National Semiconductor

PRELIMINARY November 1988

HPCCOREA High-Performance Microcontroller Core

General Description

The HPCCOREA Megacell is the ASIC HPCTM Core Megacell available in the cell based design library. The HPC core is the basis for the HPC family of High Performance microcontrollers available as standard products from National Semiconductor. Each member of the family is built around this core CPU with a unique memory and I/O configuration to suit specific applications. Therefore, designers can now customize the peripherals surrounding the HPC core to meet their precise needs, while integrating additional system logic onto the same die. A single chip system solution becomes possible. All Cell Based IC's are fabricated in National's advanced 2μ dual layer metal microCMOS technology. This process combined with an advanced architecture offers fast, flexible I/O control, efficient data manipulation and high speed computation.

The HPC core Megacell permits a complete microcomputer environment and more on a single chip. Customization of microcontroller applications and inclusion of surrounding system logic and memory, produce a cost effective system solution for high performance applications. Core functions such as 4 16-bit timers with 3 input capture registers, vectored interrupts, WATCHDOG™ logic, and MICROWIRE/ PLUS™ provide efficient paths for system integration. The ability to address up to 64 kbytes of memory enables the HPC core to be used in powerful applications typically performed by microprocessors and expensive peripheral chips. The microCMOS process results in very low current drain and enables the user to select the optimum speed/power product for his system. The IDLE and HALT modes provide further current savings.

HPC Core Features

- 16-bit architecture, both byte and word
- 16-bit data bus, ALU and registers
- 64 kbytes of memory mapped addressing
- FAST—240 ns for register instructions when using 17.0 MHz clock
- High code efficiency—most instructions are single byte
- 16 x 16 multiply and 32 x 16 divide
- Eight vectored interrupt sources
- Four 16-bit timer/counters
- Three 16-bit capture registers
- WATCHDOG logic
- MICROWIRE/PLUS serial I/O interface
- CMOS—very low power save modes: IDLE and HALT
- Programmable wait states
- 16-bit general purpose/address data bus I/O port
- 8-bit general purpose input port
- 256 byte RAM
- Megacell Test Logic
- Enhanced access to core features

© 1995 National Semiconductor Corporation TL/U/9982

RRD-B30M115/Printed in U. S. A

HPCCOREA High-Performance Microcontroller Core

Signa	l Desc	criptio	ns		
Signal	Reset	Active	Туре	Load Factor	Description
PORT A					
Port A is a 1 or output. W	6-bit bidire /hen acce	ectional I/0 ssing exte	O port wi rnal mem	th a data o lory, Port i	direction register to enable each separate pin to be individually defined as an input A may be used as the multiplexed address/data bus.
PA(0:15)*	Z		В		Port A—this may be configured as a 16-bit Addr/Data bus or a 16-bit general purpose I/O port.
PI(0:15)			I	2	Port A data in.
PD(0:15)	U		0		Port A data out.
EXAC			I	1	Port A bidirectional control. Defines the configuration of Port A. 1 = Address/Data bus, 0 = General purpose I/O port
RDEX		н	I	1	Read Port A onto the internal data bus. All memory locations connected to Port A should be decoded and input on this pin when in Addr/Data bus mode.
*PA is crea BB0B4U.	ted when Pl	, PD and PE	are conne	ted to a 4 r	A I/O buffer macro. Allowable macros include BF0B4D, BF0B4N, BF0B4U, BB0B4D, BB0B4N, and
PORT I					
Port I is an 8	B-bit input	port that c	an be re	ad as gen	eral purpose inputs or can be used for the following functions:
10 1				1 1	General purpose input. Port I: bit 1 of Port I.
					Interrupt: rising edge triggered non-maskable interrupt (NMI).
					IRPD: bit 1 is set when interrupt is pending and is reset when interrupt is acknowledged.
					Halt & Idle mode: rising edge will exit Halt or Idle mode.
					Entering Halt with NMI high: stop oscillator, stop C1 & C2 at C1 = 0 C2 = 1.
12			1	1	Port I: bit 2 of Port I
12					Interrupt: Enabled if bit 2 of ENIR is set. Rising/falling edge trigger is selected if bit 2 of IRCD is set/reset.
					IRPD: bit 2 is set when interrupt is pending and is reset when interrupt is acknowledged.
					Capture trigger input: Value of Timer T0 is copied into I2CR register when interrupt occurs.
13			1	1	Port I: bit 3 of Port I. Interrupt: Enabled if bit 3 of ENIR is set. Rising/falling edge trigger is selected if
					bit 3 of IRCD is set/reset. IRPD: bit 3 is set when interrunt is pending and is reset when interrunt is
					acknowledged.
					Capture trigger input: Value of Timer T0 is copied into I3CR register when interrupt occurs.
14			1	1	PORT I: bit 4 of Port I.
					bit 4 of IRCD is set/reset.
					IRPD: bit 4 is set when interrupt is pending and is reset when interrupt is acknowledged.
					Capture trigger input: Value of Timer T0 is copied into I4CR register when
					Port I: Bit 5 of Port I.
15			I	1	UWIRE: Serial input to SIO shift register, bit 0 (MWIN).
16			1	1	General purpose input.
			I	1	General purpose input.
Z = Trist H = Acti	tate ve High	U = Unl L = Acti	known ive Low	I = B =	Input O = Output Bidirectional

Signa	l Des	criptio	005 (Co	ontinued)	
Signal	Reset	Active	Туре	Load Factor	Description
INTERRUP	T SIGNAI	LS			
The core co	ntains eig	ht externa	al interru	ots.	
1– 4 NT5		н	I	1	Refer to Port I. Interrupt: Enabled if bit 5 of ENIR is set. Level interrupt ORed with internal Timer interrupt signals.
INT6		н	I	1	Interrupt: Enabled if bit 6 of ENIR is set. Level interrupt.
INT7		н	I	1	Interrupt: Enabled if bit 7 of ENIR is set. Level interrupt. IRPD: Bit 7 is set when interrupt nending.
RSET		Н	I	1	Core reset, level sensitive.
CLOCK SIG	ANALS				
CKIN C1 C2 NSTP	1			1	System clock. Typically connected to the output of an oscillator macro. Buffered system clock, CKIN. Buffered CKIN divided by 2. Signal to stop an oscillator during halt mode.
WATCHDO		-	-		
WDOT WDIN	0	H L	0 1	1	Signal indicating an illegal condition has been detected by the watchdog logic. Signal to reset watchdog logic.
STWD		Н	I	1	Signal to force watchdog to trip.
MICROWIR	E/PLUS	SIGNALS		1	
MWOT	U		0		μ WIRE output: serial output from SIO register bit 7. μ CODE serial dump: serial output from μ CODE shift register. This output is multiplexed with the μ WIRE output.
15			1	1	MWIN: μ Wire input shared by Port I.
OSKI	7			1	μWIRE/PLUS clock input. wWIRE/PLUS clock output tristable
MWMS	0		0		μ WIRE Master/Slave mode status. 1 = Master 0 = Slave
TIMER SIG	NALS				
T2IN				1	Timer T2 external clock input (edge-triggered)
T3IN			i i	1	Timer T3 external clock input (edge-triggered).
T2OT	U	н	0		Timer T2 output pulse (1 C1 wide) flagging underflow condition and triggering reload of T2 with the data from R2.
тзот	U	Н	0		Timer T3 output pulse (1 C1 wide) flagging underflow condition and triggering reload of T3 with the data from R3.
TDIV	U		0		General purpose programmable clock. Time base is selected through the DIVBY register.
TOCY	I	Н	0		T0 carry output indicating T0 overflow condition. (1 C2 wide pulse.)
ADDRESS/	DATA BU	JS CONTR	ROL SIG	NALS	
DB(0:15)	1/0		В		Internal 16-bit precharged address/data bus.
NRD	1		0		Read. Useable with internal address/data bus or port A.
MIR	U 1	н			Memory to Bus. Useable with internal address/data bus, only.
					Address latch enable
HBE	0	н	0		High byte enable.
Z = Tris H = Acti	tate ve High	U = Un L = Ac	iknown tive Low	l = B =	Input O = Output = Bidirectional

Signa	l Desc	criptio	NS (Co	ntinued)					
Signal	Reset	Active	Туре	Load Factor		Descri	iption		
CPU CONT	ROL SIGN	ALS							
ST1 ST2 RDY NHLD	0 0	H L	0 0 1 1	1	Bus Cycle Status: indicates f Bus Cycle Status: indicates r Ready acknowledge. Used to HOLD request, TRI-STATE F	irst opcode f nachine stat o extend the Port A for ext	etch. es (skip, inter bus cycle for ernal control	rupt or instruc slower memo of address/d	ction start). ories. ata bus.
NHDA WATA	I	L H	0	1	Internal bus placed in precha Acknowledge of HOLD reque All memory locations requirir pin.	arge state. est. ng wait states	s should be de	ecoded and ir	nput on this
SEL8 HALT	0	н	і О	1	Select bit to indicate 8-bit or external to core must be dec Halt/Idle mode acknowledge Halt mode.	16-bit mode. oded on this e. Indicates c	16-bit-pull lo pin. lock is halted	w. 8-bit-memore at C1 $=$ 0 ar	ory locations $dC2 = 1$ for
ADDRESS I	DECODE	SIGNALS		1					
SELA SELB SELC SELD SELX SROM	0 0 0 0 0	H H H H H H			Decode output indicating use Decode output indicating use Decode output indicating use Decode output indicating use Decode output indicating use	er peripheral er peripheral er peripheral er peripheral er peripheral er peripheral	address bloc address bloc address bloc address bloc address bloc address bloc	k 0100–011F k 0120–013F k 0140–015F k 0160–017F k 0200–EFFf k F000–FFFf	
SLIO	0	н	0		Decode output indicating use	er peripheral	address bloc	k 00E0-00FF	
TEST SIGN	ALS*								
TEST TST1 TST2 TRST TCLK MUX(0:8) USR(0:8)I		н	 0	12 2 1 1	Selects test mode. Input for RDY/HOLD signals Input for T2IN/T3IN signals i Input for RSET signal in test Input for clock signal in test r Output of test multiplexers. U User logic inputs to output te logic mode.	in test mode n test mode. mode. Not u node. Not us Jser outputs ist multiplexe	e. Not used in r Not used in r sed in non tes sed in non tes when not in te ers. Use to acc	non test mod non test mode st mode. t mode. est mode. cess test I/O	de. e. pins in user
*All test sig Z = Trist H = Acti	inals must b ate ve High Core [e brought to U = Un L = Act	an appropr known ive Low aracte	iate I/O mac I = B = Pristics	ro. Input $O = Output$ Bidirectional $V_{CC} = 5.0V \pm 10\%$				
Symbo	ı	Param	eter		Test Conditions	Min	Тур	Max	Units
	,	Active Cur	rent		$_{CC} = 5.0V \text{ fc} = 17.0 \text{ MHz}$ $_{CC} = 5.0V \text{ fc} = 2.0 \text{ MHz}$ $_{CC} = 5.0V \text{ fc} = 17.0 \text{ MHz}$		30 3.5		mA mA
ICC2	'		Current		$_{\rm CC} = 5.0V \text{fc} = 17.0 \text{MHz}$		0.35		mA
I _{CC3}		Halt Mode	Current		$_{CC} = 5.0V \text{ fc} = 0 \text{ kHz}$ $_{CC} = 2.5V \text{ fc} = 0 \text{ kHz}$		200 100		μA μA
V _{RAM}	1	RAM Keep	Alive Vo	ltage		2.5			v
C _{BUS}		Address/E	Data Bus	Capacitive	Load (DB(0:15))				pF
					4				

