit address lines. The 8-bit data bus is bi-direc-
tional as well as 3-state, making direct memory addressing and
multiprocessing applications realizable.

& FEATURES
® Versatile 72 Instruction — Variable Length {1~3 Byte)

(DP-40)
® Seven Addressing Modes — Direct, Relative, Immediate,
Indexed, Extended, Implied and Accumulator
® Variable Length Stack ® PIN ARRANGEMENT
® Vectored Restart
® Maskable Interrupt
® Separate Non-Maskable Interrupt — Internal Registers Saved

in Stack

Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register
Direct Memory Accessing {DMA) and Multiple Processor
Capability

Clock Rates as High as 2.0 MHz (HD6800 - 1 MHz,
HD68AOO --- 1.5 MHz, HD68BOO - 2.0 MHz}

Halt and Single Instruction Execution Capabiiity

® Compatible with MC6800, MC68A00 and MC68B00

= BLOCK DIAGRAM

Ae A, AL AL A, A A, .
24 23 20 19 18 17 15 14 13 12 v 10

TP 0D fririid

| Qutput Buffers

A A, A, A, A, A, A

bt %2 >
Az

Output Butfers

L_f—=e2

¢ 33—

62 37—t {Top View)
RES 40 —= Program
—_— Counter
NM) 6% L
HALT 2—%
iRG 4= |nsruction

Decode
TSC 39 ety and
DBE 36 el Control
index

BA 7 e Register |
VMA 5+
RW 34 +—1 Accumutator

A
i E
i Register :7 B
Condition
Code
Register
[1
I Date Bufter
26 27 28 29 30 n 32 33
o, o, b, D, DO, O O D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68B0OO

= ABSOLUTE MAXIMUM RATINGS

Item Symbol Value Unit
Supply Voltage Vee© -0.3~+7.0 v
Input Voltage Vin* -0.3~+7.0 Y
Operating Temperature Toor) -20~+75 °c
Storage Temperature T;‘: o - 55~ +150 °c

* With respect to Vgg (SYSTEM GND)
(NOTE) Permanent LS| damage may occur if maximum rating are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

® RECOMMENDED OPERATING CONDITION

Item Symbol min typ max Unit
Supply Voltage Vee™ 4.75% 6.0 5.25 v
AT -0.3 = 0.8 v
input Voitage It r
Vin 2.0 - Vee v
Operating Temperature Topr -20 25 75 °c

* With respect to Vgg (SYSTEM GND)

» ELECTRICAL CHARACTERISTICS
® DC CHARACTERISTICS (Vgc = 5V £ 5%, Vgg = 0V, Ta = -20~+75°C, unless otherwise noted.)

Item Symbol Test Condition min typ” max ! Unit
input “High” Voltage Logic™™ Vin 20 — Vce A
Input “Low" Voltage Logic™™ Vie -0.3 — 0.8 v
Clock Input ““High’” Voltage | ¢, ¢2 Vine Vee- 0.6 — Vee+ 0.3 \4
Clock Input “Low’’ Voltage | ¢,, 9, Vie -0.3 - 0.4 \%
Do~D~ lon = —205uA 24 - - bov
Output “High* Voltage Bomhis R | vg,, oy = ~1460A 24 _ - v
BA lon = -100uA 2.4 - - v
Output’Low’’ Voltage VoL loL = 1.6mA - - 0.4 \
Logic*** | Vin = 0~5.25V, -2.5 - 25 uA
1 K in All other pins are connected
nput 'Lea age Current o1, b2 o GND -100 — 100 A
Three-State (Off-state) Do~D- | Cna~ -10 - 10 uA
Input Current Ao~Am RAW | T | Vin=04~24V 100 = 100 uA
Power Dissipation Pp — 0.5 1.0 w
Logic*** — 6.5 10 pF
5 Do~D, V., =0V, Ta=25°C - 10 125 pF
] 1 - in ’ »
nput Capacitance 5 Cin 1 MHz — 55 35 oF
2 - 45 70 pF
: Ag~A,s, RIW Vin =0V, Ta=25C, B
Output Capacitance VMA, BA Cout £21 MHz2 - 12 pF
* Ta = 25°C, Voe = 5V
** All inputs except ¢, and ¢,
*** All inputs except ¢, , ¢, and D,~D,
238 @ HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

® AC CHARACTERISTICS (V¢c =5V 5%, Vss =0V, Ta= -20~+75°C, unless otherwise noted.}
1. TIMING CHARACTERISTICS OF CLOCK PULSE ¢, and ¢,

HD6800,HD68A00,HD68BOO

Test HD6800 HD6BA00 HD68B00 .
Item Symbol C L. - - T - Unit
ondition min typ max | min typ max | min typ max
Frequency of Operation f Q.1 — 1.0 0.1 - 1.5 0.1 -- 2.0 | MHz
Cycle Time teye Fig. 10 1.000 | - ‘ 10 | 0.666 | — 10/0.500| -— 10| us
Clock Puise Width @1, P2 |PWer.PWonz| Fig. 10 400 | — 4,500 | 230, — [4,500 180 - 14,500, ns
Rise and Fall Times | ¢y, ¢; t,, t Fig. 10 J 1wo] | - 100 [100 | ns
Delay Time {Clock internal} ty Fig. 10 0 — 4,500 i 0| — 4,500 0 — 4,500 | ns
Clock ‘“High”" Level Time tut Fig. 10 900 | — —| 600 - —| 440} - - | ns
2. READ/WRITE CHARACTERISTICS
HD 6800 HD68AO0 HD68800
Item Symbol | 1ot : : , : Unit
Condition [min | typ | max | min | typ | max | min | typ | max
Fig. 11 .
~90pF 'g. 11 - - 27 - = -l - ns
Address Delay c=90p taos Fig. 12 0 180 150,
Time C=30pF | t | Fio.11. 12 [ase| —| — | 1e8] —| - | 135
AD2 Fig. 12
Data Setup Time (Read) tosr Fig. 11 100 - — 60| — - 40, — — | ns
Peripheral Read Access Time . _ _ _ i
toee = tur - (tan + tosa) tace Fig. 11 530 — 360 — 250 ns
Input Data Hold Time e Fig. 11 10| — - 10| — — 10, — — | ns
Output Data Hold Time th Fig. 12 20, - - 20 — - 20, — — 1| ns
Address Hold Time Fig. 11,
(Address, R/W, VMA) tan Fig. 12 L i e s
:Enable High”* Time for DBE ten Fig. 12 450 | — | 280! - I _1 220| - 1 ns
nput
Data Delay Time (Write) toow Fig. 12 -1 - 225 - - 200 - - 160 { ns
Data Bus Enable Down Time R . | _ _
(During ¢; Up Time) 15BE Fig. 12 150 | — - 120 — } - 75 ns
Data Bus Enable Delay Time toBED Fig. 12 300 | — — 280 — i —-| 180 — — | ns
Data Bus Enable toeer .
Rise and Fall Times toser Fig. 12 - - e] 25| ns
Processor Control Setup Time tecs 200 | - - 140 - - 1o| - — 1 ns
Processor Control tec
Rise and Fall Times tpc; T 100 - T 100 - 100 | ns
Bus Available Delay Time (BA)| tga - - 250 - - 165 - = 135 | ns
Three-State Delay Time trsp - - 270 - - 270 - - 220 | ns
5.0V
R_=2.4k C = 130pF for D,~D,
= 90pF for A,~A, s, R/MW, and VMA
Test Point = 30pF for BA
R = 11k for D,~D,
c R = 16kQ for A, ~A,, R/W and VMA
g = 24k for BA
C includes Stray Capacitance.
All diodes are 152074 @ or equivalent
Figure 1 Bus Timing Test Load
@ HITACHI 239

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

The Last Instruction Cycle |

4=

Halt Cycle

ﬁ

“"_/—ﬁi Ve - 0.6V 7m
Vee — 0.6V
®2

tpce e
2.0V
HALT 08v

BA

tpcs

A

Figure 2 Timing of HALT and BA

Halt Cycle Instruction Cycle

e
-+

®, __/—“‘JK Vce — 0.6V 7Vrccm\—__—/—
SN/ |/

tpCr [
=T 2.0V
HALT 0.8V

tpcs

ga

T

BA

x 0.4V

Figure 3 Timing of HALT and BA

MPU Reset MPU Restart Sequence

(o
T

s, / \ 7Cvcc ~0.6V \ /
\% — 0.6V
. mm
i l=—Trcs

RES

tper

2.0v

VMA

0.8V
tap

l l - 2.4v
] .

240

Power ed by | Cm ner

Figure 4 RES and MPU Restart Sequence

O HITACHI

.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68B0OO

WAIT Cycle or
The Last instruction Cycle | Interrupt Sequence

“Vcc——osv_

tBA
-,
3 _04V
Figure 5 IRQ and NMI Interrupt Timing
The last execution cycle of
| WAL instruction (#9) L WAIT Cycle
m_/—‘__—_/_—__/_
Vee — O
R cc
1BA
e—1tpcr
BA F2av
f 0.4V

Figure 6 WAI Instruction and BA Timing

PWch, (4.5 us max)

?, /[Vcc—06v KVce — 0.6 V/

04V

f—tpcr =} p=-tect
20V 20V
TsC 08V 0.8V
AR | trso tTsp
A, ~A, : 04V
R/W 24V
0.4V
e ko v o
S
BA 24V
\ 04V VZ77R ‘ndeterminate period

Figure 7 Tsc Input and MPU Output

G HITACH! 241

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

® MPU REGISTERS

The MPU provides several registers in Fig. 8, which is avail-
able for use by the programmer.

Each register is described below.
® Program Counter {PC)

The program counter is a two byte (16-bit) register that
points to the current program address.
® Stack Pointer (SP)

The stack pointer is a two byte register that contains the
address of the next available location in an external push-down/
pop-up stack. This stack is normally a random access Read/
Write memory that may have any location (address) that is con-
venient. In those applications that require storage of informa-
tion in the stack when power is lost, the stack must be non-
volatile.
® Index Register (1X)

The index register is a two byte register that is used to store
data or a sixteen bit memory address for the Indexed mode of
memory addressing.
® Accumulators (ACCA, ACCB)

The MPU contains two 8-bit accumulators that are used to
hold operands and results from an arithmetic logic unit (ALU).

~
o

ACCA Accumulator A

7 [+]
Accumulator B
15 4]
I 1X J index Register
5 [+]
PC J Program Counter
15 0

] Stack Pointer

| Condition Codes
Register

Carry (From Bit 7}
Overflow

Zero

Negative
Interrupt Mask

Half Carry
(From Bit 3}

Figure 8 Programming Model of the Microprocessing
Unit

® Condition Code Register (CCR)

The condition code register indicates the results of an Arith-
metic Logic Unit operation: Negative (N), Zero (Z), Overflow
(V), Carry from bit 7 (C), and half carry from bit 3(H). These
bits of the Condition Code Register are used as testable condi-
tions for the conditional branch instructions. Bit 4 is the
interrupt mask bit (I). The unused bits of the Condition Code
Register (b6 and b7) are “17. The detail block diagram of the
microprossing unit is shown in Fig. 9.

