HD74LVCC4245A

Octal Dual-supply Bus Transceiver with configurable output voltage with 3-state Outputs

HITACHI

ADE-205-685 (Z)
Rev. 0
Apr. 2002

Description

The HD74LVCC4245A has eight bus transceivers with three state outputs in a 24 pin package. When (DIR) is high, data flows from the A inputs to the B outputs, and when (DIR) is low, data flows from the B inputs to the A outputs. A and B bus are separated by making enable input ($\overline{\mathrm{OE}})$ high level. This 8 -bit noninverting bus transceiver uses two separate power-supply rails.

And this product has two terminals $\left(\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCB}}\right), \mathrm{V}_{\mathrm{CCA}}$ is connected with control input and a bus side, $\mathrm{V}_{\mathrm{CCB}}$ is connected with B bus side. $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ are isolated.

The A port, $\mathrm{V}_{\mathrm{CCA}}$, is dedicated to accept a 5 V supply level, and the configurable B port, which is designed to track $\mathrm{V}_{\text {cCB }}$, accepts voltages from 3 V to 5 V . This allows for translation from a 3.3 V to a 5 V environment and vice versa. Low voltage and high speed operation is suitable at the battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- This product function as level shift transceiver that change $\mathrm{V}_{\mathrm{CCA}}$ input level to $\mathrm{V}_{\mathrm{CCB}}$ output level, $\mathrm{V}_{\text {CCB }}$ input level to $\mathrm{V}_{\mathrm{CCA}}$ output level by providing different supply voltage to $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$.
- This product is able to the power management: Turn on and off the supply on $\mathrm{V}_{\mathrm{CCB}}$ side with providing the supply of $\mathrm{V}_{\mathrm{cCA}}$. (Enable input $(\overline{\mathrm{OE}})$: High level)
- $\mathrm{V}_{\text {CCA }}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ССВ }}=2.7 \mathrm{~V}$ to 5.5 V
- All control input $\mathrm{V}_{\mathrm{I}}(\max)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CCA}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- All A bus side input outputs $\mathrm{V}_{\mathrm{IO}}(\max)=5.5 \mathrm{~V}$ ($@ \mathrm{~V}_{\mathrm{CCA}}=0 \mathrm{~V}$ or output off state)
- All B bus side input outputs $\mathrm{V}_{\mathrm{II}}(\max)=5.5 \mathrm{~V}$ ($@ \mathrm{~V}_{\mathrm{CCB}}=0 \mathrm{~V}$ or output off state)
- High output current

A bus side: $\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CCA}}=4.5 \mathrm{~V}\right)$
B bus side: $\pm 24 \mathrm{~mA}\left(@ \mathrm{~V}_{\text {cСв }}=2.7 \mathrm{~V}\right.$ to 4.5 V$)$

- Package type

Product code example: HD74LVCC4245ATEL

Package type	Package code	Package suffix	Taping code
TSSOP-24pin	TTP-24DBV	T	EL (1,000pcs / Reel)

Function Table

	Inputs	
$\overline{\mathrm{OE}}$	DIR	Operation
L	L	B data to A bus
L	H	A data to B bus
H	X	Z
$\mathrm{H}:$	High level	
$\mathrm{L}:$	Low level	
$\mathrm{X}:$	Immaterial	
$\mathrm{Z}:$	High impedance	

Pin Arrangement

$$	(Top view)	$24 \mathrm{~V}_{\mathrm{CCB}}$ 23 NC $22 \overline{O E}$ 21 B1 20 B2 19 B3 18 B4 17 B5 16 B6 15 B7 14 B8 13 GND

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {cCB }}$	-0.5 to 6.0	V	
Input voltage ${ }^{-1}$	V_{1}	-0.5 to 6.0	V	DIR, $\overline{O E}$
Input / output voltage	V_{10}	-0.5 to $\mathrm{V}_{\text {CCA }}+0.5$	V	A port output "H" or "L"
		-0.5 to 6.0		A port output " Z " or $\mathrm{V}_{\text {ccA }}$: OFF
		-0.5 to $\mathrm{V}_{\text {cCB }}+0.5$		B port output "H" or "L"
		-0.5 to 6.0		B port output "Z" or $\mathrm{V}_{\text {ccB }}$: OFF
Input diode current	$\mathrm{I}_{\text {IK }}$	-50	mA	$V_{1}<0$
Output diode current	$\mathrm{I}_{\text {ок }}$	-50	mA	$V_{0}<0$
		50		$\mathrm{V}_{\mathrm{o}}>\mathrm{V}_{\mathrm{cc}}+0.5$
Output current	1.	± 50	mA	
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {cCB }}$, GND current	$\mathrm{I}_{\text {CCA }}, \mathrm{I}_{\text {CCB }}, \mathrm{I}_{\text {GND }}$	100	mA	
Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{2}$	$\mathrm{P}_{\text {T }}$	862	mW	TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$\mathrm{V}_{\text {cCA }}$	4.5 to 5.5	V	
	$\mathrm{V}_{\text {ссв }}$	2.7 to 5.5		
Input / output voltage	V_{1}	0 to 5.5	V	DIR, $\overline{\text { OE }}$
	V_{10}	0 to $\mathrm{V}_{\text {cCA }}$		A port output "H" or "L"
		0 to 5.5		A port output "Z" or $\mathrm{V}_{\text {cca }}$: OFF
		0 to $V_{\text {cСB }}$		B port output "H" or "L"
		0 to 5.5		B port output " Z " or $\mathrm{V}_{\text {cCB }}$: OFF
output current	I_{OH}	-24	mA	
	I_{o}	24		
Input transition rise or fall time	$\Delta t / \Delta v$	10	ns / V	
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

Block Diagram

To seven other channels

Electrical Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Item	Symbol $\mathrm{V}_{\mathrm{ccA}}(\mathrm{V})$		$\mathrm{V}_{\text {cci }}(\mathrm{V})$	Min	Max	Unit	Test Conditions
Input voltage	$\mathrm{V}_{\text {HA }}$	4.5 to 5.5	2.7 to 5.5	2	-	V	A port
	$\mathrm{V}_{\text {HB }}$	4.5 to 5.5	2.7 to 3.6	2	-		B port
		4.5 to 5.5	4.5 to 5.5	$\mathrm{V}_{\text {ccB }} \times 0.7-$			
	V_{H}	4.5 to 5.5	2.7 to 5.5	2	-		Control input
	$\mathrm{V}_{\text {ILA }}$	4.5 to 5.5	2.7 to 5.5	-	0.8		A port
	$\mathrm{V}_{\text {LLB }}$	4.5 to 5.5	2.7 to 3.6	-	0.8		B port
		4.5 to 5.5	4.5 to 5.5	-	$\mathrm{V}_{\text {cСB }} \times 0.3$		
	$\mathrm{V}_{\text {IL }}$	4.5 to 5.5	2.7 to 5.5	-	0.8		Control input
Output voltage	$\mathrm{V}_{\text {OHA }}$	4.5	3.0	4.4	-	V	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$
				3.76	-		$\mathrm{I}_{\text {О }}=-24 \mathrm{~mA}$
	$\mathrm{V}_{\text {ОНв }}$	4.5	3.0	2.9	-		$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$
		4.5	2.7	2.2	-		$\mathrm{I}_{\text {OH }}=-12 \mathrm{~mA}$
			3.0	2.46	-		
		4.5	2.7	2.1	-		$\mathrm{IOH}^{\text {O }}$ - 24 mA
			3.0	2.25	-		
			4.5	3.76	-		
	$\mathrm{V}_{\text {OLA }}$	4.5	3.0	-	0.1		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
				-	0.44		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
	$\mathrm{V}_{\text {OLB }}$	4.5	3.0	-	0.1		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		4.5	2.7	-	0.44		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$
		4.5	2.7	-	0.5		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
			3.0	-	0.44		
			4.5	-	0.44		

Electrical Characteristics (cont)