Symbol	Description			Min	Тур	Max		Units
f _c = Input Frequency (CKIN)	Operating Frequency			2		17.0		MHz
fcdut = 50% \pm 10%	Operation Frequency Duty	Cycle		40		60		%
tC1 = 1/fc	Clock Period			59		500		ns
tC2 = 2/fc	Cycle Time			118		1000		ns
WS = 1tC2	Wait States			118		1000		ns
fxin = 1/19tC1 (T2IN, T3IN)	External Timer Input Frequency				892			kHz
txin	Pulse Width for Timer Inpu	ts		40	177			ns
fMW = 1/19tC1	External MICROWIRE/PL Clock Input Frequency (M	US WIN)			892		r	kHz
Symbol	Description	Be	f	Best C	ase*	Worst	Case*	Unite
Symbol	Description	Ne	·	FO = 1	d/FO	FO = 1	d/FO	
tCKC1	C1 Delay from CKIN (Note 1)	CKIN,	RE	4.4	0.01	31.9	0.1	ns
tCKC2	C2 Delay from CKIN (Note 1)	CKIN,	FE	4.9	0.01	32.4	0.03	ns
RESET MODE								
tRSET = 16tC2	Reset Pulse Width	C2,	RE					
READ CYCLE TIMING—F	ïgure 2							-
tALE	Address Latch Enable Active	C1, F	RE	3.3	0.2	16.5	1.1	ns
tDBXv	Address Databus Valid (Note 1)	C2, I	ΞE	1.4	0.1	7.2	0.4	ns
tDBXiv	Address Databus Invalid (Note 1)	C1, I	ΞE	4.8	0.1	22.2	0.4	ns
tMTB	Bus Read (Note 1)	C2, F	RE	1.4	0.03	7.0	0.1	ns
				15 pF	d/pF	15 pF	d/pF	
tPAv	Port A Valid (Notes 1, 3)	C2, I	ΞE	4.8	0.1	19.8	0.1	ns
tPAiv	Port A Invalid (Notes 1, 3)	C1, I	ΞE	5.2	0.1	22.2	0.1	ns
				FO = 1	d/FO	FO = 1	d/FO	
tNRDa	Read Active	MTB,	RE	2.3	0.2	11.5	1.1	ns
tNRDia	Read Inactive	C2, I	ΞE	2.8	0.2	14.5	1.1	ns
tHBEv	High Byte Enable Active	C2, I	E	3.9	0.2	27.9	1.1	ns
tWATAs = 10 ns	Wait Address Setup Time (Note 1)	C2, I	ΞE					
tWATAh = tC2 + WS	Wait Address Hold Time (Note 1)	C2, I	ΞE					
tRDEXs = 20 ns	Read External Setup Time (Note 1) C2, I	E					
tBDEXI = tC7 + WS	Read External Hold Time (Note 1)	C2, I	ΞE					
	8-Bit Mode Setup Time (Note 1)	C2, I	ΞE					
tSEL8s = 10 ns								

Sym	bol		Description			Min**	Т	/p**	Max**	Units
READ CYCLE TIN	AING—Figures 3	<i>and 4</i> fc = 17 MHz	One Wait St	tate						
tDBAv = 1/4tC2	-6	Databus Address	Valid to ALI	E Trailing Ed	dge	24				ns
tDBAiv = 1/4tC2	2–5	ALE Trailing Edg	e to Databus	s Address In	valid	24				ns
tACCI = tC2 +	WS – 15	Address Valid to	Input Data V	/alid—Data	Bus		2	221		ns
tDBDh		Data Bus Data In	Hold to MT	B Inactive				0		ns
$tAMTB = \frac{1}{4}tC2$	2 - 10	ALE Trailing Edg	e to MTB Ac	tive				20		ns
$tPAAV = \frac{1}{4}tC2$	2 — 12	Port A Address V	alid to ALE	Trailing Edg	e	18				ns
$tPAAiv = \frac{1}{4}tC2$	2 - 10	ALE Trailing Edg	e to Port A A	ddress Inva	ılid	20				ns
tACCE = tC2 -	- WS = 55	Address Valid to	Input Data V	/alid—Port /	4		1	181		ns
tPADs		Port A Data Setu	p to NRD Ina	active				50		ns
tPADh		Port A Data Hold	to NRD Inac	ctive				0		ns
tANRD = 1/4tCl	D2 — 5	ALE Trailing Edg	e to NRD Ac	tive		24				ns
$tNRDDv = \frac{1}{2}tC$	C2 + WS - 65	NRD Active to Po	ort A Data Va	alid			1	112		ns
tNRDp = 1/2tC2	2 + WS - 10	NRD Pulse Width	า			167				ns
						_				
Symbol	Description	Ref	В	est Case*			Worst	Case*		Units
,	•		FO = 1	1 d.	/FO	FO	= 1	d/	FO	
VRITE CYCLE TI	MING—Figure 5									
tNWRa	Write Active	C1, RE	2.3	().2	14	1.6	1	.1	ns
tNWRa tNWRia	Write Active Write Inactive	C1, RE C2, RE	2.3 3.3	().2).2	14	4.6 7.5	1	.1 .1	ns ns
tNWRa tNWRia	Write Active Write Inactive	C1, RE C2, RE	2.3 3.3	().2).2	14	ł.6 7.5	1	.1	ns ns
tNWRa tNWRia Sym	Write Active Write Inactive	C1, RE C2, RE	2.3 3.3 escription	().2	14 17 Min**	4.6 7.5 Тур	1 1)**	.1 .1 Max**	ns ns Units
tNWRa tNWRia Sym VRITE CYCLE TI	Write Active Write Inactive bol MING— <i>Figures</i> (C1, RE C2, RE De f and 7 fc = 17 MH:	2.3 3.3 escription z One Wait S	Gtate).2	14 17 Min**	4.6 7.5 Тур	1 1 **	.1 .1 Max**	ns ns Units
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = ½tC	Write Active Write Inactive bol MING—Figures 6 2 + WS - 15	C1, RE C2, RE Data Bus Data Ou	2.3 3.3 escription z One Wait S ut to NWR In	State).2	14 17 Min** 165	4.6 7.5 Тур)** 1 	.1 .1 Max**	ns ns Units
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = ½tC. tDBDiv	Write Active Write Inactive bol MING— <i>Figures</i> 6 2 + WS - 15	C1, RE C2, RE 6 and 7 fc = 17 MH: Data Bus Data Ou NWR Inactive to I	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da	State nactive).2).2	Min**	<u>4.6</u> 7.5 Тур	1 1 **	.1 .1 Max**	ns ns Units ns ns
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = ½tC. tDBDiv tPADv = ½tC2	Write Active Write Inactive bol MING— <i>Figures 6</i> 2 + WS - 15 2 + WS - 20	C1, RE C2, RE Det and 7 fc = 17 MH2 Data Bus Data Ou NWR Inactive to I Port A Data Out to	2.3 3.3 z One Wait S ut to NWR In Data Bus Da o NWR Inacl	State Bactive Ita Out Inval).2).2 id	14 17 Min** 165 157	I.6 7.5 Typ	1 1 **	.1 .1 Max**	ns ns Units ns ns ns
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = $1/2$ tC tDBDiv tPADv = $1/2$ tC2 tPADiv = $1/2$ tC2	Write Active Write Inactive bol MING—Figures 6 2 + WS - 15 2 + WS - 20 2 - 10	C1, RE C2, RE C2, RE C2, RE Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I	2.3 3.3 z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (State State nactive ta Out Invalitive Out Invalid).2).2 id	14 17 Min** 165 157 20	4.6 7.5 Typ	1 1 **	.1 .1 Max**	ns ns Units ns ns ns ns
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC tDBDiv tPADv = 1/2tC2 tPADiv = 1/4tC2	Write Active Write Inactive bol MING—Figures 0 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5	C1, RE C2, RE C2, RE C2, RE Data Bus Data Out NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inacl Port A Data (e to NWR Ac	State nactive ta Out Invalid tive Out Invalid).2).2 id	14 17 Min** 165 157 20 54	I.6 7.5 Typ	**	.1	ns ns Units ns ns ns ns ns
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC tDBDiv tPADv = 1/2tC tANWR = 1/2TC **Typical times for include 4 mA 1/0	Write Active Write Inactive	C1, RE C2, RE C2, RE C2, RE Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu the delay of control sign	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (e to NWR Ac mbers depend als brought three	State active ta Out Invalid tive Out Invalid ctive on actual design ough I/O buffer	0.2 0.2 id gn loading rs to pad	Min** 165 157 20 54 g of the sign	4.6 7.5 Typ	1 1	.1 .1	ns ns Units ns ns ns ns ns ns ns ns ncing Port A
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC2 tDBDiv tPADv = 1/2tC2 tPADiv = 1/2tC2 tANWR = 1/2TC **Typical times for include 4 mA 1/0	Write Active Write Inactive	C1, RE C2, RE C2, RE Data Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu I the delay of control sign	2.3 3.3 escription z One Wait S Lut to NWR In Data Bus Da o NWR Inact Port A Data (e to NWR Ac mbers depend hals brought thro	State active ta Out Invalitive Out Invalid Stive on actual designed ough I/O buffe	0.2	Min** 165 157 20 54 g of the sign s. Seest Cases	Image: 1.6 7.5 Typ 0	1 1 1	.1 Max** Max** eters refere	ns ns Units ns ns ns ns ns ncing Port A
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = ½tC tDBDiv tPADv = ½tC2 tPADiv = 1/4tC3 tANWR = 1/2TC **Typical times for include 4 mA I/C Symbol	Write Active Write Inactive bol MING—Figures 6 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5 signal relationship info D buffer on Port A and	C1, RE C2, RE C2, RE C2, RE Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu I the delay of control sign Description	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (a to NWR Ac mbers depend hals brought three	Catate Descrive Ta Out Invalid Tive Out Invalid Stive on actual desig ough I/O buffe Ref	0.2 0.2 id id gn loading rs to pad FO	Min** 165 157 20 54 g of the sign s. Setst Case = 1 d	Image: 1.6 7.5 Typ 0 als involv * /FO	1 1 **	.1 Max** eters refere st Case*	ns ns Units ns ns ns ns ns ncing Port A
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC tDBDiv tPADv = 1/2tC tANWR = 1/2TC *Typical times for include 4 mA 1/C Symbol READY MODE—/	Write Active Write Inactive bol MING—Figures 6 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5 signal relationship inf D buffer on Port A and Figure 8	C1, RE C2, RE C2	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inacl Port A Data (e to NWR Ac mbers depend nais brought thro	Catate Data Out Invalid Cata Out Invalid Cata Out Invalid Cative Out Invalid Cative Out Invalid Cative Ref).2).2 id gn loading rs to pad B FO	12 Min** 165 157 20 54 g of the sign s.	4.6 7.5 0 0 als involv * /FO	1 1 1 **	.1 Max**	ns ns Units ns ns ns ns ns ns ncing Port A
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC tDBDiv tPADv = 1/2tC tADIv = 1/2tC tANWR = 1/2T **Typical times for include 4 mA 1/0 Symbol READY MODE—/ tRDYs = 40 ns	Write Active Write Inactive bol MING— <i>Figures</i> 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5 signal relationship inf D buffer on Port A and <i>C</i> <i>E</i> <i>Gure 8</i> Ready Reque	C1, RE C2, RE C2, RE C2, RE Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu the delay of control sign Description	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data 0 e to NWR Ac mbers depend of alls brought thro	C2, RE).2).2 id id gn loading rs to pad	Min** 165 157 20 54 g of the sign s. Dest Case = 1 d	4.6 7.5 0 0 alls involv * /FO	1 1 1 	.1 Max** Max** eters refere st Case* d d/Fe	ns ns Units ns ns ns ns ns ns ncing Port A
tNWRa tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC2 tPADiv = 1/2tC2 tPADiv = 1/2tC2 tPADiv = 1/2tC2 tPADiv = 1/2tC2 tRDVR = 1/2TC symbol EEADY MODE—/ tRDYs = 40 ns tRDYh = 50 ns	Write Active Write Inactive	C1, RE C2, RE C2, RE C2, RE Data Data Out Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu I the delay of control sign Description	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (e to NWR Ac mbers depend hals brought thr	C2, RE C2, RE).2).2 id gn loading rs to pad	1/2 Min** 165 157 20 54 g of the sigr s.	Image: 1.6 7.5 Typ 0	1 1 1 **	.1 .1 .1 .1 .1 .1 .1 .1	ns ns Units ns ns ns ns ncing Port A
tNWRa tNWRia tNWRia VRITE CYCLE TI tDBDV = 1/2tC2 tDBDiv tPADv = 1/2tC2 tPADv = 1/2tC2 tPADiv = 1/2tC2 tANWR = 1/2tC2 tRDYs = 40 ms tRDYs = 40 ms tRDYh = 50 ms tALT/IDLE MOD	Write Active Write Inactive bol MING—Figures (2 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5 signal relationship inf D buffer on Port A and Figure 8 Ready Reque Ready Reque E—Figure 9	C1, RE C2, RE C2	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (a to NWR Ac mbers depend thas brought through	C2, RE C2, RE C2, RE	0.2 0.2 id gn loading rs to pad FO	1/2 Min** 165 157 20 54 g of the sigr s.	Image: 1.6 7.5 Typ 0 als involv * /FO	1 1 1	.1	ns ns Units ns ns ns ns ns ncing Port A
tNWRa tNWRia tNWRia Sym VRITE CYCLE TI tDBDIV = 1/2tC2 tDBDiv tPADv = 1/2tC2 tPADiv = 1/2tC2 tANWR = 1/2TC **Typical times for include 4 mA 1/C Symbol EADY MODE—/ tRDYs = 40 ns tRDYh = 50 ns ALT/IDLE MOD tHALT	Write Active Write Inactive bol MING—Figures 6 2 + WS - 15 2 + WS - 20 2 - 10 C2 - 5 signal relationship inf D buffer on Port A and C2 - 5 Figure 8 Ready Reque Ready Reque E—Figure 9 HALT/IDLE Figure 9	C1, RE C2, RE C2, RE C2, RE C2, RE Data Bus Data Out Data Bus Data Out NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu the delay of control sign Description st Setup Time st Hold Time	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da to NWR Inacl Port A Data (Port A Data (e to NWR Ac mbers depend als brought through through through through e (Note 1)	C2, RE C2, RE).2).2 id id gn loading rs to pad FO	14 11 Min** 165 157 20 54 g of the sign sest Case = 1 d 4	Image: 1.6 7.5 Typ 0 .als involv * /FO 0.8	1 1 **	.1	ns ns ns ns ns ns ns ns ns unit Unit Unit
tNWRa tNWRia tNWRia Sym VRITE CYCLE TI tDBDV = 1/2tC2 tDBDiv tPADv = 1/2tC2 tPADiv = 1/2tC2 tANWR = 1/2T0 **Typical times for include 4 mA 1/0 Symbol READY MODE—/ tRDYs = 40 ns tRDYh = 50 ns HALT/IDLE MOD tHALT tNSTP	Write Active Write Inactive	C1, RE C2, RE C2, RE C2, RE Data Bus Data Ou NWR Inactive to I Port A Data Out to NWR Inactive to I ALE Trailing Edge ormation, only. Actual nu the delay of control sign Description st Setup Time st Hold Time	2.3 3.3 escription z One Wait S ut to NWR In Data Bus Da o NWR Inact Port A Data (o to NWR Ac mbers depend als brought three e (Note 1)	C2, RE C2, RE C2, RE C2, RE).2).2 id id gn loading rs to pad FO 6. 5.	12 Min** 165 157 20 54 g of the sign s.	Image: 1.6 7.5 Typ 0 als involv * /FO 0.8 0.4	1 1 1 **	.1 .1 Max** eters refere st Case* I d/Fe 4.3 2.4	ns ns ns ns ns ns ns ncing Port A Unit

Symbol	Description	Pof	Best C	ase*	Worst (Case*	Unite
Symbol	Description	nei	FO = 1	d/FO	FO = 1	d/FO	Units
HOLD MODE—Figure 10							
tNHLDs = 40 ns	Hold Request Setup Time	C2, FE					
tNHLDh = 50 ns	Hold Request Hold Time	C2, FE					
tNHDA	Hold Acknowledge Active	C1, RE	2.4	0.3	12.8	1.6	ns
tPAZ	Port A TRI-STATEs (Note 1, 3)	C1, RE	5.4	0.1	16.2	0.1	ns
SELECT OUTPUTS—Figure 11						_	
tSROM	Address Select Bit	C1, RE	3.9	0.2	20.6	1.1	ns
tSELX	Address Select Bit	C1, RE	3.8	0.2	19.5	1.1	ns
tSELA	Address Select Bit	C1, RE	3.8	0.2	19.5	1.1	ns
tSELB	Address Select Bit	C1, RE	3.8	0.2	19.5	1.1	ns
tSELC	Address Select Bit	C1, RE	3.8	0.2	19.5	1.1	ns
tSELD	Address Select Bit	C1, RE	3.8	0.2	19.5	1.1	ns
tSLIO	Address Select Bit	C1, RE	4.3	0.2	22.7	1.1	ns
WATCHDOG—Figure 12							
tWDOT	System Clock to Watch Out (Note 1)	C2, RE	4.1	0.4	21.1	2.4	ns
tSTWDp = 1 tC2	Set Watchdog Pulse Width (Note 1)						
tWDOTp = 16tC2 \rightarrow 32tC2	WDOT Pulse Width (Note 1)						
TIMERS-INTERNAL CLOCK S	OURCE—Figure 13						
tT2OT	Clock to Timer 2 Underflow	C2, RE	1.9	0.3	25.8	1.6	ns
tT20Tp = 1tC1 - 20	Timer 2 Underflow Pulse (Note 1)						
tT3OT	Clock to Timer 3 Underflow	C2,RE	1.9	0.3	25.8	1.6	ns
tT30Tp = 1tC1 - 20	Timer 3 Underflow Pulse (Note 1)						
tT0CYp = 1tC2 - 20	Timer 0 Overflow Pulse (Note 1)						
tDIV	Clock to Time Base Generator	C1, RE	2.9	0.3	17.5	1.6	ns

Oyne of the complexitItemFO= 1 d/FO FO= 1 d/FO FOHICROWIRE/PLUS—MASTER MODE—Figure 14tOSKOC1 to MW Master ClockC1, RE6.20.431.72.4nstMWOTMMaster Clock to Data Out (Note 1)OSKO, FE6.20.436.72.4nstMWINMs = 10 nsData Setup Time (Note 1)C1, REtMWINM = 50 nsData Hold Time (Note 1)C1, REIICROWIRE/PLUS—SLAVE MODE—Figure 15tOSKId = 1 C2 CycleData Reg. Load to Slave Clock BeginSIO LoadtMWINSs = 20 nsData Setup Time (Note 1)OSKI, FE6.20.456.72.4nstMWINSh = 50 nsData Hold Time (Note 1)OSKI, REtMWINSh = 50 nsData Hold Time (Note 1)OSKI, REtMUXnhl n = 0 -5Output MUX—User Mode (Note 1)1.790.115.410.39nstMUXnhl n = 6-80utput MUX—User Mode (Note 1)0.460.072.530.25nstMUXnhl n = 6 -8Output MUX—User Mode (Note 1)0.580.073.230.24ns-t11 = 40 ns MinimumIM Pulse Width (Note 1)<	Symbol	Description	Ref	Best C	ase*	Worst	Case*	Unit
NCROWIRE/PLUS-MASTER MODE - Figure 14 t0SK0 C1 to MW Master Clock C1, RE 6.2 0.4 31.7 2.4 ns tMWOTM Master Clock to Data Out (Note 1) OSKO, FE 6.2 0.4 36.7 2.4 ns tMWINMs = 10 ns Data Setup Time (Note 1) C1, RE -	Cymbol	Description	ner	FO = 1	d/FO	FO = 1	d/FO	Onit
tOSKO C1 to MW Master Clock C1, RE 6.2 0.4 31.7 2.4 ns tMWOTM Master Clock to Data Out (Note 1) OSKO, FE 6.2 0.4 36.7 2.4 ns tMWINMs = 10 ns Data Setup Time (Note 1) C1, RE tMWINM = 50 ns Data Hold Time (Note 1) C1, RE	ICROWIRE/PLUS-M	ASTER MODE—Figure 14						
thWOTM Master Clock to Data Out (Note 1) OSKO, FE 6.2 0.4 36.7 2.4 ns tMWINMs = 10 ns Data Setup Time (Note 1) C1, RE	tOSKO	C1 to MW Master Clock	C1, RE	6.2	0.4	31.7	2.4	ns
thWINMs = 10 ns Data Setup Time (Note 1) C1, RE Image: Constraint of the constrain	tMWOTM	Master Clock to Data Out (Note 1)	OSKO, FE	6.2	0.4	36.7	2.4	ns
thWINMh = 50 ns Data Hold Time (Note 1) C1, RE Inclusion Inclusion NCROWIRE/PLUS—SL-VE MODE—Figure 15 toSkId = 1 C2 Cycle Data Reg. Load to Slave Clock Begin SIO Load Inclusion Inclusion Inclusion tMWOTS Slave Clock to Data Out (Notes 1, 2) OSKI, FE 6.2 0.4 56.7 2.4 ns tMWINS = 20 ns Data Setup Time (Note 1) OSKI, RE Inclusion <	tMWINMs = 10 ns	Data Setup Time (Note 1)	C1, RE					
INCROWIRE/PLUS—SLAVE MODE—Figure 15 tOSkId = 1 C2 Cycle Data Reg. Load to Slave Clock Begin SIO Load Image: Sional S	tMWINMh = 50 ns	Data Hold Time (Note 1)	C1, RE					
tOSKId = 1 C2 Cycle Data Reg. Load to Slave Clock Begin SIO Load Image: Control of the state of the	ICROWIRE/PLUS-SL	AVE MODE— <i>Figure 15</i>					•	
tMWOTS Slave Clock to Data Out (Notes 1, 2) OSKI, FE 6.2 0.4 56.7 2.4 ns tMWINSs = 20 ns Data Setup Time (Note 1) OSKI, RE </td <td>tOSKId = 1 C2 Cycle</td> <td>Data Reg. Load to Slave Clock Begin</td> <td>SIO Load</td> <td></td> <td></td> <td></td> <td></td> <td></td>	tOSKId = 1 C2 Cycle	Data Reg. Load to Slave Clock Begin	SIO Load					
thWINSs = 20 ns Data Setup Time (Note 1) OSKI, RE Image: Constraint of the setup of the	tMWOTS	Slave Clock to Data Out (Notes 1, 2)	OSKI, FE	6.2	0.4	56.7	2.4	ns
tMWINSh = 50 ns Data Hold Time (Note 1) OSKI, RE Image: Constraint of the state of the	tMWINSs = 20 ns	Data Setup Time (Note 1)	OSKI, RE					
EST LOGIC MUXES (MUX0-MUX8)—Figure 16 tMUXnlh n = 0-5 Output MUX—User Mode (Note 1) 1.79 0.11 5.41 0.39 ns tMUXnlh n = 0-5 Output MUX—User Mode (Note 1) 1.30 0.13 8.27 0.48 ns tMUXnlh n = 6-8 Output MUX—User Mode (Note 1) 0.46 0.07 2.53 0.25 ns tMUXnlh n = 6-8 Output MUX—User Mode (Note 1) 0.58 0.07 3.23 0.24 ns ORT I INPUTS t11 = 40 ns Minimum INI Pulse Width (Note 1) 1 1 1 1 t12 = 40 ns Minimum I2 Pulse Width (Note 1) 1 1 1 1 1 t13 = 40 ns Minimum I3 Pulse Width (Note 1) 1 <td>tMWINSh = 50 ns</td> <td>Data Hold Time (Note 1)</td> <td>OSKI, RE</td> <td></td> <td></td> <td></td> <td></td> <td></td>	tMWINSh = 50 ns	Data Hold Time (Note 1)	OSKI, RE					
tMUXnlh n = $0-5$ Output MUX—User Mode (Note 1)1.790.115.410.39nstMUXnlh n = $0-5$ Output MUX—User Mode (Note 1)1.300.138.270.48nstMUXnlh n = $6-8$ Output MUX—User Mode (Note 1)0.460.072.530.25nstMUXnlh n = $6-8$ Output MUX—User Mode (Note 1)0.580.073.230.24nsORT I INPUTSt11 = 40 ns MinimumNMI Pulse Width (Note 1)111t12 = 40 ns Minimum12 Pulse Width (Note 1)1111t13 = 40 ns Minimum13 Pulse Width (Note 1)1111t14 = 40 ns Minimum14 Pulse Width (Note 1)1111Note 1: This is guaranteed by design and not tested.Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading.Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins.Best Case: Best Process, 5.5V, -40°C.Worst Case: Worst Process, 4.5V, +100°C.*Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	EST LOGIC MUXES (M	UX0-MUX8)—Figure 16						
tMUXnhl n = 0-5Output MUX—User Mode (Note 1)1.300.138.270.48nstMUXnlh n = 6-8Output MUX—User Mode (Note 1)0.460.072.530.25nstMUXnhl n = 6-8Output MUX—User Mode (Note 1)0.580.073.230.24nsORT I INPUTSt11 = 40 ns MinimumNMI Pulse Width (Note 1)111t12 = 40 ns Minimum12 Pulse Width (Note 1)1111t13 = 40 ns Minimum13 Pulse Width (Note 1)1111t14 = 40 ns Minimum14 Pulse Width (Note 1)1111t14 = 40 ns Minimum14 Pulse Width (Note 1)1111Note 1: This is guaranteed by design and not tested.Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading.Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins.Best Case: Best Process, 5.5V, -40° C.*Orest Case: Worst Process, 4.5V, $+100^{\circ}$ C.*Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tMUXnlh n = $0-5$	Output MUX—User Mode (Note 1)		1.79	0.11	5.41	0.39	ns
tMUXnlh n = 6-8Output MUX—User Mode (Note 1)0.460.072.530.25nstMUXnlh n = 6-8Output MUX—User Mode (Note 1)0.580.073.230.24nsORT I INPUTSt11 = 40 ns MinimumNMI Pulse Width (Note 1)111t12 = 40 ns Minimum12 Pulse Width (Note 1)111t13 = 40 ns Minimum13 Pulse Width (Note 1)111t14 = 40 ns Minimum14 Pulse Width (Note 1)111Note 1: This is guaranteed by design and not tested.Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading.Note 3: Timing includes connection of BF084D 4 mA CMOS I/O Buffer to Port A pins.Best Case:Best Process, 5.5V, -40° C."Worst Case:Worst Process, 4.5V, $+100^{\circ}$ C."Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tMUXnhl n = $0-5$	Output MUX—User Mode (Note 1)		1.30	0.13	8.27	0.48	ns
tMUXnhl n = 6-8 Output MUX—User Mode (Note 1) 0.58 0.07 3.23 0.24 ns ORT I INPUTS t11 = 40 ns Minimum NMI Pulse Width (Note 1) 1 1 1 t12 = 40 ns Minimum I2 Pulse Width (Note 1) 1 1 1 1 t13 = 40 ns Minimum I3 Pulse Width (Note 1) 1 1 1 1 t14 = 40 ns Minimum I4 Pulse Width (Note 1) 1 1 1 1 1 t14 = 40 ns Minimum I4 Pulse Width (Note 1) 1 <td>tMUXnlh n = $6-8$</td> <td>Output MUX—User Mode (Note 1)</td> <td></td> <td>0.46</td> <td>0.07</td> <td>2.53</td> <td>0.25</td> <td>ns</td>	tMUXnlh n = $6-8$	Output MUX—User Mode (Note 1)		0.46	0.07	2.53	0.25	ns
ORT I INPUTS tl1 = 40 ns Minimum NMI Pulse Width (Note 1) tl2 = 40 ns Minimum I2 Pulse Width (Note 1) tl3 = 40 ns Minimum I3 Pulse Width (Note 1) tl4 = 40 ns Minimum I3 Pulse Width (Note 1) tl4 = 40 ns Minimum I4 Pulse Width (Note 1) vl4 = 40 ns Minimum I4 Pulse Width (Note 1) Note 1: This is guaranteed by design and not tested. Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading. Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins. Best Case: Best Process, 5.5V, -40°C. Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tMUXnhl n = $6-8$	Output MUX—User Mode (Note 1)		0.58	0.07	3.23	0.24	ns
tl1 = 40 ns Minimum NMI Pulse Width (Note 1) Image: state of the state of	ORT I INPUTS							
tl2 = 40 ns Minimum I2 Pulse Width (Note 1) II III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	tl1 = 40 ns Minimum	NMI Pulse Width (Note 1)						
tl3 = 40 ns Minimum I3 Pulse Width (Note 1) Id Id Id tl4 = 40 ns Minimum I4 Pulse Width (Note 1) Id Id Id Note 1: This is guaranteed by design and not tested. Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading. Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins. Best Case: Best Process, 5.5V, -40°C. Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tl2 = 40 ns Minimum	I2 Pulse Width (Note 1)						
tl4 = 40 ns Minimum I4 Pulse Width (Note 1) Note 1: This is guaranteed by design and not tested. Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading. Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins. Best Case: Best Process, 5.5V, -40°C. Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tl3 = 40 ns Minimum	I3 Pulse Width (Note 1)						
Note 1: This is guaranteed by design and not tested. Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading. Note 3: Timing includes connection of BF0B4D 4 mA CMOS I/O Buffer to Port A pins. Best Case: Best Process, 5.5V, -40°C. Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	tl4 = 40 ns Minimum	I4 Pulse Width (Note 1)						
Note 2: Values assume equivalent loading on OSKO, OSKI and MWOT outputs. Actual delay limits will vary due to specific design loading. Note 3: Timing includes connection of BF084D 4 mA CMOS I/O Buffer to Port A pins. Best Case: Best Process, 5.5V, -40°C, Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	Note 1: This is guaranteed b	by design and not tested.						
Best Case: Best Process, 5.5V, -40°C. Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	Note 2: Values assume equ	ivalent loading on OSKO, OSKI and MWOT outputs	 Actual delay limit A pine 	ts will vary due	to specific o	lesign loading.		
Worst Case: Worst Process, 4.5V, +100°C. *Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	Best Case: Best Process	, 5.5V, −40°C.	A pina.					
*Delays are referenced to signal in Ref Column. To relate to CKIN input clock edge, add the appropriate delay from CKIN to the referenced clock (C1, C2).	Worst Case: Worst Proces	s, 4.5V, +100°C.						
	*Delays are referenced to s	gnal in Het Column. To relate to CKIN input clock e	edge, add the appr	opriate delay fi	rom CKIN to	the referenced	d clock (C1,	C2).

Standard Features

The HPC core is the building block for a number of standard microcontrollers. Since the core is now a building block in a cell based library, microcontroller designs are not restricted to accessing the core solely through I/O ports. As a result, there are several features of the core that are accessable in the ASIC HPC core that are not accessable on the standard microcontrollers built from the core. These features include:

Functional Descriptions

- Direct core access vs. I/O port access.
- Direct access to internal 16-bit address/data bus.
- Ability to control clock oscillations with surrounding hardware.
- Ability to force a watchout condition through surrounding hardware.
- Access to MICROWIRE/PLUS shift clock as individual I/O pins.
- Access to Timer 2 and Timer 3 clocks as individual I/O pins.
- General purpose 4-bit programmable clock output (used by UART in most standard family members).
- Access to Timer 0 overflow output pulse.
- Interrupt bit 5 as a general purpose external interrupt ORed with internal Timer interrupt.
- Access to separate RDY and HOLD input pins.
- Hardware acknowledgement of halt/idle modes (HALT output bit).
- Ability to select which memory space addresses are affected by wait states.
- Direct memory control output bits (NRD, NWR, ALE, HBE).
- Access to hardware control bits to configure, read and acknowledge Port A operations.
- Access to memory map block decode bits.
- Additional registers for test; Feedback control and MUX control.

While the ASIC HPC core offers access to a greater number of design features, it must be kept in mind that the core does not include the peripherals found on the standard parts. Such peripherals would include additional PWM times, UART, A/D, HDLC and DMA channels. Some of these peripherals are available as separate building blocks in the cell based library.

Port A

Port A is a highly flexible 16-bit port used to communicate to peripherals external to the integrated circuit environment. The port may be configured as a 16-bit general purpose I/O port or as an extension of the 16-bit address/data bus. Selection is made through the EXAC pin. Port A cannot be connected to internal logic. It must connect directly to an I/ O macro. During test, Port A is configured in the address/ data bus mode.

Port A (see *Figure 12*), consists of a data register and a direction register. Both control registers are read/write.

The associated direction register allows the port pins to be individually programmed as inputs or outputs. Port pins selected as inputs are placed in a TRI-STATE® mode by resetting corresponding bits in the direction register. When in the address/data bus extension mode, the direction register is cleared.

A write operation to a port pin configured as an input causes the value to be written into the data register. A read operation returns the value at the pin. Writing to port pins configured as outputs causes the pins to assume the value written into the Port A data register, while reading the pins returns the value of the data register.

Address locations communicating through Port A in the address/data bus mode should be decoded onto the RDEX input to generate a Port A read signal.

Port A may also be configured as an 8-bit bus to support 8-bit applications. In this mode, the upper byte of the 16-bit bus transfers addresses only. The lower byte of the bus is used for both address and data communication. If this mode is selected, address locations communicating through Port A in the 8-bit mode should be decoded onto the SEL8 input.

