131,072-word \times 8-bit High speed CMOS Static RAM

HITACHI

ADE-203-363A(Z) Rev. 1.0 Apr. 28, 1995

The Hitachi HM628128BI is a CMOS static RAM organized 131,072-word \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS shrink process technology. It offers low power standby power dissipation, therefore, it is suitable for battery back-up systems. The device, packaged in a 525-mil SOP or a 600-mil plastic DIP is available.

Features

• High speed

Fast access time: 85/100 ns (max)

Low power

standby: 10 µW (typ)

Operation: 50 mW/MHz (typ)

• Single 5 V supply

• Completely static memory

No clock or timing strobe required

- Equal access and cycle times
- · Common data input and output

Three state output

- Directly TTL compatible
 - All inputs and outputs
- Capability of battery back up operation
- 2 chip selection for battery back up
- Operating temperature range
- -40 to +85°C

Ordering Information

Part No.	Access time	Data Retention Current	Package
HM628128BLPI-8	85 ns	50 μΑ	600-mil
HM628128BLPI-10	100 ns	50 μΑ	32-pin plastic DIP (DP-32)
HM628128BLFPI-8	85 ns	50 μΑ	525-mil
HM628128BLFPI-10	100 ns	50 μΑ	32-pin plastic SOP (FP-32D)

Pin Arrangement

Pin Description

Pin name	Function
A0 to A16	Address
I/O0 to I/O7	Input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
ŌĒ	Output enable
NC	No connection
V _{cc}	Power supply
V _{ss}	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage relative to $V_{\rm ss}$	V _{cc}	-0.5 to +7.0	V
Voltage on any pin relative to V _{ss}	V _T	-0.5 ¹¹ to V _{cc} +0.3 ¹²	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	–40 to +85	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	–40 to +85	°C

Notes: 1. –3.0 V for pulse half-width ≤ 30 ns

2. Maximum voltage is 7.0 V.

Function Table

WE	CS1	CS2	OE	Mode	\mathbf{V}_{cc} current	I/O pin	Ref. cycle
X	Н	Χ	Χ	Not selected	I_{SB}, I_{SB1}	High-Z	_
X	Х	L	Χ	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Н	Output disable	I _{cc}	High-Z	_
Н	L	Н	L	Read	I _{cc}	Dout	Read cycle
L	L	Н	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	Н	L	Write	I _{cc}	Din	Write cycle (2)

Note: 1. X:H or L

Recommended DC Operating Conditions ($Ta = -40 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	V_{cc}	4.5	5.0	5.5	V	
	V _{ss}	0	0	0	V	
Input high voltage (logic 1)	V _{IH}	2.4	_	V _{cc} + 0.3	V	
Input low voltage (logic 0)	V _{IL}	-0.3 ^{⁻¹}	=	0.6	V	

Note9 1. -3.0 V for pulse half-width ≤ 30ns

HITACHI

5

DC Characteristics (Ta = -40 to +85°C, $V_{cc} = 5V \pm 10 \%$, $V_{ss} = 0 V$)

Parameter	Symbol	Min	Тур"	Max	Unit	Test conditions
Input leakage current	$ \mathbf{I}_{\sqcup} $	_	_	1	μΑ	$Vin = V_{ss} to V_{cc}$
Output leakage current	I _{LO}	_	_	1	μΑ	$\overline{CS1} = V_{IH} \text{ or } CS2 = V_{IL \text{ or}}$ $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL},$ $V_{VO} = V_{SS} \text{ to } V_{CC}$
Operating power supply current : DC	I _{cc}	_	15	30	mA	$\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{CS2} = \text{V}_{\text{IH}},$ Others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}\text{I}_{\text{VO}} = \text{0mA}$
Operating power supply current	I _{CC1}	_	35	70	mA	Min.cycle, duty = 100 %, $\overline{CS1} = V_{\parallel}$, $CS2 = V_{\parallel}$, Others = $V_{\parallel}/V_{\parallel}$, $I_{\lor O} = 0$ mA
	l _{cc2}	_	10	25	mA	Cycle time = 1 μ s, duty = 100 % $I_{\text{I/O}}$ = 0 mA, $\overline{\text{CS1}} \leq$ 0.2 V CS2 \geq V $_{\text{CC}}$ - 0.2 V, Others = V $_{\text{IH}}$ /V $_{\text{IL}}$ V $_{\text{IH}}$ \geq V $_{\text{CC}}$ - 0.2 V, V $_{\text{L}}$ \leq 0.2 V
Standby V _{cc} current : DC	l _{sb}	_	1	2	mA	$CS2 = V_{IL} \text{ or } CS2 = V_{IH}, \overline{CS1}$ = V_{IH}
Standby V _{cc} current (1): DC	SB1		2	100	μА	$0V \le Vin \le V_{cc}$, $(1) \ 0V \le CS2 \le 0.2V \text{ or}$ $(2) \ CS2 \ge V_{cc} - 0.2V$, $\overline{CS1} \ge V_{cc} - 0.2V$
Output low voltage	V _{oL}	_		0.4	V	I _{oL} = 2.1 mA
Output high voltage	V_{oH}	2.4	_	_	V	I _{он} = -1.0 mA

Notes: 1. Typical values are at $V_{cc} = 5.0 \text{ V}$, Ta = +25PC and not guaranteed.

Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin ^{⁺¹}	_	_	8	рF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{1/0} = 0 V

Note: 1. This parameter is sampled and not 100 % tested.