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Item	Symbol $\mathrm{Vcca}^{\text {(V) }}$ ($\mathrm{V}_{\mathrm{cCB}}$ (V)	Min	Max	Unit	Test Conditions
Input current	$\mathrm{I}_{\text {IN }}$	5.5	3.6	-	± 1	$\mu \mathrm{A}$	Control input $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCA}}$ or GND
			5.5				
Off state output current	$\mathrm{I}_{\text {oz }}$	5.5	3.6	-	± 5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {(ICONT) }}=\mathrm{V}_{\text {(H }} \text { or } \mathrm{V}_{\mathrm{U},} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\text {CCAA }}, \mathrm{V}_{\text {CCBB }} \text { or GND } \end{aligned}$
			5.5				
Output leak current	$\mathrm{I}_{\text {ofF }}$	0	0	-	20	$\mu \mathrm{A}$	A port, $\mathrm{V}_{10}=5.5 \mathrm{~V}$, B port, $\mathrm{V}_{10}=3.6 \mathrm{~V}$
Quiescent supply current	$\mathrm{I}_{\text {cCA }}$	5.5	OPEN	-	80	$\mu \mathrm{A}$	$\mathrm{An}=\mathrm{V}_{\mathrm{ccA}}$ or GND, Control input $=\mathrm{V}_{\text {CCA }}$
		5.5	3.6	-	80		B to A,
			5.5	-	80		$\begin{aligned} & \text { Control input }=\mathrm{V}_{\text {cCA }} \text { or GND } \\ & \mathrm{Bn}=\mathrm{V}_{\text {cCB }} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{0}(\mathrm{~A} \text { port })=0 \end{aligned}$
	$\overline{I_{\text {CCB }}}$	5.5	3.6	-	50		A to B,
			5.5	-	80		Control input $=\mathrm{V}_{\text {cCA }}$ or GND $\mathrm{An}=\mathrm{V}_{\mathrm{ccA}}$ or GND, I_{0} (B port) $=0$
Increase in I_{cc} per input ${ }^{-1}$	$\Delta \mathrm{l}_{\text {cCA }}$	5.5	5.5	-	1.5	mA	A port or Control input, One input at $\mathrm{V}_{\text {CCA }}-2.1 \mathrm{~V}$, Other input at $\mathrm{V}_{\mathrm{cCA}}$ at GND
	$\overline{\Delta \mathrm{l}_{\text {ССв }}}$	5.5	3.6	-	0.5		B port , One input at $\mathrm{V}_{\mathrm{CCB}}-0.6 \mathrm{~V}$, Other input at $\mathrm{V}_{\text {cCAB }}$ or GND Control input at GND

Notes: For condition shown as Min or Max use the appropriate values under recommended operating conditions.

1. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

Capacitance

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol $\mathrm{V}_{\mathrm{CCA}}(\mathrm{V})$	$\mathbf{V}_{\mathrm{CCB}}(\mathrm{V})$	Min	Typ	Max	Unit	Test Conditions	
Control Input capacitance	$\mathrm{C}_{\mathbb{N}}$	5	3.3	-	5	-	pF	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCA}}$ or GND
Input / output capacitance	$\mathrm{C}_{1 \circ}$	5	3.3	-	11	-	pF	A port, $\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND, B port, $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CCB}}$ or GND

Switching Characteristics

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

- $\mathrm{V}_{\mathrm{CCA}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.7$ to 3.6 V

Item	Symbol Min		Typ	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	$\mathrm{t}_{\mathrm{PLH}}$	1	-	7	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	A	B
	$\mathrm{t}_{\text {PHL }}$	1	-	7				
	$\mathrm{t}_{\mathrm{PLH}}$	1	-	5.3			B	A
	$\mathrm{t}_{\text {PHL }}$	1	-	6.2				
Output enable time	$\underline{t_{\text {zH }}}$	1	-	8	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{\mathrm{OE}}$	A
	$\mathrm{t}_{\text {z }}$	1	-	9				
	$\mathrm{t}_{\text {zH }}$	1	-	10.2			$\overline{\overline{O E}}$	B
	t_{zL}	1	-	10				
Output disable time	t_{Hz}	1	-	5.2	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\overline{\mathrm{OE}}$	A
	$t_{\text {tz }}$	1	-	5.2		$\mathrm{R}_{\mathrm{L}}=500 \Omega$		
	t_{Hz}	1	-	7.4			$\overline{\overline{O E}}$	B
	t_{12}	1	-	5.4				

Switching Characteristics (cont)

