Synchronous Up/Down Decade Counter (Dual Clock Line) Synchronous Up/Down 4-bit Binary Counter (Dual Clock Line)

HITACHI

ADE-205-465 (Z) 1st. Edition Sep. 2000

Description

The HD74HC192 is a decade counter, and the HD74HC193 is a binary counter. Both counters have two separate clock inputs, an up count input and a down count input. All outputs of the flip-flops are simultaneously triggered on the low to high transition of either clock while the other input is held high. The direction of counting is determined by which input is clocked.

These counters may be preset by entering the desired data on the data A, data B, data C, and data D inputs. When the load input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as divide-by-n counters by modifying the count length with the preset inputs.

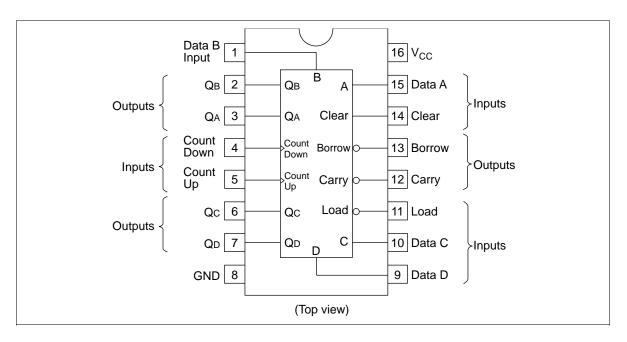
In addition both counters can also be cleared. This is accomplished by inputting a high on the clear input. All 4 internal stages are set to a low level independently of either count input.

Both a borrow and carry output are provided to enable cascading of both up and down counting functions. The borrow output produces a negative going pulse when the counter underflows and the carry outputs a pulse when the counter overflows. The counters can be cascaded by connecting the carry and borrow outputs of one device to the count up and count down inputs, respectively, of the next device.

Features

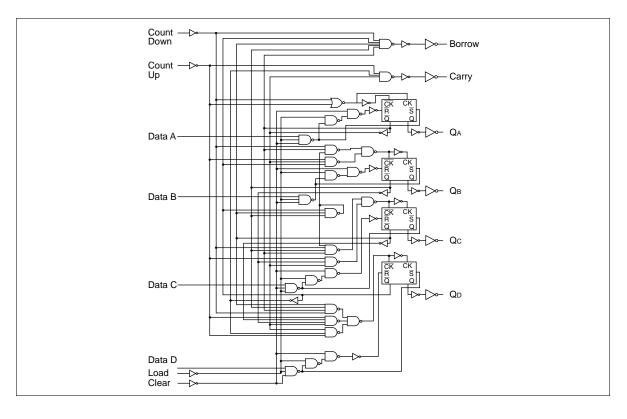
• High Speed Operation: t_{pd} (Clock Up or Count Down to Q) = 21 ns typ ($C_L = 50 \text{ pF}$)

High Output Current: Fanout of 10 LSTTL Loads

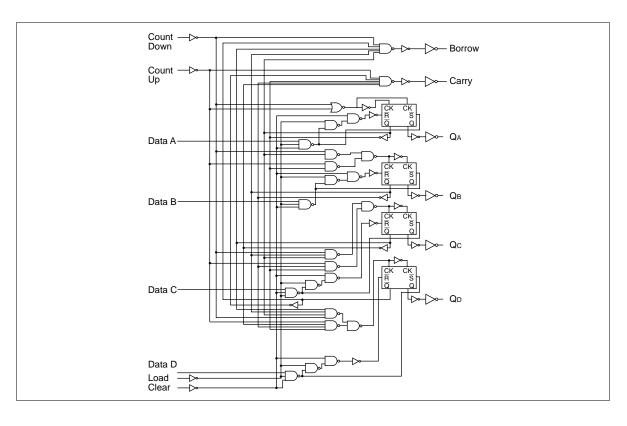

• Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$

• Low Input Current: 1 μA max

• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)



