HD74CBT3384A

10-bit FET Bus Switch

HITACHI

ADE-205-652 (Z)

Rev. 0
Jan. 2002

Description

The HD74CBT3384A provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device is organized as two 5-bit switches with separate output-enable ($\overline{\mathrm{OE}})$ inputs. When $\overline{\mathrm{OE}}$ is low, the switch is on, and port A is connected to port B . When OE is high, the switch is open, and the highimpedance state exists between the two ports.

Features

- Minimal propagation delay through the switch.
- 5Ω switch connection between two ports.
- TTL-compatible input levels.
- Ultra low quiescent power.
-Ideally suited for notebook applications.
- Package type

Product code example: HD74CBT3384ATEL

Package type	Package code	Package suffix	Taping code
TSSOP-24pin	TTP-24DBV	T	EL (1,000pcs / Reel)

Function Table

(Each 5-bit bus switch)

Input $\overline{\mathrm{OE}}$	Function
L	A port = B port
H	
$\mathrm{H}:$	High level
L:	Low level

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	V_{cC}	-0.5 to 7.0	V	
Input voltage range ${ }^{9}$	$\mathrm{~V}_{\mathrm{C}}$	-0.5 to 7.0	V	
Input clamp current	I_{IK}	-50	mA	$\mathrm{~V}_{1}<0$
Continuous output current	I_{O}	128	mA	$\mathrm{~V}_{\mathrm{O}}=0$ to V_{cc}
Continuous current through V_{cC} or GND	I_{CC} or $\mathrm{I}_{\text {GND }}$	± 100	mA	
Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{-2}$	P_{T}	862	mW	TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{cc}	4.0	5.5	V	
Input voltage range	V_{1}	0	5.5	V	
Output voltage range	$\mathrm{V}_{\nu 0}$	0	5.5	V	
Input transition rise or fall rate	$\Delta \mathrm{t} / \Delta \mathrm{v}$	0	5	$\mathrm{~ns} / \mathrm{V}$	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
Operating free-air temperature	Ta	-40	85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

Block Diagram

DC Electrical Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Min	Typ ${ }^{1}$	Max	Unit	Test conditions
Clamp diode voltage	$\mathrm{V}_{\text {IK }}$	4.5	-	-	-1.2	V	$\mathrm{I}_{\text {NN }}=-18 \mathrm{~mA}$
Input voltage	$\mathrm{V}_{\text {IH }}$	4.0 to 5.5	2.0	-	-	V	
	$\mathrm{V}_{\text {IL }}$	4.0 to 5.5	-	-	0.8		
On-state switch resistance ${ }^{2}$	$\mathrm{R}_{\text {o }}$	4.0	-	14	20	Ω	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{N}}=15 \mathrm{~mA} \\ & \text { Typ at } \mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V} \end{aligned}$
		4.5	-	5	7		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA} \end{aligned}$
		4.5	-	5	7		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{N}}=30 \mathrm{~mA} \end{aligned}$
		4.5	-	10	15		$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathbb{N}}=15 \mathrm{~mA} \end{aligned}$
Input current	$\mathrm{I}_{\text {IN }}$	0 to 5.5	-	-	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND
Off-state leakage current	I_{02}	5.5	-	-	± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{cc}}$
Quiescent supply current	I_{cc}	5.5	-	-	3	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}} \text { or GND, } \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \end{aligned}$
Increase in I_{cc} per input ${ }^{3}$	$\Delta l_{\text {cc }}$	5.5	-	-	2.5	mA	One input at 3.4 V , other inputs at $V_{c C}$ or GND

Notes: For condition shown as Min or Max use the appropriate values under recommended operating conditions.

1. All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
2. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower voltage of the two (A or B) terminals.
3. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{cc} or GND.

Capacitance

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	$\mathbf{V}_{\mathrm{cc}}(\mathbf{V})$	Min	Typ	Max	Unit	Test conditions
Control input capacitance	C_{IN}	5.0	-	3	-	pF	$\mathrm{V}_{\mathrm{IN}}=0$ or 3 V
Input / output capacitance	$\mathrm{C}_{\text {Ho (OFF) }}$	5.0	-	5	-	pF	$\mathrm{V}_{\mathrm{o}}=0$ or 3 V

Note: This parameter is determined by device characterization is not production tested.

Switching Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

- $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$

Item	Symbol	Min	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	-	0.35	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=500 \Omega$	A or B	B or A
Enable time	$\mathrm{t}_{\text {PHL }}$						
Disable time	t_{ZH}	-	6.2	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=500 \Omega$	$\overline{\mathrm{OE}}$	A or B
	t_{ZL}						

- $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	Min	Max	Unit	Test conditions	FROM (Input)	то (Output)
Propagation delay time ${ }^{4}$	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	-	0.25	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	A or B	B or A
Enable time	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zz}} \end{aligned}$	1.9	5.7	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{\mathrm{OE}}$	A or B
Disable time	t_{Hz}	2.1	5.2	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{\mathrm{OE}}$	A or B
	t_{12}	2.1	5.8				

Note: 1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Test Circuit

Note: 1. C_{L} includes probe and jig capacitance.

Waveforms - 1

Waveforms - 2

Package Dimensions

Disclaimer

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

HITACHI

Hitachi, Ltd.

Semiconductor \& Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL http://www.hitachisemiconductor.com/

For further information write to:

