1048576-word × 1-bit High Speed CMOS Static RAM # HITACHI Rev. 0.0 Dec. 1, 1995 ### **Description** The Hitachi HM621100A is a high speed 1M Static RAM organized as 1048576-word \times 1-bit. It realizes high speed access time (20/25/35 ns) and low power consumption, employing CMOS process technology and high speed circuit designing technology. It is most advantageous for the field where high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM621100A, packaged in a 400-mil plastic SOJ is available for high density mounting. ### **Features** • • Single 5 V supply and high density 28-pin package (DIP and SOJ) • • High speed Access time: 20/25/35 ns (max) Low power dissipation Active mode: 350 mW (typ) Standby mode: 100 μW (typ) Completely static memory required No clock or timing strobe required - • Equal access and cycle time - Directly TTL compatible All inputs and outputs # **Ordering Information** | Type No. | Access Time | Package | |---|-------------------------|-------------------------------------| | HM621100AP-20
HM621100AP-25 | 20 ns
25 ns | 400-mil 28-pin plastic DIP (DP-28C) | | HM621100AP-35 | 35 ns | | | HM621100ALP-20 | 20 ns | | | HM621100ALP-25
HM621100ALP-35 | 25 ns
35 ns | | | HM621100AJP-20
HM621100AJP-25
HM621100AJP-35 | 20 ns
25 ns
35 ns | 400-mil 28-pin plastic SOJ (CP-28D) | | HM621100ALJP-20
HM621100ALJP-25
HM621100ALJP-35 | 20 ns
25 ns
35 ns | | # Pin Arrangement Pin Description Pin Name Function A0 – A19 Address D Input ## **Block Diagram** Q CS WE V_{cc} V_{ss} Output Ground Chip select Write enable Power supply ### **Function Table** | <u>CS</u> | WE | Mode | V _{cc} Current | Output Pin | Ref. Cycle | |-----------|----|--------------|------------------------------------|------------|-------------| | Н | Х | Not selected | I _{SB} , I _{SB1} | High-Z | _ | | L | Н | Read | I _{cc} | Dout | Read cycle | | L | L | Write | I _{cc} | High-Z | Write cycle | Note: X:HorL ### **Absolute Maximum Ratings** | Parameter | Symbol | Value | Unit | |--|------------|----------------------------|------| | Voltage on any pin relative to $V_{\mbox{\scriptsize SS}}$ | Vin | -0.5 ^{*1} to +7.0 | V | | Power dissipation | P_{τ} | 1.0 | W | | Operating temperature range | Topr | 0 to +70 | °C | | Storage temperature range | Tstg | -55 to +125 | °C | | Storage temperature range under bias | Tbias | -10 to +85 | ∘C | Note: 1. Vin min = -2.0 V for pulse width ≤ 10 ns. # **Recommended DC Operating Conditions** ($Ta = 0 \text{ to } +70^{\circ}\text{C}$) | Parameter | Symbol | Min | Тур | Max | Unit | |------------------------------|-----------------|--------------------|-----|-----|------| | Supply voltage | V _{cc} | 4.5 | 5.0 | 5.5 | ٧ | | | V _{ss} | 0 | 0 | 0 | ٧ | | Input high (logic 1) voltage | V _{IH} | 2.2 | _ | 6.0 | ٧ | | Input low (logic 0) voltage | V _{IL} | -0.5 ^{*1} | _ | 0.8 | V | Note: 1. V_{IL} min = -2.0 V for pulse width \leq 10 ns. DC Characteristics (Ta = 0 to +70°C, $V_{\rm CC}$ = 5 V \pm 10%, $V_{\rm SS}$ = 0 V) | | | | | | HM621100A-
25/35 | | | | | |----------------------------------|---------------------|-----|-------------------|-----|---------------------|-------|-----|------|--| | Parameter | Symbol | Min | Typ ^{*1} | Max | Min | Typ*1 | Max | Unit | Test Conditions | | Input leakage current | I _u | _ | | 2.0 | | _ | 2.0 | μΑ | V _{cc} = max
Vin = V _{ss} to V _{cc} | | Output leakage current | I _{LO} | _ | | 2.0 | | _ | 2.0 | μΑ | $\overline{CS} = V_{IH}$
$V_{I/O} = V_{SS}$ to V_{CC} | | Operating power supply current | I _{cc} | _ | | 150 | | _ | 120 | mA | $\overline{CS} = V_{IL}, I_{I/O} = 0$ mA, min cycle | | Standby power supply current | I _{SB} | _ | | 60 | | _ | 40 | mA | <mark>CS</mark> = V _{IH} , min
cycle | | Standby power supply current (1) | I _{SB1} *2 | _ | 0.02 | 2.0 | | 0.02 | 2.0 | mA | $\label{eq:cs_scale} \begin{split} \overline{\text{CS}} &\geq \text{V}_{\text{cc}} - 0.2 \text{ V} \\ 0 \text{ V} &\leq \text{Vin} \leq 0.2 \text{ V} \\ \text{or} \\ \text{Vin} &\geq \text{V}_{\text{cc}} - 0.2 \text{ V} \end{split}$ | | | I _{SB1} *3 | _ | | 100 | | _ | 100 | μΑ | | | Output low voltage | Vol | _ | | 0.4 | _ | _ | 0.4 | ٧ | I _{OL} = 8 mA | | Output high voltage | V _{oH} | 2.4 | | | 2.4 | | | ٧ | $I_{OH} = -4 \text{ mA}$ | Notes: 1. Typical values are at V_{cc} = 5.0 V, Ta = +25°C and not guaranteed. - 2. P and JP version - 3. LP and LJP version **Capacitance** (Ta = 25°C, f = 1 MHz) | Parameter | Symbol | Min | Max | Unit | Test Conditions | |--------------------|--------|-----|-----------------|------|-----------------| | Input capacitance | Cin | _ | 5 ^{*2} | pF | Vin = 0 V | | | | | 6 ^{*3} | | | | Output capacitance | Cout | | 8 | pF | Vout = 0 V | Notes: 1. This parameter is sampled and not 100% tested. - 2. SOJ package - 3. DIP package AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted.) ### **Test Conditions** - Input pulse levels: 0 V to 3.0 V - Input rise and fall time: 4 ns Input timing reference levels: 1.5 V Output timing reference levels: 1.5 V • Output load: See figures ### Read Cycle | | | HM621100A-20 | | HM621100A-25 | | HM621100A-
