65,536-word × 4-bit High Speed CMOS Static RAM # **HITACHI** ADE-203-Rev. 0.0 Dec. 1, 1995 #### **Features** • Single 5 V supply and high density 24-pin package • High speed: Access time 25/35/45 ns (max) • Low power — Operation: 300 mW (typ)— Standby: 100 μW (typ)30 μW (typ) (L-version) - Completely static memory required - No clock or timing strobe required - Equal access and cycle time - Directly TTL compatible: All inputs and outputs - Battery backup operation capability (L-version) #### **Ordering Information** | Type No. | Access Time | Package | |---|-------------------------|---------------------------------------| | HM6208HP-25
HM6208HP-35
HM6208HP-45 | 25 ns
35 ns
45 ns | 300-mil, 24-pin plastic DIP (DP-24NC) | | HM6208HLP-25
HM6208HLP-35
HM6208HLP-45 | 25 ns
35 ns
45 ns | | | HM6208HJP-25
HM6208HJP-35
HM6208HJP-45 | 25 ns
35 ns
45 ns | 300-mil, 24-pin SOJ (CP-24D) | | HM6208HLJP-25
HM6208HLJP-35
HM6208HLJP-45 | 25 ns
35 ns
45 ns | | ## Pin Arrangement ## **Pin Description** | Pin Name | Function | |-----------------|--------------| | A0-A15 | Address | | I/O1–I/O4 | Input/output | | CS | Chip select | | WE | Write enable | | V _{cc} | Power supply | | V_{ss} | Ground | ## **Block Diagram** ## **Truth Table** | CS | WE | Mode | V _{cc} Current | I/O Pin | Ref. Cycle | |----|----|--------------|------------------------------------|---------|-------------| | Н | × | Not selected | I _{SB} , I _{SB1} | High-Z | _ | | L | Н | Read | I _{cc} | Dout | Read cycle | | L | L | Write | l _{cc} | Din | Write cycle | Note: x: Don't care. ## **Absolute Maximum Ratings** | Parameter | Symbol | Value | Unit | |---|----------------|-----------------------|------| | Voltage on any pin relative to $V_{\rm ss}$ | Vin | -0.5^{*1} to $+7.0$ | V | | Power dissipation | P _T | 1.0 | w | | Operating temperature range | Topr | 0 to +70 | °C | | Storage temperature range | Tstg | -55 to +125 | °C | | Storage temperature range under bias | Tbias | -10 to +85 | °C | Note: 1. Vin min = -2.5 V for pulse widths ≤ 10 ns. ## **Recommended DC Operating Conditions** (Ta = 0 to +70°C) | Parameter | Symbol | Min | Тур | Max | Unit | |------------------------------|-----------------|--------------------|-----|-----|------| | Supply voltage | V _{cc} | 4.5 | 5.0 | 5.5 | V | | | V _{ss} | 0 | 0 | 0 | V | | Input high (logic 1) voltage | V _{IH} | 2.2 | _ | 6.0 | V | | Input low (logic 0) voltage | V _{IL} | -0.5 ^{*1} | _ | 0.8 | V | Note: 1. V_{\parallel} min = -2.0 V for pulse width \leq 10 ns. # DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V) | | | HM62 | 08H-25 | 5 HM6208H-35/45 | | | 5/45 | | | |----------------------------------|------------------|------|-------------------|-----------------|-----|-------------------|-------|------|--| | Parameter | Symbol | Min | Typ ^{*2} | Max | Min | Typ ^{*2} | Max | Unit | Test Conditions | | Input leakage current | I _{LI} | _ | _ | 2.0 | _ | _ | 2.0 | μΑ | V _{cc} = Max
Vin = V _{ss} to V _{cc} | | Output leakage current | I _{LO} | _ | _ | 10.0 | | _ | 10.0 | μΑ | $\overline{CS} = V_{IH}, V_{IO}$
= V_{SS} to V_{CC} | | Operating power supply current | I _{cc} | | 60 | 120 | _ | 50 | 100 | mA | $\overline{\text{CS}} = V_{\text{IL}} I_{\text{I/O}} = 0 \text{ mA},$
min cycle,
duty = 100% | | | I _{CC1} | | 40 | 80 | _ | 40 | 80 | mA | $\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{I}_{\text{IO}} = 0 \text{ mA},$
t cycle = 50 ns,
duty = 100% | | Standby power supply current | ISB | _ | 20 | 40 | _ | 15 | 30 | mA | CS = V _{IH} , min cycle | | Standby power supply current (1) | ISB1 | _ | 0.02 | 2.0 | _ | 0.02 | 2.0 | | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | | | ISB1*1 | _ | 0.006 | 0.1" | | 0.006 | 0.1*1 | | | | Output low voltage | V _{OL} | | | 0.4 | | | 0.4 | ٧ | I _{oL} = 8 mA | | Output high voltage | V _{OH} | 2.4 | | _ | 2.4 | _ | _ | ٧ | $I_{OH} = -4.0 \text{ mA}$ | Notes: 1. L-version 2. Typical values are at $V_{\rm cc}$ = 5.0 V, Ta = +25°C and not guaranteed. ## Capacitance $(Ta = 25^{\circ}C, f = 1 \text{ MHz})^{*1}$ | Parameter | Symbol | Min | Max | Unit | Test Conditions | |--------------------------|------------------|-----|-----|------|------------------------| | Input capacitance | Cin | _ | 6 | pF | Vin = 0 V | | Input/output capacitance | C _{1/O} | _ | 11 | pF | V _{I/O} = 0 V | Note: 1. These parameters are sampled and not 100% tested. 