

# HT2030

# Three Lamp/LED Flash Drivers

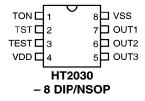
#### **Features**

- CMOS Metal-Gate process
- Operating voltage: 1.2V~4.5V
- Low standby current: 1μA at 3V
- Three driver outputs
- One-shot and on/off trigger
- Built-in oscillator

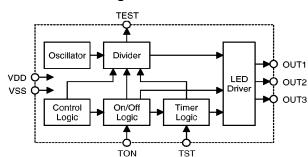
- Minimum external components
- 8 DIP/NSOP enclosed
- Options:

- Flash frequency: 1.33Hz~2.67Hz

- Output duty: 25%~100%
- Number of flashes:  $1\sim7$


### **General Description**

The HT2030 is a low cost and low-power CMOS LSI designed for lamp or LED flash drivers. It has three flash outputs with 8mA (typical) driving current.

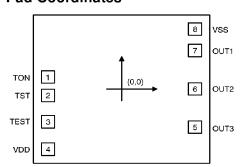

Two inputs are provided to trigger the operation of the HT2030, namely on/off toggle trigger and one shot trigger.

The HT2030 provides options such as flash frequency, LED driving duty and the number of flashes when the IC is operating in the one shot mode.

#### Pin Assignment



#### **Block Diagram**




16th July '97

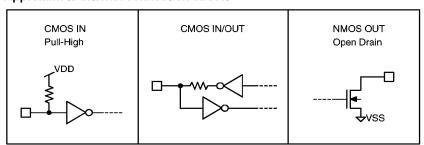
Unit: mil



### **Pad Coordinates**



| Pad<br>No. | X     | Y      | Pad<br>No. | X  | Y     |
|------------|-------|--------|------------|----|-------|
| 1          | -30.1 | 5.2    | 5          | 30 | -16.3 |
| 2          | -30.1 | -2.7   | 6          | 30 | 0.1   |
| 3          | -30.1 | -13.95 | 7          | 30 | 16.5  |
| 4          | -30.1 | -25.7  | 8          | 30 | 25.7  |


Chip size:  $63 \times 55 \text{ (mil)}^2$ 

## **Pad Description**

| Pad No. | Pad Name  | I/O | Internal<br>Connection | Description                               |
|---------|-----------|-----|------------------------|-------------------------------------------|
| 1       | TON       | I   | CMOS<br>Pull-High      | On/off toggle trigger input<br>Low active |
| 2       | TST       | I   | CMOS<br>Pull-High      | One shot trigger input<br>Low active      |
| 3       | TEST      | I/O | CMOS                   | For IC test only                          |
| 4       | VDD       | I   | _                      | Power supply (positive)                   |
| 5~7     | OUT3~OUT1 | О   | NMOS<br>open drain     | Lamp/LED flash driving output             |
| 8       | vss       | I   | _                      | Power supply (negative)                   |

2

### Approximate internal connection circuit



16th July '97

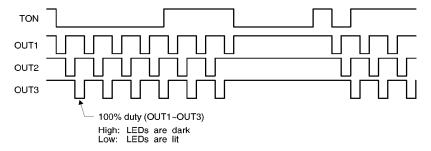
<sup>\*</sup> The IC substrate should be connected to VDD in the PCB layout artwork.



#### **Absolute Maximum Ratings**

| Supply Voltage0.3V to 6V         | Input Voltage $V_{\rm SS}\!\!-\!\!0.3V$ to $V_{\rm DD}\!\!+\!\!0.3$ |
|----------------------------------|---------------------------------------------------------------------|
| Storage Temperature50°C to 125°C | Operating Temperature20°C to 75°C                                   |

#### D.C. Characteristics

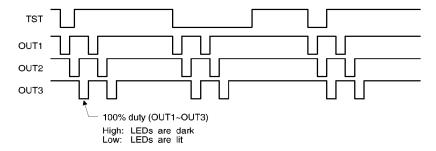

(Ta=25°C)

| Sb al            | Parameter              | Test Conditions   |                                    | D/I: | Т    | Max. | Unit |
|------------------|------------------------|-------------------|------------------------------------|------|------|------|------|
| Symbol           |                        | $\mathbf{V_{DD}}$ | Conditions                         | Min. | Тур. | wax. | Onit |
| $ m V_{DD}$      | Operating Voltage      | _                 | _                                  | 1.2  | 3    | 4.5  | v    |
| $I_{STB}$        | Standby Current        | 3V                | _                                  | _    | 1    | 2    | μΑ   |
| ${ m I}_{ m DD}$ | Operating Current      | 3V                | No Load<br>F <sub>OSC</sub> =60kHz | _    | 80   | 160  | μA   |
|                  |                        | 4.5V              |                                    | _    | 210  | 420  | μA   |
| $I_{ m OL}$      | Output Sink Current    | 3V                | V <sub>OL</sub> =0.3V              | 5    | 8    | _    | mA   |
|                  |                        | 4.5V              | $V_{\rm OL}$ =0.4 $V$              | 10   | 16   | _    | mA   |
| ${ m I}_{ m IL}$ | TON, TST Input Current | зV                | V <sub>IL</sub> =0V                | _    | 1    | 2    | μA   |
|                  |                        | 4.5V              |                                    | _    | 2    | 4    | μA   |
| Fosc             | Oscillator Frequency   | 3V                | _                                  | _    | 60   | _    | kHz  |

## **Functional Description**

#### On/off trigger mode

The system is in the stand by state after the power is turned on. Then, TON should be connected to VSS momentarily so that the system can enter the on/off mode and the 3 outputs can drive the LEDs (the output NMOS is turned on at this time). However, if TON is momentarily re-connected low, the system goes into the stand-by state again (the output NMOS is switched off).

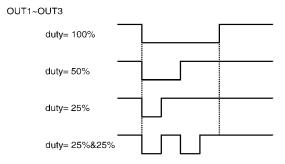



16th July '97



#### One shot trigger mode

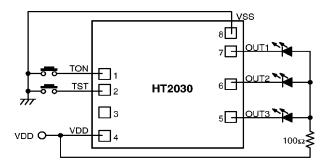
The system goes into the one shot mode if TST is connected to VSS momentarily. In the one shot mode, the system will drive the 3 LEDs several times (the number of flashes is two for the HT2030).




#### Option

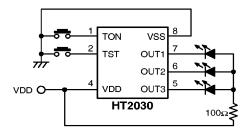
The user can select any combination of options by changing one mask layer. The option table and waveform are shown as follows:

| Function                             | Options                        |
|--------------------------------------|--------------------------------|
| Flash frequency                      | 1.33Hz, 1.78Hz, 2.22Hz, 2.67Hz |
| LED driving duty                     | 25%, 50%, 25% & 25%, 100%      |
| Number of flashes (in one shot mode) | 1~7 times                      |


For the HT2030, the flash frequency is  $2.67 \mathrm{Hz}$  (it takes 0.375 seconds to complete a 3-LED flash cycle), LED driving duty is 25% and the number of flashes is two by default.






## **Application Circuit**

## Chip form



 $\ensuremath{^{*}}$  The IC substrate should be connected to VDD in the PCB layout artwork.

### Package form



5 16th July '97