262,144-Word x 4-Bit Multiport CMOS Video RAM

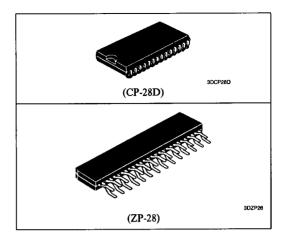
DESCRIPTION

The HM534252 is a 1-Mbit multiport video RAM equipped with a 256k-word x 4-bit dynamic RAM and a 512-word x 4-bit SAM (serial access memory).

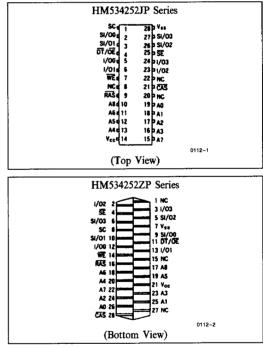
Its RAM and SAM operate independently and asynchronously. It can transfer data between RAM and SAM and has a write mask function.

It also provides logic operation mode to simplify its operation. In this mode, logic operation between memory data and input data can be executed by using internal logic-arithmetic unit.

FEATURES

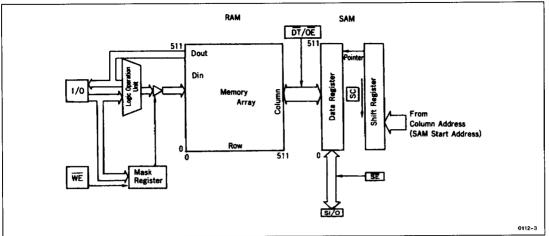

Multiport Organization

- Multipolit Organization
Asynchronous and Simultaneous Operation of RAM
and SAM Capability
RAM256k-word x 4-bit
SAM
Access Time
RAM
SAM
Cycle Time
RAM
SAM
Low Power
Active
RAM
SAM
Standby


- High-speed Page Mode Capability
- Logic Operation Mode Capability
- · 2 Types of Mask Write Mode Capability
- Bidirectional Data Transfer Cycle between RAM and SAM Capability
- · Real Time Read Transfer Capability
- 3 Variations of Refresh (8 ms/512 Cycles) RAS Only Refresh CAS Before RAS Refresh Hidden Refresh
- TTL Compatible

■ PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₈	Address Inputs
I/O ₀ -I/O ₃	RAM Port Data Inputs/Outputs
SI/O ₀ -SI/O ₃	SAM Port Data Inputs/Outputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
DT/OE	Data Transfer/Output Enable
SC	Serial Clock
SE	SAM Port Enable
V _{CC}	Power Supply
V _{SS}	Ground
NC	No Connection


PIN OUT

ORDERING INFORMATION

Part No.	Access Time	Package
HM534252JP-10	100 ns	400 mil
HM534252JP-11	100 ns	28-pin
HM534252JP-12	120 ns	Plastic SOJ
HM534252JP-15	150 ns	(CP-28D)
HM534252ZP-10	100 ns	400 mil
HM534252ZP-11	100 ns	28-pin
HM534252ZP-12	120 ns	Plastic ZIP
HM534252ZP-15	150 ns	(ZP-28)

BLOCK DIAGRAM

PIN FUNCTION

RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of those signals determine the operation of the HM534252.

1	Input Level Falling Edge		Operation Cycle	
CAS	DT/OE	WE	SE	
Н	Н	Н	х	RAM Read/Write
Н	Н	L	х	Mask Write
Н	L	Н	X	Read Transfer
Н	L	L	Н	Pseudo Transfer
Н	L	L	L	Write Transfer
L	X	Н	X	CBR Refresh
L	x	L	x	Logic Operation Set/Reset

• Table 1. Operation Cycles of the HM534252

Note: X; Don't care.

CAS (input pin): Column address is put into chip at the falling edge of CAS. CAS controls output impedance of I/O in RAM.

 A_0-A_8 (input pins): Row address is determined by A_0-A_8 level at the falling edge of RAS. Column address is determined by A_0-A_8 level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM534252 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a normal write cycle is executed. After that, WE switches read/ write cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM).

 $I/O_0-I/O_3$ (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only on high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM.

 $\overline{\text{DT}}/\overline{\text{OE}}$ (input pin): $\overline{\text{DT}}/\overline{\text{OE}}$ pin functions as $\overline{\text{DT}}$ (data transfer) pin at the falling edge of $\overline{\text{RAS}}$ and as $\overline{\text{OE}}$ (output enable) pin after that. When $\overline{\text{DT}}$ is low at the falling edge of $\overline{\text{RAS}}$, this cycle becomes a transfer cycle. When $\overline{\text{DT}}$ is high at the falling edge of $\overline{\text{RAS}}$, RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is put into the SAM data register.

SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not put into the SAM data register in a serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC.

 $SI/O_0-SI/O_3$ (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a pseudo transfer cycle or write transfer cycle, SI/O inputs data.

OPERATION OF HM534252

Operation of RAM Port

RAM Read Cycle ($\overline{DT}/\overline{OE}$ high, \overline{CAS} high, at the falling edge of \overline{RAS})

Row address is entered at the \overline{RAS} falling edge and column address at the \overline{CAS} falling edge to the device as in standard DRAM. Then when \overline{WE} is high and $\overline{DT}/\overline{OE}$ is low while \overline{CAS} is low, the selected address data outputs through I/O pin. At the falling edge of RAS, $\overline{DT}/\overline{OE}$ and \overline{CAS} become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (t_{AA}) and \overline{RAS} to column address delay time (t_{RAD}) specifications are added to enable high-speed page mode.

RAM Write Cycle (Early Write, Delayed Write, Read-

Modify-Write) (DT/OE high, CAS high at the falling edge of RAS)

• Normal Mode Write Cycle (WE high at the falling edge of $\overline{\text{RAS}})$

When \overrightarrow{CAS} and \overrightarrow{WE} are set low after \overrightarrow{RAS} is set low, a write cycle is executed and I/O data is written at the selected addresses. When all 4 I/Os are written, \overrightarrow{WE} should be high at the falling edge of \overrightarrow{RAS} to distinguish normal mode from mask write mode.

If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and I/O becomes high impedance. Data is entered at the CAS falling edge.

If \overline{WE} is set low after the \overline{CAS} falling edge, this cycle becomes a delayed write cycle. Data is input at the \overline{WE} falling edge. I/O does not become high impedance in this cycle, so data should be entered with \overline{OE} in high.

If \overline{WE} is set low after t_{CWD} (min) and t_{AWD} (min) after the \overline{CAS} falling edge, this cycle becomes a read-modify-write cycle and enables write after read to execute in the same address cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and setting \overline{OE} high.

Mask Write Mode (WE low at the falling edge of RAS)

If WE is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected I/O. Whether or not an I/O is written depends on I/O level (mask data) at the falling edge of RAS. Then the data is written in high I/O pins and masked in low ones and internal data is preserved. This mask data is effective during the RAS cycle, So, in high-speed page mode cycle, the mask data is preserved during the page access.

High-Speed Page Mode Cycle (DT/OE high, CAS high at the falling edge of RAS)

High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling \overline{CAS} while \overline{RAS} is low. Its cycle time is one third of the random read/write cycle and is higher than the standard page mode cycle by 70–80%. This product is based on static column mode, therefore address access time (t_{AA}), \overline{RAS} to column address delay time (t_{RAD}), and access time from \overline{CAS} precharge (t_{ACP}) are addred. In one \overline{RAS} cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within t_{RAS} max (10 μ s).

Transfer Operation

The HM534252 provides the transfer cycle, pseudo transfer cycle, and write transfer cycle as data transfer cycles. These transfer cycles are set by driving $\overline{\text{DT}}/\overline{\text{OE}}$ low at the falling edge of $\overline{\text{RAS}}$.

They have following functions:

- (1) Transfer data between row address and SAM data register (except for pseudo transfer cycle)
- (2) Determine direction of data transfer
 (a) Read transfer cycle:RAM → SAM
 (b) Write transfer cycle:RAM ← SAM
- (3) Determine input or output of SAM I/O pin (SI/O) Read transfer cycle: SI/O output Pseudo transfer cycle, write transfer cycle: SI/O input
- (4) Determine first SAM address to access (SAM start address) after transferring at column address. When SAM start address is not changed, neither CAS nor address need to be set because SAM start address can be latched internally.

Read Transfer Cycle (CAS high, DT/OE low, WE high at the falling edge of RAS)

This cycle becomes read transfer cycle by driving $\overline{DT}/\overline{OE}$ low and \overline{WE} high at the falling edge of \overline{RAS} . The row address data (512 x 4-bit) determined by this cycle is transferred synchronously at the rising edge of $\overline{DT}/\overline{OE}$. After the rising edge of $\overline{DT}/\overline{OE}$, the new address data outputs from SAM start address determined by column address.

This cycle can access SAM serially even during transfer (real time read transfer). In this case, the timing t_{SDD} (min) is specified between the last SAM access before transfer and $\overline{DT}/\overline{OE}$ rising edge, and t_{SDH} (min) between the first SAM access and $\overline{DT}/\overline{OE}$ rising edge (see figure 1).

If read transfer cycle is executed, SI/O becomes output state. When the previous transfer cycle is either pseudo transfer cycle or write transfer cycle and SI/O is in input state, uncertain data outputs after t_{RLZ} (min) after the RAS falling edge. Before that, input should be set high impedance to avoid data contention.

Pseudo Transfer Cycle (CAS high, DT/OE low, WE low, and SE high at the falling edge of RAS)

Pseudo transfer cycle is available for switching SI/O from output state to input state because data in RAM isn't rewritten. This cycle starts when CAS is high DT/OE low, WE low, and SE high, at the falling edge of RAS. The output buffer in SI/O becomes high impedance within t_{SRZ} (max) from the RAS falling edge. Data should be input to SI/O later than t_{SID} (min) to avoid data contention. SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC should not be raised.

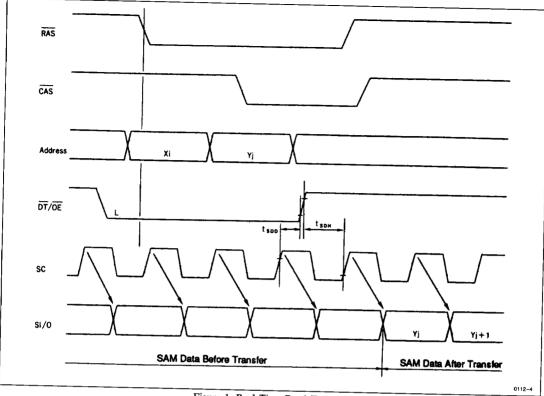


Figure 1. Real Time Read Transfer

Write Transfer Cycle (\overline{CAS} high, $\overline{DT}/\overline{OE}$ low, \overline{WE} low, and \overline{SE} low at the falling edge of \overline{RAS})

Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of \overline{RAS} . The column address is specified as the first

address is specified as the first address is specified as the first address to serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after t_{SRD} (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC should not be raised.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SI/O. If SE is set high SI/O becomes high impedance and internal pointer is incremented at the SC rising edge.

Serial Write Cycle

If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is programmed into data register at the SC rising edge like in the serial read cycle. If SE is high, SI/O data isn't input into data register. Internal pointer is incremented according to the SC rising edge, so SE high can mask data for SAM.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is performed by accessing all 512 row addresses every 8 ms. There are three refresh cycles: (1) RAS only refresh cycle, (2) CAS before RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required for accessing all row addresses every 8 ms.

RAS Only Refresh Cycle: RAS only refresh cycle is performed by activating only RAS cycle with CAS fixed to high by inputting the row address (= refresh address) from external circuits. In this cycle, output is high-impedance and power dissipation is less than that of normal read/write cycles because CAS internal circuits don't operate. To distinguish this cycle from data transfer cycle, DT/OE should be high at the falling edge of RAS.

CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address does not need to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered like in RAS only refresh cycles because CAS circuits don't operate. To distinguish this cycle from logic operation set/reset cycle, WE should be high at the falling edge of RAS.

Hidden Refresh Cycle: Hidden refresh cycle performs refresh by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift register, selector), organized as fully static circuitry, don't require refresh.

Logic Operation Mode

The HM534252 supports logic operation capability on RAM port. It performs logic operations between the memory cell data and input data in logic operation mode cycle, and writes the result into the memory cell (read modify write). This function realizes high speed raster operations and simplifies peripheral circuits for raster operations.

Logic Operation Set/Reset Cycle (CAS and \overline{WE} Low at the falling edge of \overline{RAS})

In logic operation set/reset cycle, the following operations are performed at the same time; (1) Selection of logic operations and logic operation mode set/reset, (2) Mask data programming, (3) CAS before RAS refresh.

Figure 2 shows the timing for logic operation set/reset cycle. This cycle starts when \overrightarrow{CAS} and \overrightarrow{WE} are low at the falling edge of \overrightarrow{RAS} . In this cycle, logic operation codes and mask data are programmed by row address and I/O pin at the falling edge of \overrightarrow{RAS} respectively. When write cycle is performed after this cycle, the logic operation write cycle

starts. In the logic operation mode, the specification of cycle time is longer than that of normal mode because read-modify-write cycle is performed internally. In this cycle, logic operation codes and mask data programmed are available until reprogrammed. In normal mode, mask data is available only for one RAS cycle. Here, the mask data programmed in normal mode is named as "temporary mask data" and the one programmed in logic operation set/reset cycle is named as "mask data".

(1) Selection of logic operations and logic operation mode set/reset

Table 2 shows the logic operations. One operation is selected among sixteen ones by combinations of A0-A3 levels at the falling edge of \overrightarrow{RAS} . (A4-A8 are Don't care.) Logic operation codes (A3, A2, A1, A0) = (0, 1, 0, 1) resets the logic operation mode. When write cycle is performed after than, normal write cycle starts. However, even in this case, mask data is still available. I/O should be at high level at the falling edge of \overrightarrow{RAS} in logic operation set/reset cycle when mask data is not used.

(2) Mask data programming

High/low level of I/O at the falling edge of RAS functions as mask data. When I/O is high, the data is written in write cycle. When I/O is low, the input data is masked and the same memory cell data remains. Mask data, programmed in this cycle, is available until reprogrammed. It is advantageous when the same mask data continues.

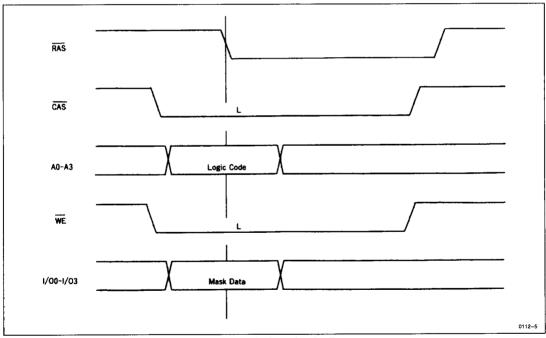


Figure 2. Logic Operation Set/Reset

• Table 2. Logic Code

Note	Write Data	Symbol				
	White Data	Symbol	A0	A1	A2	A3
	0	Zero	0	0	0	0
	Di • Mi	ANDI	1	0	0	0
Logic Operation Mode Set	<mark>Di</mark> ● Mi	AND2	0	1	0	0
	Mi		1	1	0	0
	Di ● Mi	AND3	0	0	1	0
Logic Operation Mode Reset	Di	THROUGH	1	0	1	0
	$\overline{\mathrm{Di}} \bullet \mathrm{Mi} + \mathrm{Di} \bullet \overline{\mathrm{Mi}}$	EOR	0	1	1	0
	Di • Mi	OR1	1	1	1	0
	Di ● Mi	NOR	0	0	0	1
	$Di \bullet Mi + \overline{Di} \bullet \overline{Mi}$	ENOR	1	0	0	1
Logic Operation Mode Set	Di	INV1	0	1	0	1
Logic Operation Mode Set	Di + Mi	OR2	1	1	0	1
	Mi	INV2	0	0	1	1
	Di + Mi	OR3	1	0	1	1
	$\overline{\mathrm{Di}}$ + $\overline{\mathrm{Mi}}$	NAND	0	1	1	1
	1	One	1	1	1	1

Notes: Di; External data-in

Mi; The data of the memory cell

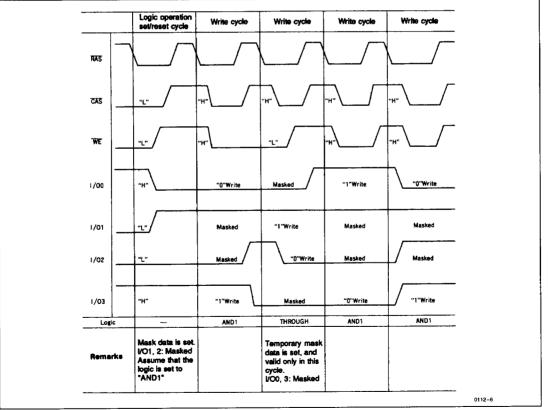


Figure 3. 2 Types of Mask Write Function and Logic Operation Function

Also, temporary mask data is programmed by falling WE at the falling edge of RAS in logic operation mode cycle after mask data is programmed in logic operation set/reset cycle. In this case, temporary mask data is available only for one cycle.

Logic operation is reset during temporary mask write cycle. It means that external input data is written into I/O when temporary mask data is set. Figure 4 shows write mask and logic operations. These functions are useful when RAM port is divided into frame buffer area and data area, as they save the need to reprogram logic operation codes and mask data.

Write Cycle in Logic Operation Mode (Early Write, Delayed Write, Page Mode)

Write cycle after logic operation set cycle is logic operation mode cycle. In this cycle, the following read-modify-write operation is performed internally.

- (1) Reading memory data in given address into internal bus.
- (2) Performing operation between input data and memory data.
- (3) Writing the result of (2) into address given by (1).

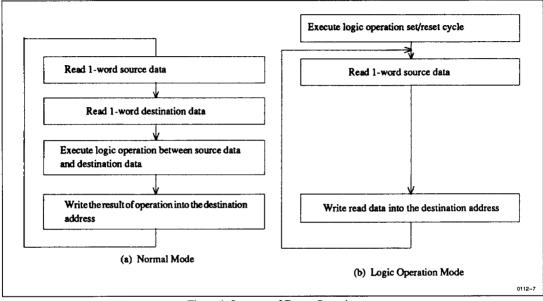


Figure 4. Sequence of Raster Operation

Figure 4 shows sequence of raster operation. Raster operation which needs 3 cycles (destination read, operation, destination write) in normal mode can be executed in one write cycle of logic operation mode. It makes raster operation faster and simplifies peripheral hardware for raster operation.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	Note
Terminal Voltage	v _T	- 1.0 to + 7.0	v	1
Power Supply Voltage	V _{CC}	-0.5 to $+7.0$	v	1
Power Dissipation	PT	1.0	w	
Operating Temperature	T _{opr}	0 to + 70	°C	
Storage Temperature	T _{stg}	- 55 to + 125	°C	

Note: 1. Relative to V_{SS} .

ELECTRICAL CHARACTERISTICS

• Recommended DC Operating Conditions (T_A = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	v _{cc}	4.5	5.0	5.5	v	1
Input High Voltage	V _{IH}	2.4	-	6.5	v	1
Input Low Voltage	v _{IL}	- 0.5	-	0.8	v	1, 2

Notes: 1. All voltages referenced to V_{SS}.

2. -3.0V for pulse width ≤ 10 ns.

ФНІТАСНІ

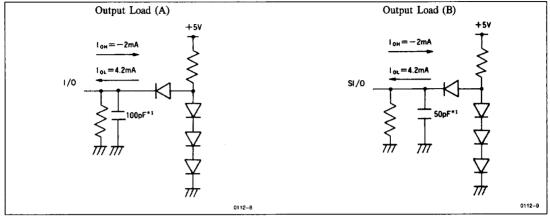
• DC Characteristics (T_A = 0 to 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V)

De characte		··A		-, .00				·			· · · · · · · · · · · · · · · · · · ·		<u> </u>
	a	HM534	252-10	HM534	252-11	HM534	252-12	HM534	252-15	Unit	Te	st Conditions	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Umi	RAM Port	SAM Port	
	I _{CC1}	_	70	_	70	—	60	-	55	mA	RAS,	$SC = V_{IL}, \overline{SE} = V_{IH}$	
Operating Current	I _{CC7}		120	_	120		100	_	85	mA	\overline{CAS} Cycling $t_{RC} = Min$	$\overline{SE} = V_{IL}$, SC Cycling $t_{SCC} = Min$	1, 2
	I _{CC2}	—	7	_	7	_	7	_	7	mA	RAS,	$SC = V_{IL}, \overline{SE} = V_{IH}$	
Standby Current	I _{CC8}	1	65		55	_	55	—	40	mA	$\overline{CAS} = V_{IH}$	$t_{SCC} = Min$	
RAS Only	I _{CC3}	-	70	—	70	-	60	_	55	mA	RAS Cycling	$SC = V_{IL}, \overline{SE} = V_{IH}$	
Refresh Current	I _{CC9}		120	_	120	-	100		85	mA	$t_{RC} = Min$	$\overline{SE} = V_{IL}, SC Cycling t_{SCC} = Min$	
	I _{CC4}		80		80	—	70		60	mA	CAS Cycling	$SC = V_{IL}, \overline{SE} = V_{IH}$	
Page Mode Current	I _{CC10}	-	130	-	130	-	110		90	mA	$RAS = V_{IL}$ $t_{RC} = Min$	$\overline{SE} = V_{IL}, SC Cycling t_{SCC} = Min$	1, 3
	I _{CC5}	-	60	-	60	-	50	-	40	mA		$SC = V_{IL}, \overline{SE} = V_{IH}$	[
CAS Before RAS Refresh Current	I _{CC11}	-	110		110	-	90	_	70	mA	$t_{\rm RC} = Min$	$\overline{SE} = V_{IL}, SC Cycling t_{SCC} = Min$	
	I _{CC6}	_	95	_	95	-	90	_	85	mA	RAS, CAS	$SC = V_{IL}, \overline{SE} = V_{IH}$	
Data Transfer Current	I _{CC12}		135	-	135	-	125		115	mA	Cycling t _{RC} = Min	$\overline{SE} = V_{IL}, SC Cycling t_{SCC} = Min$	2
Input Leakage Current	I _{LI}	- 10	10	- 10	10	- 10	10	- 10	10	μΑ			<u> </u>
Output Leakage Current	ILO	- 10	10	- 10	10	- 10	10	- 10	10	μA			-
Output High Voltage	V _{OH}	2.4	—	2.4	-	2.4		2.4	-	v	$I_{OH} = -2$	mA	
Output Low Voltage	V _{OL}	_	0.4	_	0.4	_	0.4	-	0.4	v	$I_{OL} = 4.2 \text{ m}$	nA	

