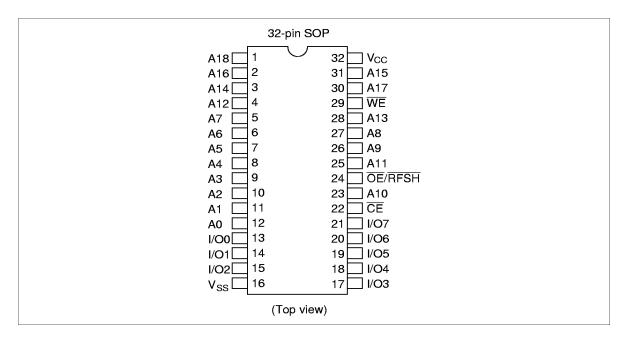
4 M PSRAM (512-kword × 8-bit) 2 k Refresh

HITACHI

ADE-203-286C(Z) Rev. 3.0 March 15, 1999

Description

The Hitachi HM658512AI is a 4-Mbit pseudo static RAM organized 524288-word \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS process technology. It offers low power data retention by self refresh mode. HM658512AI is suitable for handy systems which work with battery back-up systems. It is packaged in 32-pin plastic SOP.

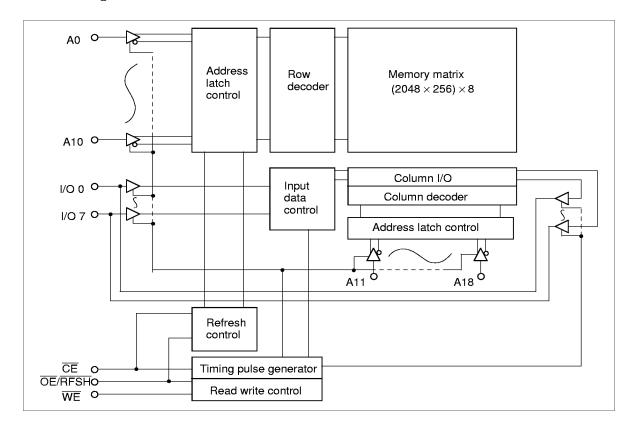

Features

- Single 5 V supply: $5 V \pm 10\%$
- High speed
 - $\overline{\text{CE}}$ access time: 80 ns/100 ns/120 ns (max)
 - Random read/write cycle time: 130 ns/160 ns/190 ns (min)
- Power dissipation
 - Active: 250 mW (typ)
 - Standby: 350 μW (typ)
- Directly TTL compatible all inputs and outputs
- Simple address configuration
 - Non multiplexed address
- Refresh cycle
 - 2048 refresh cycles: 32 ms
- Easy refresh functions
 - Address refresh
 - Automatic refresh
 - Self refresh
- Temperature range: –40 to +85°C

Ordering Information

Type No.	Access time	Package
HM658512ALFPI-8 HM658512ALFPI-10 HM658512ALFPI-12	80 ns 100 ns 120 ns	525-mil 32-pin plastic SOP (FP-32D)
HM658512ALFPI-8V HM658512ALFPI-10V HM658512ALFPI-12V	80 ns 100 ns 120 ns	

Pin Arrangement



Pin Description

Pin name	Function
A0 to A18	Address input
I/O0 to I/O7	Data input/output
CE	Chip enable
OE/RFSH	Output enable/Refresh
WE	Write enable
V _{cc}	Power supply
V _{ss}	Ground

2

Block Diagram

Pin Functions

 $\overline{\text{CE}}$ (Input): $\overline{\text{CE}}$ is a basic clock. RAM is active when $\overline{\text{CE}}$ is low, and is on standby when $\overline{\text{CE}}$ is high.

A0 to A18 (Input): A0 to A10 are row addresses and A11 to A18 are column addresses. The entire addresses A0 to A18 are fetched into RAM by the falling edge of $\overline{\text{CE}}$.