35 | | | | |--------------------------------------|--------------------|--------------|-----|--------------|-----|------------------|-----|------|--| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Unit | | | Read cycle time | t _{RC} | 20 | _ | 25 | _ | 35 | _ | ns | | | Address access time | t _{AA} | | 20 | _ | 25 | _ | 35 | ns | | | Chip select access time | t _{acs} | _ | 20 | _ | 25 | _ | 35 | ns | | | Chip selection to output in low-Z | t _{LZ} *1 | 5 | _ | 5 | _ | 5 | _ | ns | | | Chip deselection to output in high-Z | t _{HZ} *1 | 0 | 10 | 0 | 12 | 0 | 15 | ns | | | Output hold from address change | t _{oн} | 5 | _ | 5 | _ | 5 | _ | ns | | | Chip selection to power up time | t _{PU} | 0 | _ | 0 | _ | 0 | | ns | | | Chip deselection to power down time | t _{PD} | | 12 | | 15 | _ | 25 | ns | | Note: 1. Transition is measured ±200 mV from high impedance voltage with Load (B). This parameter is sampled and not 100% tested. Read Timing Waveform (1) $(\overline{WE} = V_{IH}, \overline{CS} = V_{IL})$ ### Read Timing Waveform $(2)^{*1} (\overline{WE} = V_{IH})$ Note: 1. Address valid prior to or coincident with $\overline{\text{CS}}$ transition low. ### Write Cycle | | | HM6211 | 00A-20 | 20 HM621100A-25 | | HM621100A-35 | | | |---------------------------------|--------------------|--------|----------|-----------------|----------|--------------|-----|------| | Parameter | Symbol | Min | Max | Min | Мах | Min | Max | Unit | | Write cycle time | t _{wc} | 20 | _ | 25 | _ | 35 | _ | ns | | Chip selection to end of write | t _{cw} | 15 | — | 17 | _ | 25 | _ | ns | | Address valid to end of write | t _{aw} | 16 | _ | 20 | _ | 30 | _ | ns | | Address setup time | t _{AS} | 0 | _ | 0 | _ | 0 | _ | ns | | Write pulse width | t _{wp} *2 | 15 | _ | 17 | <u> </u> | 25 | _ | ns | | Write recovery time | t _{wr} *³ | 0 | <u> </u> | 0 | _ | 0 | _ | ns | | Write to output in high-Z | t _{wz} *1 | 0 | 12 | 0 | 15 | 0 | 15 | ns | | Data to write time overlap | t _{DW} | 12 | _ | 15 | _ | 20 | _ | ns | | Data hold from write time | t _{DH} | 0 | _ | 0 | _ | 0 | | ns | | Output active from end of write | t _{ow} *1 | 0 | | 0 | | 0 | _ | ns | | Output hold from address change | t _{OH} *4 | 5 | _ | 5 | _ | 5 | _ | ns | Notes: 1. Transition is measured ±200 mV from high impedance voltage with Load (B). This parameter is sampled and not 100% tested. - 2. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}.$ - 3. t_{wR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle. - 4. Dout is the same phase of write data of this write cycle, if $\rm t_{\rm wR}$ is long enough. | HM621100A Series | |---| | Write Timing Waveform (1) (WE Controlled) | | | ### Write Timing Waveform (2) (CS Controlled) Note: 1. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output buffers remain in a high impedance state. # Low V_{cc} Data Retention Characteristics (Ta = 0 to +70°C) This characteristics is guaranteed only for L-version. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--------------------------------------|-------------------|-----|-----|------------------|------|--| | V _{cc} for data retention | V _{DR} | 2.0 | | | V | $\overline{\text{CS}} \ge \text{V}_{\text{cc}} - 0.2 \text{ V},$
$\text{Vin} \ge \text{V}_{\text{cc}} - 0.2 \text{ V} \text{ or}$
$0 \text{ V} \le \text{Vin} \le 0.2 \text{ V}$ | | Data retention current | I _{CCDR} | | 2 | 50 ^{*1} | μΑ | | | Chip deselect to data retention time | t _{cdr} | 0 | _ | _ | ns | | | Operation recovery time | t _R | 5 | _ | _ | ms | | Note: 1. $V_{cc} = 3.0 \text{ V}$ ### Low V_{CC} Data Retention Timing Waveform Low Level Input Voltage vs. Supply Voltage Standby Current vs. Supply Voltage # HM621100A Series Supply Current vs. Supply Voltage Supply Current vs. Ambient Temperature Access Time vs. Supply Voltage Access Time vs. Load Capacitance Access Time vs. Ambient Temperature | HM621100A Se | ries | | |--------------|------|--| | | | | **Supply Current vs. Frequency** | | HM621100A Series | |--------------------------------|------------------| | Package Dimensions | | | HM621100AP/ALP Series (DP-28C) | Unit: mm | | | | | HM621100A Series | | _ | |----------------------------------|----------|---| | HM621100AJP/ALJP Series (CP-28D) | Unit: mr | n | | | | |