4 #### **HITACHI** AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted) #### **Test Conditions** Input pulse levels: V_{ss} to 3.0 V Input rise and fall time: 5 ns Input and output timing reference levels: 1.5 V • Output load: See figure #### **Output Load** #### **Read Cycle** | | | HM6208H-25 | | HM6208H-35 | | HM6208H-45 | | | |--------------------------------------|--------------------|------------|-----|------------|-----|------------|-----|------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Unit | | Read cycle time | t _{rc} | 25 | _ | 35 | _ | 45 | _ | ns | | Address access time | t _{AA} | _ | 25 | _ | 35 | _ | 45 | ns | | Chip select access time | t _{ACS} | _ | 25 | — | 35 | _ | 45 | ns | | Output hold from address change | t _{он} | 5 | _ | 5 | _ | 5 | _ | ns | | Chip selection to output in low-Z | t _{LZ} *1 | 5 | _ | 5 | _ | 5 | _ | ns | | Chip deselection to output in high-Z | t _{HZ} *1 | 0 | 15 | 0 | 20 | О | 20 | ns | | Chip selection to power up time | t _{PU} | 0 | _ | 0 | _ | 0 | _ | ns | | Chip deselection to power down time | t _{PD} | _ | 15 | _ | 25 | _ | 30 | ns | Note: 1. Transition is measured ± 200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested. #### Read Timing Waveform (1) #### Read Timing Waveform (2) ## Write Cycle | | | HM620 | BH-25 | HM6208 | BH-35 | HM620 | 8H-45 | | |-----------------------------------|--------------------|-------|-------|--------|-------|-------|-------|------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Unit | | Write cycle time | t _{wc} | 25 | _ | 35 | _ | 45 | _ | ns | | Chip selection to end of write | t _{cw} | 20 | _ | 30 | _ | 40 | _ | ns | | Address valid to end of write | t _{aw} | 20 | _ | 30 | _ | 40 | _ | ns | | Address setup time | t _{as} | 0 | _ | 0 | _ | 0 | _ | ns | | Write pulse width | t _{wP} | 20 | _ | 25 | _ | 30 | _ | ns | | Write recovery time | t _{ws} | 3 | _ | 3 | _ | 3 | _ | ns | | Data valid to end of write | t _{ow} | 15 | _ | 20 | _ | 20 | _ | ns | | Data hold time | t _{oн} | 0 | _ | 0 | _ | 0 | _ | ns | | Write enabled to output in high-Z | t _{wz} *1 | 0 | 8 | 0 | 10 | 0 | 15 | ns | | Output active from end of write | t _{ow} *1 | 0 | _ | 0 | _ | 0 | _ | ns | Note: 1. Transition is measured ±200 mV from high impedance voltage with load (B). These parameters are sampled and not 100% tested. #### Write Timing Waveform (1) (WE Controlled) Notes: 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$ (t_{WP}). - 2. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of the write cycle. - 3. During this period, I/O pins are in the output state. The input signals of the opposite phase to the outputs must not be applied. - 4. If \overline{CS} is low during this period, I/O pins are in the output state. The data input signals of opposite phase to the outputs must not be applied to them. - 5. Dout is the same phase of write data of this write cycle. ## Write Timing Waveform (2) (CS Controlled) ## Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C) These characteristics are guaranteed for the L-version only. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--------------------------------------|-------------------|-----|-----|------------------|------|---| | V _{cc} for data retention | V _{DR} | 2.0 | _ | _ | V | $\label{eq:controller} \begin{split} \overline{CS} &\geq V_{\rm CC} - 0.2 \text{ V,} \\ \text{Vin} &\geq V_{\rm CC} - 0.2 \text{ V, or} \\ 0 \text{ V} &\leq \text{Vin} < 0.2 \text{ V,or} \end{split}$ | | Data retention current | I _{CCDR} | _ | 2 | 50 ^{*1} | μΑ | | | Chip deselect to data retention time | t _{cdr} | О | _ | | ns | | | Operation recovery time | t _R | 5 | _ | | ms | | Note: 1. $V_{CC} = 3.0 \text{ V}$ ## Low V_{CC} Data Retention Timing Waveform ## **Package Dimensions** #### HM6208HP/HLP Series (DP-24NC) Unit: mm #### HM6208HJP/HLJP Series (CP-24D) Unit: mm