242

NMITRG HALT

44

RES

I

Interrupt
Control | Controt

Hale RESET
Cantrol

Addrens Bus Address Bus.
H) A ~A,, L) A ~A,

N

Address Buffer

| ——

Vector Address
Generator

[OTKS

Insteuction Dscoder ROM

rogistar,
ALU Controt

Timing

Instruction
Cycle Decwon
ROM

Generator

trstruction
Requrer

—

{

Temporsey Regester

Stack Pounter (LI

Stack Pointer {H)

Incremanter (W)

Brancn

tion
Contral

Progeam Counter (M)

Inccemantar (L}

Program Counter (L)

Inex Regester (4}

Index Ragute (L)

Accumatator 8

Accumutator A

Three State
Butfer

Oeta Bus for Imatruction

Osta Bus
0,~D,

Figure 9 Internal Block Diagram of MPU

= MPU SIGNAL DESCRIPTION

Proper operations of the MPU requires that certain control
and timing signals (Fig. 9) be provided to accomplish specific
functions. The functions of pins are explained in this section.
® Clock {9,,9,)

Two pins are used to provide the clock signals. A two-phase
non-overlapping clock is provided as shown in Fig. 10.

teye
tuT
®, /
®, \it
Viue = Ve — 0.6V (min) F—PWcrz—1 bt
ViLc = Vss + 0.4V (max.}
Vov = Vsg+0.6V

Figure 10 Clock Timing Waveform

® Address Bus (A,~A, ;)

Sixteen pins are used for the address bus. The outputs are
three-state bus drivers capable of driving one standard TTL load
and 90pF. When the output is turned off, it is essentially an
open circuit. This permits the MPU to be used in DMA applica-
tions. Putting TSC in its high state forces the Address bus to go
into the three-state mode.

o Data Bus (D,~D;)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has three-state output buffers capable of driving
one standard TTL load and 130pF. Data Bus is placed in the
three-state mode when DBE is “Low.”

G HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

/ Start of Cycle

HD6800,HD68A00,HD68BOO

teye

®, Vce —0.6V \ _/
0.4v - 0.4v
e 1,
SVCC —0.6V
@2 0.4V
l——tap
2.4V
R/W 4 e tan
Address st
From .
mpy 24V :
2.4v AD
VMA
fond pep— tH
tAD tacc 'DSR;
Data From
Memory or 2.0v :
Peripherals PY iV Data Valid &——
. D’
m Indeterminate period
Figure 11 Read from Memory or Peripherals
/ Start of Cycle
teye
V —0.6V
® cc \ {
! :,Z 0.4v 0.4v
—
i / \
RIW ol .
«
0.4v =<
A —={ F=tAH
ddress 2.4V
From MPU g.4v
o tAD—
2.4v AD
VMA
e tap—
tpBED
t5BE tEH
DBE % ¢, 20V
o8y /
re—tDBES —= *— tDBEr e tyy
2.4V
Data .
From MPU ﬁ Data Valid
l—tppW —

m Indeterminate period

Figure 12 Write to Memory or Peripherals

O HITACHI

243

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

® Data Bus Enable (DBE)

This input is the three-state control signal for the MPU data
bus and will enable the bus drivers when in the “High” state; will
make the bus driver off when in the “Low” state. This input is
TTL compatible; however in normal operation, it would be
driven by ¢, clock. During an MPU read cycle, the data bus
drivers will be disabled internally. When it is desired that an-
other device control the data bus such as in Direct Memory
Access (DMA) applications, DBE should be held “Low.”

If additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased as shown in Fig. 13
(DBE % ¢,). The minimum down time for DBE is togg as
shown and must occur within ¢, up time. As for the charac-
teristical values in Fig. 12, refer to the table of electrical charac-
teristics.
® Bus Available (BA)

The BA signal will normally be in the “Low” state. When
activated, it will go to the “High” state indicating that the
microprocessor has stopped and that the address bus is avail-
able. This will occur if the HALT line is in the “Low” state
or the processor is in the WAIT state as a result of the execution
of a WAIT instruction. At such time, all three-state output
drivers will go to their off state and other outputs to their
normally inactive level. The processor is removed from the
WAIT state by the occurrence of a maskable (mask bit 1 = 0) or
nonmaskable interrupt. This output is capable of driving one
standard TTL load and 30pF. If TSC is in the “High” state, Bus
Available will be “Low”.
® Read/Write (R/W)

This TTL compatible output signals the peripherals and
memory devices whether the MPU is in a Read (“High™) or

Write (“Low”) state. The normal standby state of this signal is
Read (“High™). Three-State Control going “High” will turn R/W
to the off (high impedance) state. Also, when the processor is
halted, it will be in the off state. This output is capable of
driving one standard TTL load and 90pF.

® Reset (RES)

The RES input is used to reset and start the MPU from a
power down condition resulting from a power failure or initial
start-up of the processor. This input can also be used to re-
initialize the machine at any time after start-up.

If a “High” level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset sequence, the
contents of the last two locations (FFFE, FFFF) in memory
will be loaded into the Program Counter to point to the begin-
ning of the reset routine. During the reset routine, the interrupt
mask bit is set and must be cleared under program control
before the MPU can be interrupted by TRQ. While RES is
“Low” (assuming a minimum of 8 clock cycles have occured)
the MPU output signals will be in the following states; VMA =
“Low”, BA = “Low”, Data Bus =high impedance, R/W = “High”
(read state), and the Address Bus will contain the reset address
FFFE. Fig. 13 illustrates a power up sequence using the Reset
control line. After the power supply reaches 4.75V, a minimum
of eight clock cycles are required for the processor to stabilize
in preparation for restarting. During these eight cycles, VMA will
be in an indeterminate state so any devices that are enabled by
VMA which could accept a false write during this time (such as
a battery-backed RAM) must be disabled until VMA is forced
“Low” after eight cycles. RES can go ““High” asynchronously
with the system clock any time after the eighth cycle.

0 |n'1’-||n+2|n+3‘n+4‘ﬂ+5

volel sl s el el
S ppiuEpipipipipEuEpEREpERE N
aninippinipEpipipEpEpEpENERN)

Power on "

At

Switch J v v
Power ——,5:25V 4 N
Supply —— 4.75V
_.‘ y'—‘tPCS
s " . " —-Ill ror
goaress g
Bus ZZ EEFE\F E FEEE NewPC
RIW Loz

VMA =z

Qata T,

BA B

Restart Routine

4 Restart Routine

Address BitsO~7

e X X
_— 7]

Restart Routine Instruction of

Address Bits 8~ 15 Address Bits O~7 Restart Routine

|77/ = \ndeterminate period
Figure 13 RES Timing

244 ® HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

The Reset control line may also be used to reinitialize the
MPU system at any time during its operation. This is accomp-
lished by pulsing RES “Low” for the duration of a minimum of
three complete ¢, cycles. The RES pulse can be completely
asynchronous with the MPU system clock and will be recog-
nized during ¢, if setup time tpcg is met.
® [nterrupt Request (IRQ)

This level sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait until
it completes the current instruction that is being executed
before it recognizes the request. If the interrupt mask bit in the
Condition Code Register is not set, the machine will begin an
interrupt sequence. The Program Counter, Index Register,
Accumulators, and Condition Code Register are stored away on
the stack.

Next the MPU will respond to the interrupt request by
setting the interrupt mask bit *“1” so that no further inter-
rupts may occur. At the end of the cycle, a 16-bit address will
be loaded that points to a vectoring address which is located in
memory locations FFF8 and FFF9. An address loaded at these
locations causes the MPU to branch to an interrupt routine in
memory. Interrupt timing is shown in Fig. 14.

The HALT line must be in the “High” state for interrupts
to be serviced. Interrupts will be latched internally while HALT
is “Low”. The TRQ has a high impedance pullup device internal
to the chip; however a 3k§2 external resistor to V¢e should be
used for wire-OR and optimum control of interrupts.

HD6800,HD68A00, HD68BOO

© Non-Maskable Interrupt (NMt) and Wait for Interrupt (WAI)

The MPU is capable of handling two types of interrupts:
maskable (TRQ) as described earlier, and non-maskable (NMI).
TRQ is maskable by the interrupt mask in the Condition Code
Register while NMI is not maskable. The handling of these inter-
rupts by the MPU is the same except that each has its own
vector address. The behavior of the MPU when interrupted is
shown in Fig. 14 which details the MPU response to an interrupt
while the MPU is executing the control program. The interrupt
shown could be either TRQ or NMI and can be asynchronous
with respect to ¢,. The interrupt is shown going “Low” at
time tpcs in cycle #0 which precedes the first cycle of an in-
struction (OP code fetch). This instruction is not executed but
instead the Program Counter (PC), Index Register (IX),
Accumulators (ACCX), and the Condition Code Register (CCR)
are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched from
FFFC, FFFD for an NMI interrupt and from FFF8, FFF9 for
an TRQ interrupt. Upon completion of the interrupt service
routine, the execution of RTI will pull the PC, IX, ACCX, and
CCR off of the stack; the Interrupt Mask bit is restored to its
condition prior to interrupts. Fig. 15 is a similar interrupt se-
quence, except in this case, a WAIT instruction has been ex-
ecuted in preparation for the interrupt. This technique speeds
up the MPU’s response to the interrupt because the stacking of

Cycie | Cycle | Cycle | Cycie | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycie | Cycle | Cycle | Cycle | Cycle
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 | #11 #12 #13 | #14
Address
Bus X X X X X X X X X X X X X
PC PC SPin) SP(n-1} SP(n-2) SP(n-3) SPin-4) SP(n-5) SP(n-6) FEERS" FEERS" NeweS
IRQor ==\ ress
NMI Address Address
e tpcs /
™M
Data YT X X XXX XX XX
~ ~ ~ 1X8~ New pPC8~PC15 New pPCO~PC7 First Inst of
v Inst (x) PCO~PCT PGB~ IXO~IX7 IXEC - ACCA ACCB CCR Address Address interrupt Routine
R/W —— /
VMA
)
Figure 14 Interrupt Timing
! 1e| Cych Cycle cle|Cycle |Cycl Cycle Cycle Cycle|Cycle|Cycle} Cycle jCycle| Cycle
o A el R A A P A LU L e AT AN e ptivo v
o 1TJuyuuuy
Cycle {NOTE) Cycle
n+1 n+2 n+3 n+4 #n+5
Adarass] 3 4 5 6 7 .8 9 l ol 4
Bus__ —Instruction\ SPin] SP(n-1) SP(n-2} SPin-3} SP(n-4) SP(n-5) SP(n-6) S——~FFF8=FFF9~ New PC
\2&: v Address
/ o .
\ ¥ First Inst,
- / of Interrupt
'R'Om =i \ / Routine
Data —=t j-tpcs (200ns)
Bus Wait ACCA ACCB CCR

~ PCB~ 1x0~1x7 IX8~
PCO~PC7 o61s 1X15

¢, of Cycle #10—=

BA Inst

(NOTE) Midrange waveform indicates high impedance state.

New PC8~PC15 New PCO~PC7
Address ddvess

Figure 15 WAI Instruction Timing

@ HITACH!

