Glass/Ceramic Numeric and Hexadecimal Displays for Industrial Applications

Technical Data

Features

- Three Character Options

Numeric, Hexadecimal, Over Range

- Three Colors

High Efficiency Red, Yellow, High Performance Green

- 4x 7 Dot Matrix Character
- High Efficiency Red, Yellow and High Performance Green
- Two High Efficiency Red Options
Low Power, High Brightness
- Performance Guaranteed Over Temperature
- High Temperature Stabilized
- Memory Latch/Decoder/ Driver
TTL Compatible
- Categorized for Luminous Intensity

Description

These standard solid state displays have a $7.4 \mathrm{~mm}(0.29 \mathrm{inch})$ dot matrix character and an on-board IC with data memory latch/ decoder and LED drivers in a glass/ceramic package.

The hermetic HDSP-078x,-079x/ -088x displays utilize a solder glass frit seal. The HDSP-098X displays utilize an epoxy glass-toceramic seal.

The numeric devices decode positive BCD logic into characters " $0-9$," a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode

HDSP-078x
HDSP-079x
HDSP-088x HDSP-098x

positive BCD logic into 16 characters, "0-9, A-F." An input is provided on the hexadecimal devices to blank the display (all LEDS off) without losing the contents of the memory.

The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Devices

Part Number HDSP-	Color	Description	Front View
0781	High-Efficiency Red	Numeric, Right Hand DP	A
0782	Low Power	Numeric, Left Hand DP	B
0783		Over Range ± 1	C
0784		Hexadecimal	D
0791		Numeric, Right Hand DP	A
0792	High-Efficiency Red	Numeric, Left Hand DP	B
0793	High Brightness	Over Range ± 1	C
0794		Hexadecimal	D
0881		Numeric, Right Hand DP	A
0882	Yellow	Numeric, Left Hand DP	B
0883		Over Range ± 1	C
0884		Hexadecimal	D
0981		Numeric, Right Hand DP	A
0982	High-Performance Green	Numeric, Left Hand DP	B
0983		Over Range ± 1	C
0984		Hexadecimal	D

Package Dimensions

Figure 1. Timing Diagram.

TRUTH TABLE					
BCD DATA ${ }^{[1]}$				NUMERIC	HEXA. DECIMAL
X_{8}	X_{4}	x_{2}	X_{1}		
L	L	L	L		"
L	L	L	H	¢	\vdots
L	L	H	L	$\begin{aligned} & \because \\ & \because . \\ & \hline \end{aligned}$	$\begin{aligned} & \cdots \\ & \because \\ & \because \\ & \hline \end{aligned}$
L	L	H	H	? \because	\cdots
L	H	L	L	!	\cdots
L	H	L	H	\cdots	\ldots
L	H	H	L	-	\cdots
L	H	H	H	$\stackrel{\cdots}{\square}$	$\stackrel{\square}{\vdots}$
H	L	L	L	\because	\because
H	L	L	H	\because	?
H	L	H	L	\%	\%
H	L	H	H	(BLANK)	"
H	H	L	L	(BLANK)	\cdots
H	H	L	H	\cdots	\cdots
H	H	H	L	(BLANK)	!...
H	H	H	H	(BLANK)	\cdots
DECIMALPT. ${ }^{\text {2] }}$			ON		$V_{D P}=L$
			OFF		$V_{D P}=H$
ENABLE ${ }^{(1)}$			LOAD DATA		$V_{E}=\mathrm{L}$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{[3]}$			DISPLAY-ON		$V_{B}=L$
			DISPLAY OFF		$V_{B}=H$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP.
2. The decimal point input, DP, pertains only to the numeric displays.
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.
Figure 2. Block Diagram.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient HDSP-078x/-079x/-088x	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
HDSP-098x		-55	+100	
Operating Temperature, Ambient ${ }^{[1]}$	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Supply Voltage ${ }^{[2]}$	V_{CC}	-0.5	+7.0	V
Voltage Applied to Input Logic, dp and Enable Pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	V_{CC}	V
Voltage Applied to Blanking Input ${ }^{[2]}$	V_{R}	-0.5	V_{CC}	V
Maximum Solder Temperature at 1.59 mm (0.062 inch) Below Seating Plane; $\mathrm{t} \leq 5$ Seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ${ }^{[2]}$	V_{CC}	4.5	5.0	5.5	V
Operating Temperature, Ambient ${ }^{[1]}$	T_{A}	-55		+100	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{W}	100			nsec
Time Data Must Be Held Before Positive Transition of Enable Line	$\mathrm{t}_{\text {SETUP }}$	50			nsec
Time Data Must Be Held After Positive Transition of Enable Line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable Pulse Rise Time	$\mathrm{t}_{\text {TLL }}$			1.0	msec