$\left(\mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

- $\mathrm{V}_{\mathrm{CCA}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol Min		Typ	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	1	-	6	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	A	B
	$\mathrm{t}_{\text {PHL }}$	1	-	7.1				
	$\mathrm{t}_{\text {PLH }}$	1	-	6.1			B	A
	$\mathrm{t}_{\text {PHL }}$	1	-	6.8				
Output enable time	$\mathrm{t}_{\text {LH }}$	1	-	8.3	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\overline{\mathrm{OE}}$	A
	$\underline{t_{z L}}$	1	-	9				
	$\mathrm{t}_{\text {zH }}$	1	-	8.1			$\overline{\overline{O E}}$	B
	t_{zL}	1	-	8.2				
Output disable time	t_{Hz}	1	-	4.9	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\overline{\mathrm{OE}}$	A
	t	1	-	4.7		$\mathrm{R}_{\mathrm{L}}=500 \Omega$		
	t_{Hz}	1	-	6.3			$\overline{\overline{O E}}$	B
	t_{12}	1	-	5.4				

Operating Characteristics

Item	Symbol $\mathbf{V}_{\text {cCA }}(\mathbf{V})$	$\mathbf{V}_{\text {ccB }}(\mathbf{V})$	Min	Typ	Max	Unit	Test Conditions	
Power dissipation capacitance	C_{PD}	5.0	3.0	-	20	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{L}}=0$								

Power-up considerations

Level-translation devices offer an opportunity for successful mixed-voltage signal design.
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins.

Take these precautions to guard against such power-up problems.

1. Connect ground before any supply voltage is applied.
2. Next, power up the control side of the device.
(Power up of $\mathrm{V}_{\mathrm{CCA}}$ is first. Next power up is $\mathrm{V}_{\mathrm{CCB}}$.)
3. Tie $\overline{\mathrm{OE}}$ to $\mathrm{V}_{\mathrm{CCA}}$ with a pullup resistor so that it ramps with $\mathrm{V}_{\mathrm{CCA}}$.
4. Depending on the direction of the data path, DIR can be high or low.

If DIR high is needed (A data to B bus), ramp it with $\mathrm{V}_{\mathrm{CCA}}$. Overwise, keep DIR low.

Test Circuit

Load circuit for outputs

Symbol	S1			
	$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=5 \pm 0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=2.7 \text { to } 3.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=5 \pm 0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCB}}=5 \pm 0.5 \mathrm{~V} \end{aligned}$	
	A/OE to B	$B / \overline{O E}$ to A	A/OE to B	$B / \overline{O E}$ to A
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	OPEN	OPEN	OPEN	OPEN
$\mathrm{t}_{\mathrm{ZH}} / \mathrm{t}_{\mathrm{HZ}}$	GND	GND	GND	GND
$\mathrm{t}_{\mathrm{ZL}} / \mathrm{t}_{\mathrm{LZ}}$	6 V	$2 \times \mathrm{V}_{\text {CCA }}$	$2 \times \mathrm{V}_{\text {CCB }}$	$2 \times \mathrm{V}_{\text {CCA }}$

Note: 1. C_{L} includes probe and jig capacitance.

Waveforms - 1

Waveforms - 2

Symbol	$\mathrm{V}_{\mathrm{CCA}}=5 \pm 0.5 \mathrm{~V}$		$\mathrm{~V}_{\mathrm{CCA}}=5 \pm 0.5 \mathrm{~V}$	
	$\mathrm{~V}_{\mathrm{CCB}}=2.7$ to 3.6 V	$\mathrm{~V}_{\mathrm{CCB}}=5 \pm 0.5 \mathrm{~V}$		
	$\overline{\mathrm{OE}}$ to B	$\overline{\mathrm{OE}}$ to A	$\overline{\mathrm{OE}}$ to B	$\overline{\mathrm{OE}}$ to A
V_{IH}	3.0 V	3.0 V	3.0 V	3.0 V
Vref1	1.5 V	1.5 V	1.5 V	1.5 V
Vref2	1.5 V	$1 / 2 \mathrm{~V}_{\mathrm{CCA}}$	$1 / 2 \mathrm{~V}_{\mathrm{CCB}}$	$1 / 2 \mathrm{~V}_{\mathrm{CCA}}$

Notes: 1. All input pulses are supplied by generators having the following characteristics : PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
2. Waveform - A is for an output with internal conditions such that the output is low except when disabled by the output control.
3. Waveform - B is for an output with internal conditions such that the output is high except when disabled by the output control.
4. The output are measured one at a time with one transition per measurement.

Package Dimensions

Disclaimer

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

HITACHI

Hitachi, Ltd.
Semiconductor \& Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL http://www.hitachisemiconductor.com/

For further information write to:

