FRIF IM.

- Ideal for 433.92 MHz Unlicensed Transmitters in Europe
- Meets the Most Stringent European Remote-Control Regulations
- Compact, Surface-Mount Case with <90 mm² Footprint

The HX1000 is a miniature transmitter module that generates on-off keyed (OOK) modulation from an external digital encoder (not included). The carrier frequency is quartz, surface-acoustic-wave (SAW) stabilized, and output harmonics are suppressed by a SAW filter. The result is excellent performance in a simple-to-use, surface-mount device with a low external component count. The HX1000 is designed specifically for unlicensed remote-control and wireless security transmitters operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

Rating	Value	Units
Power Supply and/or Modulation Input Voltage	10	V
Nonoperating Case Temperature	-40 to +85	°C
Ten-Second Soldering Temperature	230	°C

Electrical Characteristics

(Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	Absolute Frequency	f _O	1, 2, 3, 4,	433.720		434.120	MHz
	Tolerance from 433.920 MHz	Δf_O	10			±200	kHz
RF Output Power into 50 W at 25°C		P _O	2, 4, 5, 10	-3	0		dBm
	Within Specified Temperature Range		2, 3, 4, 5	-5	0		UDIII
Harmonic Spurious Emissions			2, 3, 4, 5		-52	-45	dBc
Modulation Input	Input HIGH Voltage	V _{IH}	3, 4, 5	2.5		V _{CC}	v
	Input LOW Voltage	V _{IL}		0.0		0.3	
	Input HIGH Current	I _{IH}				100	μA
	Input LOW Current	۱ _{IL}		0.0			
Data Timing Parameters	Modulation Rise Time	t _R	3, 4, 5, 6			100	μs
	Modulation Fall Time	t _F				100	
Power Supply	Voltage	V _{CC}	5, 7	2.7	3	3.3	VDC
	Peak Current	I _{CC}	3, 4, 5, 8		7	10	mA
	Standby Current		5, 9			1.0	μA
Operating Case Temperature Range		Т _С	5	-40		+85	°C
Lid Symbolization (in addi	tion to Lot and/or Date Codes)			RFM	HX1000		

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

- 1. One or more of the following United States patents apply: 4,454,488; 4,616,197; 4,670,681; and 4,760,352.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Applies over the specified range of operating temperature.
- 4. Applies over the specified range of operating power supply voltage.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. The maximum modulation bandwidth (and data rate) is dependent on the characteristics of the external encoding circuitry (not included).
- 7. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$, test load impedance = 50 Ω , and modulation input is at logic HIGH.
- 8. The maximum operating current occurs at the maximum specified power supply voltage and maximum specified operating temperature.
- 9. Standby current is defined as the supply current consumed with the modulation input at logic LOW.
- 10. Improper antenna loading affects performance of HX device.

HX1000

433.92 MHz Hybrid Transmitter

Hybrid Transmitter

Electrical Connections

Terminal Number	Connections]
1	Data Input	3
2	+DC Supply	
3	Ground	
4	RF Output to 50 Ω	4

SAW

Filter

0

Γ

SAW

Filter

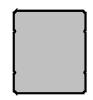
BOTTOM VIEW

Terminal 3

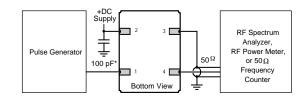
Terminal 4

RF Output to 50Ω

Ground

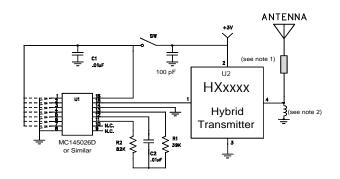

Terminal 2

+DC Supply


Terminal 1

Data Input

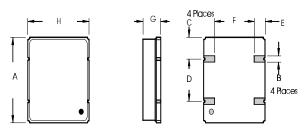
Footprint



Typical Test Circuit

*Note: Bypass required only for "HX2..." series transmitters in the 902 to 928 MHz band.

Typical Transmitter Application



Notes:

- 1. This matching component is required only for antennas that are not 50 ohms. It is typically a chip inductor to match to stub antennas shorter than ¼ wavelength. For very low radiated field-strength applications, a resistor can also be used.
- 2. For ESD protection.

Case Design

Block Diagram

Dimensions	Millimeters		Inches	
Dimensions	Min	Max	Min	Max
A		10.67		0.420
В	1.27 Nominal		0.050 Nominal	
С	2.67 Nominal		0.105 Nominal	
D	5.08 Nominal		0.200 Nominal	
E	1.70 Nominal		0.067 Nominal	
F	5.36 Nominal		0.211 Nominal	
G		2.80		0.110
Н		9.02		0.355