Notes: 1. I_{CC} depends on output loading condition when the device is selected. I_{CC} max is specified at the output open condition.

2. Address can be changed less than three times while $\overline{RAS} = V_{IL}$.

3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.


• Capacitance (T_A = 25°C, V_{CC} = 5V, f = 1 MHz, Bias: Clock, I/O = V_{CC}, Address = V_{SS})

Parameter	Symbol	Min	Тур	Max	Unit
Address	C _{I1}		_	5	pF
Clock	C ₁₂		_	5	pF
I/O, SI/O	CI/O		_	7	pF

• AC Characteristics (T_A = 0 to +70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V)(1, 11)

Test Conditions

Input Rise and Fall Time	5 ns
Output Load	See figures
Input Timing Reference Levels	0.8V, 2.4V
Output Timing Reference Levels	0.4V, 2.4V

Note: *1. Including scope & jig.

Common Parameter

Parameter	Symbol	HM53	4252-10	HM534	4252-11	HM53	4252-12	HM53	4252-15	Unit	Note
Tarameter	Byinoor	Min	Max	Min	Max	Min	Max	Min	Max	Ome	
Random Read or Write Cycle Time	^t rc	190	_	190	_	220		260	_	ns	
RAS Precharge Time	t _{RP}	80	—	80	—	90		100	—	ns	
RAS Pulse Width	t _{RAS}	100	10000	100	10000	120	10000	150	10000	ns	
CAS Pulse Width	^t CAS	30	10000	30	10000	35	10000	40	10000	ns	
Row Address Setup Time	tASR	0	—	0	-	0	—	0		ns	
Row Address Hold Time	t _{RAH}	15	-	15	—	15	—	20	—	ns	
Column Address Setup Time	tASC	0		0	—	0	—	0		ns	
Column Address Hold Time	^t CAH	20	-	20	_	20	-	25	—	ns	
RAS to CAS Delay Time	t _{RCD}	25	70	25	70	25	85	30	110	ns	5, 6
RAS Hold Time	t _{RSH}	30	—	30	_	35	-	40	—	ns	
CAS Hold Time	t _{CSH}	100	-	100	—	120	—	150		ns	
CAS to RAS Precharge Time	t _{CRP}	10	-	10	—	10	—	10	—	ns	
Transition Time (Rise to Fall)	t _T	3	50	3	50	3	50	3	50	ns	8
Refresh Period	tREF		8	—	8	—	8	—	8	ms	
DT to RAS Setup Time	t _{DTS}	0	_	0	_	0	_	0	—	ns	
DT to RAS Hold Time	^t DTH	15	_	15		15	—	20		ns	
Data-in to OE Delay Time	t _{DZO}	0	-	0	_	0	—	0	—	ns	
Data-in to CAS Delay Time	t _{DZC}	0		0	_	0	_	0	_	ns	

Read Cycle (RAM), Page Mode Read Cycle

		HM534252-10		HM534	252-11	HM534	252-12	HM534252-15		Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max		INOLE
Access Time from RAS	t _{RAC}		100	—	100	_	120	_	150	ns	2, 3
Access Time from CAS	^t CAC	_	30		30	1	35	—	40	ns	3, 5
Access Time from OE	^t OAC	_	30	_	30	-	35	_	40	ns	3
Address Access Time	t _{AA}		45	—	45	-	55		70	ns	3, 6
Output Buffer Turn-off Delay Referenced to \overline{CAS}	^t OFF1	—	25	-	25	_	30		40	ns	7
Output Buffer Turn-off Delay Referenced to \overline{OE}	toff2		25	_	25	—	30	_	40	ns	7
Read Command Setup Time	t _{RCS}	0	_	0	_	0		0	_	ns	
Read Command Hold Time	tRCH	0		0		0	-	0		ns	12
Read Command Hold Time Referenced to RAS	t _{RRH}	10	—	10	_	10	_	10		ns	12
RAS to Column Address Delay Time	t _{RAD}	20	55	20	55	20	65	25	80	ns	5, 6
Page Mode Cycle Time	t _{PC}	55	_	55	_	65		80		ns	
CAS Precharge Time	t _{CP}	10	_	10	—	15	-	20		ns	
Access Time from CAS Precharge	tACP	_	50	_	50		60	-	75	ns	

Write Cycle (RAM), Page Mode Write Cycle

4444		HM534	4252-10	HM534	1252-11	HM534	252-12	HM534	252-15	Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Omt	Note
Write Command Setup Time	twcs	0	-	0		0		0		ns	9
Write Command Hold Time	twch	25	—	25	1	25	_	30		ns	L
Write Command Pulse Width	twp	15	_	15	Ι	20	—	25		ns	
Write Command to RAS Lead Time	t _{RWL}	30	—	30	—	35		40		ns	
Write Command to CAS Lead Time	^t CWL	30		30		35	_	40	_	ns	
Data-in Setup Time	t _{DS}	0	—	0		0		0	_	ns	10
Data-in Hold Time	t _{DH}	25	—	25	_	25	_	30		ns	10
WE to RAS Setup Time	tws	0	-	0	-	0	—	0		ns	
WE to RAS Hold Time	twH	15	_	15	—	15		20		ns	
Mask Data to RAS Setup Time	t _{MS}	0		0	_	0	_	0		ns	
Mask Data to RAS Hold Time	t _{MH}	15		15	—	15		20		ns	
OE Hold Time Referenced	^t оен	10	-	10	-	15		20	—	ns	
Page Mode Cycle Time	tPC	55	-	55	_	65	_	80	-	ns	
CAS Precharge Time	t _{CP}	10	-	10	—	15	—	20	-	ns	