Power ed by | Cni ner.

245

com El ectronic-Library Service CopyRi ght 2003

Power ed

HD6800,HD68AOO,HD6E8BOO

the PC, IX, ACCX, and the CCR is already done.

While the MPU is waiting for the interrupt, Bus Available will
go “High” indicating the following states of the control lines:
VMA is “Low”, and the Address Bus, R/W and Data Bus are all
in the high impedance state. After the interrupt occurs, it is
serviced as previously described.

Table 1 Memory Map for Interrupt Vectors

Vector .
MS s Description
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 18 for program flow for Interrupts.

® Three State Control (TSC)

When the Three State Control (TSC) line is “High™ level, the
Address Bus and the R/W line are placed in a high impedance
State. VMA and BA are forced “Low” when TSC = “High” to
prevent false reads or writes on any device enabled by VMA.
It is necessary to delay program execution while TSC is held
“High”. This is done by insuring that no transitions of ¢, (or
¢,) occur during this period. (Logic levels of the clocks are
irrelevant so long as they do not change.)

Since the MPU is a dynamic device, the ¢, clock can be
stopped for a maximum time PWcy; without destroying data
within the MPU. TSC then can be used in a short Direct Me-
mory Access (DMA) application.

Fig. 16 shows the effect of TSC on the MPU. The Address
Bus and R/W line will reach the high impedance state at tygp
(three-state delay), with VMA being forced “Low”. In this
example, the Data Bus is also in the high impedance state while
¢, is being held “Low” since DBE=¢, . At this point in time, a
DMA transfer could occur on cycles #3 and #4. When TSC is
returned “Low,” the MPU address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execution
resumes in cycle #6.

o Valid Memory Address (VMA)

This output indicates to peripheral devices that there is a
valid address on the address bus. In normal operation, this signal
should be utilized for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard TTL
load and 90pF may be directly driven by this active “High”
signal.

e Halt (HALT)

When this input is in the “Low” state, all activity in the
machine will be halted. This input is level sensitive.

The HALT line provides an input to the MPU to allow con-
trol or program execution by an outside source. If HALT is
“High”, the MPU will execute the instructions; if it is “Low”,
the MPU will go to a halted or idle mode. A response signal,
Bus Available (BA) provides an indication of the current MPU
status. When BA is “Low”, the MPU is in the process of execut-
ing the control program; if BA is “High”, the MPU has halted
and all internal activity has stopped. _

When BA is “High”, the Address Bus, Data Bus, and R/W line
will be in a high impedance state, effectively removing the
MPU from the system bus. VMA is forced “Low” so that the
floating system bus will not activate any device on the bus that
is enabled by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or TRQ interrupt occurs, it will be latched into
the MPU and acted on as soon as the MPU is taken out of the
halted mode. If a RES command occurs while the MPU is
halted, the following states occur: VMA = “Low”, BA = “Low”,
Data Bus = high impedance, R/W = “High” (read state), and
the Address Bus will contain address FFFE as long as RES is
“Low”. As soon as the RES line goes “High”, the MPU will
go to locations FFFE and FFFF for the address of the reset
routine.

Fig. 18 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a one byte, 2 cycle in-
struction such as CLRA. When HALT goes “Low”, the MPU
will halt after completing execution of the current instruction.
The transition of HALT must occur tpcs before the trailing edge
of ¢, of the last cycle of an instruction (point A of Fig. 18).
HALT must not go “Low” any time later than the minimum
tpcs specified.

&

PWopy max — o
MPU ¢, |||||||||
l— tTSD tyso—| o=
A) D GHED G &
rRW X
vma X
Dets — OO XX
Bus j
o o8 __[] [i W W T
TSC
Figure 16 TSC Control Timing
246 G HITACHI

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

<Cycle>

#1~2

#3~9

=11

#13

Set NMIF
Set tRQF EXECUTION
END
?
Y
HALT
N
Pseudo-WAI
Instruction
generation
Plseudo-wAl Stack
nstruction PC, IX, A, B, CCR
generation
Stack
PC,IX, A, B, CCR Vector Address

generation

I

=

Vector Address
generation

l

{(FFF8} Fetch
IM=1
NMIF
Reset {| o

!

{FFF9) Fetch

{FFFC) Fetch
iM=1

NMIF

Reset { | g

1

{FFFD) Fetch

JUMP

JUMP
FFF8/9

FFFC/D

Figure 17 MPU Interrupt Flow Chart

O HITACHI

HD6800,HD68A00,HD68B0OO

HALT

<Cycle>

#1~2

#3~9

#10

=12

247

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BO0O

Instruction

Fetch The Last

instruction | Instruction

Fetch Execution

Cycle
¢, tec:
¢, | I I
~—tect |
HATT A
j= TBA iBA
BA ~ /
{NOTE 1)
VMA 7 4
RIW (NOTE2)

XNz
Address o Execute
Bus NREes KK Zzzz i)

Data

Zooar WX Z2%

22 KIRIK Zizzziz 45
Example: M=1000, ,, X=CLRA (OP 4F)

Bus

(NOTE) 1.

LI Zzzzz>

M+1=1001,,, Y=CLRB (OP 5F)

Oblique lines indicate indeterminate range of data.

2. Midrange waveform indicates high impedance,state.

Figure 18 HALT and Single Instruction Execution for System Dubug

Table 2 Operation States of MPU and Signal Outputs (Except the Execution of Instruction}

Signals Halt state Reset state :eittas:gte WA state TSC state
BA “HY “L UL "H” L
VMA L ‘L L ‘L L
RW ‘T “H” “H T T
Ao ~Ags “T (FFFE) (FFFE)1s ‘T T
Do ~ D5 T T T ol el —

*T" indicates high impedance state.

The fetch of the OP code by the MPU is the first cycle of the
instruction. If HALT had not been “Low” at Point A but went
“Low” during ¢, of the cycle, the MPU would have halted after
completion of the following instruciton. BA will go “High” by
time tgs (bus available delay time) after the last instruction
cycle. At this point in time, VMA is “Low” and R/W, Address
Bus, and the Data Bus are in the high impedance state.

To debug programs it is advantageous to step through pro-
grams instruction by instruction. To do this, HALT must be
brought *‘High” for one MPU cycle and then returned “Low” as
shown at point B of Fig. 18. Again, the transitions of HALT
must occur tpcg before the trailing edge of ¢;. BA will go
“Low” at tga after the leading edge of the next ¢, ,indicating
that the Address Bus, Data Bus, VMA and R/W lines are back
on the bus. A single byte, 2 cycle instruction such as LSR is
used for this example also. During the first cycle, the instruction
Y is fetched from address M+1. BA returns “High” at tgs on
the last cycle of the instruction indicating the MPU is off the
bus, if instruction Y had been three cycles, the width of the BA
“Low” time would have been increased by one.cycle.

Table 2 shows the relation between the state of MPU and
signal outputs.

248

s MPU INSTRUCTION SET

This Section will provide a brief introduction and discuss
their use in developing HD6800 MPU control programs. The
HD6800 MPU has a set of 72 different executable source
instructions. Included are binary and decimal arithmetic, logical,
shift, rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions.

Each of the 72 executable instructions of the source language
assembles into 1 to 3 bytes of machine code. The number of
bytes depends on the particular instruction and on the address-
ing mode. (The addressing modes which are available for use
with the various executive instructions are discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of the
binary codes, which result from the translation of the 72 in-
structions in all valid modes of addressing, are shown in Table 3.
There are 197 valid machine codes, 59 of the 256 possible codes
being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or second and third bytes contain(s) an
operand, an address, or information from which an address is
obtained during execution.

@ HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Microprocessor instructions are often devided into three
general classifications; (1) memory reference, so called because
they operate on specific memory locations; (2) operating in-
structions that function without needing a memory reference;
(3) 1/O instructions for transferring data between the micro-
processor and peripheral devices.

In many instances, the HD6800 MPU performs the same
operation on both its internal accumulators and the external

HD6800,HD68BAOO,HD6E8BOO

memory locations. In addition, the HD6800 MPU allow the
MPU to treat peripheral devices exactly like other memory
locations, hence, no 1/O instructions as such are required. Be-
cause of these features, other classifications are more suitable
for introducing the HD6800’s instruction set: (1) Accumu-
lator and memory operations; (2) Program control operations;
(3) Condition Code Register operations.

For Accumulator and Memory Operations, refer to Table 4.

Table 3 Hexadecimal Values of Machine Codes

LSB
e,] 1 2 3 4 5 6 7 8 9 A B c 3} [F
j NOP TAP TPA INX DEX 'CLV |SEV cLe SEC cu SEI
° * (1mP) " * * . (IMP) L (IMP) (IMP) [(IMP) (IMP) | (IMP) | UIMP) {(IMP) | (IMP} | (IMP)
T SBA CBA TAB |TBA DAA ABA
(A, B) [(A,BI : ° * ° UMP) | (IMP) * (IMP) ‘ (IMP) ° * ° 3
2 BRA BHI BLS BCC BCS BNE BEO ave .BVS BPL BM1 BGE BLT BGT BLE
{REL) * (REL) |(REL) |(REL) [(REL) [(REL) [(REL) [(REL} [(REL) |{REL) |(REL) [(REL) |[(REL) [(REL) |(REL)
3 TSX INS PUL PUL DES xS PSH PSH i RTS AT . WAl Swi
amP) lamey [A (8} aMP) LuMP) (A} (B} (IMP) : (IMP) * (IMP) | (1MP)
A NEG N R cOM | LSR . ROR | ASR ASL ROL |DEC . INC TST . CLR
{A) (A) (A) (A} (A} (A) (A) (A) (A) (A) (A)
s NEG . COM | LSR . ROR | ASR ASL ROL [DEC INC TST . CLR
(8) 3 (8) (8) (8) (8) ®) (8) (8) " (8) (B) (8)
6 NEG coM | LSR ROR |ASR ASL ROL |DEC INC TST P CLR
(IND) ° " (IND) | (IND) * (IND} [GIND} [(IND) |{IND) |(IND} * (ND) [IND) [(IND) |[(IND)
7 NEG coM LSR ROR ASR ASL ROL DEC INC TST JMP CLR
(EXT) . * (EXT) [(EXT) ° (EXT) [(EXT) [{EXT) [(EXT) |(EXT) * (ExT) [(EXT) [{EXT) [(EXT)
suB CMP _ |SBC AND ,1BIT LDA EOR ,,,/ADC ,,,|ORA ,,,|ADD ,, |CPX 8SR LDS
- - A
8 A A o a2 o o anant 2 it ™ ™| | REL M) .
sus cMP . sBC AND ,,iBIT LDA ,,,[STA EOR ,,.|ADC ., |ORA ,,,|ADD ,,,iCPX LDS STS
A - A
2 o™ em ™ o' o™ o™ oir | oir Ao) io1ry ! o oo™ (DIR) _ |(DIR)
suB cMP . ISBC AND ,\[BIT LDA ,,[STA EOR ,,|ADC ,,,|ORA , |ADD . iCPX JSR LDS sTs
A A Al . A A A
A anor' ™ anor ™| anoy ™! oo™ o)™ anor Y anpr A anor A unon ! anor A anoy™ avor™unor Jonoy | ano)
sus cMP ISBC AND , |BiT LDA ,,,|STA EOR ,,,|ADC ,,/ORA ,,|ADD ,,,|CPX ISR LOS sTS
A
8 Exr ™ Exr) x| ¢ Exn A e e x| exr! A x| exr ! Exr M Exr Pl EexriMExn lEexn jexn
sus cmp o [sBC AND o BIT LDA EOR ,|ADC 5,|ORA . |ADD LDX
¢ amn® [mm™® [oam®| anan® L | amn®| ann®] amm® onn® [| * (1IMM) °
suB cmp . [sBC AND g, [BIT LDA (q,|STA EOR 5, |ADC (o, |ORA (o, [ADD LDX) |STX
e wir)'® |or)® or'®| - oir® (ms_)(i’ (‘D!R)(Bl wor'® woir)'® woim'® (om)(m o™ * (DIR)(B) (DlRl(B)
sus cmP L [sBC AND o [BIT LDA ., [STA EOR ,,,|ADC ,,|ORA . |ADD DX |STX
B . .
£ ano® [o) ! 1o 8 ino oy ® [o) [y fnoy B! uno)® [unpy® " (IND} [{IND)
suB cmp . IsBC AND ., (BIT LDA ,, [STA EOR ,,|ADC ,|ORA o,|ADD LOX |STX
B - - -
F €x1® [ext® |exr® Exti® exr® |Eexri® exti® [ext® |text®| exr® €x1® (EXT) [{EXT)
DIR = Direct Addressing Mode IND = Index Addressing Mode A = Accumulator A
EXT = Extended Addressing Mode IMP = Implied Addressing Mode B = Accumulator B
1MM = Immediate Addressing Mode REL = Relative Addressing Mode
O HITACHI 249