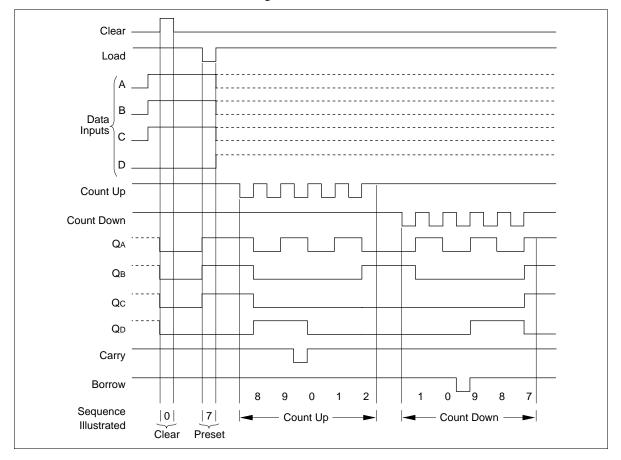
Pin Arrangement



Logic Diagram

HD74HC192

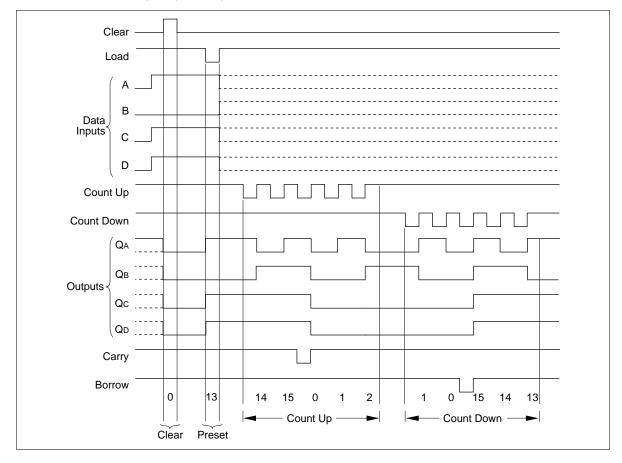
HD74HC193



Timing Chart

HD74HC192

Illustrated below is the following sequence:


- 1. Clear outputs to zero.
- 2. Load (preset) to binary seven.
- 3. Count up to eight, nine, zero, one and two.
- 4. Count down to one, zero, borrow, nine, eight and seven.

HD74HC193

Illustrated below is the following sequence:

- 1. Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, zero, one and two.
- 4. Count down to one, zero, borrow, fifteen and thirteen.

DC Characteristics

			Ta = 25°C		+85°C				
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Input voltage	V _{IH}	2.0	1.5	_	_	1.5	_	V	
		4.5	3.15	_	_	3.15	_	_	
		6.0	4.2	_	_	4.2	_	_	
	V _{IL}	2.0	_	_	0.5	_	0.5	V	
		4.5	_	_	1.35	_	1.35	_	
		6.0	_	_	1.8	_	1.8	_	
Output voltage	V _{OH}	2.0	1.9	2.0	_	1.9	_	V	Vin = V_{IH} or V_{IL} I_{OH} = $-20 \mu A$
		4.5	4.4	4.5	_	4.4	_	_	
		6.0	5.9	6.0	_	5.9	_		
		4.5	4.18	_	_	4.13	_		$I_{OH} = -4 \text{ mA}$
		6.0	5.68	_	_	5.63		_	$I_{OH} = -5.2 \text{ mA}$
	V_{OL}	2.0	_	0.0	0.1	_	0.1	V	Vin = V_{IH} or V_{IL} I_{OL} = 20 μA
		4.5	_	0.0	0.1	_	0.1		
		6.0	_	0.0	0.1	_	0.1		
		4.5	_	_	0.26	_	0.33		$I_{OL} = 4 \text{ mA}$
		6.0	_	_	0.26	_	0.33		$I_{OL} = 5.2 \text{ mA}$
Input current	lin	6.0	_	_	±0.1	_	±1.0	μΑ	Vin = V _{CC} or GND
Quiescent supply current	I _{cc}	6.0	_	_	4.0	_	40	μΑ	Vin = V_{cc} or GND, lout = 0 μ A

Ta = -40 to

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Ta = 25°C		Ta = -40 to +85°C				
Item	Symbol	V _{cc} (V)			Max		Max	_ Unit	Test Conditions
Maximum clock	f _{max}	2.0	_	_	4	_	3	MHz	
frequency		4.5	_	_	20	_	16	_	
		6.0	_	_	24	_	19	_	
Propagation delay	t _{PLH}	2.0	_	_	140	_	175	ns	Count up to Carry
time		4.5	_	14	28	_	35	_	
		6.0	_	_	24	_	30	_	
	t _{PHL}	2.0	_	_	130	_	165	_	
		4.5	_	15	26	_	33		
		6.0	_	_	22	_	28	_	
	t _{PLH}	2.0	_	_	130	_	165	- - -	Count down to Borrow
		4.5	_	14	26	_	33		
		6.0	_	_	22	_	28		
	t _{PHL}	2.0	_	_	130	_	165	=	
		4.5	_	15	26	_	33	=	
		6.0	_	_	22	_	28	_	
	t _{PLH}	2.0	_	_	215	_	270		Count up or down to Q
		4.5	_	21	43	_	54	_	·
		6.0	_	_	37	_	46	=	
	t _{PHL}	2.0	_	_	275	_	345	_	
		4.5	_	21	55	_	69		
		6.0	_	_	47	_	59	_	
	t _{PLH}	2.0	_	_	230	_	290	_	Load to Q
		4.5	_	17	46	_	58	_	
		6.0	_	_	39	_	49		
	t _{PHL}	2.0	_	_	290	_	365	_	
		4.5	_	23	58	_	73	_	
		6.0	_	_	49	_	62	_	
	t _{PHL}	2.0	_	_	265	_	335	_	Clear to Q
		4.5	_	24	53	_	66	_	
		6.0	_	_	45	_	56	_	
Pulse width	t _w	2.0	80	_	_	100	_	ns	
		4.5	16	8	_	20	_	_	
		6.0	14	_	_	17	_	=	