Read-Modify-Write Cycle

D		HM53	4252-10	HM53	4252-11	HM53	4252-12	HM53	4252-15	11-34	N
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Read Modify Write Cycle Time	^t RWC	255		255		295	-	350	_	ns	
RAS Pulse Width	^t RWS	165	10000	165	10000	195	10000	240	10000	ns	
CAS to WE Delay	^t CWD	65	_	65	_	75		90		ns	9
Column Address to WE Delay	tAWD	80	_	80	-	95	-	120		ns	9
OE to Data-in Delay Time	tODD	25		25	-	30	—	40	—	ns	
Access Time from RAS	tRAC	_	100	—	100	—	120		150	ns	2, 3
Access Time from CAS	^t CAC	_	30	—	30	—	35		40	ns	3, 5
Access Time from OE	^t OAC	_	30	—	30	-	35	-	40	ns	3
Address Access Time	t _{AA}	_	45	-	45	-	55	_	70	ns	3, 6
RAS to Column Address Delay	t _{RAD}	20	55	20	55	20	65	25	80	ns	5, 6
Output Buffer Turn-off Delay Referenced to OE	tOFF2	_	25	-	25		30	_	40	ns	
Read Command Setup Time	t _{RCS}	0		0	_	0		0	_	ns	
Write Command to RAS Lead Time	t _{RWL}	30	_	30	-	35	-	40	_	ns	
Write Command to CAS Lead Time	t _{CWL}	30	_	30	_	35	-	40	_	ns	
Write Command Pulse Width	twp	15	_	15	_	20	-	25	_	ns	
Data-in Setup Time	t _{DS}	0		0		0	_	0		ns	10
Data-in Hold Time	t _{DH}	25	_	25		25	-	30	_	ns	10
WE to RAS Setup Time	tws	0		0	_	0		0		ns	
WE to RAS Hold Time	twH	15		15	-	15	_	20		ns	
Mask Data to RAS Setup Time	t _{MS}	0	-	0	_	0	-	0	_	ns	
Mask Data to RAS Hold Time	t _{MH}	15	—	15	-	15	-	20	—	ns	[
\overline{OE} Hold Time Referenced to \overline{WE}	t _{OEH}	10		10		15		20	_	ns	

Refresh Cycle

D	Symbol -	HM53	4252-10	HM53	4252-11	HM534	4252-12	HM53	4252-15	Unit	Note
Parameter		Min	Max	Min	Max	Min	Мах	Min	Max		Note
CAS Setup Time (CAS Before RAS Refresh)	^t CSR	10	-	10	_	10	-	10	-	ns	
CAS Hold Time (CAS Before RAS Refresh)	^t CHR	20	_	20	—	25		30	-	ns	
RAS Precharge to CAS Hold Time	t _{RPC}	10	1	10	—	10	—	10	_	ns	

Transfer Cycle

	HM!		252-10	HM534	252-11	HM534	252-12	HM534	252-15	Unit	Note
Parameter	Symbol	Min	Мах	Min	Max	Min	Max	Min	Max	Umt	Note
WE to RAS Setup Time	tws	0	_	0	_	0	_	0	_	ns	
WE to RAS Hold Time	twH	15	-	15	-	15	-	20		ns	
SE to RAS Setup Time	t _{ES}	0	-	0		0		0		ns	
SE to RAS Hold Time	t _{EH}	15	_	15	-	15	_	20	-	ns	
RAS to SC Delay Time	t _{SRD}	25	—	30	-	30	—	35		ns	
SC to RAS Setup Time	tSRS	30	_	40	—	40	—	45		ns	
DT Hold Time from RAS	^t RDH	80	_	90	_	90	_	110		ns	
DT Hold Time from CAS	t _{CDH}	20		30	—	30	—	45		ns	_
Last SC to DT Delay Time	tSDD	5	_	5	_	5	—	10		ns	
First SC to DT Hold Time	^t SDH	20	_	25	_	25	-	30		ns	
DT to RAS Lead Time	t _{DTL}	50	_	50	—	50	—	50	-	ns	
DT Hold Time Referenced to RAS High	^t DTHH	20		25		25	—	30	_	ns	
DT Precharge Time	t _{DTP}	30	_	35	_	35		40		ns	
Serial Data Input Delay Time from RAS	t _{SID}	50	-	60		60		75	_	ns	
Serial Data Input to RAS Delay Time	t _{SZR}		10	—	10	-	10	_	10	ns	
Serial Output Buffer Turn-off Delay from RAS	tSRZ	10	50	10	60	10	60	10	75	ns	7
RAS to S _{out} (Low-Z) Delay Time	t _{RLZ}	5	-	10		10	-	10		ns	
Serial Clock Cycle Time	tscc	30	-	40	-	40		60		ns	
Serial Clock Cycle Time	t _{SCC2}	40	_	40	_	40	_	60		ns	13
Access Time from SC	tSCA		30	_	40		40		50	ns	4
Serial Data-out Hold Time	t _{SOH}	7		7		7	-	7		ns	4
SC Pulse Width	t _{SC}	10	_	10		10		10		ns	
SC Precharge Width	tSCP	10	_	10	_	10	_	10		ns	
Serial Data-in Setup Time	tSIS	0	_	0	_	0	_	0		ns	
Serial Data-in Hold Time	tSIH	15	-	20		20	-	25		ns	

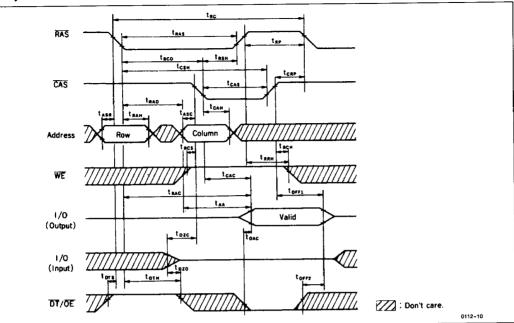
Serial Read Cycle

	Symbol	HM534252-10		HM53	4252-11	HM53	4252-12	HM534	252-15	Unit	Note
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Um	Note
Serial Clock Cycle Time	tscc	30	_	40		40		60	-	ns	
Access Time from SC	tsca	_	30	_	40	—	40		50	ns	4
Access Time from \overline{SE}	tSEA	_	25	_	30		30	-	40	ns	4
Serial Data-out Hold Time	t _{SOH}	7	_	7	-	7	—	7	-	ns	4
SC Pulse Width	t _{SC}	10		10		10	—	10	—	ns	
SC Precharge Width	tSCP	10		10	-	10		10	—	ns	
Serial Output Buffer Turn-off Delay from \overline{SE}	tSEZ		25	-	25	_	25		30	ns	7

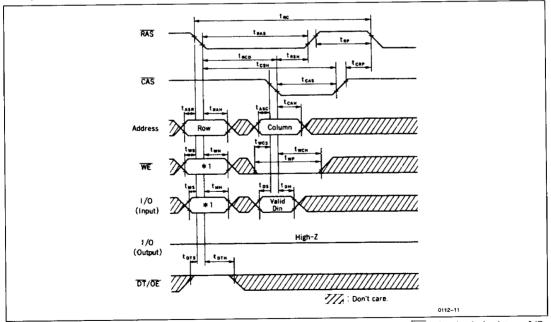
Serial Write Cycle

Parameter	Symbol	HM534252-10		HM53	4252-11	HM53	4252-12	HM53	4252-15		<u> </u>
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Serial Clock Cycle Time	tscc	30	—	40	_	40		60		ns	<u> </u>
SC Pulse Width	tsc	10		10		10		10		ns	
SC Precharge Width	tSCP	10		10	<u> </u>	10		10		ns	<u> </u>
Serial Data-in Setup Time	t _{SIS}	0	_	0		0		0		ns	
Serial Data-in Hold Time	t _{SIH}	15		20	<u> </u>	20		25		ns	
Serial Write Enable Setup Time	t _{SWS}	0		0		0	_	0	_	ns	
Serial Write Enable Hold Time	tSWH	30	_	35		35		50		ns	
Serial Write Disable Setup Time	t _{SWIS}	0	_	0	-	0		0		ns	
Serial Write Disable Hold Time	t _{SWIH}	30	—	35	_	35		50		ns	