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BO0O

Table 4 Accumulator and Memory Operations

Addressing Modes Cond. Code Reg.
Operation Mnemonic| IMMED | DIRECT | INDEX | EXTND | IMPLIED Arimar"".":fc"g’umim s[a]3][2]1]0
OP~# | OP~#% | OP~# | OP~# | OP~# wi1|njz]v]c
Add ADDA |88 22|98 (3[2/AB[s5|2]|BB|4}3 A+M-~A tle|tlsiti
ADDB |CB|2|2|DB|3|2 €EB|S|2|FB |43 B+M—B tle|sfsftls
Add Acmitrs ABA 1B/2|1|A+B=A FACIRIEAERE!
Add with Carry ADCA |89 (22|99 |3|2(A9(5|2/B9i4i3 A+M+C—A $lejtltit
ADCB |C9 |2 |2|D9{3!2 €9 |5|2;Fo{43 B+M+C—8 tlefs|s]3)
And ANDA |84 |2 /2|94 |312]A4 512184 |43 AsM—A eie|t|s|Rje
ANDB [Ca |2|2|Da|3|2l/Eai5l2 Fa 4|3 B+M-B e|lelt|t|R]e
@it Test BITA |85 2|2/95(3!2|A5!5/2:85/4|3 AcM e e|1itiR|e
BITB [C5(2|2|D6!3i12/E56 6/2 F5:4|3 B-M eie|[1|t|R e
Clear CLR 6F |7:2]7F (6|3 00+ M e|e|R|S|RIR
CLRA 4F [2]1/00—+A e R|S[RR
CLR8 SF|2(1{00~B eie|R|S|RR
Compare cMPA 181 22|91 (3|21A1|5:2:81]4(3 A-M DCIEIERERE]
cMpPe |C1 12 |2|D1}32(E1|5!2:F114|3 B~M efeit|tit|t
Compare Acmitrs ceA i ' 11|21 A-B DA AEIRAR]
Compiement, 1's coM 637(2(73|6|3 MM eje|[t[tIRS
CcOMA i 4a3[2|t|K-A e e|tlt|R|S
COMB i 83{2|1]B~B e|lea!t|t|R|S
Complement, 2's NEG 60 (7:2/70!6|3 00-M—M™ oletitID@
(Negate) NEGA ‘ | ‘ | 40 |2,1/00-A—A ele|tit|®P
NEGB i | 50!2(1/00—-8-+8 elelt|t @@
Decimat Adjust, A DAA i 19 | 2| 1] Converts Binary Addot BCD [e|e it |11 |®
: Characters into BCD Format
Decrement DEC leai7(2|7ai863 M=1-M eieit|1]d|e
DECA ' vl 4Ai2(1A-1-A o|e;t|ti@ e
DECB : 1 SA|2(1|B—-1-8 olel1]t|@le
Exclusive OR EORA 88 |212|98!3,2|A8[5 2|88 al3 ADM—A ele|titRle
EORB [C8 212(D8;3'2 E8 |52 FB8 43 s@®M—~8 eleit|tR e
Increment INC |sc|7:2]7c|8|3 M¥T—+M oleltfti@;e
INCA ! ! : ac|2|1|A+1-A elefiitiE|e
INCB : : 5C|2(1|8+1~B eie 118
Load Acmitr LDAA 86 |2 2\96 312/A6[5,2(86;4|3; M= A eieit|t(R|e
LDAB |C62/2|D6!3[2|E6 5 2|F6 4,3 M- B elejts|nje
Or, Inclusive oRAA |8al2]2]oal3]2'anl5(2/8A 4]3 A+M—A elefsltiR]e
ORAB [CA|2|2|DA|3!2EAIB!2|FA 4 3 B+M—B eieit|tiR @
Push Dats PSHA ' ‘ i I 36| 41| A= Msp,SP—1-5P elejajoleie
PSHB ! - : 37| 4| 1| B~ Msp,SP— 1~ SP ejs|ejefele
Puil Data PULA [32{4.1(SP+1+SP,Msp—~ A elejojoje|e
PULB i v 33 4|1/ 5P+1+SP,Msp— B sieiejo|ele
Rotate Left ROL I legi7l2|796!l3 M olo|tti®]1
ROLA | : 49 [21 A} Co- comoe? oot tiE |3
ROLB i 69 (2i1i8 C b7 ~ bO DI IR ERCHE
Rotate Right i ROR ‘ 66 |7|2(76.6|3 ™M oot |61
RORA o i 4521A}EETmED olelt|3|® 1
RORS . i s6j2|1|8B C b7 = b0 ole|t|t]|@E]1
Shift Left, Arithmetic ASL i 168]7:2|78{6,3 M - eieidit 6|3
ASLA ! | 1 48 11A} ow mifmn -0 eloltitialt
ASLB : ; . sgl2(1|B c b7 60 oot tlg!s
Shift Right, Arithmetic ASR i 167]7.2;77 6|3 M . ele|titin|s
ASRA ! Pl a7 |2[1 A‘ G -0 eje titi6|t
ASRB ; 57.2(1!8B b7 b0 ele|d 3|61
Shift Right, Logic LSR 64 7(2(74,6{3] eieR|3 |8
LSRA : 1 b 44 |21 A)- o ~ufon - o olelR|t|5 8
LSR8 | | : sai2/1|8) b7 b0 C e|eiRltiE]|2
Store Acmitr STAA 97 |4 2‘A7 612|B7|5|3 A—M e(e|t{tiRe
STAB 07142 E7.6/2|F7 53 8+ M eleit 1|R|e
Subtract SUBA |80 [2]290 3‘2 Ac|5(2{B0f4|3 A-M=A eieit|t]t
suBB |Co|2|2|D0|3|2|€0 |6 |2|F0;: 4,3 B-M-B ele|t|t|t]t
Subtract Acmitrs sBA . | 10(2{1]A-8-4 olefstit]s
Subtr with Carry SBCA (82 22|92 (3|2|A2:5|2|B2|4|3 A-M-C—A eleltit|tls
sBC8 |C2i2(2i02 2|e2{s5(2iF2|4|3 B-M-C-B ejoit |ttt
Transfer Acmitrs TAB | 16{2(1|A~B ejet|tiR]|e
TBA N 17:2(1/B—A ole|3|t|R|e
Test Zero or Minus TST 6D(7(2(7D 8|3, M - 00 eleltit|R|R
TSTA | ’4021/\—00 ejels|t[R|R
TSTB i sp|2|1]8-00 eielt|tiR|R
LEGEND: CONDITION CODE SYMBOLS:
OP Operation Code (Hexadecimal} + Boolean Inclusive OR H Hatf<carry from bit 3 A Reset Always
~ Number of MPU Cycles @ Boolean Exclusive OR) Interrupt mask S Set Always
Number of Program Bytes M Complement of M N Negative {sign bit) $ Test and set if true, cleared otherwise
+ Arithmetic Plus — Transfer into Z Zero (byte) e Not Affected
- Arithmetic Minus 0 Bit=2ero V Overflow, 2's complement
. Boolean AND 00 Byte = Zero C Carry from bit 7
Msp Contents of memary location
pointed to be Stack Pointer
(Note) A) ing mode i ions are included in the column for IMPLIED addressing.

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)
{Bit V) Test: Result = 100000007
(Bit C) Test: Result # 000000007
{Bit C} Test: Decimal value of most significant BCD Character greater than nine?
{Not cleared if previously set.)
{Bit V) Test: Operand = 10000000 prior to execution?
(Bit V) Test: Operand = 01111111 prior to execution?
(Bit V) Test: Set equal to result of NGDC after shift has occurred.

250 O HITACHI

P08 00

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

s PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two cate-
gories: (1) Index Register/Stack Pointer instructions: (2) Jump
and Branch of operations.
® Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 5. Decre-
ment (DEX, DES), increment (INX, INS), load (LDX, LDS),
and store (STX, STS) instructions are provided for both. The
Compare instruction, CPX, can be used to compare the Index
Register to a 16-bit value and update the Condition Code
Register accordingly.

The TSX instruction causes the Index Register to be loaded
with the address of the last data byte put onto the “stack”.
The TXS instruction loads the Stack Pointer with a value equal
to one less than the current contents of the Index Register. This
causes the next byte to be pulled from the “stack™ to come
from the location indicated by the Index Register. The utility of
these two instructions can be clarified by describing the “‘stack™
concept relative to the HMCS 6800 system.

The “stack” can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the list
from one end on a last-in-first-out (LIFO) basis in contrast to
the random access mode used by the MPU’s other addressing
modes.

The HD6800 MPU instruction set and interrupt structure
allow extensive use of the stack concept for efficient handling
of data movement, subroutines and interrupts. The instructions
can be used to establish one or more *‘stacks’ anywhere in read/
write memory. Stack length is limited only by the amount of
memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is illustrated in Figs. 19 and 20. The Push instruction
(PSHA) causes the contents of the indicated accumulator (A in

HD6800,HD68A0O0,HDE8BOO

this example) to be stored in memory at the location indicated
by the Stack Pointer. The Stack Pointer is automatically de-
cremented by one tollowing the storage operation and is *“‘point-
ing” to the nex:i » 1pty stack location.