 $\overline{\text{OE/RFSH}}$ (Input): This pin has two functions. Basically it works as $\overline{\text{OE}}$ when $\overline{\text{CE}}$ is low, and as $\overline{\text{RFSH}}$ when $\overline{\text{CE}}$ is high (in standby mode). After a read or write cycle finishes, refresh does not start if $\overline{\text{CE}}$ goes high while $\overline{\text{OE/RFSH}}$ is held low. In order to start a refresh in standby mode, $\overline{\text{OE/RFSH}}$ must go high to reset the refresh circuits of the RAM. After the refresh circuits are reset, the refresh starts when $\overline{\text{OE/RFSH}}$ goes low.

I/O0 to I/O7 (Inputs and Outputs): These pins are data I/O pins.

 \overline{WE} (Input): RAM is in write mode when \overline{WE} is low, and is in read mode when \overline{WE} is high. I/O data is fetched into RAM by the rising edge of \overline{WE} or \overline{CE} (earlier timing) and the data is written into memory cells.

Notes

Refresh

There are three refresh modes: address refresh, automatic refresh and self refresh.

- (1) Address refresh: Data is refreshed by accessing all 2048 row addresses every 32 ms. A read is one method of accessing those addresses. Each row address (2048 addresses of A0 to A10)must be read at least once every 32 ms. In address refresh mode, OE/RFSH can remain high. In this case, the I/O pins remain at high impedance, but the refresh is done within RAM.
- (2) Automatic refresh: Instead of address refresh, automatic refresh can be used. RAM goes to automatic refresh mode if $\overline{OE/RFSH}$ falls while \overline{CE} is high and it remains low for at least t_{FAP} . One automatic refresh cycle is executed by one low pulse of $\overline{OE/RFSH}$. It is not necessary to input the refresh address from outside since it is generated internally by an on-chip address counter. 2048 automatic refresh cycles must be done every 32 ms.
- (3) Self refresh: Self refresh mode is suitable for data retention by battery. In standby mode, a self refresh starts automatically when OE/RFSH stays low for more than 8 μs. Refresh addresses are automatically specified by the on-chip address counter, and the refresh period is determined by the on-chip timer.

Automatic refresh and self refresh are distinguished from each other by the width of the $\overline{OE/RFSH}$ low pulse in standby mode. If the $\overline{OE/RFSH}$ low pulse is wider than 8 μ s, RAM becomes into self refresh mode; if the $\overline{OE/RFSH}$ low pulse is less than 8 μ s, it is recognized as an automatic refresh instruction.

At the end of self refresh, refresh reset time (t_{RFS}) is required to reset the internal self refresh operation of the RAM. During t_{RFS} , \overline{CE} and $\overline{OE}/\overline{RFSH}$ must be kept high. If auto refresh follows self refresh, low transition of $\overline{OE}/\overline{RFSH}$ at the beginning of automatic refresh must not occur during t_{RFS} period.

Others

Since pseudo static RAM consists of dynamic circuits like DRAM, its clock pins are more noise-sensitive than conventional SRAM's.

- (1) If a short \overline{CE} pulse of a width less than t_{CE} min is applied to RAM, an incomplete read occurs and stored data may be destroyed. Make sure that \overline{CE} low pulses of less than t_{CE} min are inhibited. Note that a 10 ns \overline{CE} low pulse may sometimes occur owing to the gate delay on the board if the \overline{CE} signal is generated by the decoding of higher address signals on the board. Avoid these short pulses.
- (2) $\overline{OE/RFSH}$ works as refresh control in standby mode. A short $\overline{OE/RFSH}$ low pulse may cause an incomplete refresh that will destroy data. Make sure that $\overline{OE/RFSH}$ low pulse of less than t_{FAP} min are also inhibited.
- (3) t_{OHC} and t_{OCD} are the timing specs which distinguish the \overline{OE} function of $\overline{OE/RFSH}$ from the \overline{RFSH} function. The t_{OHC} and t_{OCD} specs must be strictly maintained.
- (4) Start the HM658512AI operating by executing at least eight initial cycles (dummy cycles) at least 100 μs after the power voltage reaches 4.5 V to 5.5 V after power-on.