Logic Operation Mode

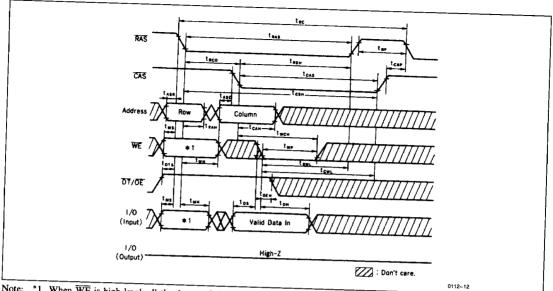

Parameter	Symbol	HM53	HM534252-10 HM534252-11 HM534252-12 HM534252-15		4252-15		1				
	Symoor	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
CAS Hold Time (Logic Operation Set/Reset Cycle)	tFCHR	90	_	90	_	100	-	120	_	ns	
RAS Pulse Width in Write Cycle	t _{RFS}	140	10000	140	10000	165	10000	200	10000	ns	
CAS Pulse Width in Write Cycle	t _{CFS}	60	10000	60	10000	70	10000	80	10000	ns	
CAS Hold Time in Write Cycle	t _{FCSH}	140	_	140		165		200		ns	
RAS Hold Time in Write Cycle	tFRSH	60	-	60		70		80		ns	
Write Cycle Time	tFRC	230		230	_	265		310	_	ns	
Page Mode Cycle Time (Write Cycle)	t _{FPC}	85	_	85	_	100	_	120		ns	

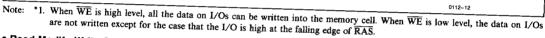
Notes: 1. AC measurements assume $t_T = 5$ ns.


- 2. Assume that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds that value shown.
- 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
- 4. Measured with a load circuit equivalent to 2 TTL loads and 50 pF.
- 5. When $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max), access time is specified by t_{CAC} .
- 6. When $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max), access time is specified by t_{AA} .
- 7. to FF (max) is defined as the time at which the output achieves the open circuit condition ($V_{OH} 200 \text{ mV}$, $V_{OL} + 200 \text{ mV}$).
- 8. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL} .
- 9. When t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle, and L/O pins remain in an open circuit (high impedance) condition. When t_{AWD} ≥ t_{AWD} (min) and t_{CWD} ≥ t_{CWD} (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data output pin and input data is written into the selected address. In this case, impedance on L/O pins is controlled by OE.
- 10. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or readmodify-write cycles.
- 11. After power-up, pause for 100 µs or more and execute at least 8 initialization cycles (normal memory cycles or refresh cycles), then start operation.
- 12. If either t_{RCH} or t_{RRH} is satisfied, operation is guaranteed.
- 13. t_{SCC2} is defined as the last SAM cycle time before read transfer in read transfer cycle (1).

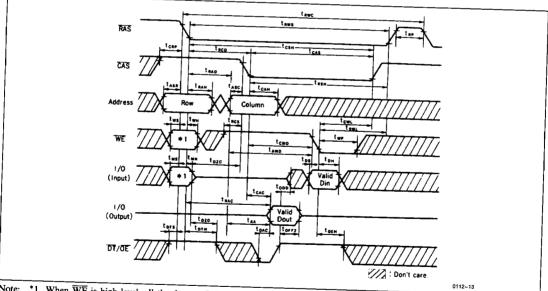
■ TIMING WAVEFORMS

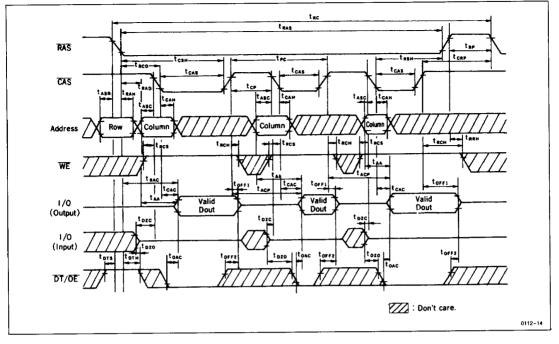
• Read Cycle



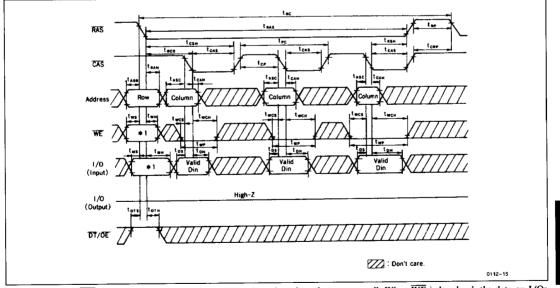

• Early Write Cycle

Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS.


• Delayed Write Cycle

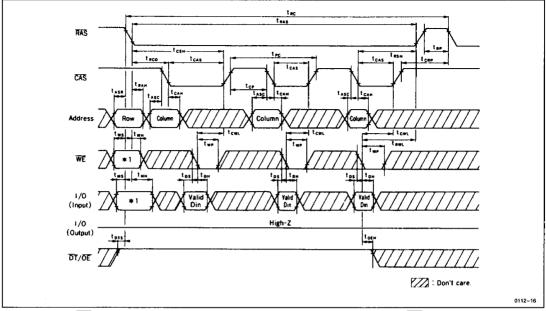

• Read-Modify-Write Cycle

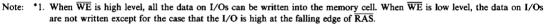
1060

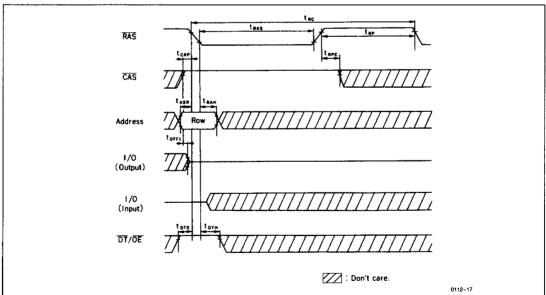


Note: *1. When \overline{WE} is high level, all the data on I/Os can be written into the memory cell. When \overline{WE} is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of \overline{RAS} .

• Page Mode Read Cycle

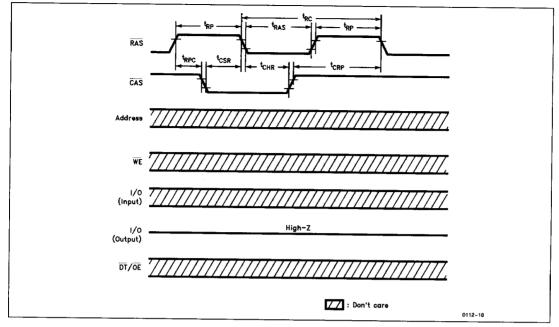


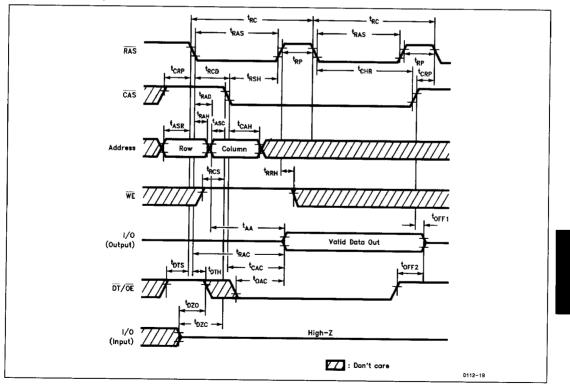

• Page Mode Write Cycle (Early Write)



Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS.