The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
Stack Pointer is automatically incremented by one just prior to
the data transfer so that it will point to the last byte stacked
rather than the next empty location. Note that the PULL
instruction does not “‘remove” the data from memory; in the
example, 1A is still in location {m+1) following execution of
PULA. A subsequent PUSH instruction would overwrite than
location with the new “pushed’ data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
save on the stack as shown in Figs. 21 through 23. The stack is
decremented after each byte of the return address is pushed
onto the stack. For both of the these instructions, the return
address is the memory location following the bytes of code that
correspond to the BSR and JSR instruction. The code required
for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended
(three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number of
times to be pointing at the location of the next instruction. The
Return from Subroutine instruction, RTS, causes the return
address to be retrieved and loaded into the Program Counter as
shown in Fig. 24.

There are several operations that cause the status of the MPU
to be saved on the stack. The Software Interrupt (SWI) and Wait
for Interrupt (WAI) instructions as well as the maskable (IRQ)
and non-maskable (NMI) hardware interrupts all cause the
MPU’s internal registers (except for the Stack Pointer itself) to
be stacked as shown in Fig. 25. MPU status is restored by the
Return from interrupt, RTI, as shown in Fig. 26.

Table 5 Index Register and Stack Pointer Instructions

1 Addressing Modes [Cond. Code Reg.
Operation | Maemonic| 'MMED | DIRECT | INDEX | EXTND | IMPLIED Amhm‘zg‘c"gar;"m"m isla|3][2[1]0
i op!~T#lop]~T=lorI~Tx[oP[~[#[oP]|~[= HiI|NlZ|ViC
Compare Index Reg T CPX 8C{3[3|9Ci4/2 AC|6!2:BC|5]3 ! (Xpy) = (M), (XL} — (M+1) ele|@it|@|e
Decrement Index Reg i DEX | : i i 09 4{1:X-1-X oo o |[tle|e
Decrement Stack Pntr DES i : ! 34 |4{1:SP-1->5P jeie|le aleie
increment Index Reg I OINX ; ; | 08 |41 X+1—-X jelejeit|leie
Increment Stack Pntr INS i i i 31 |41 [SP+1—~ SP ejleleo . 0ole o
Load Index Reg Lox [ce|3|3|pEjal2leele|2]FE|5|3 M= Xy, (M+1) = X ¢ o e @ t1(R|e
Load Stack Pntr LDS |SE 3|3|9E|4:!2 AE|6|2!BE|5|3 M~ SPy, (M+1) > SP_ eje|@|tIR o
Store Index Reg i STX DF| 5|2 {EF |7 |2{FF |63 Xp—=M X~ (M+1) e e8| tR |
Store Stack Pntr i sTs oF |5|2|AaF|7]2|BF|6|3 SPy —~ M, SP —~ (M + 1) ele @ t|R|e
fndex Reg — Stack Pntr (TXS 35 |41 X~1—>SP elo|o oo
Stack Pntr —» Index Reg | TSX 30(4{1{SP+1—-X e|oe|e|o|o|e
@ (Bit N} Test: Sign bit of most significant (MS) byte of result = 1?
@ {Bit V) Test: 2's compiement overflow from subtraction of ms bytes?
@ (BitN) Test: Result less than zero? {Bit 15=1)
O HITACHI 251

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68B0OO

MPU

ACCA

7F

63

FD

———

PSHA

Next Instr.

(a) Before PSHA

Figure 19 Stack Operation (Push Instruction)

MPU

Data Bus

ACCA

J

<:

m-2
m-1
SP—=m
m+1
Previously
Stacked m+2
Data
m+3
PC—
m-2
m-1
SP———=m
m+1
Previously
Stacked m+2
Data
m+3
PC

252

1A

3C

Ds

EC

L ——"

— |

PULA

Next Instr.

{a} Before PULA

MPU

ACCA

m-2

SP——m-1

New Data m

m+1
Previously
Stacked m+2
Data
m+3

PC———

e

7F

63 _
L/BC——
/

PSHA

Next Instr.

(b) After PSHA

MPU
ACCA]
m-2
m-1
m
SP—=m+1 1A
m+2 3C
Previously
Stacked m+3 D5
Data

PC ———

I

PULA

Next Instr.

L —

{b} Atfter PULA

Figure 20 Stack Operation (Pull Instruction)

@ HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

m+1 7€
7A

f
f

n BSR

PC

n+1 +K* = Offset

n+2 Next Main Instr.

 —

*K = Signed 7-8it Value

(a) Before Execution

PC—(n+2) tK

Figure 21 Program Flow for BSR

m-2

m-1

sp——=m

m+1 7€
m+2 7A
7D
e]
PC n JSR = BD

n+1 | Sy = Subr. Addr.

n+2 | S| = Subr. Addr.

n+3 | Next Main instr.

——//—_—

{a) Before Execution

m-3
SP——=m-2

m-1

PC

{S formed from
Spand S)

f

(n+2)H

(n+2)L

7€

__
f

B8SR

+K* = Offset

Next Main Instr.

e
f

1st Subr. tnstr.

//—\

{b) After Execution

{n+3}H

{n+3)L

7E

7A

e —
f

JSR

S = Subr. Addr.

S| = Subr. Addr.

Next Main Instr.

T

1st Subr. Instr.

(b) After Execution

Figure 22 Program Flow for JSR (Extended)

O HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A0O,HD6E8BOO

253

HD6800,HD68A00,HD68BOO

/ ——
m-2 §P—>m-2
m-1 m-1 {n+2)H
SP—=m m (n+2)L
m+1 7E m+1 7E
7A 7A
L__— L ———
PC n JSR = AD n JSR = AD
n+1 K* = Offset n+t K™= Offset
n+2 Next Main Instr. n+2 Next Main Instr.
—
*K = 8-Bit Unsigned Value PC—X** + K 1st Subr. Instr.
**Contents of Index Register
{a) Before Execution {b) After Execution
Figure 23 Program Flow for JSR (Indexed)
SP—e m-2 m-2
m-1 (n+3)H m-1 {n+3)H
m {n+3)L SP————=-m (n+3)L
m+1 7€ m+1 7E
n JSR = BD n JSR = BD
n+1 Spy = Subr. Addr. n+1 Sy = Subr. Addr.
n+2 Sy = Subr. Addr. n+2 S = Subr. Addr.
n+3 Next Main Instr. PC——=n+3 Next Main Instr.
Last Subr. Instr, Last Subr. Instr.
PC——=Sp RTS Sn RTS

(a) Before Execution

{b) After Execution

Figure 24 Program Flow for RTS

254 @ HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

Wait for Hardware Interrupt or
Software Interrupt Interrupt Non-Maskable interrupt (NM1)
Main Program Main Program Main Program
n [3F=swi] n [3€ = wal] [1
n+1 ['Next Main Instr.] n+1 [Next Main instr] n [Last Prog. Byte |
AN J — J \ J
Y Y
y
Stack
SP— m-7
m-6| Condition Cod
Stack MPU —> s fonion tode
|Register Contents Acmitr. B
{ ~4 | Acmitr, A
-3 | Index Register {X,)
m-2 | Index Register {X, }
m-1 | PC{n+1)H
m PC{n+1)L
swi HDWR WAL NMI (Restart }
INT
Mask Set’ Wait Loop
{CCR 4
FFFA FFF8 FFFC | FFFE
FFFB FFF9 FEED 3 FFFF

Interrupt Memory Assignment

Set Interrupt

FFF8 [Hardware Int. MS Mask (CCR 4}
FFFI | Hardware Int, LS E
irst Instr,
;z;: Sottware 'l\.ASS Addr. Formed Load
Software ﬁ> By Fetching oad Interrupt
2-Bytes From Vector into
FFFC | Non-Maskable Int. |MS Per. Mem. Program Counter
FFFD | Non-Maskable int. | LS Assign.
FFFE | Restart MS
FFFF | Restart LS
Interrupt Program
. 1st |n!errupt fnstr.
(NOTE) MS = Most Significant Address Byte
LS = Least Significant Address Byte

Figure 25 Program Flow for Interrupts

O HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

255

HD6800,HD68A00,HD68BOO

/
SP——= m-7
m-6 CCR
m-5 ACCB
m-4 ACCA
m-3 Xy (Index Reg)
m-2 X {Index Reg}
m-1 PCin+1}H
m PC(n+1)L
7€
n+1 Next Main Instr.
L—
__//_—T
Last inter. Instr.
PC Sn RTI

(a) Before Execution

]
m-7
m-6 CCR
m-5 ACCB
m-4 ACCA
m-3 Xy
m-2 Xy
m-1 PCH
SP——m PCL
7E
PC—=n+1 Next Main Instr.
L—"
Last Inter. Inst.
Sp RTI
——

(b} After Execution

Figure 26 Program Flow for RTI

® Jump and Branch Operation

The Jump and Branch instructions are summarized in Table
6. These instructions are used to control the transfer of opera-
tion from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a “stand-in” for some other instruc-
tion that is to be determined during debug. It is also used for
equalizing the execution time through alternate paths in a con-
trol program.

Execution of the Jump Instruction, JMP, and Branch Always,
BRA, affects program flow as shown in Fig. 27. When the MPU
encounters the Jump (Index) instruction, it adds the offset to
the value in the Index Register and uses the result as the address
of the next instruction to be executed. In the extended address-
ing mode, the address of the next instruction to be executed is
fetched from the two locations immediately following the JMP
instruction. The Branch Always (BRA) instruction is similar to
the JMP (extended) instruction except that the relative address-
ing mode applies and the branch is limited to the range within
~125 or +127 bytes of the branch instruction itself. The opcode
for the BRA instruction requires one less byte than JMP (ex-
tended) but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figs. 21
through 23. Note that the Program Counter is properly in-

cremented to be pointing at the correct return address before
it is stacked. Operation of the Branch to Subroutine and Jump
to Subroutine (extended) instruction is similar except for the
range. The BSR instruction requires less opcode than JSR (2
bytes versus 3 bytes) and also executes one cycle faster than
JSR. The Return from Subroutine, RTS, is used at the end of
a subroutine to return to the main program as indicated in Fig.
24.

The effect of executing the Software Interrupt, SWI, and the
Wait for Interrupt, WAI, and their relationship to the hardware
interrupts is shown in Fig. 25. SWI causes the MPU contents to
be stacked and then fetches the starting address of the interrupt
routine from the memory locations that respond to the ad-
dresses FFFA and FFFB. Note that as in the case of the sub-
routine instructions, the Program Counter is incremented to
point at the correct return address before being stacked. The
Return from Interrupt instruction, RTI, (Fig. 26) is used at the
end of an interrupt routine to restore control to the main
program. The SWI instruction is useful for inserting break points
in the control program, that is, it can be used to stop operation
and put the MPU registers in memory where they can be ex-
amined. The WAI instruction is used to decrease the time
required to service a hardware interrupt; it stacks the MPU
contents and then waits for the interrupt to occur, effectively
removing the stacking time from a hardware interrupt sequence.