4

Operation Table

CE	OE/RFSH	WE	I/O	Operation
L	L	Н	Dout	Read
L	×	L	High-Z	Write
L	Н	Н	High-Z	_
Н	L	×	High-Z	Refresh
Н	Н	×	High-Z	Standby

Note: $H; V_{IH}, L; V_{IL}, \times; V_{IH} \text{ or } V_{IL}$

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Note
Terminal voltage with respect to $V_{\rm ss}$	V _T	-1.0 to +7.0	٧	1
Power dissipation	P _T	1.0	W	
Storage temperature range	Tstg	-55 to +125	°C	
Storage temperature range under bias	Tbias	-40 to +85	°C	

Note: 1. With respect to V_{ss}

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply voltage	V _{cc}	4.5	5.0	5.5	V	
	V_{ss}	0	0	0	V	
Input high voltage	V _{IH}	2.8	_	6.0	V	
Input low voltage	V _{IL}	-1.0	_	8.0	V	1
Ambient temperature range	Ta	-40	_	+85	°C	

Note: 1. V_{IL} min = -3.0 V for pulse width 30 ns

DC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Notes
Operating power supply current	I _{CC1}		_	75	mA	$I_{I/O} = 0$ mA, $t_{cyc} = min$	
Standby power supply current	I _{SB1}	_	1	2	mA	$\overline{CE} = V_{IH}$, $Vin \ge 0$ V $\overline{OE}/\overline{RFSH} = V_{IH}$	
	I _{SB2}	_	20	200	μΑ	$\label{eq:control_control} \begin{split} \overline{CE} &\geq V_{\rm CC} - 0.2 \text{ V, Vin} \geq 0 \text{ V,} \\ \overline{OE} / \overline{RFSH} &\geq V_{\rm CC} - 0.2 \text{ V} \end{split}$	
Operating power supply current in self refresh mode	I _{CC2}	_	1	2	mA	$\overline{CE} = V_{IH}$, $Vin \ge 0$ V, $\overline{OE}/\overline{RFSH} = V_{IL}$	
	I _{CC3}	_	70	200	μΑ	$\label{eq:control_control} \begin{split} \overline{CE} &\geq V_{\rm CC} - 0.2 \text{ V, Vin} \geq 0 \text{ V,} \\ \overline{OE} / \overline{RFSH} &\leq 0.2 \text{ V} \end{split}$	
Input leakage current	Lu	-10	_	10	μΑ	$V_{\rm CC}$ = 5.5 V, Vin = $V_{\rm SS}$ to $V_{\rm CC}$	
Output leakage current	I _{LO}	-10	_	10	μΑ	$\overline{OE}/\overline{RFSH} = V_{IH}$ $V_{VO} = V_{SS}$ to V_{CC}	
Output voltage	V _{oL}	_	_	0.4	٧	I _{OL} = 2.1 mA	
	V _{OH}	2.4	_	_	٧	$I_{OH} = -1 \text{ mA}$	

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test conditions
Input capacitance	\mathbf{C}_{in}	_	8	pF	$V_{in} = 0 V$
Input /output capacitance	C _{I/O}	_	10	pF	V _{I/O} = 0 V

Note: This parameter is sampled and not 100% tested.

AC Characteristics (Ta = -40 to +85°C, $V_{CC} = 5$ V $\pm 10\%$, unless otherwise noted.)

Test Conditions

• Input pulse levels: 0.4 V, 2.8 V

• Input rise and fall time: 5 ns

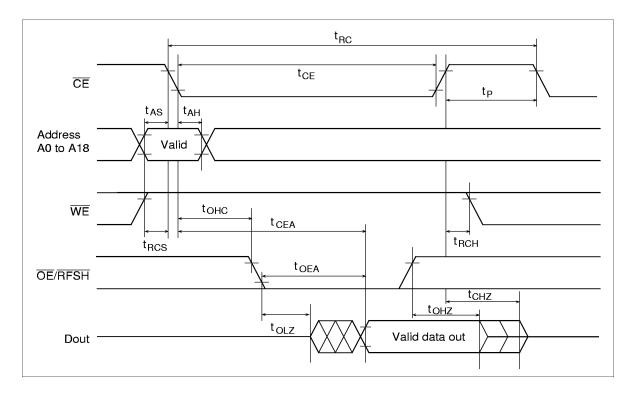
• Timing measurement level: 0.8 V, 2.2 V

• Reference levels: $V_{OH} = 2.0 \text{ V}$, $V_{OL} = 0.8 \text{ V}$

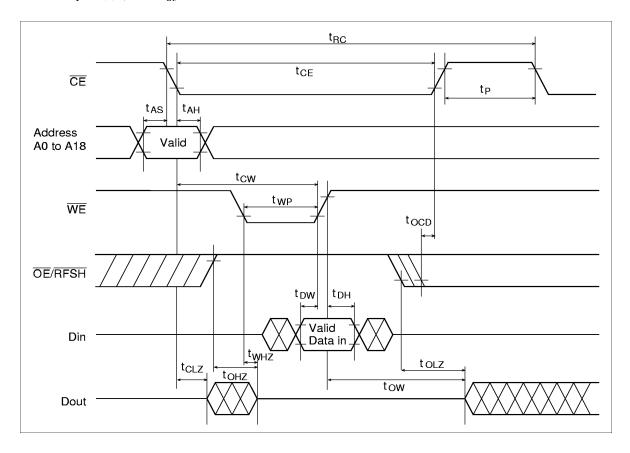
 Output load: 1 TTL Gate and $C_{\rm L}$ (100 pF) (Including scope and jig)

6

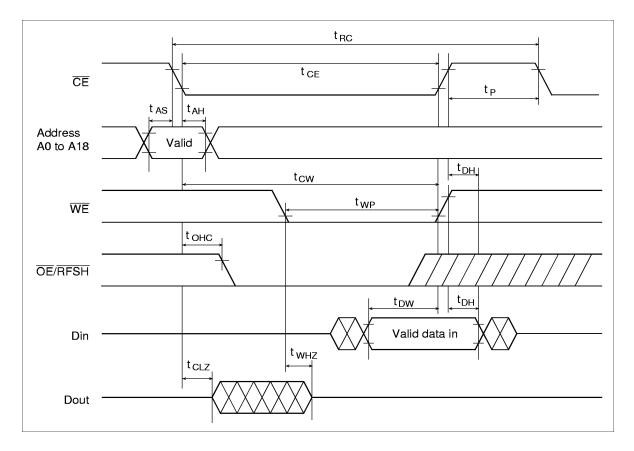
		HM658512AI							
		-8		-10		-12		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130	_	160	_	190	_	ns	
Chip enable access time	t _{CEA}	_	80	_	100	_	120	ns	
Read-modify- write cycle time	t _{RWC}	180		220	_	260	_	ns	
Output enable access time	t _{oea}	_	30	_	40	_	50	ns	
Chip disable to output in high-Z	t _{CHZ}	0	25	0	25	0	30	ns	1, 2
Chip enable to output in low-Z	t _{cLZ}	20		20	_	20	_	ns	2
Output disable to output in high-Z	t _{oHZ}	_	25	_	25	_	25	ns	1, 2
Output enable to output in low-Z	t _{oLZ}	0	_	0	_	0	_	ns	2
Chip enable pulse width	t _{ce}	80 n	10 μ	100 n	10 μ	120 n	10 μ	s	
Chip enable precharge time	t _P	40	_	50	_	60	_	ns	
Address setup time	t _{AS}	0	_	0	_	0	_	ns	
Address hold time	t _{AH}	20		25	_	30	_	ns	
Read command setup time	t _{RCS}	0		0	_	0	_	ns	
Read command hold time	t _{RCH}	0		0	_	0	_	ns	
Write command pulse width	t _{wP}	25		30	_	35	_	ns	
Chip enable to end of write	t _{cw}	80	_	100	_	120	_	ns	
Chip enable to output enable delay time	t _{ocp}	0	_	0	_	0	_	ns	
Output enable hold time	t _{ohc}	0	_	0	_	0	_	ns	
Data in to end of write	t _{DW}	20	_	25	_	30	_	ns	
Data in hold time for write	t _{DH}	0	_	0	_	0	_	ns	
Output active from end of write	t _{ow}	5	_	5	_	5	_	ns	2
Write to output in high-Z	t _{whz}	_	20	_	25	_	30	ns	1, 2
Transition time (rise and fall)	t _T	3	50	3	50	3	50	ns	6

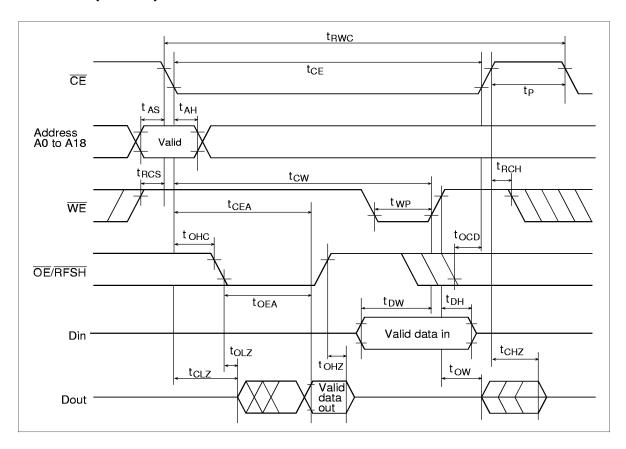

		HM65	HM658512AI						
		-8		-10		-12		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Refresh command delay time	t _{RFD}	40	_	50	_	60	_	ns	
Refresh precharge time	t _{FP}	40	_	40	_	40	_	ns	
Refresh command pulse width for automatic refresh	t _{FAP}	80 n	8 μ	80 n	8 μ	80 n	8 μ	S	
Automatic refresh cycle time	t _{FC}	130	_	160	_	190	_	ns	
Refresh command pulse width for self refresh	t _{FAS}	8	_	8	_	8	_	μs	
Refresh reset time from self refresh	t _{RFS}	600	_	600	_	600	_	ns	9
Refresh period	t _{REF}	_	32	_	32	_	32	ms	2048 cycle

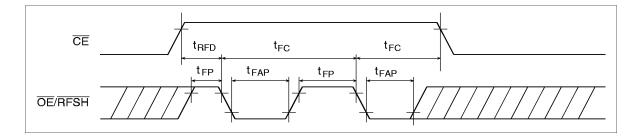
Notes: 1. $t_{\text{CHZ}}, t_{\text{OHZ}}, t_{\text{WHZ}}$ are defined as the time at which the output achieves the open circuit condition.


- 2. $t_{\text{CHZ}}, t_{\text{CLZ}}, t_{\text{OHZ}}, t_{\text{OHZ}}, t_{\text{WHZ}}$ and t_{OW} are sampled under the condition of $t_{\text{T}} = 5$ ns and not 100% tested.
- 3. A write occurs during the overlap of low \overline{CE} and low \overline{WE} . Write end is defined at the earlier of \overline{WE} going high or \overline{CE} going high.
- 4. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or from the $\overline{\text{WE}}$ low transition, the output buffers remain in high impedance state.
- 5. In write cycle, \overline{OE} or \overline{WE} must disable output buffers prior to applying data to the device and at the end of write cycle data inputs must be floated prior to \overline{OE} or \overline{WE} turning on output buffers. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- 6. Transition time t_T is measured between V_{IH} (min) and V_{IL} (max). V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals.
- 7. After power-up, pause for more than 100 μs and execute at least 8 initialization cycles.
- 8. 2048 cycles of burst refresh or the first cycle of distributed automatic refresh must be executed within 15 μ s after self refresh, in order to meet the refresh specification of 32 ms and 2048 cycles.
- 9. At the end of self refresh, refresh reset time (t_{RFS}) is required to reset the internal self refresh operation of the RAM. During t_{RFS} , \overline{CE} and $\overline{OE}/\overline{RFSH}$ must be kept high. If automatic refresh follows self refresh, low transition of $\overline{OE}/\overline{RFSH}$ at the beginning of automatic refresh must not occur during t_{RFS} period.