16-Bit Address/Data Bus

Access to the internal 16-bit address/data bus provides unlimited flexibility. A number of peripherals may be designed to communicate with the bus. To increase the architecture speed, the bus is precharged.

A precharged bus is different from a TRI-STATE bus. The unselected state is a "1" rather than a "2". When not selected, the peripheral bit will remain high from the internal precharge circuitry. The same holds true when a high level is requested on the bit. Hence, response time is faster. A low level is placed on the bus when the internal transistor is pulled low. Bus precharge occurs when both clocks C1 and C2 are in a high state. To avoid excessive loading on the address/data bus, special macros have been created for bus interfacing. A bus receiver or bus driver macro, available in the cell library should be used.

Figure 13 demonstrates how a peripheral may be connected to the precharge bus. The peripheral contains registers located in the SELA address block of the memory map. The bus LSBs are monitored through receiver macros and decoded to determine which unique address locations will receive data. Peripheral registers access the data bus through a bus driver macro. Proper timing for communication with the pre-charged bus is controlled with this macro through the MTB and C2 timing signals during a read cycle. During a write cycle, data is transferred from the bus to the peripheral via the bus receiver macros and the NWR signal.

Wait States

The HPC core provides four software selectable Wait States that allow access to slower memories. The Wait States are selected by the state of two bits, Wait1 and Wait0, in the PSW register. Table I indicates the number of programmed wait states. Additionally, the RDY input may be used to extend the instruction cycle, allowing the user to interface with slow memories and peripherals. Hardware decode of the memory map address locations affected by wait states should be provided on the WATA input.

	TABLE I	
Bit Wait1	Bit Wait0	Wait States
0	0	4
0	1	2
1	0	1
1	1	0

Power Save Modes

Two power saving modes are available on the HPC core: HALT and IDLE. In the HALT mode, all processor activities are stopped. In the IDLE mode, the on-board oscillator and timer T0 are active but all other processor activities are stopped. In either mode, all on-board RAM, registers and I/O are unaffected.

HALT Mode

The HPC core is placed in the HALT mode under software control by setting bits in the PSW register. All processor activities, including the clock and timers, are stopped. The stop clock (NSTP) output is gated with the clock input (CKI) signal to inhibit clock oscillation at the core input when a clock I/O oscillator macro is used. The HALT output goes high designating that the core is in HALT mode. In this mode, power requirements for the HPC are minimal and the applied voltage (V_{CC}) may be decreased without altering the RAM keep alive voltage.

There are two ways of exiting the HALT mode: via the RSET or NMI interrupts. The RSET input reinitializes the processor. Exiting with an NMI input will generate a vectored interrupt. Operation will resume from that point with no initialization. The HALT mode can be enabled or disabled by means of a control register HALT enable. To prevent accidental use of the HALT mode the HALT enable register can be modified only once.

Idle Mode

The HPC core is placed in the IDLE mode through the PSW register. In this mode, all processor activity, except the onboard oscillator, WATCHDOG monitoring and Timer T0, is stopped. The HALT output bit goes high to indicate the processor is entering the IDLE mode. As with the HALT mode, the processor is returned to full operation by the RSET or NMI inputs, but without waiting for oscillator stabilization. A timer T0 overflow will also cause the HPC core to resume normal operation.

Interrupts

Complex interrupt handling is easily accommodated by the HPC core's vectored interrupt scheme. There are eight possible interrupt sources as shown in Table II.

	TABLE II. IIIterrupts	
Vector Address	Interrupt Source	Arbitration Ranking
FFFF:FFFE	RESET	0
FFFD:FFFC	Nonmaskable External on Rising Edge of I1 Pin	1
FFFB:FFFA	External on I2 Pin	2
FFF9:FFF8	External on I3 Pin	3
FFF7:FFF6	External on I4 Pin	4
FFF5:FFF4	Timeout of Internal Timers ORed W/External On INT5 Pin	5
FFF3:FFF2	External on INT6 Pin	6
FFF1:FFF0	External on INT7 Pin	7

TABLE II. Interrupts

Interrupt Arbitration

The HPC core contains arbitration logic to determine which interrupt will be serviced first if two or more interrupts occur simultaneously. The arbitration ranking is shown in Table II. The interrupt on reset has the highest rank and is serviced first.

Interrupt Processing

Interrupts are serviced after the current instruction is completed except for the RSET, which is serviced immediately. RSET, INT6 and INT7 are active high level sensitive interrupts. INT5 is an external active high level sensitive interrupt ORed with internal interrupts from timers T0 through T3. The timer interrupts have individual enable bits. INT5 is enabled whenever interrupt bit 5 is high in the ENIR register. All other interrupts are edge sensitive. NMI is positive edge sensitive. The external interrupts on I2, I3 and I4 can be software selected to be sensitive on a rising or falling edge.

Interrupt Control Registers

The HPC core allows the various interrupt sources and conditions to be programmed. This is done through the various control registers. A brief description of the different control registers is given below.

Interrupt Enable Register (ENIR)

RSET and the external interrupt on I1 (NMI) are nonmaskable interrupts. The other interrupts can be individually enabled and disabled. Additionally, a Global Interrupt Enable Bit in the ENIR Register allows the maskable interrupts to be collectively enabled or disabled. Thus, in order for a particular interrupt to be serviced, both the individual enable bit and the Global Interrupt bit (GIE) have to be set.

Interrupt Pending Register (IRPD)

The IRPD register contains a bit allocated for each interrupt vector. The occurrence of specified interrupt trigger conditions causes the appropriate bit to be set. There is no indication of the order in which the interrupts have been received. The bits are set independently of the fact that the interrupt may be disabled. IRPD is a Read/Write register. The bits corresponding to the maskable, external interrupts I2–I4 are normally cleared by the HPC core after acknowledging the interrupts.

For the interrupts generated internally and on bits INT5, INT6 and INT7, the user has the responsibility of resetting the interrupt pending flags through software.

The NMI bit is read only and I2, I3 and I4 are designed to only allow a zero to be written to the pending bit (writing a one has no affect). A LOAD IMMEDIATE instruction is to be the only instruction used to clear a bit or bits in the IRPD register. This allows a mask to be used, thus ensuring that the other pending bits are not affected.

Interrupt Condition Register (IRCD)

Three bits of the IRCD register select the input polarity of the external interrupts on I2, I3 and I4.

Servicing the Interrupts

The interrupt, once acknowledged, pushes the program counter (PC) onto the stack thus incrementing the stack pointer (SP) twice. The Global Interrupt Enable bit (GIE) is copied into the CGIE bit of the PSW register, it is then reset, thus disabling further interrupts. The program counter is loaded with the contents of the memory at the vector address and the processor resumes operation at this point. At the end of the interrupt service routine, the user does a RETI instruction to pop the stack and re-enables interrupts, or RET to just pop the stack, and then returns to the main program. The GIE bit can be set in the interrupt service routine to nest interrupts if desired. *Figure 13* shows the Interrupt Enable Logic.

FIGURE 13. Block Diagram of Interrupt Logic

Reset

The RSET input initializes the processor and sets Port A in the TRI-STATE condition. The internal data bus oscillates at a C2 clock rate is an active high signal. If RSET is connected to logic outside of the device it should be brought in through a schmitt trigger input. The processor vectors to FFFF:FFFE and resumes operation at the address contained at that memory location.

Timer Overview

The HPC core contains a powerful set of flexible timers enabling the HPC to perform extensive timer functions not usually associated with microcontrollers.

The core contains four 16-bit timers. Timer T0 is a free-running timer, counting up at a fixed CKI/16 (Clock/16) rate. It is used for Watchdog logic, high speed event capture and to exit from the IDLE mode. Consequently, it cannot be stopped or written to under software control. In addition, the overflow of T0 is a core output, T0CY, and may be utilized by any external logic. Upon timer overflow a pulse of width CKI/2 occurs on T0CY. Timer T0 permits precise measurements by means of the capture registers I2CR, I3CR and I4CR. A control bit in the register T0CON configures timer T1 and its associated register R1 as capture registers I3CR and I2CR. The capture registers I2CR, I3CR and I4CR respectively, record the value of timer T0 when specified events occur on the interrupt pins I2, I3 and I4. The control register IRCD programs the capture registers to trigger on either a rising edge or a falling edge of its respective input. The specified edge can also be programmed to generate an interrupt (see Figure 14).

Timer Overview (Continued)

The timers T2 and T3 have selectable clock rates. The clock input to these two timers may be selected from the following two sources: an external pin, T2IN and T3IN, respectively, or derived internally by dividing the clock input. Timer T2 has additional capability of being clocked by the timer T3 underflow. This allows the user to cascade timers T3 and T2 into a 32-bit timer/counter. The control register DIVBY programs the clock input to timers T2 and T3 (see *Figure 15*).

The timers T1 through T3 in conjunction with their registers form Timer-Register pairs. The registers hold the pulse duration values. All Timer-Register pairs can be read from or written to. Each timer can be started or stopped under software control. Once enabled, the timers count down, and upon underflow, the contents of its associated register is automatically loaded into the timer. An underflow on timers T2 and T3 generates an output pulse on pins T2OT and T3OT, respectively. The pulse is one CKI width.

FIGURE 15. Timers T2-T3 Block

Timer Registers

There are three control registers designated for timer programming. The timer mode register (TMMODE) contains control bits to start and stop timers T1 through T3. It also contains bits to latch and enable interrupts from timers T0 through T3. The T0/capture configuration register (T0CON) determines if (CKIN) capture registers I2CR and I3CR are to be used as timer registers R1 and T1 or as capture registers. The divide by (DIVBY) register programs the clock input to timers T2 and T3. In addition, four bits are available to control a general purpose programmable clock brought out on pin TDIV.

Timer Applications

The use of Pulse Width Timers for the generation of various waveforms is easily accomplished by the HPC core.

Frequencies can be generated by using the timer/register pairs with a toggle flip-flop. A programmable waveform may be created by connecting the timer underflow pulse output to the flip-flop clock. A square wave is generated when the register value is a constant. The duty cycle can be controlled simply by changing the register value.

TL/U/9982-18

FIGURE 16. Square Wave Frequency Generation

Watchdog Logic

The Watchdog Logic monitors the operations taking place and signals upon the occurrence of any illegal activity. The illegal conditions that trigger the Watchdog logic are potentially infinite loops and illegal addresses. Should the Watchdog register not be written to before Timer T0 overflows twice, or more often than once every 4096 counts of CKI/ 16, an infinite loop condition is assumed to have occurred. An illegal condition also occurs when the processor generates an illegal address. The designer specifies which address locations are illegal through the STWD input. As well, external logic may use the STWD input to declare a watchout, forcing the Watchdog logic to trigger for an illegal application specific condition.

Any illegal condition forces the Watchdog output (WDOT) pin high. The WDOT signal must trigger a low level on the WDIN input for Watchdog timeout to begin. This can occur from one of several ways. If the Watchdog feature is being used external to the integrated circuit environment a special watchdog I/O macro must be used. The macro has an external open drain output, active low. An internal output, active low should connect back to the WDIN input on the core, triggering a watchdog timeout. If the watchdog feature is contained inside the IC, WDOT may be inverted and brought back in to WDIN. The watchout signal can be connected to the RSET or NMI interrupt input logic or be brought out for external logic usage.