256 O HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A0O0,HD68B0O0O

Table 6 JUMP/BRANCH Instruction

Addressing Modes Cond. Code Reg.
Operation Mnemonic | RELATIVE | INDEX EXTND | IMPLIED Branch Test slalaf2]1]0
OP|~|#|OPj~ |# |OP|~ |# |OP|~ | # Hil |{NjZ|V|C
Branch Always BRA 204 |2 None o o iole | e
Branch ¢f Carry Clear BCC 24 4|2 C=0 eie eoie o|e
Branch If Carry Set BCS 2(4 2 c=1 oo (e |0 o
Branch If = Zero 8EQ 27142 Z=1 oo e e ieaie
Branch If 2 Zero BGE 2Cji 42 N@®V=0 oo 0o 0o 00
Branch If > Zero BGT 26| 4} 2 l2Z+iIN@WV)I=0 eje |00 e o
Branch If Higher BHI 22|14 ;2 C+2=0 e 0 | o0 | o e
Branch If < Zero BLE 2F|a} 2 Z+IN@V)=1 e|loele o |lee
Branch If tower Or Same BLS 23142 C+2=1 e e @ 0o @
Branch if < Zero BLT 2D| 4|2 I N®V=1 oo lo|e o e
Branch f Minus BMI 2B 4|2 I N=1 cleiele oo
Branch If Not Equal Zero BNE 2642 ! Z=0 ejie oo o e
Branch {f Overflow Clear 8vC 2842 V=0 e |e |ole |00
Branch I Overflow Set BVS 23 (42 V=1 ejejejeje e
Branch If Plus BPL 2A1 4 | 2 N=0 oo e |0 o ‘ 3
Branch To Subroutine BSR 8D/ 8|2 oo oo ‘ o
Jump JMP 6E|{4 |2 (7€ 3 o |o o e o @
Jump To Subroutine JSR AD(8 (2 |BD|9 oo o o \ o
No Operation NOP 01| 2 (1] Advances Prog Cntr Only oo oje o0
Return From Interrupt RT} 3B{10 {1 »
Return From Subroutine RTS 39|5 |1 . e o |ele
Software Interrupt swi 3F |12 (1 e|S|eje e e
Wait for Interrupt WAI 3E[9 |1 e |@| o |0 ie|e

Load Condition Code Register from Stack. {See Special Operations)

@ (am
@ (Bit1)
the wait state.
PC Main Program
n 6E = JMP
n+1 K = Offset
INDXD EXTND
X+K
{a) Jump

BMI N=
BPL N=
BvC : V=
BvS : V=
BHI C+
BLS C+
BLE
BGT

n+1

n+2

Main Program

Set when interrupt occurs. |f previously set, a Non-Maskable interrupt is required to exit

Main Program

7€ = JMP n| 20=BRA
K = Next Address n+1 « = Offset
K¢ = Next Address T

H
K }Next instruction

*K = Signed 7-bit value

{b) Branch

Figure 27 Program Flow for JUMP/BRANCH Instructions

BEQ
BNE

BCC
BCS

BLT
BGE

Z+IN®VI=1;
Z+IN@V)=0;

Figure 28 Conditional Branch Instructions

@ HITACHI

The conditional branch instructions, Fig. 28, consists of

seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either continue
with the next instruction in sequence (test fails) or cause a
branch to another point in the program (test succeeds).

Four of the pairs are used for simple tests of status bits N,

Z,V,and C:
1. Branch on Minus (BMI) and Branch On Plus (BPL) tests the

sign bit, N, to determine if the previous result was negative or
positive, respectively.

. Branch On Equal (BEQ) and Branch On Not Equal (BNE)

are used to test the zero status bit, Z, to determine whether
or not the result of the previous operation was equal to “0”.
These two instructions are useful following a Compare (CMP)
instruction to test for equality between an accumulator and
the operand. They are also used following the Bit Test (BIT)
to determine whether or not the same bit positions are set in
an accumulator and the operand.

257

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

3. Branch On Overflow Clear (BVC) and Branch On Overflow
Set (BVS) tests the state of the V bit to determine if the
previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful
for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range “00” (lowest) of “FF” (highest). BCC
following a comparison (CMP) will cause a branch if the
(unsigned) value in the accumulator is higher than or the
same as the value of the operand. Conversely, BCS will cause
a branch if the accumulator value is lower than the operand.
The Fifth complementary pair, Branch On Higher (BHI)

and Branch On Lower or Same (BLS) are in a sense comple-
ments to BCC and BCS. BHI tests for both C and Z = “07, if
used following a CMP, it will cause a branch if the value in the
accumulator is higher than the operand. Conversely, BLS will
cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results of opera-
tions in which the values are regarded as signed two’s comple-
ment numbers. This differs from the unsigned binary case in the
following sense: In unsigned, the orientation is higher or lower;
in signed two’s complement, the comparison is between larger
or smaller where the range of values is between ~128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for N®V = “1”
and N ® V = “0”, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the oper-
and was positive. BLT will never cause a branch following a
CMP in which the accumulator value was positive and the
operand negative. BGE, the complement to BLT, will cause a
branch following operations in which two positive values
were added or in which the result was “0”.

The last pair, Branch On Less Than Or Equal Zero (BLE) and
Branch On Greater Than Zero (BGT) test the status bits for
Z®N + V)=“1"and Z ®(N + V) = “0”, respectively,
The action of BLE is identical to that for BLT except that a
branch will also occur if the result of the previous result was
«Q”. Conversely, BGT is similar to BGE except that no branch
will occur following a 0" result.

= CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR) is a 6-bit register within
the MPU that is useful in controlling program flow during sys-
tem operation. The bits are defined in Fig. 29.

The instructions shown in Table 7 are available to the user
for direct manipulation of the CCR. In addition, the MPU auto-
matically sets or clears the appropriate status bits as many of
the other instructions on the condition code register was in-
dicated as they were introduced.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEL

b5 b4 b3 b2 b1 b0

H = Half-carry; set whenever a carry from b3 to b4 of the resultis
generated by ADD, ABA, ADC; cleared if no b3 tobd
carry; not affected by other instructions.

I = Interrupt Mask; set by hardware of software interrupt or SEI
instruction; cleared by CL1 instruction. {(Normally not used
in arithmetic operations.) Restored to a *Q'" as a resuit of an
RTI instruction if IM stored on the stacked is *0"’

N = Negative; set if high order bit {b7) of result is set; cleared
otherwise.

2 = Zero: set if resuit = “0”; cleared otherwise.

= Overflow: set if there was arithmetic overflow as a result of
the operation; cleared otherwise.

C = Carry; set if there was a carry from the most significant bit

{b7) of the result; cleared otherwise.

Figure 29 Condition Code Register Bit Definition

= ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent either
data or an instruction to be executed, depending on where it is
encountered in the control program. The HD6800 MPU has
72 unique instructions, however, it recognizes and takes action
on 197 of the 256 possibilities that can occur using an 8-bit
word length. This larger number of instructions results from the
fact that many of the executive instructions have more than
one addressing mode.

Table 7 Condition Code Register instructions

[Addressing ‘ T Cond. Code Reg.
I _Mode — —_— —
Operations Mnemonic “V"’I-IED_1 Boolean Operation 15| 4 Tal2T1]o
| Foﬂf‘[_,ﬂ e I"N\Z‘VIC
Clear Carry cLc I oc 2\11 0~ C ﬁ. 0;-10‘0\'?
Clear Interrupt Mask CLI OE 2 1 o— 1 I e R - \ . . .
Clear Overflow cLv l 0A | 2 \ 1 0o-~V ol e ‘ e olR \ .
Set Carry SEC oo | 2|1l 1-cC [el el o|o]els
Set Interrupt Mask SEI | oF | 2 [1= | o | S| e e e ‘ .
Set Overflow SEV joB | 2 1 1>V e|ojolelsie
Acmlitr A— CCR TAP \ 06 2 1 A — CCR _— O —
CCR — Acmitr A TPA | 07 2l1l CCR— A).|.|.|.1.1.
R = Reset
S = Set
e = Not affected
@ {ALL) Set according to the contents of Accumulator A.
258 @ HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Power ed by | Cm ner

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the MPU’s
internal registers and all of the external memory locations.

Selection of the desired addressing mode is made by the user
as the source statements are written. Translation into appropri-
ate opcode then depends on the method used. If manual trans-
lation is used, the addressing mode is implied in the opcode.
For example, the Immediate, Direct, Indexed, and Extended
modes may all be used with the ADD instruction. The proper
mode is determined by selecting (hexidecimal notation) 8B,
9B, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to generate the
opcode. For instance, the Immediate mode is selected by the

Direct: n DO instruction
Example: SUBB Z n+1 Z =Operand Address
Addr. Range = 0~265
n+2 Next Instr.
.
.
L]
3
{K = One-Byte Operand} z K = Operand
OR
(K = Two-Byte Operand} 2 Ky = Operand

Z+1 K = Operand

A 1f 2 < 255, Assembler Select Direct Mode
If Z > 255, Extended Mode is selected

HD6800,HD68A00,HD68BOO

Assembler whenever it encounters the “#” symbol in the
operand field. Similarly, an “X” in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies
to the branch instructions, therefore, the mnemonic instruc-
tion itself is enough for the Assembler to determine addressing
mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0~255 and Extended otherwise. There are
a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the Assembler
automatically selects the Extended mode even if the operand is
in the 0~255 range. The addressing modes are summarized in
Fig. 30.

Immediate: n instruction
Example:- LDAA #K n+1 K = Operand
(K = One-Byte Operand)
n+2 Next nst.
OR
(K = Two-Byte Operand) n instruction
(CPX, LDX and LDS}
n+1 Ky = Operand
n+2 K = Operand
n+3 Next Instr.
Relative: n Instruction
Example: BNE K a+1 +K = Branch Offset
(K = Signed 7-Bit Vatue) Next mstLA
Addr. Range: .

~125 to +129

Relative to n. L)

.
Extended: n FO instruction
(n+2)£K r Next Instr.A J
Example: CMPA Z n+1 2w = Operand Address
Addr. Range: n+2 2, = Operand Address A if Branch Test False, A if Branch Test True.
A\ 256~65535
n+3 Next instr.
L3 \ R
Indexed: n nstruction
L]
° Example: ADDA Z, X n+1 Z = Offset
4 Addr. Range: n+2 Next Instr,
0~255 Relative to .
{K = One-Byte Operand) r4 [K = Operand] Index Register, X
*
OR
L]
{K = Two-Byte Operand) r4 K4 = Operand .
ol KL = Operand (Z = 8-Bit Unsigned Value) X+2 ‘ K = Operand J
Figure 30 Addressing Mode Summary
O HITACHI 259

.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A0O,HDE8BOO

P tied (Includes “A 1

p Addressing” Mode)

The successive fields in a statement are normally separated
by one or more spaces. An exception to this rule occurs for in-
structions that use dual addressing in the operand field and for
instructions that must distinguish between the two accumu-
lators. In these cases, A and B are “operands” but the space
between them and the operator may be omitted. This is com-
monly done, resulting in apparent four character mnemonics
for those instructions.