Optical Characterstics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-078x Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	I_{V}	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm
	Dominant Wavelength ${ }^{[5]}$	$\lambda_{\text {d }}$		626		nm
HDSP-079x Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	I_{V}	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm
	Dominant Wavelength ${ }^{[5]}$	$\lambda_{\text {d }}$		626		nm
HDSP-088x Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	I_{V}	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm
	Dominant Wavelength ${ }^{[5,6]}$	$\lambda_{\text {d }}$		585		nm
HDSP-098x Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	I_{V}	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		568		nm
	Dominant Wavelength	$\lambda_{\text {d }}$		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is
$\mathrm{R} \theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W} /$ device. The device package thermal resistance is $\mathrm{R} \theta_{\mathrm{J} \text {-PIN }}=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-toambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{[7]}$	Max.	Unit
Supply \quad HDSP-078x Series	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Characters " 5 ." or "B" displayed		78	105	mA
CurrentHDSP-079x/-088x/ $-098 x$ Series				120	175	
Power HDSP-078x Series	P_{T}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Characters " 5 ." or "B" displayed		390	573	mW
Dissipation $\begin{array}{ll}\text { HDSP-079x/-088x/ } \\ & -098 x \text { Series }\end{array}$				690	963	
Logic, Enable and Blanking Low-Level Input Voltage	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			0.8	V
Logic, Enable High-Level Input Voltage	V_{IH}		2.0			V
Blanking High-Voltage; Display Blanked	V_{BH}		2.3			V
Logic and Enable Low-Level Input Current	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			-1.6	mA
Blanking Low-Level Input Current	$\mathrm{I}_{\text {BL }}$	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Logic, Enable and Blanking High-Level Input Current	I_{IH}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V} \end{aligned}$			+40	$\mu \mathrm{A}$
Weight				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes:
4. The luminous intensity at a specific operating ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be approximated from the following exponential equation: $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[\mathrm{k}\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)\right]}$.

Device	\mathbf{K}
HDSP-078 Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
HDSP-079x Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
HDSP-088x Series	$-0.0104 /{ }^{\circ} \mathrm{C}$
HDSP-098x Series	

5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category designated by a number on the back of the display package.
7 . All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Operational Considerations

Electrical

These devices use a modified 4×7 dot matrix of light emitting diodes to display decimal/ hexadecimal numeric information. The high efficiency red and yellow displays use GaAsP/GaP LEDs and the high performance green displays use GaP/GaP LEDs. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable
line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the on-board IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

The ESD susceptibility of the IC devices is Class A of MIL-STD883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

Mechanical

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$.

These displays may be mounted by soldering directly to a printed circuit board or insertion into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat

508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a base-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED
Components.

Absolute Maximum Ratings

Description	Symbol	Min	Max	Unit
Storage Temperature, Ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating Temperature, Ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	I_{F}		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Preconditioning

These displays are 100\% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$, at $100^{\circ} \mathrm{C}$ for the HDSP098x Series.

Contrast Enhancement

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. For further information on contrast enhancement, see Application Note 1015, Contrast Enhancement for LED Displays.

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

1. Dimensions in millimetres and (inches).

Character	Pin			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

0: Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated. X: ‘don't care.'

Figure 3. Typical Driving Circuit.

Luminous Intensity per LED

(Digit Average) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Test Conditions	Min.	Typ.	Units
HDSP-0783	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$	65	140	$\mu \mathrm{~cd}$
	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		620	$\mu \mathrm{~cd}$
HDSP-0883	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{~cd}$
HDSP-0983	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{~cd}$

Recommended Operating Conditions

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

		Forward	Resistor Value		
Device		Current Per LED, $\mathbf{~ m A}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$
HDSP-0783	Low Power	2.8	1300	200	300
	High Brightness	8	360	47	68
HDSP-0883	8	360	36	56	
HDSP-0983	8	360	30	43	

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Device	Description	Symbol	Test Conditions	Min	Typ	Max	Unit
HDSP-0783	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

Intensity Bin Limits for HDSP-078x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
A	0.065	0.102	Luminous Intensity per LED. $\mathrm{V}_{\mathrm{DD}} @ 5.0 \mathrm{~V}$
B	0.085	0.138	
C	0.114	0.200	
D	0.165	0.300	
E	0.260	0.488	
F	0.403	0.756	
G	0.625	1.172	

Intensity Bin Limits for HDSP-079x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
E	0.260	0.488	Luminous
F	0.403	0.756	Intensity
G	0.625	1.172	per LED.
H	0.969	1.820	V $_{\text {DD }}$ @ 5.0 V

Intensity Bin Limits for HDSP-088x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
A	0.22	0.34	Luminous Intensity per LED. VD @ 5.0 V
B	0.28	0.46	
C	0.38	0.66	
D	0.55	0.99	
E	0.82	1.54	
F	1.27	2.39	

Intensity Bin Limits for HDSP-098x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
C	0.30	0.52	Luminous
D	0.43	0.79	
E	0.65	1.18	per LED. F
F	0.97	1.76	V $_{\text {DD }}$ @ 5.0 V
G	1.45	2.63	

Color Bin Limits (Dominant Wavelength)

Color	Bin	Intensity Range (nm)	
		Max.	
	1	581.50	585.00
	2	584.00	587.50
	3	586.50	590.00
Green	1	570.00	574.00
	2	573.00	577.00
	3	576.00	580.00

Note:
Bin categories are established for classification of products. Products may not be available in all bin categories. Please consult your local Agilent Technologies representative.