MICROWIRE/PLUS

MICROWIRE/PLUS is used for synchronous serial data communications (see *Figure 17*). MICROWIRE/PLUS has an 8-bit parallel-loaded, serial shift register using 15 (MWIN) as the input and MWOT as the output. The clock signal for the serial shift register (SIO) can be provided by an internal or external source. The internal clock rate is programmable by the DIVBY register and appears as a core output on OSKO. An external clock rate may be selected on the OSKI input of the core. Usage of OSKI or OSKO as the shift clock is determined through the IRCD register. A DONE flag indicates when the data shift is completed. The MICROWIRE/ PLUS capability enables the core to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/ D converters, display drivers, EEPROMS).

MICROWIRE/PLUS (Continued)

FIGURE 17. MICROWIRE/PLUS

MICROWIRE/PLUS Operation

The HPC core can enter the MICROWIRE/PLUS mode as a master or slave. A control bit in the IRCD register determines whether the HPC core is the master or slave mode. An externally generated shift clock placed on the OSKI pin is used when the HPC is configured as a slave. The OSKO output is placed into TRI-STATE during this operation. The shift clock is generated internally when the HPC is configured as a master. The DIVBY register programs the frequency of the OSKO clock. This register allows the OSKO clock frequency to be programmed in 14 selectable steps from 122 Hz to 1 MHz with CKI at 16.0 MHz, or from a timer T3 underflow. Hardware mode detection is provided on the MI-CROWIRE master/slave output MWMS.

The contents of the SIO register may be accessed through any of the memory access instructions. Data waiting to be transmitted in the SIO register is clocked out on the falling edge of the shift clock. Serial data on the MWIN pin is clocked in on the rising edge of the shift clock.

Shared Memory Support

Shared memory access provides a rapid technique to exchange data. It is effective when data is moved from a peripheral to memory or when data is moved between blocks of memory. A related area where shared memory access proves effective is multiprocessing applications where two CPUs share a common memory block. The HPC core supports shared memory access through Port A with two pins. These pins are the NHLD input pin and the NHDA output pin.

The host uses DMA to interface with the HPC core. A low level on the NHLD input of the HPC core from the host initiates a data transfer. In response, the HPC core places Port A in a TRI-STATE mode, freeing it for use by the host. The host waits for the acknowledge signal (NHDA) from the HPC core indicating that the port is free. On receiving the acknowledge, the host can rapidly transfer data into, or out of, the shared memory by using a conventional DMA controller. Upon completion of the message transfer, the host removes the NHLD request and the HPC core resumes normal operations.

Figure 18 illustrates an application of the shared memory interface between the HPC core and a series 32000 system.

Memory

The HPC core has been designed to offer flexibility in memory usage. A total address space of 64 kbytes can be addressed. The core contains 256 bytes of RAM, usable for instruction execution. This 256 byte RAM block is available as a stand alone macro for inclusion of additional memory. Program memory addressing is controlled by the 16-bit program counter on a byte basis. Memory can be addressed directly by instruction or indirectly through the B, X and SP registers. Memory can be addressed as words or bytes. Words are always addressed on even-byte boundries. The HPC core uses memory-mapped organization to support registers, I/O, and on-chip peripheral functions.

The HPC core memory address space extends to 64 kbytes. Registers and I/O are mapped as shown in Table III.

FFFF:FFF0	Interrupt Vectors	
FFEF: FFD0	JSRP Vectors	
FFCF : FFCE		
	User Memory	User Memory
0201 : 0200		
01FF : 01FE		
:	Core RAM	User RAM
01C1 : 01C0		
0195 : 0194	Watchdog Register	Watchdog Logic
0192 0191:0190 018F:018E 018D:018C 018B:018A 0189:0188 0187:0186 0185:0184 0183:0182 0181:0180	T0C0N Register TMMODE Register DIVBY Register T3 Timer R3 Register T2 Timer R2 Register I2CR Register/R1 I3CR Register/T1 I4CR Register	Timer Block T0 : T3
017F : 017E		
	Register Expansion	
0101:0100		
00FF : 00FE 00FC	Feedback Register MUX Control Register	Test Control Registers
00F5:00F4 00F3:00F2 00F1:00F0 00E6 00E3:00E2 00E1:00E0	(Reserved) (Reserved) DIR A Register (Reserved) (Reserved) Port A	Port A Registers
00DE 00DD : 00DC 00D8 00D6 00D4 00D2 00D0	Microcode ROM Dump Halt Enable Register Port I Input Register SIO Register IRCD Register IRPD Register ENIR Register	Port Control & Interrupt Control Registers
00CF : 00CE 00CD : 00CC 00CB : 00CA 00C9 : 00C8 00C7 : 00C6 00C5 : 00C4 00C3 : 00C2 00C1 : 00C0	X Register B Register K Register PC Register SP Register (Reserved) PSW Register	HPC Core Registers
00BF : 00BE		
	Core RAM	User RAM
0001:0000		

Address Decode

Address decode is a common function required when accessing memory. To aid in this function a group of 7 memory access decode signals are available. The 64k memory map has been divided into eleven uneven blocks. A decode signal points to a respective block of user space. The remaining four blocks are accessed by internal register or RAM memory. The latched address select bits may be used with the required number of LSBs to decrease the amount of circuitry necessary to decode a unique address.

Figure 19 shows the signal decode mapping. The select bit SLIO points to a 32 byte block of memory containing Port A registers and test registers. The remaining bytes in this block are intended for future expansions. However, they may be utilized as write only register locations, if desired.

FIGURE 19. Memory Map Partitioning

Test Logic

The HPC core contains built in test logic to aid in device testing. This logic permits test vectors created for the standard family of products to be run while testing the Megacell inside a cell based design. Therefore, test vector generation to validate this complicated portion of the integrated circuit is removed from the circuit designer. Modifications may not be made to the test logic. Common to the strategy for all cell based Megacells, the test logic follows the "parallel testing" methodology.

The parallel testing methodology isolates the core from the remainder of the standard cell circuitry. This is accomplished by surrounding the core with banks of multiplexers (see *Figure 20*). Respective multiplexer inputs and outputs are brought to I/O pins of the device. Thus, during test the HPC core appears as the only logic in the chip. Thirty I/O pins are utilized by the HPC core during test. Twenty-nine of these pins may be used for alternate functions when not in the test mode. Sixteen pins are dedicated to Port A operation. The TEST pin determines which stimulus will reach the core and I/O pins. This is the only I/O pin dedicated to the test circuitry.

Two software registers assist the hardware during test. An 8-bit MUX control register (address 00FD) and a 16-bit feedback control register (address 00FE:00FF) are referred to as MUXC and FDBK, respectively in the following text.

Three groups clearly define the test pins. Nine pins are outputs, 16 pins are bidirectional, and 5 pins are inputs. The 16 bidirectional pins are part of Port A. Port A is configured as an address/data bus accessing the SROM address space when in test mode. With the aid of 5:1 multiplexers and the MUX Control register, the excessive number of outputs on the HPC core have been brought out through 6 pins. The outputs have been logically combined into four groups of six outputs each. In conjunction with the TEST pin and the MUXC register for group selection, each group is probed separately. The ALE, NRD and NWR signals are brought out through 2:1 MUXes.

Test Logic (Continued)

The 16-bit FDBK register has been created to control input stimulus through the HPC software. A binary pattern is loaded into the FDBK register and then shifted onto the HPC inputs. Four of the inputs do not lend themselves to a simple software solution for test. Therefore, the hardware has been provided to access these pins through direct multiplexer stimulation. An input test pin is shared by T2IN and T3IN. Selection of the timer input is controlled by the MUXC register bit TS2. The RDY and HOLD inputs share a test pin, as well. The mode is controlled internally by a HOLDMODE bit. CKIN and RSET are brought in through 2:1 MUXes.

The test logic hardware is part of the HPC macro and may not be altered. When not in test mode, logic connected to the user side of the isolating multiplexers will stimulate the core and I/O pins. The USR0:USR8 inputs on the HPC macro are the user logic inputs for the 9 MUXes connected to the output side of the HPC. The designer is responsible for connecting the appropriate I/O macros to the required macro test pins.

HPC Core CPU

The HPC core CPU has a 16-bit ALU and six 16-bit registers:

Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and can do 16-bit add, subtract and shift or logic AND, OR and exclusive OR in one timing cycle. The ALU can also output the carry bit to a 1-bit C register.

Accumulator (A) Register

The 16-bit A register is the source and destination register for most I/O, arithmetic, logic and data memory access operations.

Address (B and X) Registers

The 16-bit B and X registers can be used for indirect addressing. They can automatically count up or down to sequence through data memory.

Boundary (K) Register

The 16-bit register is used to set limits in repetitive loops of code as register B sequences through data memory.

Stack Pointer (SP) Register

The 16-bit SP register is the pointer that addresses the stack. The SP register is incremented by two for each push or call and decremented by two for each pop or return. The stack can be placed anywhere in user memory and be as deep as the available memory permits.

Program (PC) Register

The 16-bit PC register addresses program memory.

Addressing Modes

Addressing Modes—Accumulator as Destination Register Indirect

This is the "normal" mode of addressing for the HPC core (instructions are single byte). The operand is the memory addressed by the B register (or X register for some instructions).

Direct

The instruction contains an 8-bit or 16-bit address field that directly points to the memory for the operand.

Indirect

The instruction contains an 8-bit address field. The contents of the WORD addressed points to the memory for the operand.

Indexed

The instruction contains an 8-bit address field and an 8- or 16-bit displacement field. The contents of the WORD addressed is added to the displacement to get the address of the operand.

Immediate

The instruction contains an 8-bit or 16-bit immediate field that is used as the operand.

Register Indirect (Auto Increment and Decrement)

The operand is the memory addressed by the X register. This mode automatically increments or decrements the X register (by 1 for bytes and by 2 for words).

Register Indirect (Auto Increment and Decrement) with Conditional Skip

The operand is the memory addressed by the B register. This mode automatically increments or decrements the B register (by 1 for bytes and by 2 for words). The B register is then compared with the K register. A skip condition is generated if B goes past K.

Addressing Modes—Direct Memory as Destination Direct Memory to Direct Memory

The instruction contains two 8- or 16-bit address fields. One field directly points to the source operand and the other field directly points to the destination operand.

Immediate to Direct Memory

The instruction contains an 8- of 16-bit address field and an 8- or 16-bit immediate field. The immediate field is the operand and the direct field is the destination.

Double Register Indirect Using the B and X Registers

Used only with Reset, Set and IF bit instructions; a specific bit within the 64 kbyte address range is addressed using the B and X registers. The address of a byte of memory is formed by adding the contents of the B register to the most significant 13 bits of the X register. The specific bit to be modified or tested within the byte of memory is selected using the least significant 3 bits of register X.