The addition instruction, ADD, provides an example of dual
addressing in the operand fields;

Comment

ADD CONTENTS OF MEM12 TO ACCA
ADD CONTENTS OF MEM12 TO ACCB

Operator Operand

'ADDA MEM12
or ADDB MEM12

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “accumulator address-
ing mode” to designate which of the two accumulators is being
tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address information
that is required, that is, “inherent” in the instruction, itself.
For instance, the instruction ABA causes the MPU to add the
contents of accurnulators A and B together and place the result
in accumulator A. The instruction INCB, another example of
“accumulator addressing”, causes the contents of accumulator
B to be increased by one. Similarly, INX, increment the Index
Register, causes the contents of the Index Register to be in-
creased by one.

Program flow for instructions of this type is illustrated in
Figures 31 and 32. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of this
type require only one byte of opcode. Cycle-by-cycle operation
of the implied mode is shown in Table 8.

MPU MPU

e

RAM RAM

-

=

Program Program
Memory Memory

pc [INSTR <:_PC=5000 INX C'__

General Flow Example

Figure 31 Implied Addressing

MPU MPU
ACCB
T)
RAM RAM
T — (o ~—
N N
Program Program
Memory Memory
pc | INsTR_K pc=5001] INcB_K
—

General Flow Example

Figure 32 Accumulator Addressing

e Immediate Addressing Mode
In the Immediate addressing mode, the operand is the value
that is to be operated on. For instance, the instruction

Comment
LOAD 25 INTO ACCA

Operand
LDAA #25

Operator

causes the MPU to “immediately load accumulator A with the
value 25”; no further address reference is required. The Im-
mediate mode is selected by preceding the operand value with
the “#’ symbol. Program flow for this addressing mode is
illustrated in Fig. 33.

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX, and
LDS, the operand may be any value in the range 0 ~ 255. Since
Compare Index Register (CPX), Load Index Register (LDX),
Load Stack Pointer (LDS), require 16-bit values, the immediate
mode for these three instructions requie two-byte operands.

Table 9 shows the cycle-by-cycle operation for the im-

mediate addressing mode.

MPU MPU
ACCA
G

RAM RAM

=

Program Program

Memory Memory

PC{ INSTR PC=5002| LDAA
pAaTA K 25 <

General Flow Example

Figure 33 Immediate Addressing Mode

260 © HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 8 Implied Mode Cycle by Cycle Operation

Address Mode Cycle | VMA
and Instructions Cvcle ys Line Address Bus E‘I"We Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2
ASR INC SEV 2 1 Op Code Address + 1 1 Op Code of Next Instruction
CBA LSR TAB
CLC NEG TAP
cLI NOP TBA
CLR ROL TPA
CLv ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
DEX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INS 3 o Previous Register Contents t trrelevant Data (NOTE 1)
INX a4 0o New Register Contents 1 Irrelevant Data (NOTE 1)
PSH 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer (4] Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next instruction
3 [} Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 4] Stack Pointer 1 Irrelevant Data (NOTE 1)
4 0 New Index Register 1 trrelevant Data {(NOTE 1)
TXS 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 o Index Register 1 irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 irrefevant Data (NOTE 2)
5 3 0o Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Address of Next Instruction {High Order Byte}
5 1 Stack Pointer + 2 1 Address of Next Instruction {Low Order Byte)
WAI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Painter [} Return Address {Low Order Byte)
4 1 Stack Pointer — 1 [+] Return Address (High Order Byte)
g9 5 1 Stack Pointer — 2 o Index Register (Low Order Byte)
6 1 Stack Pointer — 3 0 Index Register (High Order Byte)
7 1 Stack Pointer — 4 0 Contents of Accumulator A
8 1 Stack Pointer ~ & [} Contents of Accumulator B
9 1 Stack Pointer — 6 (NOTE 3} 1 Contents of Cond. Code Register
RTt 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 {rrelevant Data (NOTE 2}
3 [¢] Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Contents of Cond. Code Register from Stack
10 5 1 Stack Pointer + 2 1 Contents of Accumulator 8 from Stack
6 1 Stack Pointer + 3 1 Contents of Accumulator A from Stack
7 1 Stack Pointer + 4 1 Index Register from Stack (High Order Byte)
8 1 Stack Pointer + 5 1 Index Register from Stack (Low Order Byte)
9 1 Stack Pointer + 6 1 Next instruction Address from Stack
(High Order Byte)
10 1 Stack Pointer + 7 1 Next Instruction Address from Stack
(Low Order Byte)
SWi 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 trrelevant Data (NOTE 1)
3 1 Stack Pointer o] Return Address {Low Order Byte}
4 i Stack Pointer — 1 0 Return Address (High Order Byte)
] 1 Stack Pointer — 2 4] index Register {Low Order Byte)
12 6 1 Stack Pointer — 3 [+] Index Register {High Order Byte)
7 1 Stack Pointer — 4 1] Contents of Accumulator A
8 1 Stack Pointer — § o Contents of Accumulator B
g 1 Stack Pointer — 6 o] Contents of Cond. Code Register
10 o Stack Pointer — 7 1 Irrelevant Data (NOTE 1)
1" 1 Vector Address FFFA (Hex) 1 Address of Subroutine {High Oraer Byte)
12 1 Vector Address FFFB (Hex) 1 Address of Subroutine {Low Order Byte)
NOTE 1. H device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
g on bus 1ce, data from the previous cycle may be retained on the Data Bus.
NOTE 2. Data is |gnored by the MPU.
NOTE 3. While the MPU is waiting for the interrupt, Bus Available will go “High* indicating the foliowing states of the control lines: VMA is “Low"; Address

Bus, | R/W and Data Bus are all in the high impedance state.

G HITACHI

261

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

HD6800,HD68A00,HD68BOO

Table 9 Immediate Mode Cycle by Cycle Operation

Address Mode Cycle | VMA R/W

and Instructions Cycle # Line Address Bus Line Data Bus

ADC EOR 1 1 Op Code Address 1 Op Code

ADD LDA 2 1 Op Code Address + 1 1 Operand Data

AND ORA 2

BIT S8C

CMP SUB)

cPX 1 1 Op Code Address 1 Op Code

LDS 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
LDX 3 1 Op Code Address + 2 1 Operand Data {Low Order Byte)

® Direct and Extended Addressing Modes

“In the Direct and Extended modes of addressing, the operand
field of the source statement is the address of the value that is
to be operated on. The Direct and Extended modes differ only
in the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations 0 ~ 255; a two byte
operand is generated for Extended addressing, enabling the MPU
to reach the remaining memory locations, 256 ~ 65535. An
example of Direct addressing and its effect on program flow is
iltustrated in Fig. 34.

Table 10 shows the cycle-by-cycle operations of this mode.

The MPU, after encountering the opcode for the instrution
LDAA (Direct) at memory location 5004 (Program Counter =
5004), looks in the next location, 5005, for the address of the
operand. It then sets the program counter equal to the value
found there (100 in the example) and fetches the operand, in

this case a value to be loaded into accumulator A, from that
location. For instructions requiring a two-byte operand such as
LDX (Load the Index Register), the operand bytes would be
retrieved from locations 100 and 101.

Extended addressing, Fig. 35, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after the
LDAB (Extended) opcode shows up in location 5006. Extended
addressing can be thought of as the “standard” addressing
mode, that is, it is a method of reaching anyplace in memory.
Direct addressing, since only one address byte is required,
provides a faster method of processing data and generates fewer
bytes of control code. In most applications, the direct address-
ing range, memory locations 0 ~ 255, are reserved for RAM.
They are used for data buffering and temporary storage of
system variables, the area in which faster addressing is of most
value, Cycle-by<ycle operation is shown in Table 11 for Ex-
tended Addressing.

Tabie 10 Direct Mode Cycle by Cycie Operation

Address Mode Cycle | VMA R/W
and Instructions Cycle v# Line Address Bus Li/:e Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD (DA 2 1 Op Code Address + 1 1 Address of Operand
AND ORA 3 3 1 Address of Operand 1 Operand Data
BIT S8C
CMP SUB ;
cPX 1 1 | Op Code Address 1 Op Code
LDS o 2 1! Op Code Address + 1 1 Address of Operand
LDX 3 1 i Address of Operand 1 Operand Data {(High Order Byte)
4 1 | Operand Address + 1 ; 1 Operand Data (Low Order Byte)
STA 1 1| Op Code Address [Op Code
4 2 1 Op Code Address + 1 i i Destination Address
3 0 Destination Address 1 . frrelevant Data (NOTE 1)
4 1 Destination Address 0 | Data from Accumulator
STS 1 1 i Op Code Address 1 ! Op Code
STX 2 1 | Op Code Address + 1 1 | Address of Operand
5 3 0 | Address of Operand 1 l Irrelevant Data (NOTE 1}
4 1 i Address of Operand 4] i Register Data {High Order Byte)
5 1 | _Address of Operand + 1 0 { Register Data {Low Order Byte)

NOTE 1. |f device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance threestate condition.
o A

ing on bus

\ce, data from the previous cycle may be retained on the Data Bus.

262 G HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 11 Extended Mode Cycle by Cycle

Address Mode Cycle | VMA R/W
and Instructions Cvele # Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 (1] Address of Operand 1 Irrelevant Data (NOTE 1)
5 1 Address of Operand 0 Operand Data {High Order Byte)
6 1 Address of Operand + 1 1] Operand Data {Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Subroutine {High Order Byte)
3 1 Op Code Address + 2 1 Address of Subroutine {Low Order Byte}
4 1 Subroutine Starting Address 1 Op Code of Next instruction
9 5 1 Stack Pointer 0 Return Address (Low Order Byte)
6 1 Stack Pointer — 1 1] Return Address {High Order Byte)
7 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
8 0 Op Code Address + 2 1 Irrelevant Data (NOTE 1)
9 1 Op Code Address + 2 1 Address of Subroutine {Low Order Byte)
JMP 1 1 Op Code Address 1 Op Code
3 2 1 Op Code Address + 1 1 Jump Address {High Order Byte)
3 1 Op Code Address + 2 1 Jump Address {Low Order Byte}
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
AND ORA 4 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
BIT SBC 4 1 Address of Operand 1 Operand Data
CMP suB
CPX 1 1 Op Code Address 1 Op Code
LDSs 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
LDX 5 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data (Low Order Byte)
STA A 1 1 Op Code Address 1 Op Code
STAB 2 1 Op Code Address + 1 1 Destination Address {High Order Byte)
1 3 1 Op Code Address + 2 1 Destination Address {Low Order Byte)
4 0 Operand Destination Address 1 Irrelevant Data (NOTE 1)
5 1 Operand Destination Address 0 Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
CLR ROL 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
COM ROR 6 4 1 Address of Operand 1 Current Operand Data
DEC TST 5 0 Address of Operand 1 irrelevant Data (NOTE 1)
INC 6 1/0 Address of Operand o] New Operand Data (NOTE 2}
(NOTE
2)
NOTE 1. 1if device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
NOTE 2. For TST, VMA = 0 and Operand data does not change.
MPU MPU MPU MPU
: ACCA : : ACCB :
RAM RAM RMA RAM
EE———
aopr | _DATA K ADDR =100[36 K :: ADDR|{ DATA <: ADDR =300 _ 4§ K
Program Program Program Program
Memory Memory Memory Memory
PCl INSTR = 5006
PC INSTR PC = 5004 LDA A —_——ADDH PC 2007 LDA B
- 5005 100 300 —
pc-1| aboR K K ADDR s008 [
N 5009
ADDR = 0 <255 Example ADDR 2z 266 Example

General Flow
Figure 34 Direct Addressing Mode

Genera! Flow

Figure 35 Extended Addressing Mode

O HITACHI

263

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

Power ed

HD6800,HDEBAOO,HDEBBOO

® Relative Address Mode

In both the Direct and Extended modes, the address ob-
tained by the MPU is an absolute numerical address. The Re-
lative addressing mode, implemented for the MPU’s branch
instructions, specifies a memory location relative to the Program
Counter’s current location. Branch instructions generate two
bytes of machine code, one for the instruction opcode and one
for the “relative” address (see Fig. 36). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is inter-
preted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, *“0” = plus and *‘1” = minus. The remaining
seven bits represent the numerical value. This result in a relative
addressing range of +127 with respect to the location of the
branch instruction itself. However, the branch range is com-
puted with respect to the next instruction that would be ex-
ecuted if the branch conditions are not satisfied. Since two
byte are generated, the next instruction is located at PC+2.
If, D is defined as the address of the branch destination, the
range is then;

(PC+2) -128 < DS (PC+2) + 127
or PC-126 <D <PC+129
MPU
RAM
Program
Memory
PC Instr.
Offset \r
(PC+2} | Next Instr.

l/_\

(PC+2) + (Offset) Next Instr.

that is, the destination of the branch instruction must be
within -126 to +129 memory locations of the branch instruc-
tion itself. For transferring control beyond this range, the un-
conditional jump (JMP), jump to subroutine (JSR), and return
from subroutine (RTS) are used.