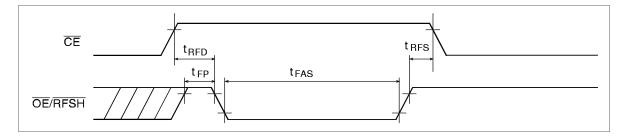
Timing Waveform


Read Cycle


Write Cycle (1) $(\overline{OE} = V_{IH})$


Write Cycle (2) $(\overline{OE} = V_{IL})$

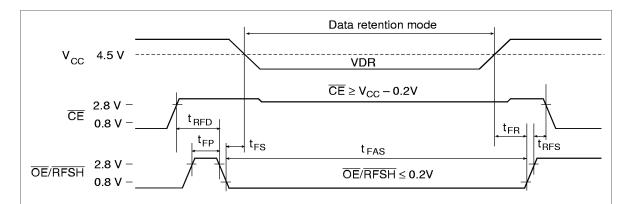
Read-Modify-Write Cycle



Automatic Refresh Cycle

12

Self Refresh Cycle

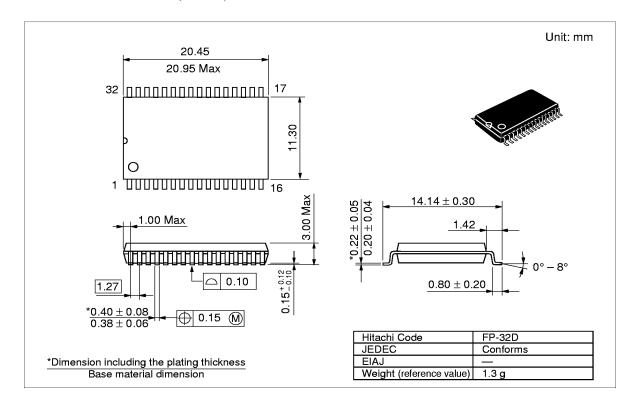


Low V_{CC} Data Retention Characteristics (Ta = -40 to +85°C)

This characteristics is guaranteed only for V-version.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
V _{cc} for data retention	V_{DR}	3.6	_	5.5	V	
Self refresh current	I _{CCDR}	_	_	200	μΑ	$\begin{aligned} & \frac{V_{\text{CC}}}{\text{CE}} = 3.6 \text{ V}, \\ & \frac{\text{CE}}{\text{E}} \geq V_{\text{CC}} - 0.2 \text{ V} \\ & \frac{\text{OE}}{\text{RFSH}} \leq 0.2 \\ & \text{Vin} \geq 0 \text{ V} \end{aligned}$
		_	_	200	μΑ	$\begin{aligned} & \frac{V_{\rm CC}}{CE} = 5.5 \text{ V}, \\ & \overline{CE} \geq V_{\rm CC} - 0.2 \text{ V} \\ & \overline{OE/RFSH} \leq 0.2 \\ & \text{Vin} \geq 0 \text{ V} \end{aligned}$
Refresh setup time	t _{FS}	0	_	_	ns	
Operation recovery time	t _{fR}	5	_	_	ms	

Low V_{CC} Data Retention Timing Waveform


Notes: 1. Rise time and fall time of power supply voltage must be smaller than 0.05 V/ms.

- 2. Keep $\overline{\text{CE}} \geq V_{\text{CC}} 0.2 \text{ V}$ during data retention mode.
- Regarding t_{RFD}, t_{FP}, t_{FAS} and t_{RFS}, refer to AC characteristics.
 Input voltage should be lower than V_{CC} +1.5 V in data retention mode.

14

Package Dimensions

HM658512ALFPI Series (FP-32D)