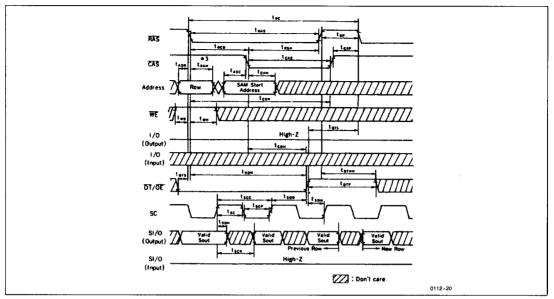
• Page Mode Write Cycle (Delayed Write)



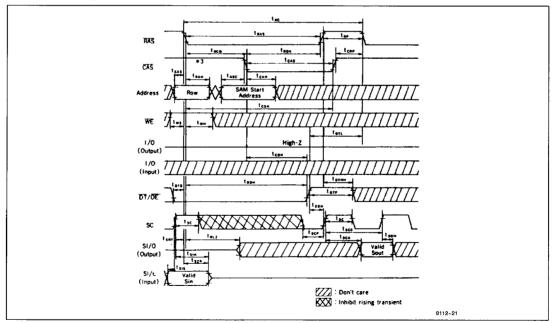


• RAS Only Refresh Cycle

CAS Before RAS Refresh Cycle



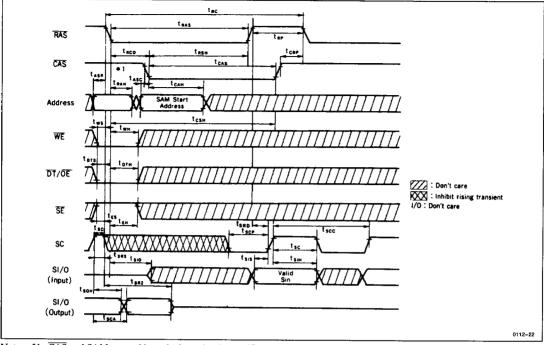
• Hidden Refresh Cycle


• Read Transfer Cycle (1)*1, *2

• Read Transfer Cycle (2)*1, *2

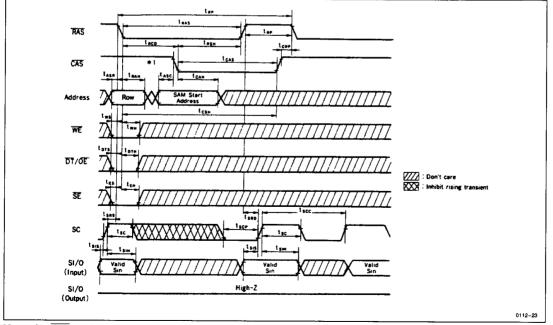
Notes: *1. When the previous data transfer cycle is a read transfer cycle, it is defined as read transfer cycle (1). *2. \overline{SE} is in low level. (When \overline{SE} is high, SI/O becomes high impedance.)

*3. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed.

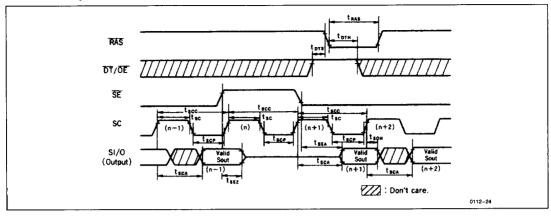

Notes: *1. When the previous data transfer cycle is a write or pseudo transfer cycle, it is defined as read transfer cycle (2).

*2. \overline{SE} is in low level. (When \overline{SE} is high, SI/O becomes high impedance.)

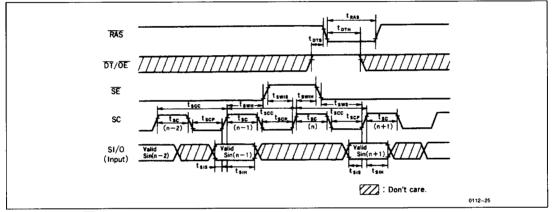
*3. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed.


() HITACHI

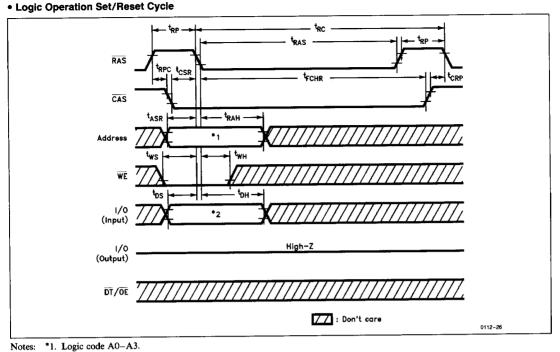
• Pseudo Transfer Cycle


Note: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed.

• Write Transfer Cycle


Note: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed.

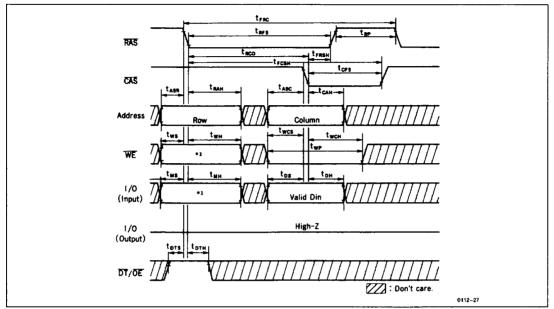
• Serial Read Cycle



• Serial Write Cycle

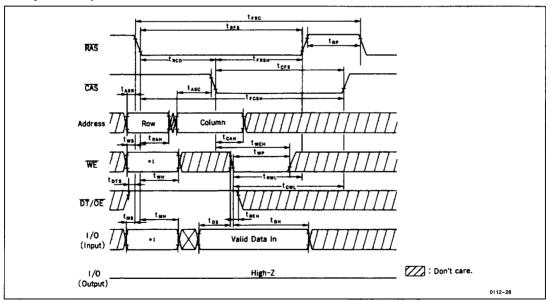
1066

Notes: *1. When SE is high level in a serial write cycle, data is not written into SAM, however, the pointer is incremented. *2. Address 0 is accessed next to address 511.

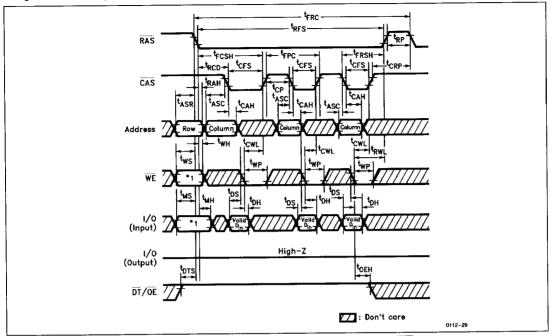


*1. Logic code A0-A3. *2. Write mask data.

OHITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300


■ LOGIC OPERATION MODE TIMING WAVEFORMS

• Early Write Cycle

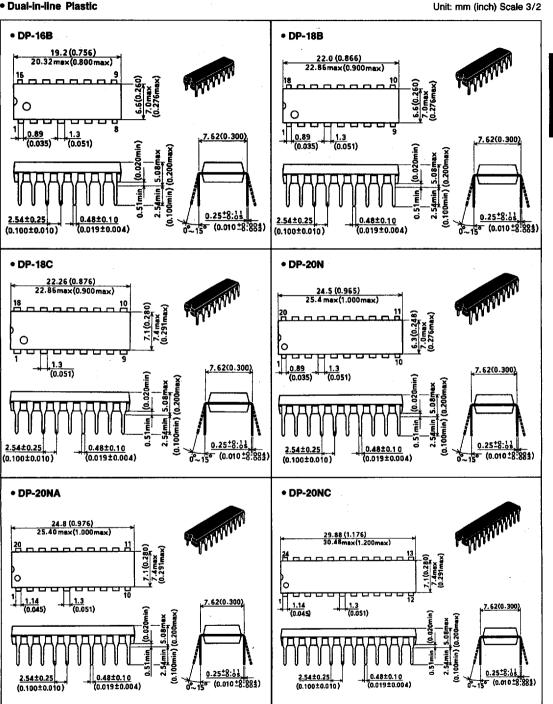

Note: *1. When \overline{WE} is high, all the data on I/Os can be written into the memory cell. When \overline{WE} is low, the data on I/Os are not written except for the case that the I/O is high at the falling edge of \overline{RAS} .

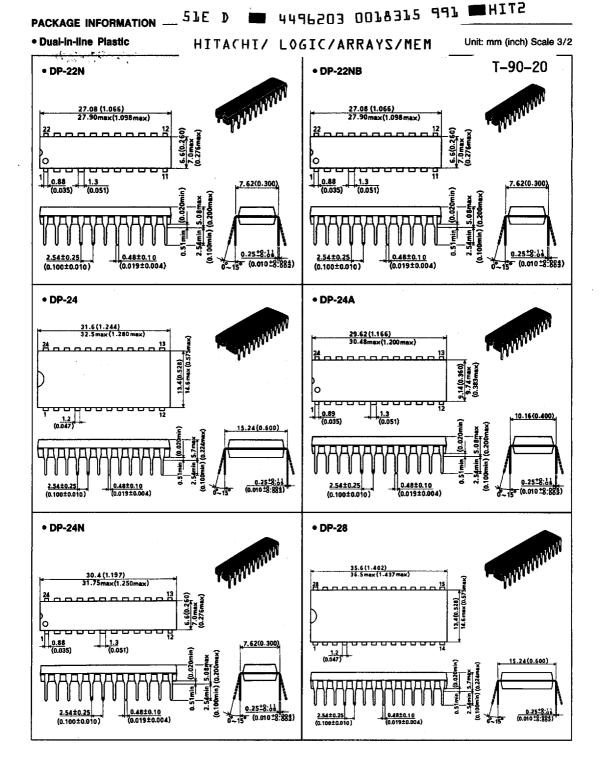
• Delayed Write Cycle

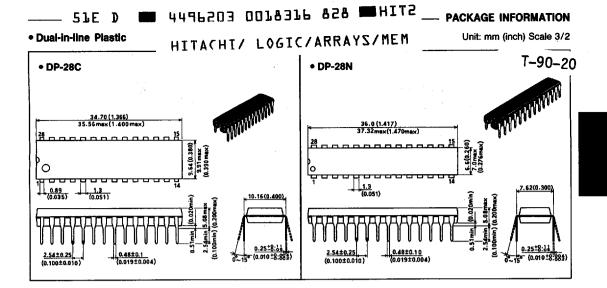
Note: *1. When \overline{WE} is high, all the data on I/Os can be written into the memory cell. When \overline{WE} is low, the data on I/Os are not written except for the case that the I/O is high at the falling edge of \overline{RAS} .

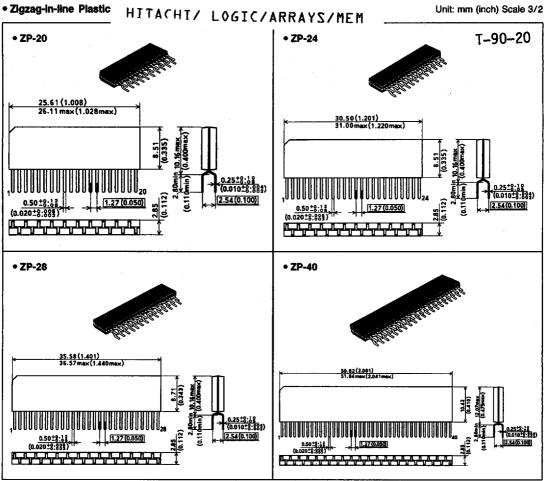
• Page Mode Write Cycle (Delayed Write)

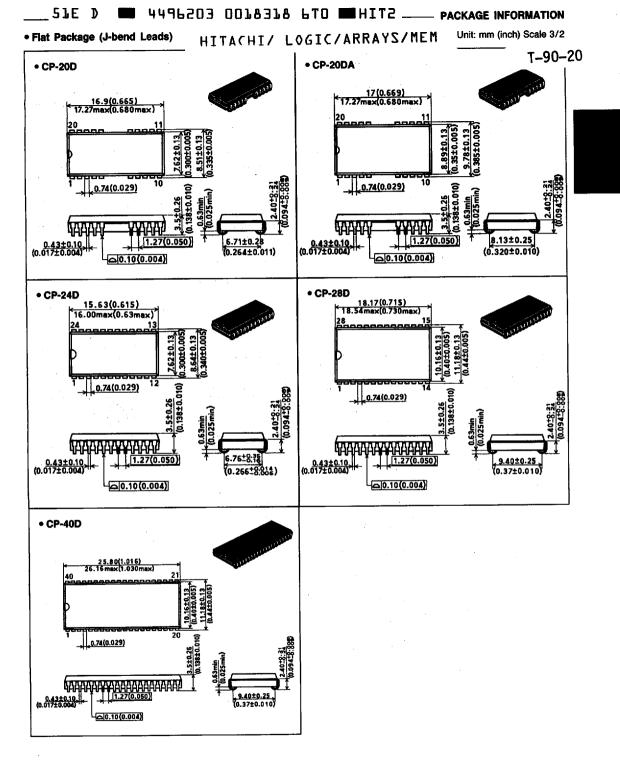
Note: *1. When \overline{WE} is high, all the data on I/Os can be written into the memory cell. When \overline{WE} is low, the data on I/Os are not written except for the case that the I/O is high at the falling edge of \overline{RAS} .


Page Mode Write Cycle (Early Write)


Note: *1. When \overline{WE} is high, all the data on I/Os can be written into the memory cell. When \overline{WE} is low, the data on I/Os are not written except for the case that the I/O is high at the falling edge of \overline{RAS} .


HITACHI/ LOGIC/ARRAYS/MEM 51E D _ 4496203 0018314 T55 🔳 HIT2 PACKAGE INFORMATION


Dual-in-line Plastic


T- 90-20