HPC Instru	ction Set Description	
Mnemonic	Description	Action
ARITHMETIC INSTR	UCTIONS	
ADD	Add	$MA + MemI \rightarrow MA$ Carry $\rightarrow C$
ADC	Add with Carry	$MA + Meml + C \rightarrow MA$ Carry $\rightarrow C$
ADDS	Add Short Imm8	$A + Imm8 \rightarrow A$ Carry $\rightarrow C$
DADC	Decimal Add with Carry	$MA + Meml + C \rightarrow MA$ (Decimal Carry $\rightarrow C$
SUBC	Subtract with Carry	$MA - MemI + C \rightarrow MA$ Carry $\rightarrow C$
DSUBC	Decimal Subtract w/Carry	$MA - MemI + C \rightarrow MA$ (Decimal Carry $\rightarrow C$
MULT	Multiply (Unsigned)	$MA^*MemI \rightarrow MA \& X, 0 \rightarrow K, 0 \rightarrow C$
DIV	Divide (Unsigned)	MA/MemI \rightarrow MA, Rem. \rightarrow X, 0 \rightarrow K, 0 \rightarrow C
DIVD	Divide Double Word (Unsigned)	X & MA/MemI \rightarrow MA, Rem \rightarrow X, 0 \rightarrow K, Carry \rightarrow C
IFEQ	If Equal	Compare MA & Meml. Do Next if Equal
IFGT	If Greater Than	Compare MA & Meml, Do Next if MA > Meml
AND	Logical AND	MA AND Memi \rightarrow MA
OB		MA OB Meml \rightarrow MA
XOB	Logical Exclusive-OB	$MA \times OB \text{ Mem} \rightarrow MA$
	Increment	$Mom + 1 \rightarrow Mom$
DECSZ	Decrement Skip if 0	$Mem - 1 \rightarrow Mem Skip Next if Mem = 0$
SBIT	Set Bit	$1 \rightarrow Mem Bit (Bit is 0 to 7 Immediate)$
BBIT	Bset Bit	$0 \rightarrow \text{Mem Bit}$
IFBIT	If Bit	If Mem Rit is True. Do Next Instr
		Marrie N MA
		$Memi \rightarrow MA$
OT	Load, Incr/Decr X	$\operatorname{Merri}(X) \xrightarrow{\rightarrow} A, X \pm 1 \text{ (or } 2) \xrightarrow{\rightarrow} X$
51	Store to Memory	
X	Exchange	$A \longleftrightarrow Mem$
DUCU	Exchange, Incr/Decr X	$A \longleftrightarrow \text{Merri}(X), X \pm 1 \text{ (or } 2) \rightarrow X$
PUSH	Push Memory to Stack	$W \rightarrow W(SP), SP + 2 \rightarrow SP$
POP	Pop Stack to Memory	$SP - 2 \rightarrow SP, W(SP) \rightarrow W$
LDS	Load A, Incr/Decr B,	$Mem(B) \rightarrow A, B \pm 1 \text{ (or 2)} \rightarrow B,$
	Skip On Condition	Skip Next if B Greater/Less than K
XS	Exchange Incr/Decr B,	$Mem(B) \longleftrightarrow A, B \pm 1 \text{ (or 2)} \twoheadrightarrow B,$
	Skip On Condition	Skip Next if B Greater/Less than K
REGISTER LOAD IN	IMEDIATE INSTRUCTIONS	1
LD B	Load B Immediate	$Imm \rightarrow B$
LD K	Load K Immediate	$Imm \rightarrow K$
LD X	Load X Immediate	$Imm \rightarrow X$
LD BK	Load B and K Immediate	$Imm \rightarrow B, Imm \rightarrow K$
ACCUMULATOR AN	ID C INSTRUCTIONS	
CLR A	Clear A	$0 \rightarrow A$
INC A	Increment A	$A + 1 \rightarrow A$
DEC A	Decrement A	$A - 1 \rightarrow A$
COMP A	Complement A	1's Complement of A \rightarrow A
SWAP A	Swap Nibbles of A	A 15:12 ← A 11:8 ← A 7:4 ↔ A 3:0
RRC A	Rotate A Right Thru C	$C \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
RLC A	Rotate A Left Thru C	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow C$
SHR A	Shift A Right	$0 \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
SHL A	Shift A Left	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow 0$
SC	Sec C	$1 \rightarrow C$
RC	Reset C	$0 \rightarrow C$
IFC	IFC	Do Next If C = 1
IFNC	IF Not C	Do Next if $C = 0$

Mnemo	onic		Descrip	tion			Ac	tion		
ANSFER C	F CONT	ROL INST	RUCTIONS							
JSRP		Ju	mp Subroutine	e from Table		$PC \rightarrow W(SP)$, SP + 2 -	→ SP		
						W(Table #)	\rightarrow PC			
JSR		Ju	mp Subroutine	e Relative		$PC \rightarrow W(SP)$, SP + 2 -	→ SP,PC +	$+ \# \rightarrow PC$	0
JSRL		Ju	mp Subroutine	e Lona		$PC \rightarrow W(SP)$. SP + 2 -	, → SP.PC ⊣	+ # → PC)
JP		Ju	mp Relative S	short		$PC + \# \rightarrow F$	PC (# is +3	32 to -31)		
JMP		Ju	mp Relative			$PC + # \rightarrow F$	PC(# is +	257 to -25	5)	
JMPL		Ju	mp Relative L	ona		$PC + \# \rightarrow F$	PC		-)	
JID		Ju	mp Indirect at	PC + A		PC + A + 1 -	→ PC			
JIDW			inp manoor at			then Mem(P	(2) + PC -	→ PC		
NOP		No	Operation			$PC + 1 \rightarrow P$	C			
RET		Re	eturn			$SP - 2 \rightarrow S$	- P.W(SP) —	PC		
RETSK		Re	turn Then Ski	ip Next		$SP - 2 \rightarrow S$	P.W(SP) -	→ PC. & Sk	ip	
RETI		Be	turn from Inte	rrunt		$SP - 2 \rightarrow S$		PC Inter	runt Re-Ena	bled
MA is A Mem is Meml is Imm is Imm8 is	8-bit byte o 8-bit byte o 8- or 16-bit 8-bit or 16-b 8-bit imme	A or direct m r 16-bit word memory or 8 it immediate diate data onl	emory (8- or 16-b of memory B- or 16-bit immed data Y	bit) diate data						
MA is A Mem is Meml is Imm is I Imm8 is	Abit byte o 8-bit byte o 8-bit or 16-bit 8-bit or 16-b 8-bit immer ry Usa	Memory A or direct m r 16-bit word it immediate diate data onl IGE Number	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for	bit) diate data r Each Instru	uction (Num	ber in Parenthe	esis is 16-B	it Field)		
MA is A Mem is Meml is Imm is I Imm8 is	S-bit byte o 8-bit byte o 8-bit or 16-bit 8-bit or 16-bit 8-bit or 16-bit 8-bit immed ry Usa	Memory A or direct m r 16-bit word memory or 8 it immediate diate data onl IGE Number	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for Jsing Accumu	bit) diate data r Each Instru lator A	uction (Num	ber in Parenthe	esis is 16-B	it Field) To Direc	t Memory	
MA is A Mem is Imm is I Imm8 is Memoi	Reg	memory A or direct m r 16-bit word memory or 8 it immediate diate data onl IGE Number L Indir	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for Jsing Accum	bit) diate data r Each Instru ulator A	uction (Num	ber in Parenthe	esis is 16-B	it Field) To Direc rect	t Memory Imn	ned.
MA is A Mem is Memlis Imm is I Imm8 is	Reg (B)	memory A or direct m r 16-bit word memory or 8 it immediate diate data onl IGE Number L Indir	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for Jsing Accume Direct	bit) diate data r Each Instru ulator A Indir	uction (Num Index	ber in Parenthe	esis is 16-B	it Field) To Direc rect **	t Memory Imn *	ned.
MA is A Mem is Memlis Imm8 is Imm8 is LD	Reg (B) 1	memory A or direct m r 16-bit word memory or 8 it immediate diate data onl IGE Number L Indir (X) 1	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for Jsing Accume Direct 2(4)	diate data FEach Instru ulator A Indir 3	uction (Num Index 4(5)	ber in Parenthe	esis is 16-B	it Field) To Direc rect ** 5(6)	t Memory Imn * 3(4)	ned. ** 5(6)
MA is A Mem is Memlis Imm is I Imm8 is MemOI	Reg (B) 1 1 1 1	memory A or direct m r 16-bit word memory or £ diate data onl IGE Number L Indir (X) 1 1	emory (8- or 16-b of memory I- or 16-bit immed data y r of Bytes for Jsing Accumu Direct 2(4) 2(4)	tiate data	uction (Num Index 4(5) 4(5)	ber in Parenthe Immed. 2(3) —	esis is 16-B Dir * 3(5) —	it Field) To Direc rect ** 5(6) —	t Memory Imn * 3(4) —	ned. ** 5(6) —
MA is A Mem is Imm is I Imm8 is MemOI	Reg (B) 1 1 1 1 1	memory A or direct m r 16-bit word memory or & diate data onl IGE Number L Indir (X) 1 1 1	emory (8- or 16-bi of memory I- or 16-bit immed data y r of Bytes for Jsing Accumu Direct 2(4) 2(4) 2(4)	tiate data	uction (Num)	ber in Parenthe Immed. 2(3) —	esis is 16-B Dir * 3(5) — —	it Field) To Direc rect ** 5(6) — —	t Memory Imn * 3(4) — —	ned. ** 5(6)
MA is A Mem is Mem is Imm is I Imm8 is LIMM8 is LLD X ST ADC	Reg (B) 1 1 1 1 1	memory A or direct m r 16-bit word memory or E diate data onl IGE Number L Indir (X) 1 1 1 2	emory (8- or 16-bi of memory I- or 16-bit immed data y r of Bytes for Jsing Accume Direct 2(4) 2(4) 2(4) 3(4)	tiate data	uction (Num Index 4(5) 4(5) 4(5) 4(5) 4(5)	ber in Parenthe Immed. 2(3) — — 4(5)	esis is 16-B Dir * 3(5) — 4(5)	it Field) To Direc rect ** 5(6) 5(6)	t Memory Imn * 3(4) — 4(5)	ned. ** 5(6) 5(6)
MA is A Mem is Imm is I Imm8 is MemOI	Reg (B) 1 1 1 1 1 1	memory A or direct m r 16-bit word memory or 8 diate data onl IGE Number L Indir (X) 1 1 1 2 	emory (8- or 16-bi of memory I- or 16-bit immed data y r of Bytes for Jsing Accume Direct 2(4) 2(4) 2(4) 3(4) —	tiate data	Luction (Num)	ber in Parenthe Immed. 2(3) — 4(5) 2	esis is 16-B Dir * 3(5) 4(5) 	it Field) To Direc rect ** 5(6) 5(6) 	t Memory Imn * 3(4) 4(5) 	ned. ** 5(6) — 5(6) —
LD X ADC ADDS SBC	Reg (B) 1 1 1 1 1 1 1 1	memory A or direct m r 16-bit word memory or 8 diate data onl IGE Number U Indir (X) 1 1 1 1 2 	emory (8- or 16-bi of memory - or 16-bit immed data y r of Bytes for Jsing Accume Direct 2(4) 2(4) 2(4) 3(4) — 3(4)	tiate data	uction (Num Index 4(5) 4(5) 4(5) 4(5) 	ber in Parenthe Immed. 2(3) — 4(5) 2 4(5)	esis is 16-B Dir * 3(5) 4(5) 4(5)	it Field) To Direc rect ** 5(6) 5(6) 5(6)	t Memory Imn * 3(4) 4(5) 4(5)	ned. ** 5(6) 5(6) 5(6)
MA is A Mem is Memlis Imm is I Imm8 is Imm8 is LIMB S LD X ST ADC ADDS SBC DADC	Reg (B) 1 1 1 1 1 1 1 1 1	memory A or direct m r 16-bit word memory or 8 it immediate d diate data onl Ige Number L Indir (X) 1 1 1 1 2 	emory (8- or 16-bi of memory - or 16-bit immed data y r of Bytes for Jsing Accumu Direct 2(4) 2(4) 2(4) 3(4) 3(4) 3(4)	r Each Instru ulator A Indir 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	uction (Num) Index 4(5) 4(5) 4(5) 4(5) 	ber in Parenthe Immed. 2(3) — 4(5) 2 4(5) 4(5) 4(5)	esis is 16-B	it Field) To Direc rect 5(6) 5(6) 5(6) 5(6)	t Memory Imn * 3(4) 4(5) 4(5) 4(5)	ned. ** 5(6) 5(6) 5(6) 5(6)
MA is A Mem is Memlis Immis I Imm8 is Imm8 is	Reg (B) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	memory A or direct m r 16-bit word memory or 8 it immediate diate data onl Ige Number L Indir (X) 1 1 1 1 2 - 2 2 2	emory (8- or 16-bi of memory I- or 16-bit immed data y r of Bytes for Direct 2(4) 2(4) 2(4) 2(4) 3(4) 3(4) 3(4) 3(4)	r Each Instru ulator A Indir 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Luction (Numl Index 4(5) 4(5) 4(5) 4(5) 	ber in Parenthe Immed. 2(3) — 4(5) 2 4(5) 4(5) 4(5)	esis is 16-B	it Field) To Direc rect ** 5(6) 5(6) 5(6) 5(6) 5(6)	t Memory Imn * 3(4) 4(5) 4(5) 4(5) 4(5)	ned. ** 5(6) 5(6) 5(6) 5(6)
MA is A Mem is Memlis Imm8 is Imm8 is	Reg (B) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	memory A or direct m r 16-bit word memory or 8 it immediate diate data onl IGE Number L Indir (X) 1 1 1 1 2 2 2 2 2 2	emory (8- or 16-bi of memory I- or 16-bit immed data y r of Bytes for Direct 2(4) 2(4) 2(4) 2(4) 3(4) 3(4) 3(4) 3(4) 3(4)	r Each Instru ulator A Indir 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Letion (Num) Index 4(5) 4(5) 4(5) 4(5) 4(5) 4(5) 4(5) 4(5)	ber in Parenthe Immed. 2(3) — 4(5) 2 4(5) 4(5) 4(5) 4(5) 4(5) 2(3)	esis is 16-B	it Field) To Direc rect ** 5(6) 5(6) 5(6) 5(6) 5(6) 5(6)	t Memory Imn * 3(4) 4(5) 4(5) 4(5) 4(5) 4(5)	ned. *** 5(6) 5(6) 5(6) 5(6) 5(6) 5(6)