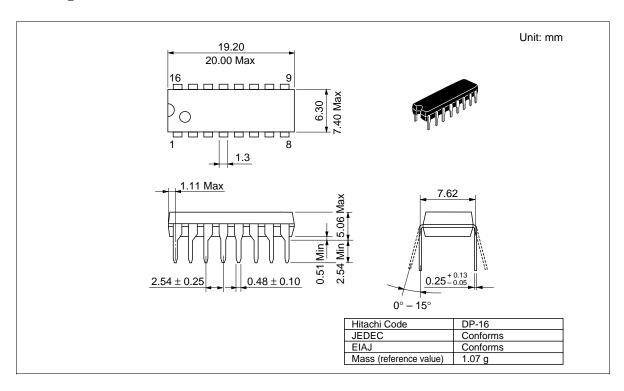
HITACHI

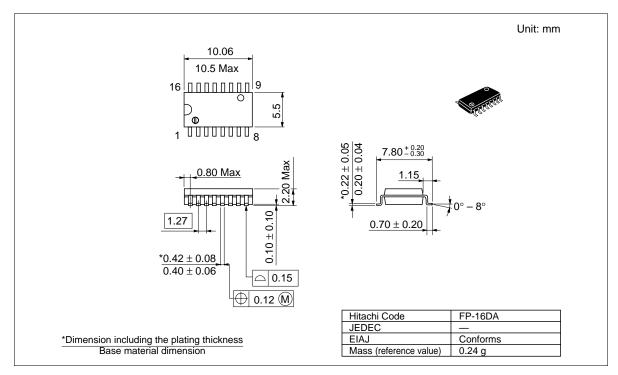
AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$) (cont)

Input capacitance Cin

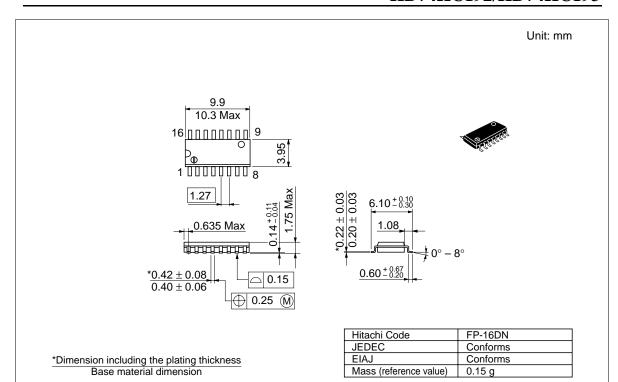
			Ta = 25°C		+85°C				
Item	Symbol	V_{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Hold time	t _h	2.0	5	_	_	5	_	ns	Data to Load
		4.5	5	-3	_	5	_	_	
		6.0	5	_	_	5	_	=	
Setup time	t _{su}	2.0	100	_	_	125	_	ns	Data to Load
		4.5	20	4	_	25	_	_	
		6.0	17	_	_	21	_		
Removal time	$t_{\sf rem}$	2.0	50	_	_	65	_	ns	Clear to Clock
		4.5	10	-1	_	13	_	_	
		6.0	9	_	_	11	_		
Output rise/fall	\mathbf{t}_{TLH}	2.0	_	_	75	_	95	ns	
time	$t_{\scriptscriptstyle THL}$	4.5	_	5	15	_	19	_	
		6.0	_	_	13	_	16		

5


10


Ta = -40 to

рF


10

Package Dimensions

HITACHI

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica Europe Asia Japan

http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel: <65>-538-6533/538-8577 Fax: <65>-538-6933/538-3877

URL: http://www.hitachi.com.sg Hitachi Asia I td

(Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building. Taipei (105), Taiwan

Tel: <886>-(2)-2718-3666 Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw

> Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong

Tel: <852>-(2)-735-9218 Fax: <852>-(2)-730-0281 URL: http://www.hitachi.com.hk