AC Characteristics (Ta = -40 to +85°C, $V_{cc} = 5$ V $\pm 10\%$, unless otherwise noted.)

Test Conditions

Input pulse levels: 0.5 V to 2.5 V
Input rise and fall times: 5 ns

• Input and output timing reference levels : 1.5 V

• Output load : 1 TTL Gate and $C_{\scriptscriptstyle L}$ (100pF) (Including scope and jig)

Read Cycle

		HM628	128BI				
		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	85	_	100	_	ns	
Address access time	t _{AA}	_	85	_	100	ns	
Chip selection to output valid	t _{co1}	_	85	_	100	ns	
	t _{co2}	_	85	_	100	ns	
Output enable to output valid	t _{oe}	_	45	_	50	ns	
Chip selection to output in low-Z	t _{LZ1}	10	_	10	_	ns	2, 3
	t _{LZ2}	10	_	10	_	ns	2, 3
Output enable to output in low-Z	t _{oLZ}	5	_	5	_	ns	2, 3
Chip deselection to output in high-Z	t _{HZ1}	0	30	0	35	ns	1, 2, 3
	t HZ2	0	30	0	35	ns	1, 2, 3
Output disable to output in high-Z	t _{onz}	0	30	0	35	ns	1, 2, 3
Output hold from address change	t _{oн}	10	_	10	_	ns	

Read Cycle Timing*4

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. At any given temperature and voltage condition, $t_{\rm HZ}$ max is less than $t_{\rm LZ}$ min both for a given device and from device to device.
- 3. This parameter is sampled and not 100 % tested.
- 4. $\overline{\text{WE}}$ is high for read cycle.

Write Cycle

HM628128BI

			-8		-10		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	85	_	100	_	ns	
Chip selection to end of write	t _{cw}	75	_	80	_	ns	
Address setup time	t _{as}	0	_	0		ns	
Address valid to end of write	t _{aw}	75	_	80	_	ns	
Write pulse width	t _{wp}	55	_	60	_	ns	11
Write recovery time	t _{wr}	0	_	0	_	ns	
Write to output in high-Z	t _{wHZ}	0	30	0	35	ns	10
Data to write time overlap	t _{ow}	35	_	40	_	ns	
Write hold from write time	t _{DH}	0	_	0	_	ns	
Output active from end of write	t _{ow}	5	_	5	_	ns	10

HITACHI

9

Write Cycle Timing (1) (OE Clock)

Write Cycle Timing (2) (OE low fix)

Notes: 1. A write occures during the overlap of a low $\overline{CS1}$, a high CS2, and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high, and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low, and \overline{WE} going high. t_{wp} is measured from the beginning of write to the end of write.

- 2. t_{cw} is measured from the later of $\overline{CS1}$ going low or CS2 going high to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{wR} is measured from the earliest of $\overline{CS1}$ or \overline{WE} going high or CS2 going low to the end of write cycle.
- 5. During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- 6. If the $\overline{CS1}$ goes low simultaneously with \overline{WE} going low or after the \overline{WE} going low, the outputs remain in a high impedance state.
- 7. Dout is the same phase of the latest written data in this write cycle.
- 8. Dout is the read date of next address.

- 9. If CS1 is low and CS2 high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.
- 10. This parameter is sampled and not 100 % tested.
- 11. In the write cycle with $\overline{\text{OE}}$ low fixed, t_{w_P} must satisfy the following equation to avoid a problem of date bus contention, $t_{w_P} \ge t_{DW}$ (min) + t_{WHZ} (max).

Low V_{cc} Data Retention Characteristics (Ta = -40 to +85PC)

Parameter	Symbol	Min	Typ⁺²	Max	Unit	Test conditions ³
V _{cc} for data retention	$V_{\scriptscriptstyle DR}$	2.0	_	_	V	$\begin{array}{l} 0 \text{ V} \leq \text{Vin} \leq \text{V}_{cc}, \ (1)0 \text{ V} \leq \text{CS2} \leq 0.2 \text{V} \\ \text{or } (2)\text{CS2} \geq \text{V}_{cc} - 0.2 \text{V}, \\ \hline \text{CS1} \geq \text{V}_{cc} - 0.2 \text{V} \end{array}$
Data retention current	I _{CCDR}	_	1	50 ⁻¹	μА	$V_{cc} = 3V, \ 0V \le Vin \le 3V \ (1)0V \le CS2$ $\le 0.2V \ or \ (2)CS2 \ge V_{cc} - 0.2V, \ \overline{CS1} \ge V_{cc} - 0.2V$
Chip deselect to data retention time	t _{cdr}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5 ^{*4}	_	_	ms	

Low V_{cc} Data Retention Waveform (1) ($\overline{CS1}$ Controlled)*3

Low V_{cc} Data Retention Waveform (2) (CS2 Controlled)*3

Notes: 1. This characteristics is guaranteed 20 μ A max. at Ta = -40 to +40°C.

- 2. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.
- 3. CS2 controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{CS1}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, $\overline{\text{CS1}}$, I/O) can be in the high impedance state. If $\overline{\text{CS1}}$ controls data retention mode, CS2 must be CS2 \geq V_{cc} -0.2 V or 0 V \leq CS2 \leq 0.2 V. The other input levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, I/O) can be in the high impedance state.
- 4. V_{cc} rising time must be more than 50 ms. When V_{cc} rising time is less than 50 ms, t_R must be 50 ms or more.

Package Dimensions

DP-32

FP-32D