In Fig. 36, when the MPU encounters the opcode for BEQ
(Branch if result of last instruction was zero), it tests the Zero
bit in the Condition Code Register. If that bit is ““0”, indicating
a non-zero result, the MPU continues execution with the next
instruction (in location 5010 in Fig. 36). If the previous result
was zero, the branch condition is satisfied and the MPU adds the
offset, 15 in this case, to PC+2 and branches to location 5025
for the next instruction.

The branch instructions allow the programmer to efficiently
direct the MPU to one point or another in the control program
depending on the outcome of test results. Since the control
program is normally in readonly memory and cannot be
changed, the relative address used in execution of branch in-
structions is a constant numerical value. Cycle-by-cycle opera-
tion is shown in Table 12 for relative addressing.

MPU

RAM

Program
Memory

PC 5008 BEQ
15

Next Instr.

TS]

PC 5010

PC 5025 Next Instr.

./—\

Figure 36 Relative Addressing Mode

264

G HITACHI

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A0O0,HD68B0OO

Power ed

Table 12 Relative Mode Cycle-by-Cycle Operation
Address Mode Cycle { VMA W
and Instructions Cycle v# Line Address Bus E,/x: Data Bus
BCC BH! BNE 1 1 Op Code Address 1 Op Code
BCS BLE BPL 4 2 1 Op Code Address + 1 1 Branch Offset
BEQ BLS BRA 3 0 Op Code Address + 2 1 irrelevant Data (NOTE 1)
BGE BLT BVC 4 [} Branch Address 1 irrelevant Data (NOTE 1)
BGT BMI BVS
BSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Branch Offset
3 o Return Address of Main Program 1 Irrelevant Data (NOTE 1)
8 4 1 Stack Pointer o Return Address (Low Order Byte}
5 1 Stack Pointer — 1 [+] Return Address {High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
7 (o] Return Address of Main Program 1 Irrelevant Data (NOTE 1)
8 o Subroutine Address 1 Irrelevant Data {(NOTE 1}

NOTE 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

® j{ndexed Addressing Mode

With Indexed addressing the numerical address is variable and
depend on the current contents of the Index Register. A source
statement such as

Comment
PUT A IN INDEXED LOCATION

Operator Operand

STAA X

causes the MPU to store the contents of accumulator A in the
memory location specified by the contents of the Index Re-
gister (recall that the label X is reserved to designate the Index
Register). Since there are instructions for manipulating X
during program execution (LDX, INX, DEX, etc.), the Indexed
addressing mode provides a dynamic “on the fly” way to
modify program activity.

MPU

RAM

e~

DATA
=

Program
Memory

PC INSTR

ADDR = INDX
+ OFFSET

]

ADDR = 405 59

PC = 5006

OFFSET

e

OFFSET < 255
General Flow

The operand field can also contain a numerical value that will
be automatically added to X during execution. This format is
illustrated in Fig. 37.

When the MPU encounters the LDAB (Indexed) opcode in
location 5006, it looks in the next memory location for the
value to be added to X (S in the example) and calculates the
required address by adding 5 to the present Index Register value
of 400. In the operand format, the offset may be represented
by a label or a numerical value in the range 0 ~ 255 as in the
example. In the earlier example, STAA X, the operand is
equivalent to 0, X , that is, the “0” may be omitted when the
desired address is equal to X. Table 13 shows the cycle-by-<cycle
operation for the Indexed Mode of Addressing.

Program
Memory

——

=S

Example

Figure 37 Indexed Addressing Mode

G HITACHI

265

by 1 Cmi ner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HD68BOO

Table 13 Indexed Mode Cycle by Cycle

Address Mode Cycle | VMA W
and Instructions Cycle y# Line Address Bus FI‘.AI:‘!; Data Bus
JMP 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irretevant Data (NOTE 1)
4] Index Register Plus Offset (w/o Carry) 1 irrelevant Data (NOTE 1)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Otfset
AND QRA 5 3 0 index Register 1 Irrelevant Data (NOTE 1}
BIT SBC 4] Index Register Plus Offset (w/o Carrys 1 irrelevant Data (NOTE 1)
CMP suB 5 1 index Register Plus Offset 1 Operand Data
CcPX 1 1 Op Code Address 1 Op Code
LDS 2 1 Op Code Address + 1 1 Offset
LDX 3 0 index Register . 1 irrelevant Data {(NOTE 1)
- 6 L3 o Index Register Ptus Offset (w/o Carry) 1 Irrelevant Data (NOTE 1)
5 1 index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 Index Register Plus Offset + 1 1 Operand Data {Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
6 3 1] tndex Register 1 Irrelevant Data (NOTE 1)
4 0 Index Register Plus Offset (w/o Carry) 1 irrelevant Data (NOTE 1)
5 o] Index Register Plus Offset 1 \rrelevant Data (NOTE 1}
6 1 Index Register Plus Offset o Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Offset
CLR ROL 3 [+] Index Register 1 irrelevant Data (NOTE 1)
COM ROR 7 4 1] Index Register Pius Offset {w/o Carry) 1 Irrelevant Data (NOTE 1)
DEC TST 5 1 Index Register Plus Offset 1 Current Operand Data
INC 6 0 index Register Plus Offset 1 {rrelevant Data (NOTE 1)
7 1/0 Index Register Plus Offset V] New Operand Data (NOTE 2)
(NOTE
2)
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (NOTE 1)
7 4 V] Index Register Plus Offset {(w/o Carry) 1 trrelevant Data (NOTE 1)
5 (V] Index Register Plus Offset 1 irrelevant Data {NOTE 1)
6 1 Index Register Plus Offset o Operand Data (High Order Byte)
7 1 Index Register Plus Offset + 1 1) Operand Data (Low Oder Byte}
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 index Register 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer 4] Return Address (Low Order Byte)
8 5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 4] Stack Pointer — 2 1 irrelevant Data (NOTE 1)
7 (4] index Register 1 Irrelevant Data (NOTE 1)
8 0 Index Register Plus Offset {w/o Carry) 1 trrelevant Data (NOTE 1)

NOTE 1. If Device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Eor TST, VMA = 0 and Operand data does not change.

NOTE 2.

266

O HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00,HDE8BOO

v
23
@
a
o
2
bl
°
<

e x|.|1||\\\ x».:
H
1
_tt - [P WNllleul e e e e —
)]
oy] I S - = K e [U
o
o
; i %y
DY P IR ——}- R S [DU B 2E - -
s e
--]--4----—--1 --t- -—1-- -4-- - QB -F-1-- -—r -
<
S D R I O N e I B .
= = o -
Sz _(3 i 55
-41--1t-—-—-""-- F- - o8 11— g —-fH-1-- T 1 ze-1--F~
< o] < L x
>< <o
@
b — - - —— ~}=- —F -} = M R SR B S - -4 —F
L . < >
2 2P P h aF X
[b4 ® T ® b
44 -- OV T 3 -t--}- 8 --F-4-- T ok - 8 -4--4-- 32
<
~ . "
I O [0 DR O O P TN JS AU N I - e e T r
B 17y a AA
1 > ., <
I M. . . g T
— —F [— Xo\lll‘lrl » [E— —f— - - —— — - = ° - - - -=) —— — —
1 it g : z !
1 VL o7 VL: ol 8 i w3
| g g H 8 5 N« S £
et PR 1 T | Je5
[l e] <
[} TAA < x TA 5 .
[} < < < < < €%
—t++-1- 0 -4--1- a —+--}- o —q4-——-+4-- o —4--1-- a -4--q4-- sc
H p} P} -4 - < [
. N N NN N
1 h h
IR NN N
2 < 3 g g4
Lg e § $& Z _f$E 3 5B 2 gE Z,5E G
L5«] 2 « s w > T = o > 2 o 2 2 2 > e
o 3 3] 8 X ® z] w 2 - s
w] w o w o w 3 <
P [o / ﬂ / & &
Z o 2 W 2 @

Figure 38 Example of Excution Timing in Each Addressing Mode

267

O HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

HD6800,HD68A00, HD68B0OO

s NOTE FOR THE RELATION BETWEEN WAI INSTRUCTION AND HALT OPERATION OF HD6800

When HALT input signal is asserted to “Low” outputs the “High” level on the BA line.
level, the MPU will be halted after the execution of When an interrupt request signal is input to the
the current instruction except WAI instruction. MPU, the MPU accepts the interrupt regardiess the

The “Halt” signal is not accepted after the fetch “Halt” signal and releases the “WAIT” state and out-
cycle of the WAI instruction (See @ in Fig. 39).In the puts the interrupt’s vector address. If the “Halt” signal
case of the “WAI” instruction, the MPU enters the is “Low” level, the MPU halts after the fetch of new
“WAIT” cycle after stacking the internal registers and PC contents. The sequense is shown below.

WAI

instruction

Feten | | l | | | 1 | |-—WA|TCVCLE——-| | | i l
e inigipigiginipfinigiuiiniaiplnininl

Address ™}
Bus
i SP (n] SP(n-1)SPin-2) SP(n-3) SP (n-4) SP (n-5} SP {n-6} Vector ' Veclor Rawre
R/W \ /

I R 7
VMA j \ /

[—tpcs
IRGor
NMI
]
_ D
HALT -\ /;

When the interrupt occurs during the WAIT CYCLE, the MPU accepts the interrupt even if HALT is at ““Low™ level. If this cycle is at “Low™
level, the next cycle is
the Halt cycle

Figure 39 HD6800 WAIT CYCLE & HALT Request

268 G HITACHI

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