 AND
 1
 2

 OR
 1
 2

 XOR
 1
 2

1

1

1

1

2

2

2

2

*8-Bit Direct Address **16-Bit Direct Address

DIV

DIVD

IFEQ

IFGT

Instructions that Modify Memory Directly						
	(B)	(X)	Direct	Indir	Index	B&X
SBIT	1	2	3(4)	3	4(5)	1
RBIT	1	2	3(4)	3	4(5)	1
IFBIT	1	2	3(4)	3	4(5)	1
DECSZ	3	2	2(4)	3	4(5)	
INC	3	2	2(4)	3	4(5)	

3(4)

3(4)

3(4)

3(4)

3(4)

3(4)

3(4)

3

3

3

3

3

3

3

Immediate Load Instructions		
Immed		
2(3)		
2(3)		
2(3)		
3(5)		

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

2(3)

_

2(3)

2(3)

2(3)

2(3)

2(3)

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

5(6)

5(6)

5(6)

5(6)

5(6)

5(6)

5(6)

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

4(5)

5(6)

5(6)

5(6)

5(6)

5(6)

5(6)

5(6)

Memory Usage (Continued)

Register Indirect Instructions with Auto Increment and Decrement

Register B with Skip			
(B+)	(B–)		
1	1		
1	1		
	egister B v (B+) 1 1		

Register X				
	(X+)	(X-)		
LD A,*	1	1		
X A,*	1	1		

Instructio	on Using A a	and C	Transfer of Control Instructions		
CLR	А	1	JSRP	1	
INC	А	1	JSR	2	
DEC	А	1	JSRL	3	
COMP	А	1	JP	1	
SWAP	А	1	JMP	2	
RRC	А	1	JMPL	3	
RLC	А	1	JID	1	
SHR	А	1	JIDW	1	
SHL	А	1	NOP	1	
SC		1	RET	1	
RC		1	RETSK	1	
IFC		1	RETI	1	
IFNC		1	L		

2

Stack Reference Instructions

Direct PUSH 2

POP

Code Efficiency

One of the most important criteria of a single chip microcontroller is code efficiency. The more efficient the code, the less memory support required. More integration is possible if the die is not consumed with memory or for external memory designs, production cost is lower with fewer memory elements.

The HPC core has been designed to be extremely code-efficient. Standard products developed around the core look very good in all the standard coding benchmarks. Many large jobs have been programmed using the HPC core, and the code savings over other popular microcontrollers has been considerable-often the jobs take less than one-half the memory.

Reasons for this saving of code include the following:

Single Byte Instructions

The majority of instructions on the HPC core are single byte. Two instructions are particularly code-efficient:

JP is a 1-byte jump. The jump must be within a range of plus or minus 32 bytes. This is a valuable instruction, since many loops and decisions are often within a small range of program memory. Most other micros need 2-byte instructions for any short jumps.

JRSP is a 1-byte subroutine call. The user makes a table of his 16 most frequently called subroutines and these calls will only take one byte. Most other micros require two and even three bytes to call a subroutine. The user does not have to decide which subroutine addresses to put into his table; the assembler can give him this information.

Efficient Subroutine Calls

The 2-byte JSR instruction can call any subroutine within plus or minus 1k of program memory.

Multifunction Instructions for Data Movement and Program Looping

The HPC core has single-byte instructions that perform multiple tasks. For example, the XS instruction will do the following.

- 1. Exchange A and memory location pointed to by the B register.
- 2. Increment the B register.
- 3. Compare the B register versus the K register.
- 4. Generate a conditional skip if B is greater than K.

The value of this multipurpose instruction becomes evident when looping through sequential areas of memory and exiting when the loop is finished.

Bit Manipulation Instructions

Any bit of memory, I/O or register can be set, reset or tested by the single byte bit instructions. The bits can be addressed directly or indirectly. Since all registers and I/O are mapped into the memory, it is very easy to manipulate specific bits to do efficient control.

The one exception to the above is with the IRPD register. A LOAD IMMEDIATE instruction is to be the only instruction used to clear a bit or bits in this register (see Interrupt Pending Register section).

Decimal Add and Subtract

This instruction is needed to interface with the decimal user world.

It can handle both 16-bit words and 8-bit bytes.

The 16-bit capability saves code since many variables can be stored as one piece of data and the progarmmer does not have to break his data into two bytes. Many applications store most data in 4-digit variables. The HPC core supplies 8-bit byte capability for 2-digit variables and literal variables.

Multiply and Divide Instructions

The HPC core has 16-bit multiply, 16-bit by 16-bit divide, and 32-bit by 16-bit divide instructions. This saves both code and time. Multiply and divide can use immediate data or data from memory. The ability to multiply and divide by immediate data saves code since this function is often needed for scaling base conversion, computing indexes of arrays, etc.

Development Support

Schematic Capture

Schematic capture of designs using the HPC Megacell is available on ASIC supported workstations and the mainframe computer system. Confer with Marketing for the library revision which contains the HPC Megacell on individual workstations.

Software Tools

Several software tools are available to aid the design process. An event driven simulation software package is available on the mainframe computer system. A behavioral model of the HPC core is present to support netlist simulation.

Writing HPC software in a test vector format is very cumbersome. To alleviate this struggle, a software package exists to convert HPC Assembler code to a format familiar to the simulator. Along with the HPC code conversion, I/O pin stimulus may be included to execute synchronously with a designated HPC instruction. The conversion software creates a HILO ROM model to hold the HPC code and an I/O stimulus model for the input pin test vectors.

Simulation Procedure

An important part of cell based design is simulation. To confirm proper HPC connection and design verification, HPC code for device testing will be written by the designer. Typically, this code will not be the code written to execute the application. Rather, it will be specifically written to exercise the design for test purposes in the most efficient manner as possible. Instead of writing HPC code in a binary format, it is recommended that the HPC assembler to simulation test format conversion software be utilized.

When using the conversion software approach, a superlevel drawing of the cell based design must be created. This drawing page is a diagram of the standard cell device, the test ROM model and the I/O pin stimulus model. The ROM model may be generated as an internal or external ROM for the cell based device. This schematic page shows the interaction between these three blocks. A netlist from this level is used for the simulation. Thus, the stimulus models appear in the design netlist. When simulation is complete, only the netlist of the cell based design is considered for place and route. Refer to the HPC Megacell user's guide for more details on HPC simulation.

Emulation

The MOLE™ (Microcontroller On-Line Emulator) is a low cost development system and emulator for all microcontroller products. These include COPs, TMP, 8050U and the HPC Family of products. The MOLE consists of a Brain Board, Personality Board and optional host software.

The purpose of a MOLE is to provide the user with a tool to write and assemble code, emulate code for the target microcontroller, and assist in both the software and hardware debugging of the system. It is a self-contained computer with its own firmware which provides for all system operation, emulation control, communication, PROM programming and diagnostic operations.

The MOLE contains three serial ports. Multiple ports are usually needed to optionally connected to a terminal, a host system, a printer or modem, or to other MOLEs in a multi-MOLE environment. MOLE can be used in either a stand alone mode or in conjunction with selected host systems, i.e., those using CP/M or PC-DOS, communicating via RS-232 port.

The MOLE product line may be used with cell based IC development of HPC designs. A 68-pin package of the HPC core Megacell has been created to operate in the HPC Personality Board. When a standard product HPC design is emulated, a connection between the MOLE board and the user's target system is made. This allows interaction between the emulator and the application system. In a cell based design, the integrated circuit will contain more than the HPC core. To accurately emulate the core in the user's system a bread board of the logic surrounding the HPC core must be created. The MOLE board would connect directly to the bread board, which would connect into the target system. The MOLE system will perform the same function as done in the emulation of the standard family product.

To improve the accuracy of bread board emulations National will provide "kit parts" of all cell macros not available as standard products.

Dial-A-Helper is a service provided by the MOLE applications group. If a user is having difficulty in getting a MOLE to operate in a particular mode or it is acting in a peculiar manner, they can contact us via their system and modem. They can leave messages on our electronic bulletin board which we will respond to, or they can arrange for us to actually take control of their system via modem for debugging purposes.

The applications group can then force their system to execute various commands and try to resolve the customer's problem by actually getting the customer's system to respond. The problem is solved 99% of the time. This allows us to respond in minutes instead of days when applications help is needed.

The system can also be used to download available applications software.

Packaging

The HPC core Megacell requires a minimum of 30 I/O pins for testing purposes. In addition, 4 power pairs are required. Therefore, the cell based design may be put in any available package greater than 38 pins.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semicolidución National Semicolidución 1111 West Bardin Road Artington, TX 76017 Europe Tel: 1(800) 272-2059 Deutsch Tel: (+49) 0-180-530 85 86 Fax: 1(800) 737-7018 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 18 32 Français Tel: (+49) 0-180-534 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	Valunai semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
---	--	---

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.